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 ABSTRACT 15 

Vocal repertoire size is an important behavioural measure in songbirds and mammals with 16 

complex vocal communication systems, and has traditionally been used as an indicator of 17 

individual fitness, cognitive ability, and social structure. Estimates of asymptotic repertoire size 18 

have typically been made using curve fitting techniques. However, the exponential model usually 19 

applied in these techniques has never been provided with a theoretical justification based on 20 

probability theory, and the model has led to inaccurate estimates. We derived the precise 21 

expression for the expected number of distinct signal types observed for a fixed sampling effort: 22 

a variation of what is known in the statistical literature as the “Coupon Collector‟s problem”. We 23 

used empirical data from three species (northern mockingbird, Carolina chickadee, and rock 24 

hyrax) to assess the performance of the Coupon Collector model compared to commonly used 25 

techniques, such as exponential fitting and repertoire enumeration, and also tested the different 26 

models against simulated artificial data sets with the statistical properties of the empirical data. 27 

We found that when signal probabilities are dissimilar, the Coupon Collector model provides far 28 

more accurate estimates of repertoire size than traditional techniques. Enumeration and 29 

exponential curve fitting greatly underestimated repertoire size, despite appearing to have 30 

reached saturation. Application of the Coupon Collector model can generate more accurate 31 

estimates of repertoire size than the commonly used exponential model of repertoire discovery, 32 

and could go a long way towards re-establishing repertoire size as a useful indicator in animal 33 

communication research. 34 
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 37 

1. INTRODUCTION 38 

 Assessing the repertoire size of animal vocalisations has long been recognised as important 39 

to understanding the development, function, and evolution of animal communication (Bradbury 40 

& Vehrencamp 2011). Repertoire size is often considered to be an indicator of communicative 41 

complexity (Freeberg et al. 2012), and communicative complexity has numerous implications for 42 

the understanding of animal signalling and social evolution. It has been proposed that 43 

communicative complexity may drive the evolution of social complexity, and vice versa 44 

(McComb & Semple 2005; Pollard & Blumstein 2012). Communicative complexity may be an 45 

indicator of individual fitness (Hiebert et al. 1989; Darolová et al. 2012), may influence mate 46 

choice and the evolution of mating systems (Searcy 1992; Nowicki et al. 2000), and may play a 47 

role in complex sender-receiver competitive games (Owren et al. 2010). Repertoire size is also 48 

an important metric for assessing the tradeoff between function and variant diversity in 49 

communication (Bradbury & Vehrencamp 2011), and the neurological constraints limiting the 50 

use of highly complex signalling, such as syntax (Lipkind et al. 2013). Although most previous 51 

research related to repertoire size has concentrated on the repertoire of birdsong, the work we 52 

describe here can be generalised to consider other non-song modalities such as visual signals 53 

(Peters & Ord 2003), chemical signals (delBarco-Trillo et al. 2012), and even to entire 54 

behavioural repertoires (Sempo & Detrain 2004). As such, hereafter we use the term “signals”, 55 

rather than “songs”, except where specifically referring to mating/territorial songs. 56 

 Despite the importance of repertoire size in animal species, repertoire size estimation for 57 

any given species or individual is a non-trivial problem in practical situations. For species with 58 
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large repertoires, large sampling effort is required to enumerate all distinct vocalisations. Some 59 

species of songbird, furthermore, produce much of the diversity of their song repertoire quickly 60 

(immediate variety), whereas other species produce the diversity of their song repertoire over 61 

much longer time frames (eventual variety; Catchpole & Slater 2003). Even if true repertoire size 62 

is small, enough data need to be collected to ensure that all possible types have been recorded 63 

(Hesler et al. 2012). In most cases, comprehensive sampling is impractical, and so estimation 64 

techniques must be used. Most work on estimating repertoire size has been carried out with 65 

songbirds, since song repertoires play such a crucial role in the social and reproductive life of 66 

many species (Catchpole & Slater 2003). Songbird repertoire sizes range from a single 67 

stereotyped song such as in the white-crowned sparrow Zonotrichia leucophrys (Soha & Marler 68 

2001), through tens of distinct vocalisations, e.g. in the European blackbird Turdus merula, up to 69 

species such as the northern mockingbird Mimus polyglottos and brown thrasher Toxostoma 70 

rufum, which can make use of hundreds or even thousands of different songs (Kroodsma 1977; 71 

Gammon & Altizer 2011). Some songbird species, furthermore, possess diverse repertoires of 72 

calls, indicating that repertoire estimation is important to non-song vocal behaviour as well (e.g., 73 

call repertoires in crows and jays, chickadees and titmice, and parrots). Moreover, songbirds are 74 

not the only taxon where repertoire estimation is important. Some mammal species have 75 

extensive vocal repertoires, such as the rock hyrax Procavia capensis (Kershenbaum et al. 2012), 76 

free-tailed bats Tadarida brasiliensis (Bohn et al. 2009), marmots Marmota flaviventris 77 

