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When a solid boundary deforms rapidly into a quiescent liquid layer, a flow is in-
duced that can lead to jet formation. An asymptotic analytical solution is presented
for this flow, driven by a solid boundary deforming with dimensionless vertical velocity
Vb(x, t) = ε(1 + cos x)f(t), where the amplitude ε is small relative to the wavelength
and the time dependence f(t) approaches 0 for large t. Initially, the flow is directed
outward from the crest of the deformation and slows with the slowing of the boundary
motion. A domain-perturbation method is used to reveal that when the boundary stops
moving, nonlinear interactions with the free surface leave a remnant momentum directed
back toward the crest, and this momentum can be a precursor to jet formation. This
scenario arises in a laser-induced printing technique in which an expanding blister im-
parts momentum into a liquid film to form a jet. The analysis provides insight into the
physics underlying the interaction between the deforming boundary and free surface, in
particular the dependence of the remnant flow on the thickness of the liquid layer and
the deformation amplitude and wavelength. Numerical simulations are used to show the
range of validity of the analytical results, and the domain-perturbation solution is ex-
tended to an axisymmetric domain with a Gaussian boundary deformation to compare
to previous numerical simulations of BA-LIFT.
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1. Introduction
Liquid jets can be formed in a multitude of ways by free-surface flows. Fluid is often

forced through nozzles to generate jets and drops in a controlled manner, as in a kitchen
tap or ink-jet printing. Hydrostatic or capillary pressure can also lead to jet formation
when an air cavity is formed on a free surface by an impacting object (Worthington &
Cole 1897, 1900; Gekle et al. 2009) or when a bursting bubble collapses at an interface and
focuses a jet of liquid upward (Boulton-Stone & Blake 1993; Duchemin et al. 2002). Other
drivers of jet formation include Faraday waves when the vibration amplitude exceeds
a critical value (Zeff et al. 2000), surface acoustic waves that refract into a drop and
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generate flow through acoustic streaming (Tan et al. 2009), pressure waves from the
impact of a tube filled with a liquid (Antkowiak et al. 2007), and laser pulses focused in
a liquid, which leads to an expanding vapor cavity (Blake & Gibson 1987; Duocastella
et al. 2009; Tagawa et al. 2012; Patrascioiu et al. 2014; Peters et al. 2013).

In this paper, we analyze the early-time dynamics of a different method for jet for-
mation, motivated by a novel process for printing called blister-actuated laser-induced
forward transfer (BA-LIFT) (Brown et al. 2010, 2012). We focus on the fluid dynamics
and are concerned with jet formation from a layer of fluid that is set in motion by the
rapid deformation of part of a solid boundary. An initially flat boundary changes shape,
forming a bump and transferring momentum to the fluid. If this momentum is large
enough to overcome surface tension and gravitational forces, a jet will form in the same
direction as the bump.

In the process of BA-LIFT, the deformation of the boundary is achieved by the ab-
sorption of a laser pulse. The pulse is focused through a glass slide, ablating a confined
region of a polymer film, which subsequently expands as a sealed vapor cavity to pro-
duce a blister (see figure 1). The blister formation initiates the transfer of material from
a donor film of liquid to an acceptor substrate in the form of a liquid jet.

BA-LIFT is one of many variations of laser-induced forward transfer (LIFT), which all
have in common that a laser pulse is focused through a transparent substrate into a thin
film of donor material, propelling the material to an acceptor substrate a fixed distance
away. LIFT offers an alternative to nozzle-based techniques such as ink-jet printing in
which clogging and material compatibility issues can be restrictive (Bohandy et al. 1986;
Kyrkis et al. 2006; Arnold et al. 2007). LIFT has been demonstrated as an effective
method for printing cells in tissue engineering applications (Ringeisen et al. 2006; Schiele
et al. 2010; Koch et al. 2012), biomaterials for biosensors and drug-delivery systems
(Palla-Papavlu et al. 2011), and semiconducting materials for organic electronics (Shaw-
Stewart et al. 2013; Zergioti 2013). In the standard application of LIFT, the laser pulse
irradiates a metal absorbing layer to form a bubble in the adjacent liquid film and a liquid
jet forms on this bubble. BA-LIFT offers an advantage over the standard approach by
converting the thermal impulse of the laser pulse into a mechanical impulse through the
use of a thicker polymer layer, which allows thermally sensitive materials such as stem
cells (Kattamis et al. 2007) and luminophores for organic electronics (Kattamis et al.
2009, 2011) to be transferred safely, insulated from the extreme heat of a laser pulse.

The mechanisms behind jet formation in LIFT have been investigated with experimen-
tal time-resolved imaging (Duocastella et al. 2009; Brown et al. 2011; Patrascioiu et al.
2014; Brasz et al. 2014) and numerical simulations (Brown et al. 2012), but open ques-
tions remain in understanding the underlying fluid dynamics. In BA-LIFT particularly,
how does the finite deformation of a boundary lead to a jet-forming flow? For how long
does the fluid remain in motion after the blister expansion stops?

Numerical simulations reveal that in the blister expansion process only a small frac-
tion of the initial kinetic energy transferred to the fluid remains after the blister stops
expanding (Brown et al. 2012). Moreover, the initial velocity field is directed radially out-
ward from the expanding blister, whereas the velocity field after the blister has finished
expanding is radially inward, pulling fluid in to form a jet. We seek to quantitatively
understand the energy transfer and flow reversal due to a deforming solid boundary, as
they are both crucial to jet formation.

