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Abstract
Emerging infectious diseases are often the result of a host shift, where the pathogen origi-

nates from a different host species. Virulence—the harm a pathogen does to its host—can

be extremely high following a host shift (for example Ebola, HIV, and SARs), while other

host shifts may go undetected as they cause few symptoms in the new host. Here we exam-

ine how virulence varies across host species by carrying out a large cross infection experi-

ment using 48 species of Drosophilidae and an RNA virus. Host shifts resulted in dramatic

variation in virulence, with benign infections in some species and rapid death in others. The

change in virulence was highly predictable from the host phylogeny, with hosts clustering to-

gether in distinct clades displaying high or low virulence. High levels of virulence are associ-

ated with high viral loads, and this may determine the transmission rate of the virus.

Author Summary

Many emerging infectious diseases are the result of a host shift, with the pathogen jumping
into the new host from another species. Virulence—the harm a pathogen does to its
host—can be extremely high following a host shift (for example HIV, SARs and Ebola),
while other host shifts may go undetected as they cause few symptoms in the new host.
We have found that variation in virulence following host shifts can be extremely large and
were highly predictable from the host phylogeny, with hosts clustering together in distinct
clades displaying high or low virulence. These changes in virulence result from changes in
viral load, and therefore the transmission potential of the virus. This suggests there is no
clear rule to predict whether a pathogen will be virulent in a novel host. However, it does
suggest a simple rule of thumb may be that if a pathogen causes high levels of virulence in
any given host species, it will typically cause similar levels of virulence in closely
related hosts.
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Introduction
Virulence—which we define as the harm a pathogen does to its host—can sometimes dramati-
cally increase when pathogens shift to infect new host species, resulting in new and devastating
outbreaks and epidemics [1,2]. For example, in bats, Ebola virus appears to be largely asymp-
tomatic, but it is frequently fatal when it crosses the species barrier into humans and other pri-
mates [3,4]. Similarly Henipaviruses appear to be non-pathogenic in pteropoid bats, but can
cause high levels of mortality in livestock and humans [5,6].

Despite the importance of these virulence changes, we have little understanding of what de-
termines changes in virulence following a host shift. Historically, it was thought that novel
host-parasite associations result in high levels of virulence and that long-term host-parasite in-
teractions lead to the pathogen evolving towards avirulence [7]. However, despite several high
profile examples of host shifts resulting in extremely high virulence (see above), there may be a
large ascertainment bias in detecting novel infections following hosts shifts, with only the most
virulent likely to be detected and many benign infections going unnoticed [8]. Likewise, it has
been shown that long term coevolution does not necessarily lead to avirulence [9–12].

To predict how virulence will change following a host shift, we need to understand what causes
virulence. Virulence is sometimes thought to be a direct consequence of pathogen replication,
with greater levels of replication causing greater amounts of damage to the host [13]. However,
virulence and parasite replication can be decoupled [14], especially if hosts mount an inappropri-
ate immune response against novel pathogens [15]. Similarly, virulence can result from infection
of a tissue type that has no adaptive value to the pathogen [14,16]. For example, virulence in bac-
terial meningitis is a result of infection of the central nervous system, and has no relation to trans-
mission potential, or infection of other tissues, where it causes no symptoms [16].

Novel host-parasite interactions have not been under direct selection [17], so the level of
pathogen virulence is likely to be maladaptive not only for the host but also the pathogen. This
contrasts with natural associations where pathogens have been selected to optimise their viru-
lence in order to maximise their between-host transmission potential [9], and hosts have been
selected to reduce the harm caused by their pathogens (to ‘tolerate’ infection) [13,18–22], al-
though one-sided host resistance may evolve in cases where the pathogen-causes a dead end in-
fection [17]. The lack of adaptation in novel host-pathogen associations may explain dead-end
chains of transmission seen in some emerging diseases [23]. Here maladaptive levels of virulence
may mean the host has less chance of transmitting the pathogen [24], potentially preventing it
from becoming established in the population. The classic example of the myxoma virus high-
lights how virulence may be maladaptive following a host shift. For example, the myxoma virus
is relatively benign in South American Sylvilagus rabbits, but it was transferred to European rab-
bits (Oryctolagus cuniculus) as a biological control agent where it initially had case-mortality
rates as high as 99.8% in Australia and drove many populations to near extinction [20,25]. How-
ever, following its introduction to European rabbit populations in Australia, case-mortality rates
dropped rapidly. This was due to the spread of attenuated virus strains that had higher rates of
transmission due to infected hosts surviving, and therefore transmitting the virus, for longer
[20,25].