(Blumstein 2007), and pilot whales Globicephala macrorhynchus (Sayigh et al. 2012), and little 78 

is known about their social and evolutionary significance. 79 

 80 

2. PREVIOUS WORK  81 
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 Estimating the repertoire size of individuals or a group of individuals has been 82 

accomplished using different methods. In one of the earliest methods (henceforth WM) , 83 

Wildenthal (1965) proposed measuring the total number of distinct signals observed as sample 84 

size increases, and fitting these data to an exponential function of the form  85 

 e
NM

NE


 1  (1) 86 

where N is the true repertoire size, M is the number of observations (samples) made, and E is the 87 

number of distinct signals observed. Wildenthal originally proposed this relationship based on 88 

the observation that, “when the data were plotted… the curves obtained approximate exponential 89 

curves” (Wildenthal 1965). Davidson & Wilkinson (2002) subsequently proposed a correction to 90 

the Wildenthal model which appeared to give a better fit to the empirical data. In the Davidson & 91 

Wilkinson (2002) model (henceforth, DW), the rate of increase of distinct signal types observed 92 

is lower than expected by the WM, by a factor A, where A>1: 93 

 e
ANM

NE


 1  (2) 94 

The DW is purely empirical, as no known probabilistic process would be expected to produce a 95 

relationship as indicated in Equation 2. However, even the derivation of the WM remains 96 

unexplained, and to date no examination has been made of why the number of observed signals 97 

should follow this exponential relationship, or what the theoretical justification for such a model 98 

might be. 99 

 A different approach, examined by Garamszegi et al. (2005) applied the capture-recapture 100 

principle to the observation of signal types. Using the capture-recapture approach, the researcher 101 

models the observation of signals in the same way as observation of marked individuals in 102 
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population sampling; an established technique used for the estimation of population size. This 103 

technique also gives repertoire size estimates that are empirically accurate under certain 104 

conditions, and is based on the theoretical similarity between sampling signals, and the sampling 105 

of marked individuals. 106 

 Botero et al. (2008) compared these estimation techniques using artificial repertoires with 107 

known repertoire sizes, and concluded that in many cases, simple enumeration of the number of 108 

distinct signals observed (henceforth, EN) is the easiest and most accurate estimator of true 109 

repertoire size. Since then, other researchers have proposed additional techniques that appear 110 

empirically valid, such as rarefaction (Peshek & Blumstein 2011), but no bottom-up analysis of 111 

the process of signal sampling has been performed to derive the precise relationship between 112 

sampling effort and repertoire estimate. In practice, many researchers simply use the 113 

enumeration of distinct observed signals, on the assumption that sufficient signals have been 114 

sampled to represent the entire repertoire accurately (e.g. Searcy 1992; Nowicki et al. 2000; Pfaff 115 

et al. 2007; Hesler et al. 2011). 116 

 We show that this problem of sampling signals from a repertoire is a variant of the 117 

“Coupon Collector‟s problem” (Erdös & Rényi 1961; Jocković & Mladenović 2011), and we use 118 

probability theory to derive the precise expression for the expected number of distinct observed 119 

signals, given a particular sampling effort. We show that this result closely approximates 120 

Wildenthal‟s and Davidson-Wilkinson‟s exponential models only when each signal occurs with a 121 

similar probability. When individual signals do not occur homogenously, exponential fitting is 122 

likely to underestimate total repertoire size. Although no closed-form expression exists for the 123 

repertoire size estimate, non-linear least-squares fitting provides an accurate estimate, if 124 

sufficient data are available to estimate the signal probabilities. Finally, we compare our method 125 
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to other common methods for assessing repertoire size, using examples of animal vocalisations: 126 

mockingbird song, chickadee calls, and hyrax songs. Matlab scripts implementing this method 127 

are available for download at [URL TO BE DETERMINED BEFORE PUBLICATION]. 128 

 129 

3. MATHEMATICAL THEORY OF THE MODEL 130 

 Sampling signals from a repertoire can be represented as a variant of the Coupon 131 

Collector‟s problem, solved by Erdös & Rényi (1961) and cited in Jocković & Mladenović 132 

(2011). Suppose we collect coupons (sometimes the problem is posed as collecting baseball 133 

cards, or similar) of which there are N different types. We randomly select coupons with 134 

replacement, i.e. the coupons are not depleted. The original problem asks for the expected 135 

number of selections necessary to have collected at least one of each coupon type. We pose a 136 

related question: after selecting M coupons, how many distinct different types of coupons are we 137 

expected to have uncovered? This is equivalent to sampling M signals from a repertoire of true 138 

size N. 139 

 Our problem may be posed formally as follows: Let {1,2,..., }S N  be the set of distinct 140 

signals in an N element repertoire. Each possible sample of size M from this repertoire 141 

corresponds to one of the MN sequences of the form 1( ,..., )Mi i , where 1,..., Mi i   are arbitrary 142 

elements of .S  Our sample space ( , )M N consists of the set of all such sequences. Equip 143 