In this paper, a domain-perturbation technique is used in the limit of shallow solid
boundary deformations to solve for the time-dependent fluid flow as the boundary de-
forms. By shallow, we mean that the ratio of boundary deformation height Hb to radius
Rb is small. For the majority of the paper we assume a two-dimensional domain with
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Figure 1. Blister-actuated laser-induced forward transfer. (a) A laser pulse is absorbed within a
thin polymer layer, which is coated with a liquid film of ink. (b) Vaporization produces a sealed
gas cavity that rapidly pushes the polymer film away from the glass as a blister. A liquid jet is
formed if the impulse from the blister is strong enough, and ink is transferred to an acceptor
substrate.

a sinusoidal deformation of a solid boundary in order to keep the algebra simpler and
make the physical ideas clearer, so the actual problem being solved is the flow field due to
the formation of a spatially periodic array of bumps. The extension to an axisymmetric
domain with a Gaussian deformation will be presented afterward and shown to exhibit
the same qualitative flow features.

The time scale of the boundary deformation in BA-LIFT (∼ 30 ns) is very much
smaller than the relevant capillary, viscous, and gravitational time scales (all & 10 µs),
so the induced flow is primarily inertial and the effects of surface tension, viscosity, and
gravity can be neglected initially. Capillary forces eventually become important, driving
pinch-off, but the disparity in time scales allows the problem to be separated into an
inertial energy transfer from the blister to the fluid at early times and the formation of
a jet and drops at longer times.

The formulation of the problem, nondimensionalization, and examination of time scales
are presented in §2. In §3, we introduce the domain-perturbation technique and present
the solution; the fluid flow stops with the motion of the solid boundary in the first-
order solution, so the second-order solution is obtained as well. In §4, a particular time
dependence is assumed for the boundary deformation, allowing for a discussion of the
resulting velocity field and free-surface evolution. In §5, we integrate the kinetic energy
in the fluid, revealing a transition from the initial impulsive energy to the remnant
energy after the boundary deformation slows. In §6, the domain-perturbation calculation
is extended to an axisymmetric domain with a Gaussian boundary deformation. In §7,
we explore the applicability of the asymptotic theory with finite-difference simulations of
the free-surface potential flow. In §8, we discuss implications of the results for BA-LIFT,
obtaining an estimate for the threshold laser pulse energy for pinch-off of a drop. We
conclude with a discussion of the results in §9.
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Figure 2. Diagram of the problem setup.

2. Mathematical formulation
We consider a liquid with density ρ initially at rest in a horizontal layer 0 < ȳ < H with

a solid boundary at ȳ = 0 and a free surface at ȳ = H; see figure 2. We neglect any effects
of the ambient air, which is at constant pressure. The spatially periodic deformation of
the solid boundary is given by prescribing a vertical velocity

V̄b(x̄, t̄) = 1
2

(1 + cos kx̄)f̄(t̄) (2.1)

with an arbitrary time dependence f̄(t̄); the factor of 1/2 is included for convenience
later. We define F̄ (t̄) ≡

∫ t̄

0 f̄(s) ds, so that the vertical displacement of the boundary is

h̄b(x̄, t̄) = 1
2

(1 + cos kx̄)F̄ (t̄). (2.2)

We will consider a boundary deformation that approaches a maximum equilibrium
displacement Hb; i.e. limt̄→∞ F̄ (t̄) = Hb. We note, however, that the results will apply
for arbitrary F̄ (t̄) for most of the calculation so the analysis could also be used for a
boundary oscillating in time, for example.

The boundary deformation induces a fluid flow with velocity ū and pressure p̄. As
the fluid is initially at rest and assumed to be inviscid, the flow will remain irrotational
throughout the boundary deformation and a velocity potential φ̄(x̄, ȳ, t̄) defined as ∇φ̄ =
ū can be used. The governing equations are then continuity, ∇ · ū = 0, and the unsteady
Bernoulli equation, or

∇2φ̄ = 0, (2.3a)
∂φ̄

∂t̄
+ 1

2
(
ū2 + v̄2)+ p̄

ρ
= 0, (2.3b)

where all time dependence in the Bernoulli equation has been absorbed into ∂φ̄/∂t̄.
At the solid wall, the kinematic boundary condition is

V̄b(x̄, t̄) + ū
∂h̄b

∂x̄

∣∣∣∣
ȳ=h̄b

= v̄|ȳ=h̄b
. (2.4)

Letting h̄(x̄, t) denote the height of the free surface, the kinematic boundary condition
there is

∂h̄

∂t̄
+ ū

∂h̄

∂x̄

∣∣∣∣
ȳ=h̄

= v̄|ȳ=h̄ , (2.5)

with an initial condition of h̄(x̄, 0) = H. The pressure is constant at the free surface and
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can be set to 0. Applying (2.3b), we obtain the dynamic boundary condition

∂φ̄

∂t̄

∣∣∣∣
ȳ=h̄

= −1
2
(
ū2 + v̄2)

ȳ=h̄
. (2.6)

The mathematical problem is to solve (2.3a) subject to the boundary conditions (2.4)–
(2.6). The flow is driven by the boundary deformation, hb(x, t), given in (2.2). In partic-
ular, we are interested in the velocity field and free-surface motion as the solid boundary
approaches a steady state.

2.1. Nondimensionalization
We nondimensionalize lengths and times by the inverse wavenumber of the boundary
deformation, k−1, and the characteristic time for boundary deformation, τ , respectively,
which results in a characteristic speed (kτ)−1. This step allows us to write x = kx̄,
y = kȳ, t = t̄/τ , u = kτū, v = kτ v̄, φ = k2τ φ̄, h = kh̄, hb = kh̄b, Vb = kτV̄b, and
p = (kτ)2p̄/ρ, where x, y, t, u, v, φ, h, hb, Vb, and p are all dimensionless quantities. For
the boundary velocity and displacement, we write the time dependence in the form

f(t) = f̄(t̄)
Hb/τ

, F (t) = F̄ (t̄)/Hb, (2.7)

so that limt→∞ F (t) = 1 and limt→∞ f(t) = 0. The dimensionless boundary velocity and
displacement then become

Vb(x, t) = ε(1 + cos x)f(t), hb(x, t) = ε(1 + cos x)F (t), (2.8)

where ε ≡ kHb/2 is a dimensionless parameter that describes the aspect ratio of the
boundary deformation. Note that, by defining a typical blister radius Rb ≡ λ/2 in terms
of the wavelength λ ≡ 2π/k, the aspect ratio can be written as ε = πHb/2Rb.