Whilst we know little about how virulence changes following a host shift, the ability of path-
ogens to infect novel hosts has been more widely studied [26–28]. A number of studies have re-
vealed that the host phylogeny is an important factor in determining the susceptibility of novel
hosts [29–35]. The first effect of the host phylogeny is that species closely related to the natural
host of a pathogen tend to be more susceptible. This is thought to be because parasites evolve
specialised adaptations to their natural host, such as binding to host receptors, avoiding im-
mune responses or utilising host resources, and these break down if the environment provided
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by the novel host is too different [28]. Secondly, independent from the genetic distance from
the pathogen’s natural host, closely-related groups of hosts may have similar levels of suscepti-
bility. Such patterns could arise due to the loss or gain of immune or cellular components in
different lineages (e.g. [36,37]), resulting in the host phylogeny being a patchwork of host
clades varying in their susceptibility.

We have used a large cross-infection experiment to understand how virulence changes fol-
lowing a host shift. We infected 48 species of Drosophilidae with Drosophila C virus (DCV)
and measured virulence, the change in viral load, and the transmission potential of the virus.
DCV is a positive sense RNA virus in the family Discistroviridae that was isolated from D.mel-
anogaster and naturally infects D.melanogaster and D. simulans in the wild [38]. The full host
range of DCV in the wild is unknown, but it can infect other species of Drosophilidae in the
laboratory [39] and can replicate when injected into other dipterans and a moth [40]. DCV
causes a reduction in metabolic rate, lowers activity levels, causes intestinal obstruction, lowers
the pH of the haemolymph and can ultimately result in death [41–44]. DCV is targeted by anti-
viral RNAi and a JAK-STAT pathway dependent immune response [45,46]. Here, we have in-
vestigated how the host phylogeny determines variation in virulence between species, and the
relationships between virulence, viral load and the transmission potential of the virus.

Methods

Virus production
DCV was produced in Schneider’s Drosophila line 2 (DL2) cells [47] as described in [48]. The
DCV strain used was isolated from D.melanogaster collected in Charolles, France [49]. Cells
were cultured at 26.5°C in Schneider’s Drosophila Medium with 10% Fetal Bovine Serum,
100 U/ml penicillin and 100 μg/ml streptomycin (all Invitrogen, UK). Cells were then freeze-
thawed twice to lyse cells and centrifuged at 4000g for 10 minutes at 4°C to remove any cellular
components or bacteria. The resulting virus suspension was aliquoted and frozen at -80°C. Un-
infected cell culture for control sham inoculations was produced by growing DL2 cells as for
virus production but DCV was replaced with Drosophila Ringer’s solution [50]. To calculate
infectivity of the virus, serial dilutions of virus from 10-1 to 10-12 were carried out in Schneider’s
medium, and each dilution was added to 8 wells of a plate of DL2 cells. After 7 days the wells
were examined and classed as “infected” when cell death and cytopathic effects were clearly vis-
ible. The Tissue Culture Infective Dose 50 (TCID50) was calculated by the Reed-Muench end-
point method [51].

Inoculating flies
48 species of flies which share a common ancestor ~20–50mya were used in this study [52]. All
fly stocks were reared at 22°C and 70% relative humidity. Stocks of each fly species were kept in
250ml bottles at staggered ages, and each day freshly eclosed flies were sexed, females were re-
moved, and males were placed on cornmeal medium for 2 days before inoculation. The food
medium used for rearing and details of the fly stocks and food recipes used can be found in
Table A in S1 Text.

To inoculate flies, a 0.0125 mm diameter stainless steel needle (26002–10, Fine Science
Tools, CA, USA) was bent ~0.25 mm from the end, dipped in DCV (TCID50 = 4.64×109) or
control solution (uninfected cell culture medium), and the bent part of the needle pricked into
the pleural suture on the thorax of flies. Flies were then placed into vials of cornmeal medium
and kept at 22°C and 70% relative humidity. These conditions were chosen as they were suit-
able to maintain all 48 species and carry out infection assays.

Virulence following Host Shifts
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As a measure of virulence we recorded mortality after infection. The number of dead flies
was counted each day for 20 days and flies were transferred onto fresh medium every 3 days to
minimise mortality unrelated to infection. To measure the change in viral load, half of the flies
were snap frozen immediately after inoculation in liquid nitrogen as a reference sample to con-
trol for relative dose, and the rest were kept for 2 days before being snap frozen in liquid nitro-
gen. The day 2 time-point was chosen based on time-course data for 10 host species (Figure A
in S1 Text), with viral load beginning to plateau after this time. Frozen flies were then homoge-
nised in Trizol reagent (Invitrogen) and stored at -80°C for later RNA extractions.