( , )M N with a probability measure P  defined as follows:  Let (1),..., ( )p p N  designate the 144 

relative frequencies of the signals 1,..., N , where (1) ( ) 1p p N  .  Then set 145 

1 1( ,..., ) ( ) ( ),M MP i i p i p i   extending P  to arbitrary subsets of ( , )M N by additivity. Note that 146 
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in defining P  in this way, we are postulating that the signal occurring at each position in the 147 

sample is independent of the signals occurring in earlier positions. Now consider the random 148 

variable : ( , ) {1,2,..., }X M N N  , where 1 2( , ,..., )MX i i i  = the number of distinct signals in the 149 

sequence 1 2( , ,..., )Mi i i . Our goal is to evaluate 
1

( ) ( ),
N

j

E X jP X j


   the expected (or mean) 150 

value of .X  The evaluation of the probabilities ( )P X j  :   1 2({( , ,..., ) :MP i i i  j  distinct 151 

signals occur in the sequence ( 1 2, ,..., )Mi i i }) is, however, a daunting task. Fortunately, we may 152 

write X  as the sum 1 NX X  of indicator random variables, where, for each 1,..., ,j N  153 

1( ,..., ) 1j MX i i   if the number j  appears in 1( ,..., )Mi i  at least once, and 0  if j  never appears in 154 

the sequence. For each ,j  ( ) ( 1) 1 ( 0) 1 (1 ( )) .M

j j jE X P X P X p j          By the linearity 155 

of the expectation operator E (which holds, notwithstanding the fact that the random variables 156 

jX  are not independent) it then follows that 157 

1 1

( ) ( ) 1 (1 ( )) .
N N

M

j

j j

E X E X p j
 

    
 (3)

 158 

In the specific case where (1) ( ) 1/p p N N    (all signals equally likely), P  is the uniform  159 

distribution  on ( , ),M N  and (3) reduces to    160 

 
 

1

11
11



























M

MMM

N

NN

N
NXE  (4) 161 

Although Equation 4 is similar in shape to Equation 1, this similarity is not preserved in the more 162 

general case (Equation 3) where the probabilities (relative frequencies) of each signal are not 163 

homogenous. Botero et al. (2008) examined a specific case of non-homogenous probability of 164 
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signals, using the WM, and concluded that in this case, enumeration, or simply counting the 165 

number of distinct signal types observed, provides as good an estimate of repertoire size as 166 

curve-fitting methods. We can extend this analysis to show that the error in curve-fitting 167 

techniques depends not on the extent of “non-homogeneity” in the probability distribution, but 168 

on the number of “rare” signals. Botero et al defined half of the signals as “common” 169 

(probability Pc), and half “rare” (probability Pr), where Pc=5Pr. It follows therefore that 170 

Pr=1/(3N), and Pc=5/(3N). We can substitute these probabilities into Equation 3, which allows us 171 

to compute the expected number of distinct signal types observed (as determined by the Coupon 172 

Collector‟s model): 173 

 






























MM

NN

N
XE

3

5
1

3

1
12

2
 (5) 174 

 We can extend this treatment to the case where a proportion of the signals are 175 

“common”, and (1-) “rare”, and where Pc=Pr; 0<<1, and >1. In this case Equation 3 176 

becomes: 177 

         M

r

M

r PNPNXE  11111   (6) 178 

Since all the signal probabilities sum to 1,   11  rr PNPN  , and so solving for Pr, we 179 

have: 180 

 

 1

1

1













N
P

N
P

c

r

 (7) 181 



 

10 
 

Substituting this into Equation 6, we can derive a general expression for the expected number of 182 

distinct observed signals. 183 

 The Botero model is unrealistic in considering only two signal probabilities, and as a result 184 

overestimates the performance of exponential curve fitting models. Before moving on to 185 

consider more realistic signal probability distributions, we can perform a further simple 186 

extension, by assuming that signal probabilities decline according to a simple exponential 187 

probability distribution, with a single parameter  (where >0) that determines how much 188 

variation there is between the probabilities of different signal types.. 189 

  e
i

K
ip








1
 (8) 190 

where K is a normalising factor, given a finite number N of signal types 191 

 e
e

N

K





1

1

1





   (9) 192 

 193 

4. METHODS 194 

 We examine by simulation the performance of four techniques for estimating vocal 195 

repertoire size. The WM has been extensively described above. Secondly, we test the model 196 

proposed by Davidson & Wilkinson (2002), DW, which uses an additional parameter A 197 