The other dimensionless parameter is β ≡ kH, which measures the ratio of the initial
layer thickness to the wavelength of the boundary deformation and appears in the initial
condition for the interfacial height, h(x, 0) = β. Figure 2 illustrates the setup for ε = 0.2
and β = 1, which are typical values for BA-LIFT experiments.

2.2. Effects of surface tension and viscosity at early times
We briefly examine the assertion made in §1 that surface tension γ, viscosity µ, and
gravity can be neglected in the early-time dynamics of BA-LIFT. The liquid used in
the experiments and considered in the numerical simulations of Brown et al. (2012)
was N-methyl-2-pyrrolidone (NMP), which has γ = 40.8 mN/m, ρ = 1030 kg/m3, and
µ = 1.7 mPa·s. Taking Rb ≈ 20 µm as a typical deformation length scale, H ≈ 5 µm as
a viscous and gravitational length scale, and the fluid properties of NMP, we can define
the capillary, viscous, and gravitational time scales as

tcap =
√

ρR3
b/γ ≈ 14 µs, tν = H2/ν ≈ 15 µs, tg =

√
H/g ≈ 700 µs, (2.9)

with ν = µ/ρ and g = 9.81 m/s2. Compared to the characteristic time for blister for-
mation τ ≈ 37 ns, these time scales are at least a factor of 300 larger, justifying our
subdivision of the jet formation process. At early times (t = t̄/τ . 10), the deformation
of the solid boundary induces an inertial flow initiating jet formation, and at later times,
the effects of surface tension and possibly viscosity become important during jet growth
and pinch-off into drops.
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O(ε) v1 = (1 + cos x)f(t) (3.5a)

O(ε2) v2 = −F (t)
(

u1 sin x + ∂v1

∂y
(1 + cos x)

)
(3.5b)

Table 1. The kinematic boundary conditions at y = 0 resulting from using a
domain-perturbation expansion.

3. Domain perturbation
For an arbitrary value of ε, the nonlinear boundary conditions and significantly chang-

ing domain shape prevent complete solution by analytical means. For small ε, however,
the domain-perturbation technique (e.g. van Dyke (1964)) can be used to obtain an
approximate solution via asymptotic expansions. In the domain-perturbation problem,
both the solution within the domain and the boundaries of the domain are represented
as asymptotic expansions in ε. For small ε the boundaries of the actual time-dependent
fluid domain are only slightly perturbed from those of the original undeformed rectangu-
lar domain. It is thus possible to use Taylor series to represent the values needed at the
actual boundary positions in terms of values at the nearby original boundary positions.
By this means the full nonlinear problem on the deformed domain can be transformed
into a series of linear problems, at successive powers of ε, on the original undeformed
domain.

For the potential φ, we write

φ(x, y, t; ε) = εφ1(x, y, t) + ε2φ2(x, y, t) + . . . (3.1)

where ∇2φi = 0 for all i. Since u = ∇φ, it follows that

u(x, y, t; ε) =
∞∑

i=1
εiui(x, y, t), v(x, y, t; ε) =

∞∑
i=1

εivi(x, y, t). (3.2)

Similarly, we write

h(x, t; ε) = β +
∞∑

i=1
εihi(x, t). (3.3)

We now rewrite the boundary conditions (2.4)–(2.6) by using Taylor expansions and
inserting the asymptotic expansions. For example, the right-hand side of (2.4) becomes

v|y=hb
=
[
v + hb

∂v

∂y
+ 1

2
h2

b

∂2v

∂y2 + . . .

]
y=0

= ε v1|y=0 + ε2
[
v2 + (1 + cos x)F (t)∂v1

∂y

]
y=0

+ O(ε3). (3.4)

By equating all terms of the same order in ε for each equation, we can obtain boundary
conditions at any desired order. The resulting equations are given in tables 1 and 2 for
boundary conditions at O(ε) and O(ε2).

We assume separable solutions for φi(x, y, t) and note that the sinusoidal forcing at
y = 0 requires a solution that is periodic in x. Taking a Fourier-series decomposition, the
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Dynamic b.c.

O(ε) ∂φ1

∂t
= 0 (3.6a)

O(ε2) ∂φ2

∂t
= −h1

∂v1

∂t
− 1

2(u2
1 + v2

1) (3.6b)

Kinematic b.c.
∂h1

∂t
= v1 (3.7a)

∂h2

∂t
= v2 + h1

∂v1

∂y
− u1

∂h1

∂x
(3.7b)

Table 2. Free-surface boundary conditions at y = β resulting from the domain-perturbation
expansion.

solution to ∇2φi = 0 can then be written as

φi(x, y, t) = A0,i(t)+B0,i(t)y +
∞∑

m=1

(
Am,i(t) cos mx + Bm,i(t) sin mx

)
×
(

Cm,i(t) cosh[m(β − y)] + Dm,i(t) sinh[m(β − y)]
)

. (3.8)

Our expression of the y dependence in the form m(β−y) is motivated by the homogenous
boundary condition (3.6a) at y = β for φ1.