The mortality inoculations were carried out over a period of 3 days, with the aim of com-
pleting a control and virus treatment biological replicate for each fly species each day; i.e. each
fly species was included in 2 blocks each day of the experiment. Treatment (virus or control)
and the order in which fly species were inoculated was randomized between blocks. The inocu-
lations for measuring the change in viral load were carried out over 6 days, with each species
being inoculated each day. Treatment (frozen immediately or on day 2 post infection) and the
order the fly species were infected was randomized each day.

In total we measured survival or the change in viral load in 12, 276 flies. In the mortality
treatment we measured survival in a mean of 22 flies per replicate (range across species means =
7–25 flies). Out of the 48 species, 41 had 6 biological replicates, 2 had 5 biological replicates, 2
had 4 biological replicates and 3 had 3 biological replicates for the mortality treatments. On av-
erage we quantified viral load in a pool of 23 flies per replicate (range across species means =
10–25 flies) with the aim of producing 3 pairs of day 0 and day 2 biological replicates. Out of the
48 species, 45 had 6 biological replicates and 3 had 4 biological replicates for the viral
load measurements.

Other factors
Fly stocks were tested forWolbachia bacterial endosymbionts using PCR primers that amplify
the wsp gene [53] prior to the experiment.Wolbachia have been shown to provide resistance to
DCV [47,54]) and so onlyWolbachia-free species were used; 43 species were naturally Wolba-
chia free, 5 species were derived from antibiotic treated lines. Species that had a pre-existing
DCV infection were also excluded from the experiment.

We also checked that the results were not affected by differences in body size between the
species. Wing length is commonly used as a body size measure in Drosophila and strongly cor-
relates with thorax length [55,56]. Wings were removed from ethanol-stored flies collected at
the start of the experiment, and photographed under a dissecting microscope. On average we
measured wings from 34 individuals per species (range = 13–47). The length of the IV longitu-
dinal vein from the tip of the proximal segment to where the distal segment joins vein V [57]
was measured (relative to a standard measurement) using ImageJ software (v1.48) [58].

Measuring the change in viral load
Wemeasured the change in RNA viral load using qRT-PCR. The viral RNA load was expressed
relative to the endogenous control housekeeping gene RpL32 (Rp49). We sequenced RpL32 for
each species and designed specific RpL32 primers for each species in two conserved regions as
described in [30]. We found the DCV primers we used amplified multiple products for D. tropi-
calis, so a different primer pair was used for this species (as we are measuring the change in rela-
tive viral load this should not affect the results). Primer efficiencies were calculated using a
dilution series and were close to 100% (DCV: 104%; alternative DCV primers forD. tropicalis:
97%; RpL32: mean = 106%; range of 98–112%). DCV primers were DCV qPCR 599F (5’-
GACACTGCCTTTGATTAG-3’) and DCV qPCR 733R (5’-CCCTCTGGGAACTAAATG-3’)
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[48], the alternative D. tropicalisDCV primers were DCV qPCR 3477F (5’-TTCTTGGTTAG
GTCGATTCTTTT-3’) and DCV qPCR 3611R (5’-AATTCTTCGGCTCCAGCTTC-3’).

Total RNA was extracted from Trizol homogenised flies, reverse-transcribed with Promega
GoScript reverse transcriptase (Promega) and random hexamer primers, and then diluted 1:10
with nuclease free water. The qRT-PCR was performed on an Applied Biosystems StepOnePlus
system using Sensifast Hi-Rox Sybr kit (Bioline) with the following PCR cycle: 95°C for 2min
followed by 40 cycles of: 95°C for 5 sec followed by 60°C for 30 sec. Two qRT-PCR reactions
(technical replicates) were carried out per sample with both the viral and endogenous control
primers. Each qRT-PCR plate contained four standard samples, and all experimental samples
were split across plates in a randomised block design. A linear model was used to correct the
cycle threshold (Ct) values for differences between qRT-PCR plates. To estimate the change in
viral load, we first calculated ΔCt as the difference between the cycle thresholds of the DCV
qRT-PCR and the endogenous control. The viral load of day 2 flies relative to day 0 flies was
then calculated as 2-ΔΔCt, where ΔΔCt = ΔCtday0 –ΔCtday2, where ΔCtday0 and ΔCtday2 are a pair
of ΔCt values from a day 0 biological replicate and a day 2 biological replicate for a particular
species. We note that calculating the change in viral load without the use of the endogenous
control gene gives equivalent results (Spearman’s correlation between viral load calculated with
and without endogenous control = 0.97, P<0.001).