(Equation 2), and so does not lend itself to analytical scrutiny along the lines of the preceding 198 

section. Thirdly, we attempt to estimate repertoire size using the model of signal occurrence as 199 

determined by the Coupon Collector‟s model (henceforth, CC). Finally, we compare these 200 
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techniques to simple enumeration (EN) of distinct observed signals, as an estimate of true 201 

repertoire size. 202 

 We applied all four repertoire estimation techniques against real data taken from three 203 

species in the field. First, the northern mockingbird possesses a highly diverse repertoire of songs 204 

based largely on mimicry of other species, and is an important subject for repertoire size 205 

estimation. We used data gathered on nine male mockingbirds from 2010-2011 in Elon, North 206 

Carolina; for details on the methods, see Gammon (2014). The songs were analysed and assigned 207 

a classification according to the heterospecific mimicked species and song type, breaking song 208 

sequences where the bird interspersed native mockingbird song. Our data set comprised 1184 209 

sequences (i.e. M≤1184), consisting of 100 different mimicries (signals) of 41 different species. 210 

Sequences varied in length between one and 16 signals (mean 2.4). Our aim here was to 211 

determine the repertoire size (N) in terms of the number of different heterospecific signals the 212 

birds can mimic. We estimated the repertoire size for the study population as a whole, rather than 213 

for each of the nine birds individually, due to the small sample size at the individual level.  214 

 Our second data set is a collection of calls of Carolina chickadees, recorded from 40 flocks 215 

in eastern Tennessee (Freeberg 2008) and 20 flocks in central Indiana (Freeberg 2012). Calls 216 

were recorded fromlate fall through early spring months when chickadee flocks naturally occur. 217 

Calls from a single flock were typically obtained in 45-90 minutes of recording in a 1-2 day 218 

period. The observer used a naturalistic observation approach, attempting to get close enough to 219 

the wild birds to obtain high quality recordings, without otherwise disrupting the birds‟ normal 220 

behaviour. The chickadee data set consists of 8124 different calls, consisting of 7 different note 221 

types, and varying in length between one and 45 notes (mean 6.1) per call. In total, there are 222 

1284 distinct sequences in this corpus.  Our aim here was to estimate the repertoire size of all the 223 
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birds together (rather than of individual chickadees) in terms of call combinations, as in the song 224 

analysis above for mockingbirds. However, since call sequence length is essentially unbounded, 225 

and so the potential repertoire size unlimited, we restricted ourselves to examining all observed 226 

sequences of 5 successive notes in the corpus. We treated each of these “5-grams” as a distinct 227 

signal type (preliminary investigation indicated that choosing 4- or 6-grams did not significantly 228 

alter the results). This provides a potential signal-space of 7
5
=16807 distinct signal types, 229 

although in the 18593 5-grams obtained in the data set, there were only 352 distinct signal types.  230 

 Our third data set used songs of a terrestrial mammal, the rock hyrax Procavia capensis, 231 

recorded in northern Israel (Kershenbaum et al. 2012). Opportunistic recordings were made from 232 

males at 18 colonies, and analysed to identify syllable types using the same classification 233 

technique used in Kershenbaum et al. (2012). This data set consists of 969 sequences, consisting 234 

of 5 different syllables, varying in length between one and 81 syllables (mean 45). As with the 235 

chickadee corpus, we examined all 2028 5-grams in these data, in which there were 849 distinct 236 

signals, out of 5
5
=3125 possible 5-grams.  237 

 Empirical observations suggest that the frequencies of different signal types in real bird 238 

and mammal samples are not well described by a simple probability distribution, such as 239 

Equation 8, but follow a heavy-tailed distribution, with a few common signals, and a large 240 

number of rare ones. Although we do not have a mechanism explaining the distribution of signal 241 

probabilities, we attempted fitting the probability distribution of signal types (or 5-gram types) to 242 

two classes of similar heavy-tailed distribution functions: the double exponential function 243 

  ee
dibi

caip


)(log  (10) 244 

and the logarithmic power function: 245 
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  caiip b )(log  (11) 246 

where a, b, c, and d are unknown parameters, determined by fitting Equation 10 or 11 to 247 

observed data. The function with the best fit to the signal type distribution was chosen to model 248 

the probabilities for that species. 249 

 In our first test, we used each of the four methods to estimate the repertoire size of the 250 

three species, and compared the prediction of each model to the curve showing the number of 251 

distinct signal types observed vs. increased sampling effort. We randomly shuffled the sequence 252 

of signals, to produce 10 random ordering of the signals from each of the four species, and 253 

calculated the estimated asymptotic repertoire size using each of the four methods. For 254 

illustrative purposes, we additionally varied the notional "sample size", M, by taking the first M 255 

signals from each of the 10 random orderings, and estimating repertoire size E(X) using each of 256 

the methods. 257 

 In our second test, we performed simulations to generate artificial signal sequences with 258 