3.1. O(ε) solution
At O(ε), the vertical forcing (3.5a) from the solid boundary motion suggests that only
the Fourier components containing cos x and 1 will be present in φ1, and from (3.8) we
can thus write

φ1(x, y, t) = A(t) + B(t)(β − y) + [C(t) cosh(β − y) + D(t) sinh(β − y)] cos x. (3.9)

The dynamic condition (3.6a) gives

A(t) = C(t) = 0 (3.10)

and the boundary condition (3.5a) requires that

−(B(t) + D(t) cosh β cos x) = (1 + cos x)f(t). (3.11)

Therefore, the O(ε) solution for the velocity potential is

φ1(x, y, t) = −
(

β − y + sinh(β − y)
cosh β

cos x

)
f(t). (3.12)

The corresponding components of velocity are

u1(x, y, t) = sinh(β − y)
cosh β

sin x f(t), (3.13a)

v1(x, y, t) =
(

1 + cosh(β − y)
cosh β

cos x

)
f(t), (3.13b)

and the free-surface height is given by (3.7a) as

h1(x, t) =
∫ t

0
v1(x, β, s) ds =

(
1 + cos x

cosh β

)
F (t). (3.14)

This O(ε) solution gives the exact solution for an impulsive start, and, as the boundaries
deform, the neglect of terms of O(ε2) and higher will cause this solution to differ from
the full solution to the nonlinear problem. A crucial observation here is that the O(ε)
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velocity components are proportional to f(t), so if the boundary stops moving, so does
the fluid. Therefore, to study the residual flow after the boundary deformation stops, we
must consider the O(ε2) terms.

3.2. O(ε2) solution
The O(ε) functional forms can be used to solve for the next higher-order solutions. The
boundary condition (3.5b) constrains v2 at y = 0 to be

v2(x, 0, t) = tanh β(cos x + cos 2x)f(t)F (t). (3.15)

In addition, the kinematic condition (3.7b) at O(ε2) becomes

∂h2

∂t
(x, t) = v2(x, β, t), (3.16)

because both ∂v1/∂y and u1 vanish at y = β.
The dynamic condition (3.6b) leads to

∂φ2

∂t

∣∣∣∣
y=β

= −(c0 + c1 cos x + c2 cos 2x)
(
2ḟ(t)F (t) + f2(t)

)
, (3.17)

with

c0 = 1
2

(
1 + 1

2 cosh2 β

)
, c1 = 1

cosh β
, c2 = 1

4 cosh2 β
, (3.18)

and where ḟ(t) = df/dt. Therefore, the boundary conditions stipulate that Fourier com-
ponents containing 1, cos x, and cos(2x) are all required in φ2. This observation suggests

φ2(x, y, t) = a0(t)+b0(t)y+
2∑

n=1
cos nx

(
an(t) cosh[n(β−y)]+bn(t) sinh[n(β−y)]

)
. (3.19)

The boundary condition (3.15) at the solid boundary then requires

bn(t) =

{
0 for n = 0
−
(

tanh β
/

(n cosh nβ)
)

f(t)F (t) − an(t) tanh nβ for n = 1, 2
(3.20)

and the dynamic condition (3.17) leads to

ȧn(t) = −cn

(
2ḟ(t)F (t) + f2(t)

)
, n = 0, 1, 2. (3.21)

Recalling that f(t) = dF/dt, the O(ε2) solution can now be obtained by integrating
the ODEs (3.21). The initial conditions are an(0) = 0, since at t = 0 the O(ε) solution is
exact. The expressions for bn(t) are given by (3.20) in terms of an(t), f(t), and F (t), and
with these coefficients defined, φ2 can be differentiated to give the velocity components
as

u2(x, y, t) = −
2∑

n=1
n sin nx

(
an(t) cosh[n(β − y)] + bn(t) sinh[n(β − y)]

)
, (3.22a)

v2(x, y, t) = −
2∑

n=1
n cos nx

(
an(t) sinh[n(β − y)] + bn(t) cosh[n(β − y)]

)
. (3.22b)

The O(ε2) solution for the free-surface height h2(x, t) can now be written from (3.16) as

∂h2

∂t
(x, t) = −b1(t) cos x − 2b2(t) cos 2x. (3.23)



Early-time free-surface flow driven by a deforming boundary 9

−1.0 −0.5 0.0 0.5 1.0
x/π

0.0
0.2
0.4
0.6
0.8

y

(a)

0.0
0.4
0.8
1.2
1.6
2.0

−1.0 −0.5 0.0 0.5 1.0
x/π

0.0
0.2
0.4
0.6
0.8

y

(b)

0.0
0.1
0.2
0.3
0.4
0.5

Figure 3. Contour and vector plots of the leading-order perturbation solution for the velocity
field at (a) t � 1 and (b) t � 1 for the case β = 0.7. For small t, the O(ε) solution dominates,
so u1/f(t) is plotted in (a). The O(ε) solution decays proportionally to f(t), leaving constant
terms in the O(ε2) solution u2 for t � 1, which is plotted in (b).

These results apply for an arbitrary time dependence of the boundary motion, f(t).
We next consider cases representative of typical experiments.

4. Solution for particular f(t)
In order to examine the evolution of the velocity field and remnant kinetic energy, we

must now choose a particular functional form for f(t). We take f(t) = e−t for t > 0,
as a decaying exponential is similar to the form assumed in Brown et al. (2012) to fit
experiments and it gives simple expressions for the necessary calculations. This choice
leads to F (t) = 1 − e−t, so

ȧn(t) = −cn

(
3e−2t − 2e−t

)
, n = 0, 1, 2, (4.1)

where the cn are given by (3.18). Integrating (4.1) and applying the initial condition
an(t) = 0 gives

an(t) = cn

2
(
3e−2t − 4e−t + 1

)
. (4.2)

These equations determine b1(t) and b2(t), which simplify to

b1(t) = −
(
1 − e−t

)2 sinh β

2 cosh2 β
, (4.3a)

b2(t) = −
(
1 − e−t

)2 sinh2 β

sinh 4β
. (4.3b)

We observe that an(t) and bn(t) remain nonzero as f(t) = e−t approaches zero exponen-
tially. This implies that an O(ε2) flow remains after the boundary motion stops, which
we refer to hereafter as the remnant flow or remnant velocity field with an associated
remnant kinetic energy.