Host phylogeny
The host phylogeny was inferred using the COI, COII, 28S rDNA, Adh, SOD, Amyrel and
RpL32 genes. We downloaded all the available sequences from Genbank, and attempted to se-
quence COI, COII, 28S rDNA, Adh and Amyrel in those species from which they were missing,
as described in [30]. This resulted in sequence for all species for COI, COII and RpL32 and
partial coverage for the other genes (34 out of 336 species-locus combinations were missing,
S1 Table). The sequences of each gene were aligned using ClustalW (alignments and Genbank
accession numbers for sequences used are available in an online repository http://dx.doi.org/
10.6084/m9.figshare.1112749 and as S1 Dataset). To reconstruct the phylogeny we used
BEAST (v1.8.0) [59] as this allows construction of an ultrametric (time-based) tree using a re-
laxed molecular clock model. Using ultrametric trees assumes that rates of evolutionary change
(virulence and viral load) are proportional to time (rather than proportional to the rate of se-
quence evolution in the genes used to construct the phylogeny). The genes were partitioned
into 3 groups each with their own substitution and molecular clock models. The three parti-
tions were: mitochondrial (COI, COII); ribosomal (28S); and nuclear (Adh, SOD, Amyrel,
RpL32). Each of the partitions used an HKY substitution model [60] (which allows transitions
and transversions to occur at different rates) with a gamma distribution of rate variation with 4
categories and estimated base frequencies. Additionally the mitochondrial and nuclear data sets
were partitioned into codon positions 1+2 and 3, with unlinked substitution rates and base fre-
quencies across codon positions. Empirical studies suggest that HKYmodels with codon parti-
tions are a good fit for most protein-coding data sets [61]. A random starting tree was used,
with a relaxed uncorrelated lognormal molecular clock and we used no external temporal infor-
mation, so all dates are relative to the root age. The tree-shape prior was set to a speciation-
extinction (birth-death) process. The BEAST analysis was run twice for 100 million MCMC
generations sampled every 1000 steps. The two MCMC processes were examined using the pro-
gram Tracer (v1.6) [62] to ensure convergence and adequate sampling. The two runs were com-
bined using the programme LogCombiner (v1.8). A maximum clade credibility tree was created
following a 10% burnin using TreeAnnotator (v1.8) and visualised using FigTree (v. 1.3.1) [63]
(Tree nexus file http://dx.doi.org/10.6084/m9.figshare.1112749).
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Statistical analysis
We used a phylogenetic mixed model to examine the effects of host species relatedness [64–66]
using the MCMCglmm R package ([67], R Foundation for Statistical Computing, Vienna, Aus-
tria). We used a trivariate formulation with mortality of the controls, mortality of the virus in-
fected flies and viral load as response variables. Viral load was treated as Gaussian, whereas the
mortality data were treated as longitudinal binomial data as in event history analysis [68]. The
daily binomial counts are the number of flies that died and survived between successive days,
with days where both counts are zero (i.e. all flies in the vial died the previous day) omitted as
they are uninformative. The mortality model is equivalent to a proportional odds survival anal-
ysis (with censoring) [69]. Mortality and viral load data are provided in S2 Dataset.

The model structure is similar to the trivariate model outlined in [30]:

Zthij ¼ b1:t þ distanceb2:t þ wingsizeb3:t þ dðageb4:t þ b5:tage2þ b6:t food þ uv:thiÞ þ up:th þ us:th

þ ethij

where ηthij is the j
th linear predictor for the ith biological replicate of host species h for trait t. βv

For the viral load trait, j always equals 1, but for the mortality traits j takes on values 1 to n,
where n is either 20 days (the length of time over which mortality was recorded) or the number
of days it took for all flies in a vial to die if this occurred in less than 20 days.

β are fixed effects with β1 being the intercepts for each trait and β2 and β3 the linear effects
of wing size and genetic distance from D.melanogaster respectively. For the two mortality
traits, separate linear and quadratic age effects were also included for each treatment, as was a
linear effect of days since the flies were transferred onto fresh food medium: δ is one if the trait
is a mortality trait and zero otherwise

u are random effects for vial (v—mortality traits only), phylogenetic species effects (p) and
non-phylogenetic species effects (s) and e are residuals. The random effects (and residuals) are
assumed to be multivariate normal with zero mean and covariance structure V� A for phylo-
genetic effects or V� I otherwise. I is an identity matrix, A the phylogenetic relatedness matrix
and V a matrix of estimated variances and covariances. For the phylogenetic and non-phyloge-
netic species effects V is a 3x3 covariance matrix describing the (phylogenetic and non-phylo-
genetic) inter-specific variances in each trait and the inter-specific covariances between them.
For the residuals V is also a 3x3 matrix, but for the vial effects that are only defined for the two
mortality traits, V is a 2x2 covariance matrix. The off-diagonal elements of V for the residual
and vial effects were set to zero because the covariances between traits at these levels are not es-
timable by design.