the statistical properties of the empirical data, for each of the three signal probability 259 

distributions shown above, and then tested the ability of the different repertoire estimation 260 

techniques to determine the true repertoire size. We simulated a repertoire size for each of the 261 

three distributions, arbitrarily chosen as being at least twice as large as the number of signals 262 

observed empirically for that species: mockingbird N=200, chickadee N=736, hyrax N=1944. We 263 

generated random sequences of signals, drawn from a repertoire of N distinct signal types, where 264 

the probability of the i
th

 signal is determined by Equations 12, 13, and 14 respectively. We 265 

examined the performance of each algorithm as the sampling effort M is increased. This tests 266 

how each algorithm performs when the number of available observations is limited. To do this, 267 
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we generated a single string S of length M=2N, and then sampled substrings Q=S1…m for 268 

m=1…M. Each substring Q represents a particular sampling effort, for instance, recording 269 

birdsong in the field. For each substring Q we re-estimated the signal probability distribution, 270 

using only the signals in Q. This provided an important sensitivity test of the CC algorithm to 271 

poor estimates of the signal probability distribution, arising from small sample sizes. Finally, the 272 

experimenter will rarely know a priori which probability model is most appropriate for the signal 273 

distribution of the study species. Once sampling of signals has begun, however, it becomes 274 

possible to estimate the distribution of signals. We can do this by  applying both probability 275 

models given in Equations 10 and 11 to each signal substring, selecting the model with the best 276 

goodness of fit. Furthermore, once string Q has been sampled, we can improve our estimate of 277 

E(X) by shuffling Q→Q', and then again measuring F(r), the number of distinct signal types in 278 

Q'1. We repeated this process 10 times, to determine Q'1…r for r=1…m, which provided us with 279 

an averaged F(r) over 10 random shufflings of Q, for each r. 280 

 For the WM and DW, we performed a non-linear least-squares fit of F(r) to r, using the 281 

Matlab function fit. This gave an estimate of N for the WM, and of N and A for the DW, for each 282 

value of m. For the EN method, F(r) measures the number of distinct observed signal types 283 

directly.  284 

 For the CC model, we first estimated the parameters of Equations 12, 13 or 14, for each 285 

substring Q of each length m=1…M, using the Matlab function fit, given the distribution of 286 

signals in Q, and the probability density model in Equation 8. We then performed a non-linear 287 

least-squares fit to the CC model (Equation 3), to find N. 288 
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 Finally, for the purpose of comparison, we repeated the analysis of simulated empirical 289 

signals using the mark-recapture technique as implemented using Schnabel's estimator 290 

(Sutherland 2006), where each signal type observed was considered a new sampling event. 291 

 292 

5. RESULTS 293 

 In the example given by Botero et al. (2008) using non-homogeneous signal probabilities, 294 

the predictions of the WM (Equation 1) and of the CC model (Equation 5) deviate prominently 295 

from each other. Figure 1 shows the expected number of distinct signals observed, if the WM 296 

and CC models were driving the presentation of the repertoire, i.e. how quickly each model 297 

predicts new signals to appear. The figure indicates that if signals were observed according to an 298 

exponential model such as the WM, the expected number of distinct signals observed would rise 299 

much faster than predicted by the CC model. However, as we have shown in the section 300 

Mathematical Theory of the Model, signal selection is more precisely modelled as coupon 301 

collection, rather than WM exponential growth. Thus signals will accumulate more slowly than 302 

expected by WM dynamics, fewer distinct signal types will be observed in practice than 303 

expected by the WM model for any particular sampling effort, and applying the WM will tend to 304 

underestimate total repertoire size. 305 

 When the two-probability model is extended to a variable number of "common" and "rare" 306 

signals (Equation 6), the divergence of the WM and CC models becomes more prominent. Figure 307 

2 shows examples of these results for varying  and . It is clear that the predictions of the WM 308 

only agree with the expected number of distinct observed signal types when two conditions are 309 

met: when the signal probability distribution is homogenous, and when the number of rare 310 
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signals is small ( is large). Thus, a large number of rare signals will typically result in the WM 311 

underestimating the true signal repertoire size (many signals will be unobserved for any given 312 

observation effort).  313 

Examples of this distribution for different values of , and the predictions of the Wildenthal 314 

model, are given in Figure 3. For low  (many rare signals), in comparison with the Coupon 315 