The remnant velocity field u2 is plotted in figure 3(b) for β = 0.7, a typical value used
in experiments. For comparison, the impulsive O(ε) solution is plotted in figure 3(a).
The horizontal component of the initial flow is directed outward from the crest of the
deformation at x = 0, as seen in the O(ε) solution, but it switches to an inward flow
back toward the crest after the boundary deformation stops. This flow toward the crest
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Figure 4. Vertical profiles of the O(ε2) remnant horizontal velocity field, u2, at x = −π/3 and
t � 1. The values of β represented in the curves are 0.1, 0.2, 0.4, 0.6, 0.8, 1.0, 1.4, 1.8, and
2.4. Corresponding results from numerical simulations, discussed in §7, are included as u/ε2 at
t = 20 and denoted by symbols.

is analogous to the radially inward flow in the axisymmetric problem that leads to jet
formation (Brown et al. 2012).

We can physically understand the dynamics of the flow as follows: the initial motion of
the solid boundary primarily accelerates the fluid vertically and creates positive impul-
sive pressures. Because the boundary velocity varies sinusoidally with x, the impulsive
pressure is highest where the boundary velocity is highest, at the crest, and this causes
an outward horizontal component of the fluid velocity. The subsequent deceleration of
the boundary toward a steady-state shape produces negative pressures that eliminate all
momentum at leading order, but leave a residual inward momentum at O(ε2). This resid-
ual inward flow arises from the nonlinearity of the free-surface motion, since no residual
flow would remain if the free surface were removed, even for large ε, as the flow would
depend only on instantaneous boundary conditions.

The x-dependences of the velocity components are combinations of simple sinusoids,
but the y-dependences are more complicated and vary with β. Vertical profiles of u2 at
x = −π/3 (where u2 reaches a maximum) and v2 at x = 0 for t � 1 are plotted in
figures 4 and 5, respectively. In the small-β limit, the horizontal velocity u2 approaches a
uniform maximum across the layer, as expected for a shallow inviscid flow, and by mass
conservation, v2 is linear in y. The vertical velocity at x = 0 reaches its largest value for
an intermediate value of β, which can be found by maximizing v2(0, β, ∞) with respect
to β, yielding βv ≈ 0.706.

The remnant flow deforms the free surface, and the height h2 can be obtained by
integrating (3.23), which leads to

h2(x, t) =
(

cos x
sinh β

2 cosh2 β
+ 2 cos 2x

sinh2 β

sinh 4β

)(
t − 1

2
e−2t + 2e−t − 3

2

)
. (4.4)

At long times, h2 increases linearly with t, as expected from the constant remnant velocity
field. In §7.3, we compare analytical and numerical results for the free-surface shape.

4.1. Alternative forms for f(t)
Choosing alternative functional forms for f(t) gives essentially the same results as just
discussed. The time-dependent solution will naturally depend on the form of f(t), but
the final O(ε2) solution is found to be unchanged apart from a numerical factor in
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Figure 5. Vertical profiles of the O(ε2) remnant vertical velocity field, v2, at x = 0 for various
values of β at t � 1. The critical value of βv ≈ 0.706 is used to divide the profiles for clarity,
with β ranging from (a) 0.1 to 0.7 with an increment of 0.1 and (b) 0.8 to 2.4 with an increment
of 0.4. Corresponding results from numerical simulations, discussed in §7, are included as v/ε2

at t = 20.

limt→∞ an(t) that uniformly scales the velocity field. The spatial structure of the O(ε2)
remnant flow is therefore independent of f(t).

The numerical factor limt→∞ an(t) can be found by rearranging (3.21) to obtain

ȧn(t) = cn

(
f2(t) − 2 d

dt
[f(t)F (t)]

)
. (4.5)

Since F (0) = 0 and limt→∞ f(t) = 0, integrating (4.5) results in

lim
t→∞

an(t) = cn

∫ ∞

0
f2(t) dt. (4.6)

Moreover, from (3.20) bn(t) ∼ −an(t) tanh nβ as t → ∞. Hence the magnitude of the
entire O(ε2) velocity field (3.22) after the boundary stops moving is directly proportional
to the factor

∫∞
0 f2(t) dt.

For a fixed displacement
∫∞

0 f(t) dt, the remnant flow is proportional to the speed
of the boundary deformation, or equivalently, inversely proportional to the time scale
of the deformation. This feature can be shown by defining a boundary displacement
G(t) = F (t/m) with time rescaled by a factor m. Then g(t) = Ġ(t) = f(t/m)/m and∫ ∞

0
g2(t) dt = 1

m

∫ ∞

0
f2(t) dt. (4.7)

Therefore, the magnitude of the remnant velocity associated with the deformation G(t)
is m times smaller than the remnant velocity after the deformation F (t), while the time
scale for G(t) to approach 1 is m times longer than for F (t).

5. Kinetic energy in the fluid
The kinetic energy remaining in the fluid after boundary deformation is of interest for

understanding the strength of the resulting jet. It also provides a simple estimate for the
energy available to eventually form a drop.

In dimensional form, the total kinetic energy in the fluid per unit width into the page



12 C. F. Brasz, C. B. Arnold, H. A. Stone and J. R. Lister

is given by the integral

Ēk(t) = ρ

2k4τ2

∫ π

−π

∫ h(x,t;ε)

hb(x,t)

(
u2 + v2) dy dx. (5.1)

The integral in y is replaced by the domain perturbation∫ h

hb

f(y) dy =
∫ β

0
f(y) dy +(h−β)f(β)−hbf(0)+ 1

2
(h−β)2 df

dy

∣∣∣∣
y=β

− 1
2

h2
b

df

dy

∣∣∣∣
y=0

+ . . . .