The linear predictor defines the expected value of the response E[ythij]/wthij = g-1 (ηthij)
where g-1 is the inverse-link function, and wthij is a weight. For the viral load trait g

-1 is the iden-
tity function and the weights are one. For the mortality traits g-1 is the inverse logit function
(exp(ηthij))/(1+ exp(ηthij)) and the weights are the number of flies alive at the end of the previ-
ous observation (or for j = 1 the number of flies initially present).

Diffuse independent normal priors were placed on the fixed effects (means of zero and vari-
ances of 108). Parameter expanded priors were placed on the (co)variance matrices resulting in
scaled multivariate F distributions which have the property that the marginal distributions for
the variances are scaled (by 1000) F1,1. The exceptions were the residual variances for which an
inverse-gamma prior was used with shape and scale equal to 0.001. The MCMC chain was ran
for 1300000 iterations with a burn-in of 300000 and a thinning interval of 500.

We confirmed the results were not sensitive to the choice of prior by also fitting models with
inverse-Wishart and flat priors for the matrices describing the phylogenetic and non-
phylogenetic species effects (described in [30]), which gave qualitatively similar results (data not
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shown). We also ran models with only phylogenetic or non-phylogenetic species effects, which
gave equivalent results in all instances (data not shown). To confirm our results were robust to
different analysis methods we also analysed the mortality data by calculating the proportion of
flies dead on each day of the experiment, taking the mean across all the days (which will be
equivalent to the area under the survival curve), and arcsine square-root transforming this num-
ber. We then used this together with the change in viral load as responses in a trivariate model as
described above. This gave very similar results to the proportional odds model (data not shown).
Finally, we also ran models where the logit-linear dependency varies across species (variable age-
dependent mortality), and these models also gave very similar results (data not shown).

Transmission of DCV
In order to understand how DCV is transmitted, and how viral load might relate to transmis-
sion, we performed two additional transmission experiments. In the first experiment a single
infected adult fly of the focal species was housed with adult sentinel flies (from a D.melanoga-
ster isogenetic line) and the infection status of the sentinels (adult-adult transmission) and
their offspring (adult+parent-offspring transmission) assayed. In the second experiment
corpses of single adult flies (of the focal species) that died through DCV infection were housed
with sentinel eggs, and the infection status of the emergent adult sentinels assayed (dead adult-
embryo/larvae transmission). In both cases, we examined the transmission rates and tested for
a correlation between transmission success and viral load from the previous experiment, which
was measured 2 days after inoculation. To ensure that this viral load was correlated with the
viral load in corpses of flies that died from a DCV infection, we also measured viral load in
corpses for a subset of species. Full methods (S1 Text) and data (S1 and S3 Datasets) can be
found in the Supporting Information.

Results

Host shifts result in large changes in virulence
To investigate the effect of switching hosts on virulence, we inoculated 2967 flies from 48 spe-
cies of Drosophilidae with DCV and recorded mortality (virulence) for 20 days. We found dra-
matic differences in the virulence of DCV when it infects different host species (Fig. 1). In
some species it appears to be a largely benign infection, with the virus causing no increase in
mortality over 20 days. At the other extreme, ~90% of D. persimilis and D. pseudoobscura flies
are killed by day 4 post-infection.

To confirm that these differences reflect the virulence of the virus rather than intrinsic dif-
ferences in the survivorship of the different species, alongside the virus infections we also inoc-
ulated 2993 flies from the 48 species with a control solution. There was far less mortality in the
controls than the virus infected flies (range of mortality for controls: 0–18% and infected:
0–89%, see Figs. 1 and 2). Nonetheless, there was significant inter-specific variation (the sum
of both phylogenetic and non-phylogenetic variation) in control mortality, which accounted
for 43% of the between-vial variation in mortality (95% CI = 15%-74%), but this was not corre-
lated with mortality in infected flies (inter-specific correlation = -0.08, CI = -0.53, 0.34). We
also found no significant relationship between wing size and the mortality of infected flies
(-0.44, 95% CI = -2.56, 1.78).

Virulence following host shifts is determined by the host phylogeny
To examine how the host phylogeny influences changes in virulence, we reconstructed the phy-
logeny of our 48 Drosophilidae species using seven genes. The resulting tree is broadly
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Fig 1. Mortality in 48 species of Drosophilidae after infection with DCV. Virus infected flies are red circles and control flies are blue triangles. Panels are
ordered as in the tip order in Fig. 2.

doi:10.1371/journal.ppat.1004728.g001

Fig 2. Phylogeny of host species, virulence and viral load. Virulence is measured as mean mortality of virus infected flies across all the days of the
experiment. Viral load is the change in viral load between day 0 and day 2 post infection (see Figure B in S1 Text for data at each time point). D.
melanogaster, the species DCV was isolated from, is highlighted in red. The common ancestor of the host species is estimated to be ~40 million years ago
[52,84]. Graphs showmeans and standard errors. Node labels on the phylogeny are posterior supports, the scale bar is the number of substitutions per site.

doi:10.1371/journal.ppat.1004728.g002

Virulence following Host Shifts

PLOS Pathogens | DOI:10.1371/journal.ppat.1004728 March 16, 2015 8 / 18



consistent with previous studies of these taxa [70], with the close phylogenetic relationships
being generally well supported (Fig. 2).

