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Essential ingredients for fault-tolerant control are the ability to represent system behaviour following the occurrence of
a fault, and the ability to exploit this representation for deciding control actions. Gaussian processes seem to be very
promising candidates for the first of these, and model predictive control has a proven capability for the second. We there-
fore propose to use the two together to obtain fault-tolerant control functionality. Our proposal is illustrated by several
reasonably realistic examples drawn from flight control.
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1. Introduction

The demand for fault-tolerant control (FTC) comes
from safety requirements and from economics. In
safety-critical applications, there is always some
requirement for a safe back-up in case the nominal
system fails. A fault-tolerant control system may be a
more effective way of providing such a back-up than
just physical duplication or triplication of equipment. A
topical set of applications arises in automotive control.
In this sector there is a rapidly increasing use of control
systems for safety-critical functions. The best-known
example is that of anti-lock braking systems (ABSs),
for which legislation requires some fault-tolerant
capability (Anon, 2015). Vehicle manufacturers
are currently developing and installing systems for
anti-collision braking, automatic steering or automatic
lane-changing and overtaking, and one can anticipate that
these will also be required to have some fault-tolerant
capability.

Another major driver for fault-tolerant control comes
from aircraft, including unmanned air vehicles (UAVs).
UAVs have many potential non-military applications,
some of them requiring operation over densely-inhabited
areas such as cities—for example, traffic monitoring.
Pilots can overcome many minor faults on an aircraft,
and sometimes even major ones. A concern with UAVs
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operating over inhabited areas is that a relatively minor
problem which could be handled easily by a pilot should
not cause a UAV to crash. Safe autonomous operation is
a key requirement, and fault-tolerant flight control is an
essential enabler of that capability.

Economic considerations arise because the costs of
lost production due to a fault can be enormous, and the
costs of unnecessary energy consumption due to a fault
can also be very high. There is therefore a strong incentive
to keep manufacturing and production plant operating
despite faults—possibly with reduced quality or reduced
volume until maintenance can be performed.

Space programmes have requirements for
fault-tolerance which arise from their extremely high
cost. Although human safety may not be involved
(in unmanned programmes), the cost of failure, in
both financial and political terms, is so high that
mission-critical functions must be fault-tolerant—and this
includes control systems. The European Space Agency’s
Aurora programme, for example, aims to explore the
outer solar system and beyond, including missions to
Mars, culminating in a manned mission. Technologies
to support autonomous operation are emphasised in the
Aurora programme, mainly because distances to Mars
and beyond are so large that communications with Earth
suffer major delays, so that Earth-originated solutions to
unexpected problems would take too long to implement.

Model predictive control (MPC) offers a very
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attractive and effective framework for fault-tolerant
control, providing that one can update the internal model
used by MPC when a fault occurs. Detecting and
identifying the fault, and representing it in a model-based
framework, is a critical problem for FTC. In recent
years some machine-learning methods have been shown
to be remarkably effective at discovering model-based
representations from data. In particular, Gaussian
processes (Rasmussen and Williams, 2006) have been
investigated for control of complex systems, and appear
to be very promising in that context (Deisenroth and
Rasmussen, 2011).

In this paper we propose to combine the use
of Gaussian processes with MPC for the purpose of
providing fault-tolerant control functionality. The main
body of this paper consists of the following parts. Section
2 gives the rationale of using MPC as a framework for
FTC, specifically with Gaussian process models. Section
3 reviews background knowledge on Gaussian processes.
Section 4 describes in detail the formulation of MPC
with Gaussian processes. Sections 5 and 6 then present
two control scenarios and numerical simulation results,
followed by a discussion in Section 7 and conclusions in
Section 8.

2. MPC as a framework for FTC

Figure 1 shows the components of a typical MPC
feedback system (Maciejowski, 2002). At the top,
labelled “Setup”, are the components that define the
controller: a model which will be used to generate the
predictions needed by the optimiser, an objective function
which will be minimised by the optimiser, and constraints
which need to be satisfied by the solution generated by the
optimiser. Below this, the block labelled “Online tasks”
shows what needs to be executed at each sampling/update
interval:

1. Measurements are obtained from sensors located on
the plant which is being controlled, and used by an
observer to estimate the plant state vector (not always
necessary).

2. A specific optimal control problem is defined (which
depends on the current (estimated) plant state, using
all the ingredients specified in “Setup”.

3. This optimal control problem is solved by an
optimisation algorithm. Usually this computes a
whole sequence of future input commands. Only the
first of these is applied to the plant being controlled.
Note that the optimisation problem is time-critical; it
needs to be solved within the control-update interval.

On the right of Fig. 1, labelled “Real world”, is the plant
being controlled. Disturbances acting on this plant are

shown explicitly, in order to emphasise that the plant never
behaves exactly as predicted by the model.

The attraction of MPC for fault-tolerant control is
its flexibility. Suppose, for example, that an actuator
becomes jammed at a particular value. If this failure is
detected, then it can be represented in the MPC setup
by constraining the rate of change of that actuator to be
zero. If, in addition, the value at which the actuator
is jammed is known, then an equality constraint can
be added to the problem setup representing this. The
optimiser then has the task of discovering an alternative
control action—of course it can only succeed if there
is at least one alternative actuator that it can use. This
capability of representing faults by re-defining constraints
is already a valuable feature for fault-tolerant control,
since there is an increasing availability of self-validating
actuators, such as self-validating valves in the process
industries and self-validating control surfaces in aircraft.

A fault may be more complicated than a jammed
actuator. For example, a hydraulic leak may change the
time constant of an actuator’s servo response. Or a heat
exchanger may become less efficient due to fouling. Or
an aerodynamic lifting surface may become damaged due
to fatigue, or become less efficient due to icing. Faults
of this kind can be represented by changing the model
used by MPC. The fact that the model has an explicit
representation in the MPC structure makes it possible to
do this. For MPC it does not matter whether the model
is a detailed physics-based first-principles model or a
black-box model obtained from plant data—but it may
be easier to represent a particular fault in a more detailed
model.

Further flexibility is offered by the possibility of
changing the objective function that is optimised. This
is very important for fault-tolerant control. If a severe
fault occurs, it is probably not reasonable to try to achieve
the same objectives that were achieved when the plant
was healthy. Admittedly it is not easy to exploit this
aspect of MPC’s flexibility, for two reasons: how to
change real-world objectives in the event of a fault is an
unexplored topic, and then how to change a mathematical
objective function to reflect real-world objectives is not
straightforward. Nevertheless, the flexibility of changing
objectives is a desirable attribute of MPC, even if we do
not yet understand how to exploit it properly.