(5.2)
Upon nondimensionalization of the kinetic energy by ρ/(k4τ2) and substitution of the
expansion (3.2) for the velocity field, we obtain

Ek(t) = ε2

2

∫ π

−π

∫ β

0
I dy +

∞∑
j=0

(
(h − β)j+1

(j + 1)!
∂jI

∂yj

∣∣∣∣
y=β

−
hj+1

b

(j + 1)!
∂iI

∂yi

∣∣∣∣
y=0

) dx, (5.3)

where I(x, y, t) =
∑∞

j=0 εiIi and

I0(x, y, t) = u2
1 + v2

1 , (5.4a)
I1(x, y, t) = 2(u1u2 + v1v2), (5.4b)
I2(x, y, t) = u2

2 + v2
2 + 2(u1u3 + v1v3). (5.4c)

We include terms up to O(ε4) because u1 and v1 decrease exponentially with time, so
the O(ε2) and O(ε3) terms will not contribute to the kinetic energy remaining after the
boundary motion stops. This behavior also means that we can safely neglect the products
u1u3 and v1v3 when considering the final kinetic energy.

For the full time evolution of the kinetic energy, we divide it as Ek(t) = Ek,2(t) +
Ek,3(t) + Ek,4(t) + . . ., where Ek,n(t) contains the O(εn) contributions. At early times,
Ek,2(t) will dominate. Eventually, Ek,2(t) and Ek,3(t) will approach 0, but Ek,4(t) will
remain nonzero, approaching a fixed value for t � 1.

We start with the kinetic energy at early times, which is given by

Ek,2(t) = ε2

2

∫ β

0

∫ π

−π

(
u2

1 + v2
1
)

dx dy. (5.5)

Substituting u1 and v1 from (3.13) and integrating results in

Ek,2(t) = πε2
(

1
2

tanh β + β

)
f2(t). (5.6)

The β dependence is plotted in figure 6(a), which shows that the kinetic energy increases
approximately linearly with β. This feature comes from the 1 in the 1 + cos x form for
Vb(x, t), which induces a constant velocity flow everywhere in the fluid, together with the
fact that the volume of the film increases linearly with β.

Ek,3(t) and Ek,4(t) will also contribute at early times, although the extra factors of ε
and the fact that u2 = v2 = h1 = F (t) = 0 at t = 0 make them only a minor correction
to Ek,2(t). For example, Ek,3(t) is given by the integral

Ek,3(t) = ε3

2

∫ π

−π

(∫ β

0
2 (u1u2 + v1v2) dy + h1(u2

1 + v2
1)y=β

− (1 + cos x)F (t)(u2
1 + v2

1)y=0

)
dx, (5.7)



Early-time free-surface flow driven by a deforming boundary 13

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

0

2

4

6

8

10

12

E
k
,2
(t
)/
(ǫ

2
f
2
(t
))

(a)

Theory

Simulation, ǫ = 0.05

π(β + 1/2)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

β

10−3

10−2

10−1

100

li
m

t→
∞
E

k
,4
(t
)/
ǫ4

βk ≈ 0.611

(b)

Theory

Simulation, ǫ = 0.05

(π/2)e−2β

Figure 6. The β dependence of the kinetic energy in the fluid layer due to the (a) O(ε) and (b)
O(ε2) velocity fields. At early times, the O(ε) solution dominates, but as the boundary motion
slows and f(t) approaches 0, the O(ε2) velocity field remains nonzero, leaving kinetic energy
in the fluid. Corresponding results from numerical simulations, discussed in §7, are included at
times (a) t = 0 and (b) t = 20.

which simplifies to
Ek,3(t) = −πε3F (t)f2(t) tanh2 β, (5.8)

where (3.20) has been used to eliminate a1(t) tanh β + b1(t).

5.1. Kinetic energy remaining when t � 1
After the boundary motion stops, the remaining kinetic energy can be computed by
integrating the nonzero O(ε2) solution for the velocity field. We start with

Ek,4(t) = ε4

2

∫ β

0

∫ π

−π

(
u2

2 + v2
2 + 2u1u3 + 2v1v3

)
dx dy + boundary terms, (5.9)

where the boundary terms include integrals of h1∂I0/∂y, h1I1, h2
1I0, h2I0, and corre-

sponding terms for hb. We take the limit t → ∞ to eliminate u1u3, v1v3, and the bound-
ary terms, as they all contain at least one factor proportional to f(t). Substitution of the
solution given in (3.22a) and (3.22b) then leads to

lim
t→∞

Ek,4(t) = lim
t→∞

πε4

4

((
a2

1(t) + b2
1(t)

)
sinh 2β + 2

(
a2

2(t) + b2
2(t)

)
sinh 4β

+4
(
a1b1 sinh2 β + 2a2b2 sinh2 2β

))
. (5.10)

We can substitute (4.6) and (3.20) for, respectively, an(t) and bn(t) to show that the
remaining kinetic energy after boundary deformation is

lim
t→∞

Ek,4(t) = πε4

8

(
2 sinh 3β − sinh β

cosh3 β cosh 2β

)(∫ ∞

0
f2(t) dt

)2

. (5.11)

The β dependence of Ek,4 in (5.11) is plotted in figure 6(b) for f(t) = e−t. The remnant
kinetic energy diminishes rapidly with β for β > 1, especially given that the initial kinetic
energy increases with β; for large β, limt→∞ Ek,4(t) ∼ (π/2)ε4e−2β while Ek,2(t) ∼
πε2(β + 1/2)f2(t).

The maximum in limt→∞ Ek,4(t) with respect to β is found at βk ≈ 0.611. This value is
similar to the value βv ≈ 0.706 found earlier, which maximizes v2 at x = π/2 and y = β.
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Figure 7. (a) The time evolution of the kinetic energy in the fluid for four sets of parameters,
normalized by ε2 so that O(ε) solutions collapse for a given β. Solid curves denote results from
numerical simulations, discussed in §7, while dashed lines denote the leading-order behavior,
Ek,2(t) for t < t∗ and limt→∞ Ek,4(t) for t > t∗. The transition time t∗, given by (5.12), is
included as a vertical dotted line for each curve. The β dependence of t∗ for select values of ε is
plotted in (b) along with the asymptote t∗ ∼ log(1/ε) + β + 1

2 log(2β + 1) for large β

These maximizing values of β suggest an optimal region for jet formation. In particular,
βk maximizes the energy transfer from the deforming solid to the liquid layer. Note that,
because the remnant flow is proportional to

∫∞
0 f2(t) dt, the maximizing values of β are

independent of the form of f(t).