Because DCV was isolated from and naturally infects D.melanogaster [38], we examined
whether virulence was affected by genetic distance from this host species. We found there was
no significant change in virulence with distance from D.melanogaster (Fig. 2; slope = -0.76,
95% CI = -3.37, 1.62).

Despite there being no effect of genetic distance from D.melanogaster on virulence, there is
a striking pattern of high- and low-virulence hosts clustering together on the phylogeny
(Fig. 2). We used a phylogenetic mixed model to partition the inter-specific variance in mortal-
ity into that which is explained by a Brownian motion model of evolution on the host phyloge-
ny (vp), and a species-specific component independent of the phylogeny (vs). We then
calculated the proportion of between-species variance in the treated group that is explained by
the host phylogeny (vp/(vp + vs), which is related to Pagel’s lambda or phylogenetic heritability
[65,66,71]. 75% of the between-species variation in virulence is explained by the host phyloge-
ny (95% CI = 48%-97%).

The effect of the host phylogeny on virulence can be clearly seen by using this model to re-
construct mortality rates across the phylogeny on different days post infection (Fig. 3 and
video http://dx.doi.org/10.6084/m9.figshare.1192890). Early in the course of infection signifi-
cant mortality only occurs in a single small clade of species (obscura group), but as time pro-
gresses other clades start to experience high mortality, and by day 16 most of the survivors
belong to a single clade of species (virilis group) where virulence is relatively low (Fig. 3).

Virulence following host shifts is strongly correlated to viral load
To measure viral load we inoculated 6316 flies from all 48 species and measured the change in
viral RNA load by qRT-PCR (Figure B in S1 Text). Similar to virulence, there are extremely

Fig 3. Ancestral state reconstructions of virulence for various time points post infection. Ancestral
states were estimated from the phylogenetic mixed model for each node and then plotted as colour gradients
across the tree. Colours represent the virulence (proportion of flies dead), with red representing the highest
level of virulence and green as the lowest level of virulence at that time point. The ordering of tips on the
phylogeny is as in Fig. 2. See a video of the change in virulence over time here: http://dx.doi.org/10.6084/m9.
figshare.1192890

doi:10.1371/journal.ppat.1004728.g003
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large differences in viral load between species, with the total inter-specific variance explaining
91% of the variance in viral load. Indeed, we found roughly a billion times the amount of viral
RNA in the most susceptible host species compared to the most resistant species (Fig. 2). This
was unrelated to the size of the flies, with no significant effect of wing size on viral load (slope =
0.15, 95% CI = -6.04, 6.27),

Species with high viral loads tend to cluster together on the phylogeny (Fig. 4). This was con-
firmed by fitting a phylogenetic mixed model, where 67% (95% CI = 33%-93%) of the between-
species variation in viral load is explained by the host phylogeny. As was the case for virulence,
we found there was no significant change in viral load with distance fromD.melanogaster, the
species from which the virus was isolated (slope = -2.01, 95% CI = -7.90, 7.08).

Variation in virulence could either be a consequence of different pathogen loads, or due to
similar pathogen loads causing different levels of harm to their hosts. To separate these hypothe-
ses, we examined the relationship between virulence and viral load. We found strong positive
phylogenetic and non-phylogenetic correlations between virulence and viral load (Fig. 4, phylo-
genetic correlation = 0.76, 95% CI = 0.44, 0.99; non-phylogenetic correlation = 0.47, 95% CI =
0.05, 0.83). There is no correlation between viral load and the mortality that occurred in the
mock-infected control flies (inter-specific correlation = 0.06, 95% CI = -0.38, 0.52).

Virulence and transmission rate in novel hosts
We investigated the efficiency of different routes of transmission by allowing uninfected senti-
nel D.melanogaster to come into contact with infected flies (see supplementary information).
We then tested pools of sentinel flies for the presence of DCV. In our assay we could not detect
any adult to larval transmission in the 8 species we tested, despite these species all having high
viral loads (n = 21 biological replicates). This suggests shedding of the virus is not a major
source of infection for larvae. Next, we measured transmission between adult flies, and detected
transmission in 11% of vials (n = 107 biological replicates across 38 species). Finally, we tested
whether transmission occurred from the corpses of dead flies to embryos or larvae, and found
that this was a highly efficient transmission route, with 80% of vials of sentinel flies testing pos-
itive for DCV infection (n = 44 biological replicates across 15 species).