Collector model, the Wildenthal model expects many more distinct signals to occur in the first M 316 

samples, and therefore greatly underestimates the total repertoire size by the conclusion of 317 

sampling effort.    318 

 The results of fitting signal probabilities to the two probability density models (double 319 

exponential, Equation 10; and logarithmic power, Equation 11) are shown in Figure 4 for each of 320 

the three species. In the case of the mockingbird, the signal probabilities best fit the double 321 

exponential model, with the following parameters (Figure 4a): 322 

  ee
ii

ip
007.0363.0

940.3827.3)(log 


 (12) 323 

 For the chickadee data, the logarithmic power model provided the best fit to the 5-gram 324 

signal probabilities, with the following parameters (Figure 4b): 325 

  922.7143.9)(log 118.0  iip  (13) 326 

 The hyrax 5-gram probabilities also fit the logarithmic power distribution, with the 327 

following parameters (Figure 4c): 328 

  95.1518.13)(log 07128.0  iip  (14) 329 
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 Consequently, these relationships were used when determining the probabilities p(i) for use 330 

in the Coupon Collector‟s model Equation 3. 331 

 Figure 5 shows the result of using each of the four techniques to estimate the repertoire 332 

size of the vocal signals from the three species examined. With the mockingbird and chickadee 333 

data, both the WM and DW techniques saturate at a repertoire size below the maximum number 334 

of distinct signal types observed (EN), and this by definition must be an underestimate of the true 335 

repertoire size. However, most noticeably in the mockingbird and chickadee data sets (Figure 336 

5a,b), the exponential techniques fail to capture the shape of the repertoire vs. samples curve. 337 

The CC model, on the other hand, closely matches the empirical data at every point. In the case 338 

of the chickadee data (Figure 5b), the WM underestimates the true repertoire size even more 339 

markedly, and the DW also saturates below the enumeration result, whereas the CC model again 340 

matches the observed data well. The hyrax data set has a much larger number of distinct 341 

observed signal types, and the number of observations is insufficient to characterise the curve 342 

accurately. However, the WM still clearly underestimates the total repertoire size, while both the 343 

DW and CC methods provide higher estimates. 344 

 When simulating signal sequences using the statistical properties of the real signal type 345 

distributions, the Coupon Collector model provides the only accurate method of those tested for 346 

estimating repertoire size, at reasonable sampling efforts (Figure 6); and even when the CC 347 

estimates are highly variable (Figure 6b) they are consistently more accurate than the WM, DW, 348 

or EN techniques. The exponential models, as well as the enumeration technique, greatly 349 

underestimate the repertoire size for all data sets. Notably, for the mockingbird and chickadee 350 

data sets, the enumeration estimate is many times lower than the true repertoire size, even though 351 

the enumeration “appears” to have saturated at the end of the sampling period. The mark-352 



 

18 
 

recapture (Schnabel) method likewise performed poorly in comparison to CC, and provided no 353 

benefit over any of the other approaches. 354 

 355 

6. DISCUSSION 356 

 We derived a precise, powerful and accurate statistical model for predicting the number of 357 

distinct signal types observed from a repertoire, given a particular sampling effort. This model is 358 

based upon different assumptions than those made by researchers in the past that observed signal 359 

types should follow an “exponential” model. The predictions of our “Coupon Collector” model 360 

do not differ substantially from those of the exponential models when the probabilities of the 361 

different signal types are similar. However, in realistic scenarios, animals vocalise with 362 

numerous syllables of markedly different prior probabilities, and it is often the case that certain 363 

signal types are rarely observed. In such a case, using an exponential model to predict the total 364 

signal repertoire will underestimate repertoire size. We showed that when the number of rare 365 

signals is large, the predictions of the exponential model can be highly inaccurate (Figure 3). Use 366 

of the Coupon Collector model requires an estimate of the prior probability distribution of the 367 

different signal types, which is easily estimated from the data. Once this estimate is calculated, 368 

furthermore, the Coupon Collector model is the only one of the techniques tested that provides 369 

an accurate indication of the true repertoire size (Figure 6). Examination of the observed 370 

repertoire size vs. sampling effort curves (Figure 5) shows how inappropriate the exponential 371 

models and the enumeration method are for the real data sets analysed here. 372 

 Repertoire size has often been cited as an indicator of ecological and neurological 373 

importance in animal vocalisation studies. Repertoire size has been particularly well studied in 374 
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oscine birds, and has been found to correlate with age (Hesler et al. 2012), population viability 375 

(Laiolo et al. 2008), physical condition (Kipper et al. 2006), territory maintenance (Hiebert et al. 376 

1989), and brain structure (Pfaff et al. 2007). In mammalian studies, repertoire size is difficult to 377 

assess, but a relationship between repertoire size and social complexity has been demonstrated in 378 

some taxa (McComb & Semple 2005; Pollard & Blumstein 2012). Despite this, the utility of 379 

repertoire size estimates is unclear, precisely because of the apparent inability of existing 380 

methods to derive such an estimate from realistically sized data sets. One of the challenges to 381 

estimating repertoire size is that exhaustive sampling of all signals is unrealistic, and the 382 

sampling effort to capture even a large majority of all signals may be costly and time-consuming. 383 