5.2. Transition from O(ε) to O(ε2) regimes
With Ek,2(t) and limt→∞ Ek,4(t) defined by (5.6) and (5.10) respectively, we have a
leading-order time evolution for the kinetic energy. One quantity of interest here is the
transition time t∗ when the energy in the O(ε) solution decays below that of the O(ε2)
solution that remains at t � 1. Analytically, t∗ can be found by equating Ek,2(t∗) with
limt→∞ Ek,4(t), yielding

t∗ = log 1
ε

− 1
2

log
(

2 sinh 3β − sinh β

16 cosh3 β cosh 2β(2β + tanh β)

)
(5.12)

for f(t) = e−t.
We can determine the time evolution of the energy for various values of ε and β and

the dependence of transition times on β; these results are shown in figure 7. Initially,
the kinetic energy in the fluid decreases exponentially with time, in accord with the
exponentially decreasing boundary velocity and the associated O(ε) velocity field. At the
transition time t∗, this energy decays below the constant kinetic energy of the O(ε2)
velocity field. We see that as ε decreases or β increases, it takes longer for the O(ε2)
solution to overtake the O(ε) solution; the transition time is roughly inversely correlated
with the final energy of the flow.

6. Extension to an axisymmetric domain
The practical application to jet formation arises from an axisymmetric boundary de-

formation, so the extension of the domain-perturbation calculation from two dimensions
to an axisymmetric domain is discussed here.

For illustration, the radial dependence of the boundary deformation is assumed to be
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a Gaussian, taking the form

h̄b(r̄, t̄) = e−r̄2/(2c2)F̄ (t̄). (6.1)

This functional form is similar to the one used in Brown et al. (2012), as discussed in §8,
while keeping the domain-perturbation calculation from being too complicated.

Nondimensionalizing lengths by c now leads to

hb(r, t) = εe−r2/2F (t), (6.2)

with dimensionless parameters β ≡ H/c and ε ≡ Hb/c.
With axisymmetric forcing, the Fourier sum of sines and cosines from the 2D calcula-

tion is replaced by a Hankel transform with Bessel functions of the first kind of order 0,
J0(kr). The solution to ∇2φ = 0 in a layer of height β can be written as

φ(r, z, t) =
∫ ∞

0

(
A(k, t) cosh[k(β − z)] + B(k, t) sinh[k(β − z)]

)
J0(kr) dk + C(t)z, (6.3)

where A(k, t), B(k, t), and C(t) are time-dependent functions that must be determined.
Details of the axisymmetric domain-perturbation solution are provided in Appendix

A, and the main results are quoted here. The velocity potentials at O(ε) for all t, and at
O(ε2) for t � 1, are

φ1(r, z, t) = −f(t)
∫ ∞

0
e−k2/2 sinh[k(β − z)]

cosh βk
J0(kr) dk ≡ f(t)Φ1(r, z), (A 4a)

φ2(r, z, ∞) = a∞

∫ ∞

0
Â2(k)

(
cosh[k(β − z)] − tanh βk sinh[k(β − z)]

)
J0(kr) dk,

(A 13a)

respectively, where

a∞ = 1
2

∫ ∞

0
f2(t) dt (A 10)

and

Â2(k) = k

∫ ∞

0

(
∂Φ1

∂z

∣∣∣∣
z=β

)2

J0(kr)r dr. (A 9)

Many features of the solution are unchanged from the two-dimensional case; the O(ε)
velocity field is still proportional to f(t), and the O(ε2) remnant velocity field is still
proportional to

∫∞
0 f2(t) dt. The spatial dependence of the remnant velocity field is com-

pletely independent of the time dependence of the boundary deformation, f(t).
The integrals in φ1(r, z, t), φ2(r, z, t), and Â2(k) do not appear to have closed-form

expressions, so to examine the velocity field or kinetic energy they must be integrated
numerically for each value of β. Taking f(t) = e−t again, the remnant velocity field
is computed and plotted in figure 8 for β = 0.4, which is close to the critical value
βv ≈ 0.384 that maximizes v2(0, β, ∞). (As discussed in §9, the difference from the
2D value βv ≈ 0.706 is largely due to the different definitions of β for sinusoidal and
Gaussian wave forms.) Qualitatively, the main difference between the axisymmetric and
2D remnant velocity fields is the radial focusing of the axisymmetric case, in which the
velocities are largest near (r, z) = (0, β) and decay more rapidly with increasing r. This
behavior contrasts with the less focused 2D velocity field of figure 3(b), in which the
largest velocities are mostly horizontal and near x = ±0.33π. The relative uniformity of
the 2D flow field is partly due to the periodic nature of the boundary deformation, but
2D simulations of the flow induced by a Gaussian boundary deformation exhibit the same
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Figure 9. The β dependence of the remnant kinetic energy in the fluid layer due to the O(ε2)
axisymmetric velocity field. Corresponding results from numerical simulations are included at
t = 20 along with an exponential fit for large β.

behavior as simulations with the sinusoidal deformation; inward horizontal velocities at
some x > 0 are still larger than the vertical velocities at x = 0, which differs from the
axisymmetric results.

The remnant kinetic energy is computed by numerical integration of the velocity field
and plotted in figure 9. The shape of the curve is similar to the 2D case, with differences
appearing in the value of β maximizing kinetic energy (βk ≈ 0.354 instead of βk ≈ 0.611
as in the 2D case) and the asymptotic behavior at large β; the remnant kinetic energy
in the axisymmetric case decays proportionally to e−2.5β , as opposed to e−2β in the 2D
case.