Because transmission from dead flies occurs at a high rate, the viral load in dead flies may
determine the transmission rate of the virus. Therefore, we checked that our measurements of
viral load on day 2 post-infection reflected viral loads on the day of death. We infected 15 spe-
cies of fly, collected their corpses on the day that they died, and measured their viral load. We
found that the viral load on the day of death is tightly correlated to the day 2 viral load
(Figure C in S1 Text, inter-specific correlation: 0.84, 95% CI = 0.62, 0.99).

Discussion
We have observed dramatic variation in virulence when we infected different host species with
a viral pathogen. We found both increases and decreases in virulence compared to D.melano-
gaster, the host from which the virus was isolated. These changes in virulence were explained
by the host phylogeny, with very similar levels of virulence shown by closely related hosts
(Fig. 2). Virulence was tightly coupled to viral load (Fig. 4), suggesting the amount of harm
caused to a host is a result of virus accumulation in a host, and there is little interspecific varia-
tion in tolerance. This in turn means that changes in virulence following host shifts may be ac-
companied by changes in the transmission rate of the virus.

Large shifts in virulence following pathogen host shifts can result in devastating epidemics,
such as myxomatosis in rabbits [19] or Ebola shifting from bats to humans [3]. These changes
in virulence often appear random and unpredictable consequences of the pathogen being
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Fig 4. Correlation between viral load and virulence. (a) Mirrored phylogenies showing ancestral state reconstructions of virulence at day 10 post-infection
(left) and viral load (right). Colours represent the virulence (proportion of flies dead) or viral load with red representing the highest levels and green the lowest.
The ordering of tips on the phylogenies is as in Fig. 2. (b) Raw viral load and virulence (mean proportion of flies dead across all days in the experiment) data
for 48 host species, the trend line is estimated from a linear model, error bars show standard errors. The inter-specific correlation is 0.69 (95%CI = 0.45,
0.88).

doi:10.1371/journal.ppat.1004728.g004
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poorly adapted to its new host [8] or the host being poorly adapted to the pathogen [17]. Our
results show that the changes in virulence can be explained by the host phylogeny, with the
virus causing similar levels of mortality in closely related species. However, those clades of
hosts where virulence is high are scattered across the phylogeny (Fig. 3), so host shifts across
large genetic distances may sometimes result in virulent infections and other times
benign associations.

DCV was isolated from D.melanogaster where its virulence is at an intermediate level, and
transfer to different species can both increase and decrease virulence. Despite seeing dramatic
changes in virulence, there is no tendency for it to decline with genetic distance from the natu-
ral host. This contrasts with studies that have investigated infection success in novel hosts and
found that it tends to decline in species less closely related to the natural host [29–35]. Howev-
er, it is difficult to compare our results to these studies as there has been no systematic survey
of the host range of DCV, and it may infect species outside of the melanogaster subgroup
in nature.

The patterns that we see will depend on the taxonomic scale we are looking at—outside of
insects it is unlikely that DCV can infect any hosts [40]. The species we looked at shared a com-
mon ancestor 40 million years ago. Combined with the rapid generation time of insects, this
makes our results relevant to the taxonomic distances over which hosts shifts normally occur.
For example, mammals shared a common ancestor 95 million years ago [72], but have far
slower generation times and lower rates of molecular evolution [73,74]

The physiological and molecular reasons why DCV virulence is so variable across Drosophi-
la species are a matter of speculation. A virus’s ability to successfully infect a novel host will de-
pend on its ability to bind to host cells, replicate in suitable tissues and avoid or suppress the
host immune response. The ability of viruses to successfully bind to host receptors is important
for a successful host shift. For example, changes to the viral capsid of parvoviruses that allow
the binding of host cells are essential for them to successfully host shift from cats to dogs [75].
In D.melanogaster RNAi is known to be an important antiviral immune response [46]; to
counter this host immune response, DCV has evolved a suppressor of RNAi that binds dsRNA
and inhibits the production of siRNAs [76]. Therefore, the patterns observed may be due to
species varying in their ability to produce an antiviral RNAi response, or due to the viral sup-
pressor of RNAi being more or less efficient in different host species, as has been observed for
another Drosophila virus [77]. In D.melanogaster, certain alleles of a restriction factor called
pastrel confer DCV resistance [78], and similar factors may be responsible for the differences
in virulence observed between species. The patterns observed could also be due to certain host
clades being assayed at sub-optimal environmental conditions (e.g. temperature) that affect im-
munity or other physiological processes. Whilst we used hosts withoutWolbachia endosymbi-
onts [47,54], other components of the host microbiota or unknown viral infections may also
affect resistance. Regardless of the cause, these changes have happened in the common ancestor
of certain clades, resulting in all the descendant species in different clades having similar viral
loads and levels of virulence, resulting in the strong phylogenetic patterns we observe (Fig. 3).