Clearly, estimation techniques that can approximate repertoire size based on a relatively small 384 

sample are appealing. Although many studies (e.g. Pfaff et al. 2007; Laiolo et al. 2008; Hesler et 385 

al. 2011; Boogert et al. 2011) have used simple estimates of repertoire size – particularly signal 386 

type enumeration – it has been pointed out that many species continue to produce “novel” signals 387 

after “exhaustive” collection has been completed (e.g. Balsby & Hansen 2010; Hesler et al. 388 

2011). Our results show that using the total number of observed signals can be greatly 389 

misleading, even when the curve of observed repertoire vs. collection effort appears to have 390 

“flattened out”. Our model provides a more rigorous approach to estimating vocal repertoire size, 391 

and should go a long way towards addressing the criticisms of previous studies. 392 

 Although the overwhelming majority of research into repertoire size has been in the 393 

context of vocal communication, our method can be applied generally to other repertoire types, 394 

most usefully if the true repertoire size is sufficiently large to make simple enumeration 395 

impractical. However, most visual signalling modalities consist of a very small number of signal 396 

types, e.g. the five display types of the Jacky Dragon Amphibolurus muricatus (Peters & Ord 397 
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2003), or the eight display types of the mallard Anas platyrhynchos (Lorenz 1971, cited in 398 

Bradbury & Vehrencamp 2011), and so may benefit less from our methodology. Conversely, 399 

large behavioural repertoires (~50 behavioural patterns) have been examined in Pheidole ants, 400 

and assessment of repertoire size in this system has been recognised as being problematic 401 

(Sempo & Detrain 2004). Use of the Coupon Collector model should allow more accurate 402 

assessments to be made. 403 

 Although the Coupon Collector model is a precise theoretical formulation of the process of 404 

observing signals from a repertoire, it is necessarily more complex than simple exponential 405 

models. To provide an accurate model, it is necessary to specify the prior probability of each 406 

signal in the repertoire, something clearly impossible when not all signals have been observed. 407 

Our approach is to find a parametric approximation to the prior probability distribution for signal 408 

types, and to extrapolate this to unknown signals that are rarer than those already observed. In 409 

this case, the computational complexity of the Coupon Collector analysis is dependent on the 410 

number of parameters in the probability distribution model. In the data presented here, we have 411 

accurately modelled the signal probability distributions with just three or four parameters; 412 

making non-linear least-square fitting realistic for the size of the data sets used. We have also 413 

used just two separate statistical models: the double exponential (Equation 10) and the 414 

logarithmic power (Equation 11). Either of these is easy to apply to empirical data gathered in 415 

the field. The Wildenthal (1965) model is far simpler, using no indication of signal probability 416 

heterogeneity, but suffers in performance from this unrealistic assumption. The Davidson & 417 

Wilkinson (2002) model attempts to compensate for this by introducing an arbitrary rate 418 

parameter A, to capture the “slowing down” of signal discovery inherent when many rare signals 419 

exist. However, although it could be argued that both the Davidson-Wilkinson model and the 420 
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mark-recapture model have an advantage of computational simplicity over the Coupon Collector 421 

model, the predictions of the Davidson-Wilkinson and the mark-recapture models can be so 422 

inaccurate that they have little advantage over the Wildenthal model. In addition, the rate 423 

parameter A in the Davidson-Wilkinson model has no clear biological or statistical basis, 424 

whereas the parameters of the Coupon Collector model directly reflect the rarity of signals in the 425 

animal‟s repertoire. 426 

 In understanding the evolution of communicative complexity, we are typically interested in 427 

the repertoire sizes of populations or species (e.g., Pollard & Blumstein 2012). From 428 

developmental and ecological standpoints, however, we are frequently interested in repertoire 429 

sizes of individuals, rather than of groups. In this study we have made a number of assumptions 430 

and simplifications, particularly by analysing the repertoire of all the signals of a species 431 

together, rather than analysing individuals separately. Although the distribution of the 432 

frequencies of different signal types may be different between individuals and populations, we 433 

feel that this approach better assesses the accuracy of the Coupon Collector model, by providing 434 

a larger data set, rather than attempting to draw direct conclusions on individual behaviour from 435 

this analysis. In any case, although the repertoire sizes of individuals and populations may differ, 436 

we do not believe that the methodologies for estimating these repertoires should be different in 437 

these two cases. It is clear from Figure 6 that the Coupon Collector model should provide a 438 

superior estimate of true repertoire size, and at smaller sample sizes.  439 

 The analysis that leads to Equation 3 as the precise estimate of expected observed 440 

repertoire size importantly assumes that signal incidences are independent. This assumption is 441 

necessarily incorrect in those species where note or call sequences are constrained by rules of 442 

note or call ordering, such as the mockingbird (Gammon & Altizer 2011), hyrax (Kershenbaum 443 
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et al. 2012) or chickadee (Freeberg & Lucas 2012). However, incorporating inter-syllable 444 

statistical dependence has never been addressed by any of the analytical techniques used to 445 

assess repertoire size. We also note that, regardless of technique, the presence of ordering rules 446 

will have the effect of reducing the estimated repertoire size, and the Coupon Collector model 447 

performed the best at preserving a high estimated repertoire size. 448 

 Other authors have attempted to model the repertoire size observation pattern using other 449 

approaches, such as mark-recapture (Garamszegi et al. 2005), or rarefaction (Peshek & 450 