For these reasons, MPC has been advocated as a
suitable framework for fault-tolerant control in several
publications (Maciejowski, 1997; 1998; Huzmezan and
Maciejowski, 1999; Maciejowski and Jones, 2003;
Joosten and Maciejowski, 2009). However, much of the
potential of MPC depends on being able to represent the
effects of the faults, either by changing the constraints,
or by changing the model, or both. In particular, finding
a suitable new model sufficiently quickly is the major
problem faced by fault-tolerant control. This motivates
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Fig. 1. Components of a model predictive control feedback system.

our interest in using Gaussian processes in the following
sections.

Here we add a little more detail about the MPC
formulation. A discrete-time dynamic system can be
described by the model

xk+1 = f(xk,uk) +wk, (1)

where x ∈ R
p, u ∈ R

q are the states and inputs,
respectively, f(·, ·) is a possibly nonlinear vector function,
and w represents a disturbance—or any discrepancy
between the model and the actual behaviour. Given a
measured or estimated state xk at time k, and a set of
hypothesised future inputs ûk+i|k for i = 0, 1, . . . , N−1,
the model can be iterated to give a set of predicted states
x̂k+i|k for i = 1, 2, . . . , N , making some assumptions
about the sequence of future disturbances (often assuming
that wk+i = 0). The control objectives are then
represented by the minimisation of an objective function,
most commonly a quadratic function such as (for the case
of controlling to an equilibrium (x∞,u∞))

J(xk,Uk)

=

N−1∑

i=0

[‖x̂k+i|k − x∞‖2Q + ‖ûk+i|k − u∞‖2R
]
, (2)

where Uk = [ûk|k, . . . , ûk+N−1|k], Q ≥ 0 and R > 0,
together with some state constraints

x̂k+i|k ∈ X. (3)

Capabilities of the actuators (limits, slew rates, etc.) are
represented by some input constraints

ûk+i|k ∈ U. (4)

Frequently the objective and/or input constraints are also
expressed in terms of control input moves, Δuk = uk −
uk−1.

The control input is then found by solving the
finite-dimensional constrained optimisation problem

U∗
k = argmin

Uk

J(xk,Uk) (5)

numerically, subject to the constraints (1), (3) and (4).
The first element of the sequence U∗

k , namely, û∗
k|k , is

then applied as the input to the plant. This process is
repeated at the next step k + 1, beginning with a new
measurement or estimate xk+1. The optimisation problem
solved at each step is an open-loop problem, but the
repeated application of this process results in closed-loop
feedback control, since the problem solved at step k
depends on measurements taken at step k. Note that, with
the MPC ingredients as defined above, we have defined a
time-invariant but nonlinear control law κ(xk), such that
û∗
k|k = κ(xk).

Many variations of this formulation exist, most
common being the addition of a separate cost and/or
constraint involving the terminal state x̂k+N |k, in order
to ensure closed-loop stability. Since the optimisation
problem must be solved online in a limited time, it
is strongly preferable to choose the details of the
formulation such that a convex optimisation problem
results. Choosing a linear model in (1), a convex function
in (2), and convex constraints in (3) and (4) will yield
a convex problem. In particular, choosing the objective
function to be quadratic and the constraints to be linear
inequalities gives a quadratic programming (QP) problem
which can be solved very quickly, if need be using
specialised hardware (Hartley et al., 2012; 2014).

Other variations of the MPC formulation include
optimisation over feedback policies rather than over
open-loop predictions, tightening constraints to allow
for known levels of model uncertainties, and ‘tube’
formulations in which MPC is used to plan a nominal
trajectory and conventional feedback is employed to
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Fig. 2. From a multivariate Gaussian distribution to a Gaussian
process: (a) illustrates a multivariate Gaussian distribu-
tion over a vector f of 8 elements, with the error bar
indicating the ±2σ region, (c) depicts its covariance ma-
trix. When the dimension of the vector f increases to
fill the real axis, this multivariate Gaussian distribution
approaches to a distribution over functions f : R �→ R,
as in the Gaussian process (b), where the solid line indi-
cates the mean function m : R �→ R of the distribution
and the shaded area indicates the ±2σ uncertainty band.
The covariance matrix in (c) becomes refined and ap-
proximates a mapping: k : R × R �→ R, which is the
covariance function (d).

keep the actual system trajectory within some predictable
distance from the nominal one. All of these variations are
aimed at making MPC more robust to modelling errors
and other uncertainties, but they usually involve increased
computational complexity (Rawlings and Mayne, 2009).

3. Gaussian processes

A Gaussian process (GP) is a distribution over functions
and can be viewed as a generalised multivariate Gaussian
distribution over a vector of infinite length. The intuition
behind this generalisation is illustrated in Fig. 2, where a
Gaussian distribution over vector f ∈ R

n, f ∼ N (μ,Σ),
is transformed into a Gaussian process by making vector
f infinitely dense and long, when vector f essentially
becomes a function f : R �→ R. A GP then describes
the distribution over such a function f . Formally, a
Gaussian process is defined as a collection of random
variables, any finite number of which have a consistent
joint Gaussian distribution (Åström, 1970; Rasmussen
and Williams, 2006). It is worth mentioning that the
classical Gaussian process is often defined over the index
set of time, leading to a time process. The index set

for the Gaussian process hereinafter is generalised to the
D-dimensional vector space R

D, which endows the GP
with the capability of describing functions defined on a
larger space.

Similar to a multivariate Gaussian distribution f ∼
N (μ,Σ) which is characterised by a mean vector μ
and a covariance matrix Σ, a Gaussian process f ∼
GP (m(·), k(·, ·)) is fully specified by a mean function
m(·) and a covariance function k(·, ·), defined as

m(x) � Ef [f(x)], (6)

k(x,x′) � covf [f(x), f(x
′)]

= Ef [(f(x)−m(x)) (f(x′)−m(x′))] , (7)

where x, x′ ∈ R
D are two arbitrary points. The mean

function gives an ‘average’ shape of the function and the
covariance function specifies covariance between any two
function values, computed from the corresponding inputs
in the index set.

Dynamic system modelling and identification is
often posed as a regression problem. The following
gives essential background knowledge for regression in a
Bayesian framework using Gaussian processes.