Evolutionary theories of virulence commonly assume a direct link between virulence and
pathogen loads, but this assumption has been criticised because virulence is often an indirect
effect of the pathogen, such as an inappropriate immune response ([8,79], reviewed in [7]).
However, in this system we found virulence to be very tightly correlated with viral load. This
suggests virulence is a direct consequence of the damage caused by high parasite burdens, al-
though it could also result from viral virulence factors resulting in the high viral loads.

Because virulence is associated with high viral loads, changes in virulence following host
shifts are likely to be linked to changes in the transmission rate of the virus. Indeed, it is diffi-
cult to conceive that the million-fold range in viral loads that we observed would not affect
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transmission, and our limited data on transmission tentatively supports this link (see supple-
mentary information). Therefore, host shifts may result in maladaptive viral loads and low
rates of transmission in the new host.

When virulence is coupled to pathogen load it can sometimes create a trade-off—higher
viral loads result in a higher rate of transmission per unit time but the host dies faster and
transmits for less time—meaning that intermediate levels of virulence may be optimal for the
pathogen to maximise its fitness [9]. In our case we found high rates of transmission of DCV
from the corpses of dead flies to larvae, suggesting killing the host could actually aid transmis-
sion. If the majority of transmission occurs from the corpses of dead flies in nature there will
be a strong mechanistic coupling between transmission and virulence [80], suggesting the most
successful strategy for DCV to evolve will be to maximise its replication rate at any cost to the
host. However, the true optimal virulence for DCV remains a matter of speculation, as in na-
ture it will be affected by host population structure [81], environmental conditions [82] and
ecological interactions [83]. Regardless, it is clear that host shifts may result in DCV having
maladaptive levels of virulence that result in low rates of onward transmission, and this may
prevent the pathogen from becoming established in that species.

In conclusion, we have found that host shifts can result in both large increases and decreases
in virulence. The fact that virulence is associated with high pathogen burdens, which in turn
may lead to higher levels of transmission, suggests that avirulent host shifts may be unsuccess-
ful. We found virulence was largely explained by the host phylogeny, with clades of closely re-
lated hosts displaying similar levels of virulence. While this study suggests there is no clear rule
to predict whether a pathogen will be virulent in a novel host, it does suggest that if a pathogen
causes high levels of virulence in any given host species, it will typically cause similar levels of
virulence in closely related hosts.

Supporting Information
S1 Text. Supplementary information.

• Supplementary methods.

• Supplementary results.

• Supplementary Figure A. Time course of DCV infection in 10 host species. Change in viral
load is relative to day 0. Each point represents the mean of 3 biological replicates, with each
replicate containing 5 flies on average (range 3–5), error bars show standard errors. Flies
were 4–6 days old when infected. D. arizonae and D. hydei have only 2 biological replicates
for each time point and D. hydei day 1 has only 1 biological replicate.

• Supplementary Figure B. Viral load relative to the housekeeping gene RpL32measured by
qRT-PCR at day 0 and day 2 post infection. Each point is a separate biological replicate, with
three replicates of most species at each timepoint.

• Supplementary Figure C. Correlation between DCV viral load on day 2 post infection and
viral load in flies collected on the day. Day 2 data is from main experiment. 15 host species
were included. The trend line is estimated from a linear model, and has a slope of 0.96 sug-
gesting there is a ~1:1 relationship between day 2 and day of death viral loads. Error bars
show standard errors.

• Supplementary Table A. Full list of species used. All species are in the genus Drosophila, with
the exceptions ofHirtodrosophila duncani, Zaprionous tuberculatus and Scaptodrosophila
lebanonensis and Scaptodrosophila pattersoni. The recipes for the food medium reared on are
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as follows: banana recipe below, cornmeal recipe below, proprionic recipe below, malt recipe
in [30]. All cornmeal and proprionic medium had dried yeast sprinkled onto the surface of
the food, other food types did not, unless stated. Food plus mushroom means a piece of
peeled Agaricus bisporus was placed on the surface of the food. Mean wing length is the
length of the IV longitudinal vein from the tip of the proximal segment to where the distal
segment joins vein V.
(PDF)

S1 Table. Genbank accession numbers of sequences used to infer the host phylogeny. Se-
quences downloaded from genbank are in blue, sequences generated during this project are
in red.
(XLSX)

S1 Dataset.
(CSV)

S2 Dataset.
(XLSX)

S3 Dataset.
(CSV)
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