Blumstein 2011). We provide only a brief comparison of the Coupon Collector model with one 451 

of these approaches, partly because they are far less commonly used in the literature than the 452 

exponential models, but also because we believe that there is inherent merit in adopting the 453 

model supported by theory, rather than more arbitrary models that may provide a certain level of 454 

empirical correspondence with data. However, we do not dismiss the use of rarefaction or other 455 

techniques where the particular requirements may make use of the Coupon Collector model 456 

impractical; particularly where insufficient data exist to estimate the signal prior probability 457 

distribution. 458 

 In summary, we present theoretical and analytical support for the Couple Collector‟s 459 

Model to assess signal repertoire size. We have shown that realistic estimates of repertoire size 460 

cannot be achieved using an inaccurate statistical model of repertoire discovery. We have 461 

explicitly used the terms „signal‟ and „signal repertoire size‟ in instances that were not 462 

specifically about song or song repertoire size per se. This is because our arguments here relate 463 

to estimates of signal repertoire size in any signalling modality in which the system contains 464 

more than one variant. There is a place for simplified or empirical models that adequately 465 

describe the data despite not being theoretically grounded. However, we have shown that in 466 
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cases of animal vocal repertoires where a significant number of rare signals exist, such models 467 

do not reflect observations accurately. Our presentation of the Coupon Collector model will 468 

hopefully encourage researchers to derive more reliable estimates of repertoire size, and 469 

eventually to re-evaluate the utility of this metric in ecological research. 470 
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 587 

FIGURE LEGENDS 588 

 589 

Figure 1. Examples of the number of distinct signal types observed, vs. sampling effort (M), as 590 

predicted by two different models (solid line: Coupon Collector model; dashed line: Wildenthal 591 

model), with total repertoire size N=100, and a non-homogenous song prior probability 592 

distribution as described in (Botero et al. 2008). If repertoire sampling followed the assumptions 593 

of the Wildenthal model, the number of observed distinct signal types would rise much faster 594 

than is actually the case. 595 

 596 

Figure 2. Expected number of distinct signal types observed with varying number of samples, 597 

with total repertoire size N=100, and different signal prior probability distributions, following 598 

(Botero et al. 2008). (a) The first column shows the prior probability p(i) of the i
th

 signal, for 599 

varying number of “rare” signals  with the relative frequency of rare signals  held constant. 600 

The second column shows the expected number of distinct signal types observed for the 601 

corresponding probability distribution (solid line), and the Wildenthal model (dashed line). Each 602 

row indicates a different value of ={0.2, 0.4, 0.6, 0.8}. (b) The estimated repertoire size, for 603 

varying number of rare signals , and relative frequency of rare signals , as calculated by the 604 

two models (upper: Coupon Collector model; lower: Wildenthal model). 605 

606 
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 607 

Figure 3. Expected number of distinct signal types observed with varying sampling effort, for 608 

different signal prior probability distributions according to an exponential probability density 609 

function. The first column shows the prior probability of the i
th

 song; each row showing a 610 

different mean of the distribution . The second column shows the expected number of distinct 611 

signal types observed for the corresponding probability distribution (solid line: Coupon Collector 612 

model; dashed line: Wildenthal model). 613 

 614 

Figure 4. Sorted signal probabilities for (a) the mockingbird data set, (b) chickadee data set, and 615 

(c) hyrax data set. Black points represent the relative probabilities on a log scale of all the signals 616 

in the observed repertoire, sorted in descending order. The red line shows the fit of the modelled 617 

probability function, and the parameters of the fit (a, b, c, and d) are shown next to the fitted line.  618 

 619 

Figure 5. Best fits of the different repertoire estimation techniques, for the empirical data sets: (a) 620 

mockingbird, (b) chickadee, (c) hyrax. Each model was fit to the entire data set, and the resulting 621 

parameters used to predict the expected number of signal types observed for different sampling 622 

efforts. The estimated repertoire size is shown for each technique in the legend, and as a dashed 623 

line of corresponding colour. 624 

 625 

Figure 6. Estimated repertoire size for the different repertoire estimation techniques, for 626 

simulated data sets based on the empirical data sets: (a) mockingbird, (b) chickadee, (c) hyrax. 627 
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True repertoire size is shown as a broken line. Each curve represents the repertoire size estimate 628 

for varying sampling effort, and error bars indicate standard error. 629 

  630 

 631 

 632 

 633 
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