3.1. Gaussian process regression. Gaussian process
regression refers to the inference of the underlying
function f(·) of a noisy static map

y = f(x) + ε, (8)

given a set of input vectors X =
[
x1 . . . xn

]� ∈
R

D×n, output observations y =
[
y1 . . . yn

]� ∈
R

1×n and a GP model for f(·). ε is a white Gaussian noise
term, i.e., ε ∼ N (0, σ2

n). In a Bayesian setting, inference
of f(·) can be formulated as

p(f |X,y, θ) =
p(y|f,X, θ)p(f |θ)

p(y|X, θ)
, (9)

where p(f |θ) is the Gaussian process prior and
p(f |X,y, θ) is the Gaussian process posterior. θ is a
vector of distribution parameters called hyper-parameters,
which will be covered later. A common choice of the GP
prior is a zero mean function

m(x) ≡ 0 (10)

with a squared-exponential (SE) covariance function

k(x,x′) = σ2
f exp

[
−1

2
(x− x′)�Λ−1(x− x′)

]
, (11)

where Λ = diag
([
λ2
1 . . . λ2

D

])
. Then the covariance

between the corresponding outputs y and y′ can be
obtained by appending (11) with δxx′σ2

n to account for the
noise term ε in (8), i.e., cov[y, y′] = k(x,x′) + δxx′σ2

n,
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where δxx′ denotes the Kronecker delta symbol defined as
δxx′ = 1 if x is the same input point as x′ and 0 otherwise.

The posterior distribution p(f |X,y, θ) from (9) can
be shown to be another GP (Hall et al., 2012),

f |X,y, θ ∼ GP(m+, k+), (12)

with

m+(x) = m(x)

+ k(x,X)
[
k(X,X) + σ2

nI
]−1

(y −m(X)) ,
(13)

k+(x,x
′) = k(x,x′)

− k(x,X)
[
k(X,X) + σ2

nI
]−1

k(X,x′),
(14)

where m(X) =
[
m(x1) . . . m(xn)

]� ∈ R
n×1,

k(x,X) = [k(x,x1) . . . k(x,xn)] ∈ R
1×n, k(X,x) =

k(x,X)�, k(X,X) = [k(xi,xj)]n×n ∈ R
n×n and I is

an identity matrix with appropriate dimensions. Figure 3
illustrates functions drawn from the above GP prior and
the corresponding GP posterior given data observations.
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Fig. 3. Functions drawn at random from the GP prior (a) with
a zero mean function and an SE covariance function
and from the GP posterior (b) given 4 data observations
marked by crosses. The solid lines indicate the mean
functions and shaded areas give the ±2σ uncertainty
bands.

3.2. Training. As in (9), the GP prior and
posterior also depend the hyper-parameters θ =

[
σf λ1 . . . λD σn

]�
. In a fully Bayesian setup,

a hyper-prior p(θ) can be placed upon θ and the
hyper-posterior can be inferred by Bayes’ rule

p(θ|y,X) =
p(y|X, θ)p(θ)

p(y|X)
; (15)

then marginalisation over θ can be performed in (12) to
get the the full GP posterior p(f |X,y). Practically, a
point estimate through maximum likelihood estimation
(MLE) is often used to avoid the analytical intractability
of the integrals and the high computational demands of
approximate sampling methods. This leads to the training
of a GP by maximising log p(y|X, θ) with respect to θ,
i.e.,

max
θ

−1

2
y�K−1

θ y − 1

2
log |Kθ| − 1

2
D log(2π), (16)

where Kθ = k(X,X) + σ2
nI and the subscript θ is to

emphasis Kθ is a function of θ. This MLE treatment
is clearly not Bayesian, but it is the result of a tradeoff
between computational complexity and performance. The
optimisation problem (16) in general is not a convex
one, thus local optima will be expected, corresponding to
particular interpretations to the data with different levels
of likelihood.

3.3. Predictions. Since a GP defines a distribution
over functions, then, given a test input x∗ ∈ R

D, a
distribution p(f(x∗)) can be predicted by the GP. For
deterministic test input x∗, p(f(x∗)) is simply given by

f(x∗) ∼ N (m+(x∗), k+(x∗,x∗)). (17)

When the test input contains uncertainty (which is often
the case in a dynamic system), say x∗ ∼ N (μ,Σ), a
marginalisation over x∗ needs to be performed to give the
predictive distribution p(f(x∗)|μ,Σ),

p(f(x∗)|μ,Σ) =

∫
p(f(x∗)|x∗)p(x∗) dx∗. (18)

The resulting distribution is normally not a Gaussian, but
Gaussian approximation through exact moment matching
can be performed, as shown in Fig. 4. When the function
f(·) is a vector function, say f(x) : R

D �→ R
E ,

E independent GP models can be used, one for each
output dimension. In this case the output values from
different dimensions will covary under uncertain test
inputs, leading to non-zero cross covariances between
each output dimension and non-zero cross covariances
between the input and the output, i.e.,

p(x∗, f(x∗)|μ,Σ)

= N
([

μ
μ∗

]
,

[
Σ Σx∗,f∗

Σ�
x∗,f∗ Σ∗

])
. (19)
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Fig. 4. Prediction with a Gaussian process. The top left figure
shows a GP posterior, the bottom figure depicts the dis-
tribution of an uncertain test input x∗, the corresponding
predicted output p(f(x∗)) is shown in the top right fig-
ure: the shaded area represents the distribution obtained
from a Monte Carlo approach, the solid line indicates a
Gaussian distribution through moment matching and the
dashed line represents prediction at a deterministic test
input located at the mean of p(x∗).

Detailed expressions for each element in the mean vector
and covariance matrix under the sparse approximation
below are listed in Appendix A.

3.4. Gaussian processes for high dimensional
problems. One major problem in employing a
Gaussian process model is the heavy computational
requirement. It is known that, for n-sized training
data, predictions at uncertain inputs require O(E2n2D)
operations (Deisenroth, 2010), apart from the O(n3)
complexity of inverting the covariance matrix for which
pre-computation is possible. This makes GP models
prohibitive for high dimensional (large data size, high
input and output dimensions) applications. Two major
approaches are used to reduce this computational
complexity, namely, sparse approximations and
integration of known model information.

3.4.1. Sparse approximations. A sparse GP aims to
reduce the n in O(E2n2D), whose computational burden
is dominated by matrix operations (e.g., multiplication)
involving the n × n covariance matrix K as in (13) and
(14). Low-rank approximations to matrix K prove to be
an effective solution, among which the fully independent
training conditional (FITC) approximation (Snelson and
Ghahramani, 2005) is used in this paper. The basic idea of
FITC approximation is to introduce a set of M(M < n)

inducing or pseudo inputs X̄ =
[
x̄1 x̄2 . . . x̄M

]�

with associated inducing variables or pseudo targets
f̄ , then integrate out the pseudo targets f̄ and make
predictions using the inducing inputs X̄ and the data.
With FITC approximation, the computational complexity
reduces to O(ME) for the mean vector and O(E2M2D)

for the covariance matrix. Training this approximated
sparse GP involves optimisation over the locations of
the pseudo-inputs and the hyperparameters, which can be
simultaneously done through MLE in (A16).

3.4.2. Integration of explicit model information.
Integration of partial model information, on the other
hand, aims to reduce the output dimensionE and the input
dimension D in O(E2n2D). For physical systems, it is
common that partial knowledge of the system dynamics
is available, such as the relation between position and
velocity, or in general states which are related through
known relationships. When this is the case, the known
relationship can be explicitly used, instead of applying
GPs, to reinvent the wheel. For a system of dimension
E with F known relations between the states, only E−F
GP models need to be trained to make predictions.

For physical systems there are also cases where only
a subset of the inputs affect a specific output. This type
of model information, although simple, can be effective
in reducing the input dimension of GP models (Hall,
2013). It is worth mentioning that a squared exponential
(SE) covariance function with an automatic relevance
determination form (Rasmussen and Williams, 2006) can
also be used to automatically select the relevant input
dimensions. Still it is advantageous to incorporate known
model information if available, to avoid the extra cost of
training a full GP and selecting relevant input channels. In
practice, these two types of partial model information are
often used together.

4. MPC with Gaussian process models

MPC with Gaussian process models was first proposed
by Kocijan et al. (2003) and based on that the following
gives a detailed formulation when the fact used in
fault-tolerant control.

4.1. Prediction model. For dynamic system
modelling, Gaussian process state space models can
be used. A GP state-space model originates from an
ordinary differential equation (ODE) representation of
a dynamic system and often applied in a discrete-time
setting—state at the next time instant xk+1, state and
input at the current time instant xk and uk are related
through a nonlinear function

xk+1 = f(xk,uk) +wk, (20)

where xk ∈ R
nx , uk ∈ R

nu , nx and nu are the state
and input dimensions, respectively. wk is a noise term,
f(xk,uk) is modelled by multiple GPs as

fi ∼ GP(mi(zk), ki(zk, z
′
k)), i = 1, . . . , nx, (21)
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where zk =
[
x�
k u�

k

]�
. When a prior model, e.g., a

nominal model f0(xk,uk), is available, it can be included
as a fixed mean function mi(zk) = f0,i(xk,uk), i =
1, . . . , nx. The covariance function ki(·, ·) is chosen
to be the sum of an SE covariance function and a
noise covariance function to account for the process
noise. This GP model is advantageous for fault-tolerant
control and Fig. 3 gives the intuition: when there is no
data observation, or the system is operating in nominal
conditions, the system’s behaviour is dominantly captured
by the prior, which is the nominal model f0. If a
fault occurs and data are subsequently collected, f will
be adapted to the data observations and reflect the new
behaviour of the system.

With the GP in (21) as the prediction model in the
MPC, given

xk+i|k ∼ N (x̄k+i|k ,Σxk+i|k)

where i = 0, . . . , N and N is the prediction and
control horizon, the joint distribution of xk+i|k and the
one-step-ahead state prediction xk+i+1|k can be written
as

p(xk+i|k ,xk+i+1|k|x̄k+i|k,Σxk+i|k)

= N
([

x̄k+i|k
x̄k+i+1|k

]
,

[
Σxk+i|k Σxk+i|k,xk+i+1|k
Σ�

xk+i|k,xk+i+1|k Σxk+i+1|k

])
, (22)

where x̄ and Σx represents the mean vector and
covariance matrix of variable x. (22) performs the core
functionality of the GP model and evaluation of this joint
distribution can be done with the FITC approximation
techniques in Section 3 while considering the input
uncertainty. Specifically, elements in the mean vector
x̄k+i+1|k can be evaluated by (A1) in Appendix A,
diagonal elements in the covariance matrix Σxk+i+1|k by
(A11), off-diagonal elements in Σxk+i+1|k by (A14) and
elements in matrix Σxk+1|k,xk+i+1|k by (A13).

4.2. Target calculation. The steady-state target
calculation solves the optimisation problem

min
x∞,u∞

x�
∞W1x∞ + u�

∞W2u∞, (23)

subject to
[
(Ak − I) Bk

Hr 0

] [
x∞
u∞

]
=

[−dk

r

]
, (24)

[
0 I
0 −I

] [
x∞
u∞

]
≤

[
umax

−umin

]
, (25)

where W1 and W2 are two weighting matrices and
(x∞,u∞) denotes the state and input target pair. Hr is

a selection matrix, choosing the dimensions in x∞ for
which the set point r is given. (Ak, Bk) represent the
linearised dynamics, for which a linearisation of the GP
mean function is used, i.e.,

xk+1 =
[
Ak Bk

] [xk

uk

]
+ dk, (26)

where

Ak =
∂m(·)
∂x

∣∣∣
xk,uk

, Bk =
∂m(·)
∂u

∣∣∣
xk,uk

, (27)

dk = m

([
xk

uk

])
− [

Ak Bk

] [xk

uk

]
, (28)

m(·) = [
m1(·) . . . mnx(·)

]�
. (29)

The target calculation is performed at each time step.

4.3. Cost function and constraints. An uncondensed
MPC formulation is adopted with the decision variable
Vk = [x̄�

k|k û�
k|k . . . x̄�

k+N−1|k û�
k+N−1|k x̄�

k+N |k]
�

and a quadratic cost function is used,

J(Vk) =
N−1∑

i=0

(
‖x̄k+i|k − x∞‖2Q

+ ‖ûk+i|k − u∞‖2R + ‖Δûk+i|k‖2RΔ

)

+

∥∥∥∥

[
ûk+N−1|k − u∞
x̄k+N |k − x∞

]∥∥∥∥
2

Pk

, (30)

where weighting matrixPk for the terminal cost can either
be chosen offline or calculated by solving the algebraic
Riccati equation (ARE)

Pk = A�PkA
− (A�PkB)(R+ B�PkB)−1(B�PkA) +Q,

(31)

where

A =

[
I 0
Bk Ak

]
, B =

[
I
Bk

]
,

Q =

[
R

Q

]
, R = RΔ. (32)

Equality constraints of the system’s dynamics are applied
as

x̄k+i+1|k = m

([
x̄k+i|k
ûk+i|k

])
, i = 0, . . . , N, (33)

where x̄k+i+1|k is calculated by (22). The initial value
x̄k|k comes from the state measurement/estimate. Σxk|k
can either come from a filter (e.g., Kalman filter) or be set
to a small value if the measurement of the state contains
little noise.
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Input constraints and input slew rate constraints are
applied as

[
I
−I

]
ûk+i|k ≤

[
umax

−umin

]
, (34)

[−I I
I −I

] [
ûk+i−1|k
ûk+i|k

]
≤

[
Δumax

−Δumin

]
, (35)

where i = 0, . . . , N and ûk−1|k = uk−1 is the previous
applied control input. Since the state predictions from a
GP model are probabilistic, for the time being we only
apply constraints on the mean values of the predicted
states as a simplification.

5. Example I: Aircraft longitudinal control

The first example is a fairly simple one, which aims
to illustrate the basic functionality of Gaussian process
model based MPC in fault-tolerant control.

5.1. System and controller description. Aircraft
longitudinal motion has fairly simple dynamics, but
still contains considerable input redundancy—typically a
trimmable horizontal stabiliser (THS), an elevator, and
engine(s). It thus lends itself well for the illustration of
fault-tolerant control. In this example we use a linear
aircraft model

xk+1 = Axk +Buk, (36)

where states x and inputs u are defined in Tables 1 and 2.
The system matrix A and input matrix B are

A =

⎡

⎢⎢⎣

0.867 19 6.6936× 10−5

−0.027 773 0.998 95
0.201 46 −2.1676× 10−4

0.2 0

−0.190 95 0
0.892 64 −1.9609
0.883 79 0

0 1

⎤

⎥⎥⎦ , (37)

B =

⎡

⎢⎢⎣

−3.7758× 10−3 −9.0408× 10−3

0 0
−1.2629× 10−4 −3.2794× 10−4

0 0

⎤

⎥⎥⎦ . (38)

The same model (36) is used as the mean function of the
GP model for the system, i.e.

xk+1 = f(xk,uk), (39)

fi ∼ GP(mi(·), ki(·, ·)), i = 1, . . . , 4, (40)

mi

([
xk

uk

])
= A(i, :)xk +B(i, :)uk, (41)

where A(i, :) represents the i-th row of matrix A and
B(i, :) represents the i-th row of matrix B.

Table 1. Longitudinal states of the aircraft.
State Symbol Unit

Pitch rate q rad/s
Air speed VTAS m/s

Angle of attack (AoA) α rad
Pitch angle θ rad

Table 2. Longitudinal inputs and constraints of the aircraft.
Input Symbol Feasible region Slew rate (deg/s)

Elevator δE [−25, 15] deg [−37, 37]
THS δTHS [−10.4, 4.6] deg [−0.236, 0.236]

The control objective is the tracking of the pitch
angle θ. For MPC, the horizon is N = 20 steps and
the sampling/update interval is Ts = 0.2 s, namely, the
prediction horizon duration is 4 s. No target calculation
is performed and formulation of MPC is the same as in
Section 4 with weighting matrices in the cost function (30)
chosen as

Q = diag
([
34.38 0 0 103.13

])
, (42)

R = 0, RΔ = diag
([
0.02 10

])
, Pk = 0. (43)

5.2. Fault scenario and results. The fault scenario
investigated here is ‘stuck elevators’, which refers to
the condition that the elevator is jammed at the position
where the fault happens and does not respond to control
commands. This is a typical scenario to exemplify
the ‘daisy-chaining’ property (Maciejowski, 1998) since
the THS—as compared with the elevators—is much less
frequently used for attitude control. It is also suitable for
demonstrating how performance could be improved with
the assistance of a GP model to learn the behaviour of the
faulty system.

Simulations are completed on two MPC instances,
one with a nominal model and a disturbance observer to
implement the daisy-chaining property, the other with a
GP model. Reference for the pitch angle changes from
0 to 5 degrees when the simulation starts and the fault
happens shortly afterwards at 0.04 s. Simulation results
are shown in Figs. 5 to 7. In Fig. 5, the first plot depicts the
pitch angle responses. It can be seen that responses from
both controllers suffer from oscillations, due to the slow
movement of the THS constrained by its maximum slew
rate. Both controllers manage to suppress the oscillation
while GP-based MPC is more effective and the oscillation
dies out more quickly.

Figure 6 shows the control commands to the
actuators. The actual movement of the stuck elevator is
also shown by the dotted line in the first plot. It can be
seen that after the fault happens the elevator command
from nominal MPC quickly saturates as a result of the
disturbance observation. During this process, the THS is

Brought to you by | Cambridge University Library
Authenticated

Download Date | 5/7/15 12:48 PM



Fault tolerant control using Gaussian processes and model predictive control 141

virtually motionless due to the relatively large weighting
on it. After the elevator command saturates, nominal
MPC starts to actively command the THS at its maximum
speed. As the pitch angle gets closer to the setpoint, a
reduction in the control effort is needed. This happens
first in the elevator command which moves backwards and
saturates in its lower limit, after which the THS starts to
move. This pattern introduces oscillations in the elevator
command. In contrast, the elevator command from the
GP-based controller reveals a different profile: it does not
saturate as quickly as that from nominal MPC, indicating
that the learning of the GP is going on. Although it
also experiences the traverse between the upper and lower
limit of the elevator, what follows the traverse indicates
an identification of the fault in the elevator, since effective
commands are issued to the THS to stop the oscillation
while commands to the elevator settle to a nearly constant
value.

Figure 7 compares the mean function of the prior
and posterior GP (at the end of simulation) modelling
the dynamics of the first state f1(x,u) to illustrate the
learning of the faulty actuator behaviour from the GP. In
the plots the surfaces are projections of the mean functions
into the elevator-THS plane with states fixed at time 0
and the end of simulation, respectively. The solid lines
are the contours of the surfaces. Figure 7(a) shows the
prior mapping at the beginning of the simulation, which
sketches the linear nominal model. Figure 7(b) shows the
posterior mapping at the end of simulation. It can be seen
that the posterior mapping has fairly flat contours in the
elevator input dimension, which means that changes in
this dimension will not significantly affect the state, an
indication of failure in the elevator. The optimiser in MPC
thus gains not much reward by manipulating this actuator,
resulting in the slow-changing elevator commands in
Fig. 6.

5.3. Wind gust. In the previous simulation, wind is
not considered and a wind speed of 0 m/s is assumed.
In this part, a wind gust model is included to test the
robustness of the controller towards wind disturbances. In
flight control, wind is usually described by its speed in the

aircraft body reference frame W =
[
wx wy wz

]�
and

the inclusion of the wind changes the wind-related aircraft
states, e.g., airspeed, the angle of attack and the sideslip
angle. Denote the airspeed vector as Vair in the aircraft
body frame; then

Vair = [V cosα cosβ − wx V sinβ − wy

V sinα cosβ − wz ]
�,

where V , α, β represent the airspeed, angle of attack
and sideslip angle in the wind-free condition, respectively.
The angle of attack αair and airspeed Vair in wind
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Fig. 5. Responses of some selected longitudinal states, with
comparisons between nominal MPC with a disturbance
observer and GP-based MPC.
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Fig. 6. Commands from MPC and the actual control surface de-
flections, with comparisons between nominal MPC with
a disturbance observer and GP-based MPC.

conditions are

αair = atan2(V sinα cosβ − wz, V cosα cosβ − wx)

and

Vair =
√
V�

airVair.

These two relations show that the wind-affected states Vair

and αair are functions of the original states V and α and
the wind speed W (β is assumed to be 0 for longitudinal
control). The wind gust is modelled as the standard
‘1-cosine’ shaped curve as in the military specification
MIL-F8785C (Anon, 1980). For example, wind speed in
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Fig. 7. Prior (a) and posterior (b) mean function of the GP mod-
elling f1(x,u) in the ‘stuck elevators’ fault case. The
surface is a projection of the mean function into the
elevator-THS plane. The solid lines are contours of the
surface. Circles indicate the location of the data accu-
mulated.

the x axis is described by

wx =

⎧
⎪⎪⎨

⎪⎪⎩

0, x < 0,
Vm

2

(
1− cos

(
πx

dm

))
, 0 ≤ x ≤ dm,

Vm, x > dm,

(44)

where Vm is the gust amplitude, dm is the gust length, x
is the distance travelled by the aircraft. wy , wz have the
corresponding expressions.

A simulation of the ‘stuck elevators’ fault under the
wind gust condition is carried out with dm,x = 120m,
Vm,x = 5.5m/s, dm,z = 80m and Vm,z = 3.0m/s.
Results are compared with responses under the same
controller in the wind-free condition and are shown in
Figs. 8 and 9. It can be seen that, under wind gust
conditions, the controller still achieves fairly good control
of the aircraft attitude and no significant differences from
the wind-free condition can be observed. The explanation
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Fig. 8. Selected longitudinal states of the aircraft in the ‘stuck
elevators’ fault case, with comparisons between wind-
free and gust conditions.
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Fig. 9. Commands and actual inputs of the aircraft in the ‘stuck
elevators’ fault case, with comparisons between wind-
free and gust conditions.

of this is that gust disturbance to the system is in the form
of Δf(x,u), a static function of the states and inputs.
This can be treated as a modified f in (20), thus can be
well captured by the GP model through the input output
data. Another fault scenario that falls into this category
is the loss of efficiency (LOS) fault in an actuator, for
which either the additive or the multiplicative form can
be covered by this changed input to state mapping.

A profiling of the execution speed of the controller
is also done. In this example the dimensions of the GP
problem were, using the notation of Section 3, D = 6,
E = 4, M = 50, n = 300. The solution of one MPC
problem and the training of the Gaussian process each
took about 0.6 s on average, using a 2.7 GHz Intel Core
i5 processor with 8 GB of 1333 MHz DDR3 memory,
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along with the IPOPT optimisation library (Wächter and
Biegler, 2006) being called from MATLAB.

6. Example II: GARTEUR RECOVER
benchmark

6.1. System and controller description. The
GARTEUR RECOVER benchmark model is a
‘high-fidelity nonlinear aircraft and fault model for
a large transport aircraft’, based on the flight data
reconstruction, analysis and modelling of the Flight
1862 accident case (Edwards et al., 2010). Two fault
scenarios from the benchmark are investigated to evaluate
the proposed FTC scheme, namely, ‘stuck elevators’
and ‘rudder runaway’. These faults are assumed to be
unanticipated and no FDI information is assumed either,
as the GP model in the controller has the capability of
learning the effects of the faults and adapting itself to the
actual faulty system.

Aircraft states including the engine states are chosen
as x = [ p q r VTAS α β φ θ EPR1 EPR2 EPR3
EPR4 ]�, where p, q and r are the angular rates, VTAS

is the true airspeed. α and β are the angle of attack and
sideslip angle, respectively. φ and θ are the roll and pitch
angles, respectively. EPR1 to 4 are the engine pressure
ratios of the 4 engines. Inputs are defined in Table 3 and
illustrated in Fig. 10 (Hartley et al., 2014). The aircraft is
trimmed with level flight at an altitude of h = 600 m and
air speed VTAS = 133.8 m/s. A linearised model around
this trim point is obtained and used as the mean function
of the GP model. MPC takes a sampling/update interval
of Ts = 0.2 s and the prediction/control horizon N = 5.
Target calculation as in Section 4.2 is performed, with the
weighting matrices chosen as

W1 = 1000× I12, W2 = 1000× I17. (45)

The selection matrix Hr ∈ R
3×12 is a sparse matrix

with Hr(1, 4) = Hr(2, 7) = Hr(3, 8) = 1 and 0 for
other elements. umax and umin are as shown in Table 3.
The cost function in (30) is used and the values of the
weighting matrices Q and R are adopted from Hartley
et al. (2014) as

Q = diag ([7000 1200 1400 8 1200 2400 4800

4800 0.005 0.005 0.005 0.005]) , (46)

R = diag ([0.002 0.002 0.002 0.002 0.003 0.003

0.002 0.002 0.002 0.002 21 0.05

0.05 3 3 3 3]) . (47)

Matrix RΔ = 0.01R, and Pk is calculated according to
(31). Dimensions of the GP are, using the notation from
Section 3, Dmax = 29, E = 12, M = 100, n = 300.
Notation Dmax is used to indicate the maximum number
of inputs due to the reduction of inputs in Section 3.4.2
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1 Right Inboard Aileron (RIA) 2 Left Inboard Aileron (LIA)
3 Right Outboard Aileron (ROA) 4 Left Outboard Aileron (LOA)
5 Left Spoiler Panel Array (LSP) 6 Right Spoiler Panel Array (RSP)
7 Right Inboard Elevator (RIE) 8 Left Inboard Elevator (LIE)
9 Right Outboard Elevator (ROE) 10 Left Outboard Elevator (LOE)
11 Trimmable Horizontal Stabiliser (THS) 12 Upper Rudder (UR)
13 Lower Rudder (LR) 14-17 Engines #1 to #4 (EPR)

Fig. 10. Sketch of Boeing 747-200 with numbers indicating in-
puts used in the case study (source: Boeing).

Table 3. Inputs for the aircraft model.
ID Input Feasible region Slew rate

1,2 RIA, LIA [−20,20] deg [−40,45] deg/s
3,4 ROA, LOA [−25,15] deg [−45,55] deg/s
5,6 LSP, RSP [0,45] deg [−75,75] deg/s
7,8 RIE, LIE [−23,17] deg [−37,37] deg/s
9,10 ROE, LOE [−23,17] deg [−37,37] deg/s
11 THS [−12,3] deg [−0.5,0.5] deg/s
12,13 UR, LR [−25,25] deg [−50, 50] deg/s
14-17 EPR 1-4 [0.94,1.62] [−1, 1]

coming into play, and a 12× 29 binary masking matrix G
is used to tell which inputs are eliminated (represented by
0 elements). Elements in G are determined from standard
aerodynamics and flight dynamics relations, and are listed
in Appendix B.

The control objective is trajectory tracking, for which
the reference is a piece-wise linear one consisting of a
period of straight and level flight, followed by a 90 degrees
change in heading and by a 200 m descent, followed by
a 10 m/s deceleration, as shown in Fig. 11. Simulation
results of the nominal case are also presented in this figure,
which shows not much difference between nominal MPC
and MPC with a GP model in this case.

6.2. Fault tolerant control simulation results.

6.2.1. Stuck elevators. The ‘stuck elevators’ fault is
characterised by the condition that all elevator surfaces
are stuck at 3-degree downward offsets from the trim
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Fig. 11. Reference trajectories tracking in the nominal condi-
tion and comparison between nominal MPC and MPC
with a GP model.
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Fig. 12. Altitude and pitch angle responses in the ‘stuck ele-
vators’ fault case, with comparison between nominal
MPC and MPC with a GP model.

position. Both nominal MPC and GP-based MPC achieve
satisfactory trajectory tracking in this fault scenario.
Since this fault mainly affects the longitudinal dynamics,
Figs. 12 and 13 illustrate only the significantly affected
states and inputs, with comparisons between the two
controllers.

As can be seen in Fig. 12, considerable oscillations
occur in both altitude and pitch angle responses under
nominal MPC. This is due to the controller being unaware
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Fig. 13. Comparison of longitudinal input commands in the
‘stuck elevators’ fault case between nominal MPC and
MPC with a GP model. ‘RIE’ stands for the right in-
board elevator.
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Fig. 14. Yaw angle response in the ‘rudder runaway’ fault case,
with comparison between nominal MPC and MPC with
a GP model.

of the fault of the elevator which is still being actively
used by nominal MPC, as shown in Fig. 13. When a GP
model is engaged at 40 s, MPC with that model gradually
identifies the ineffectiveness of the elevators and thus
reduces the corresponding command, but increases the
command to the THS. This reflects a similar functionality
of GP as revealed by the example in Section 5.

6.3. Rudder runaway. The ‘rudder runaway’ fault
describes a condition in which all rudder surfaces
move quickly to a limit and create significant roll and
yaw moments. In this case both nominal MPC and
GP-based MPC achieve good tracking performances.
But improvements are still obtained by using the GP
model: as can be seen in Fig. 15, oscillations occur
in the rudder commands from the nominal controller;
when the GP model is engaged at 40 s, this oscillatory
command is effectively suppressed as a result of learning
the ineffectiveness of the rudders (this also reduces the
oscillations in the yaw angle responses from nominal
MPC as depicted in Fig. 14).

Other fault scenarios from the benchmark will not be
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Fig. 15. Comparison of rudder commands in the ‘rudder run-
away’ fault case between nominal MPC and MPC with
a GP model. ‘UR’ and ‘LR’ stand for the upper and the
lower rudder, respectively.

covered here. Some preliminary simulation results can be
found in the work of Maciejowski and Yang (2013).

7. Discussion

In our opinion, control is the relatively easy part of
fault-tolerant control, if one knows what fault(s) has
occurred. The harder part is the ‘fault detection and
identification’ part. For control purposes it is not really
necessary to know the detailed nature of the fault; it
is enough to know the new input/output behaviour of
the plant (or input/state behaviour if unmeasured states
are to be controlled). Learning this new behaviour
is the classical task of system identification. Most
methods of system identification produce linear models,
and work best in rather simple statistical environments.
But when a fault occurs which is severe enough to
require the activation of fault-tolerant control—that is,
when the inherent robustness of a feedback controller is
insufficient—then it is quite likely that the plant being
controlled will be driven away from its previous operating
condition, and will thus exhibit significantly nonlinear
behaviour. Furthermore, neither the control inputs acting
on it nor disturbances are likely to resemble stationary
random processes. Hence standard methods of system
identification are very likely not to work. Furthermore,
such methods usually require quite large amounts of data
to be collected before they give reliable new models.

On the other hand, using Gaussian processes in the
manner outlined in Section 4 yields nonlinear dynamic
models, in general. Furthermore, Gaussian processes have
been known to give useful models from remarkably little
data. This is reinforced in Section 5, in which a useful GP
model was learned from about 25 s of (simulated) data,
sampled at 0.2 s, namely, from about 125 input-output

observations.
Our proposal of combining Gaussian processes with

MPC involves two potential computational bottlenecks:
solving the optimisation required for MPC, and training
the GP model on data and extracting predictions from it.
The times reported for these tasks at the end of Section 5
are too long for real-time execution on an aircraft. But
these times have been obtained without any serious effort
at speeding up the computations either by algorithmic
refinements or by deploying a suitable hardware platform.
In the light of experience reported, for example, by
Hartley et al. (2012; 2014), one can be rather confident
that the execution times can fairly easily be reduced to an
extent that makes it feasible to use these methods, even on
relatively fast systems such as aircraft.

A long-standing problem in the field of fault-tolerant
control is: What kind of academic results can we expect
to get? It seems unreasonable to expect that we can obtain
proofs that our methods work, following the occurrence
of faults, which almost by definition are unknown in
advance. Also, in a sense it seems to be unnecessary to
obtain mathematical proofs of success. After all, human
operators such as pilots take actions to try to compensate
for faults without having such proofs. They start with a
very strong belief that if they do nothing then disaster will
occur. Presumably they take actions because they believe
that these will reduce the probability of disaster. Bayesian
inference and reasoning give a theoretical framework
which offers a chance of replicating and formalising the
decision-making methodology of human operators—with
the added benefit of eliminating inconsistency from the
process. It has proved to be a very powerful means of
taking prior probabilities, which can come from various
sources such as mathematical models and subjective
beliefs, combining them with observations of data, and
computing the resulting posterior probabilities. One
attraction of using Gaussian processes, beyond those
we have already mentioned, is that they fit within this
Bayesian framework (though, of course, they are not the
only tools that do so).

8. Conclusions

In this paper we proposed that the use of Gaussian
processes in combination with MPC is potentially a very
powerful approach to fault-tolerant control. MPC itself is
a promising approach to fault-tolerant control because of
its flexibility, as argued in Section 2. Gaussian processes
have proved themselves to provide very powerful
modelling tools in other applications (Deisenroth and
Rasmussen, 2011). In the examples of Sections 5 and 6 we
reinforced that evidence using examples of fault-tolerant
flight control. It also appears that the proposed approach
can be made feasible for real-time implementation, with
some further development effort.
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Of course, it needs hardly be said that there are still
many unanswered questions before the approach that we
propose is really proven to be effective for fault-tolerant
control. An incomplete list of such questions is as follows:

• How much data are needed to obtain a useful
Gaussian process model (or any other kind of model)
and how long will it take to collect these data?

• Should we deliberately perturb the plant in order to
get better data for the modelling? (This is the classic
‘dual control’ question.)

• How can we detect that the new model we are
building is better (for the purpose of control) than the
old one we already had?

• How should we combine the unstructured
information we get from a Gaussian process
with the highly structured information we may
have—such as ‘the rudder is jammed at 3 degrees’?
(For a very preliminary start to answer this, see the
work of Hall et al. (2012).)

• How can we hope to validate and verify a system
based on our proposed approach?

Despite this formidable list, we remain optimistic
that the combination of Gaussian processes and MPC will
indeed prove to be a powerful approach to the problem of
fault-tolerant control.
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Appendix A

GP with FITC approximation

For a GP model with the mean function (10) and
the covariance function (11), given test input x∗ ∼
N (μ,Σ) ∈ R

D, the distribution of the output
from the underlying function is p(f∗) = N (μ∗, σ2

∗).
Detailed expressions are listed as follows if FITC
approximation is applied through inducing inputs X̄ =[
x̄1 . . . x̄M

]� ∈ R
D×M . Note the bar notation x̄ here

represents the inducing inputs, instead of the mean value
as used in Section 4.

The mean value of the output is

μ∗ = β�q, (A1)

where q ∈ R
M×1 with

qi = σ2
f |ΣΛ−1 + I)|− 1

2

exp

[
−1

2
(x̄i − μ)�(Σ+Λ)−1(x̄i − μ)

]
, (A2)

and β ∈ R
M×1 with

β = B−1KMnΓ
−1y, (A3)

where

Γ = diag(Knn −Qnn) + σ2
nI, (A4)

Qnn = KnMK−1
MMKMn, (A5)

B = KMM +KMnΓ
−1KnM , (A6)

and

Knn ∈ R
n×n, [Knn]i,j = k(xi,xj), (A7)

KMM ∈ R
M×M , [KMM ]i,j = k(x̄i, x̄j), (A8)

KMn ∈ R
M×n, [KMn]i,j = k(x̄i,xj), (A9)

KnM = K�
Mn . (A10)

The variance of the output is

σ2
∗ = σ2

f − tr
[(
K−1

MM −B−1
)
Q̃
]
+ β�Q̃β − μ2

∗,

(A11)

where Q̃ ∈ R
M×M and

Q̃ij

=
k(x̄i,μ)k(x̄j ,μ)

|2ΣΛ−1 + I| 12

× exp

[
(zij − μ)�(Σ+

1

2
Λ)−1ΣΛ−1(zij − μ)

]
,

(A12)

where zij =
1
2 (x̄i + x̄j).

The covariance between input and output is

cov[x∗, f(x∗)|μ,Σ] =

M∑

i=1

βiqi(Σ+Λ)−1(x̄i − μ).

(A13)

When there are multiple outputs, covariance between
different output dimensions should also be considered,
e.g., for outputs fa and fb:

cov [f∗
a , f

∗
b |μ,Σ] = β�

a Q̃βb − μ∗
aμ

∗
b , (A14)

where Q̃ ∈ R
M×M and

Q̃ij

=
ka(x̄i,μ)kb(x̄j ,μ)

|Σ(Λ−1
a +Λ−1

b ) + I| 12

× exp

[
1

2
z�ij

(
Σ(Λ−1

a +Λ−1
b ) + I

)−1
Σzij

]
,

(A15)
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with zij = Λ−1
a (x̄i − μ) +Λ−1

b (x̄j − μ).
The training of the GP model with FITC

approximation is done by maximising the following
likelihood:

log p(y|X, X̄)

= −1

2
log |Qnn + Γ|

− 1

2
y�(Qnn + Γ)−1y − n

2
log(2π). (A16)

Appendix B

Supplementary information for Example II

Input masking matrix G for the GP model:

G(:, 1 : 14) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 0 1 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1
1 1 1 1 0 1 0 0 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 1 1 1 0 0
1 0 1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 0 0 0 1 0 0 0 0 0 0 0
0 1 1 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

G(:, 15 : 29) =
⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
1 1 1 1 1 1 1 1 1 1 1 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 1 1 1 1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0 0 1 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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