The transition time at which the kinetic energy from the remnant O(ε2) velocity field
overtakes the decaying O(ε) solution is straightforward to deduce given the kinetic ener-
gies. We first write

Ek,2(t) = ε2Êk,2(β)f2(t), lim
t→∞

Ek,4(t) = ε4Êk,4(β). (6.4)

For f(t) = e−t, we can then find the time t∗ at which Ek,2(t) = limt→∞ Ek,4(t) with

t∗ = log
(

1
ε

)
+ 1

2
log

(
Êk,2(β)
Êk,4(β)

)
. (6.5)
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Note that Êk,2(β) and Êk,4(β) only depend on β, so the ε and β dependences are separate
in (6.5), as in (5.12).

While the quantitative details of the axisymmetric solution differ from the 2D solution,
partly due to the choice of shape function hb, the physical flow observed and structure of
the solution in the axisymmetric case is qualitatively unchanged relative to the 2D case.

7. Numerical simulations
The domain-perturbation solution is asymptotically correct in the limit ε → 0, but a

finite ε > 0 is required to generate an impulse strong enough to form a liquid jet. We
therefore solved Laplace’s equation numerically to confirm the above analytical results
and test their range of validity.

Laplace’s equation is solved using central finite differences in curvilinear coordinates
on a moving mesh, which allows both the solid boundary and the free surface to move
each time step. Both two-dimensional and axisymmetric domains can be simulated, and
details of the solution scheme are provided in Appendix B.

7.1. Validation of the theory
We test the 2D theoretical results numerically by performing simulations with ε = 0.05
and 0.05 6 β 6 3. Simulations are run from t = 0 to t = 20, at which point the O(ε) terms
are negligibly small and only O(ε2) terms remain. Figures 4, 5, and 6 compare simulation
results at t = 20 with the analytical O(ε2) solution, showing excellent agreement in the
β dependence of vertical profiles of the velocity field and the total kinetic energy. As
discussed in §4, the remnant horizontal velocity u2, which is inward toward the crest,
decreases with increasing β, and the remnant vertical velocity v2 in the direction of the
boundary deformation at the crest has a maximum at βv ≈ 0.706, which is close to the
value βk ≈ 0.611 that maximizes the remnant kinetic energy in the fluid.

Comparisons of velocity slices from domain-perturbation results and finite-difference
simulations were also made in an axisymmetric domain for the Gaussian boundary defor-
mation. The axisymmetric domain-perturbation results showed similarly good agreement
with simulations at ε = 0.05 and t = 20 across all values of β; for brevity, these are not
included here. The total kinetic energy in the axisymmetric simulations at t = 20 and
ε = 0.05 is plotted in figure 9 for varying β and agrees very well with the remnant kinetic
energy from the domain-perturbation results.

7.2. Dependence on ε

The range of validity of the perturbation theory is tested by comparing simulation results
for varying values of ε at fixed β. While we could examine both the 2D and axisymmetric
domain-perturbation solutions, for the rest of the paper we limit ourselves to the ax-
isymmetric solutions, as they are ultimately closer to the physical jet formation scenario
that we compare to in §8. We emphasize that the qualitative features are nevertheless
captured by the 2D geometry.

We focus on the value β = 0.4, as this is near the optimum values found earlier in
our analysis for maximizing the remnant vertical jet velocity and kinetic energy in the
axisymmetric case. Vertical velocity profiles for a range of ε are plotted in figure 10. Each
profile is plotted at t = t∗ + 5, which is long enough after the transition time t∗ that
the O(ε) component of the solution is negligible. We see that the general shapes of the
curves are similar up through ε = 0.4. The plot of v(0, z/β, t∗ + 5; ε) shows that as ε is
increased, the simulations reach higher velocities at the free surface and the z/β values
are stretched to larger values due to the jet-forming deformation of the free surface at
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Figure 11. Comparison of (a) jet front displacements and (b) jet velocities between axisym-
metric simulation and domain-perturbation results for β = 0.4 and ε = 0.4. As the boundary
deformation exponentially stops, the domain-perturbation result approaches a constant velocity
while the numerically simulated velocity starts to increase.

r = 0. At longer times, the velocity fields of the higher-ε cases continue to evolve as the
liquid layer deforms, while the velocity fields of the lower-ε cases remain nearly constant
in the O(ε2) solution.

7.3. Free-surface evolution
We explore the time evolution of the free surface for the test case ε = β = 0.4 by
investigating the “jet-front” displacement, i.e. h(0, t; ε) − β. This quantity tracks the
length of the initial jet over time, and is plotted in figure 11(a). This plot illustrates
the overall dynamics of the free-surface evolution; the free surface deforms rapidly in
the initial stages while the solid boundary is deforming, and as the deformation of the
solid slows, the free-surface deformation slows as well until only the smaller velocity of
the O(ε2) solution remains (see also supplementary movie 1, which contains the time
evolution of the velocity field and liquid layer deformation). Recalling the transition
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Figure 12. Comparison of axisymmetric domain-perturbation surface profiles with simulated
profiles for β = 0.4 and ε = 0.4 at t = 10. The blue solid line denotes the simulation result, the
green dotted line denotes the O(ε) domain-perturbation solution εh1(r, t), and the red dashed
line denotes the O(ε2) solution εh1(r, t) + ε2h2(r, t). The grey shape shows the maximum blister
deformation. The error in the O(ε) solution demonstrates that the O(ε2) contribution is crucial
to the dynamics.

time (6.5) between kinetic energy associated with the O(ε) and O(ε2) velocity fields, we
calculate t∗ ≈ 2.6 for ε = 0.4 and β = 0.4. This time is indicated in figure 11(a), dividing
regions of jet-front displacement into times when either the O(ε) or O(ε2) velocity field
dominates. According to the O(ε2) domain-perturbation results, the jet that forms at
r = 0 grows in length at a constant rate as liquid flows toward the center to feed the
jet. By t = 10, the simulated jet length has started to diverge from the O(ε2) domain-
perturbation value, with the jet growth speeding up. This reflects the fact that by this
stage the free-surface deformation is approaching values comparable to the initial layer
depth.

Figure 11(b) shows that the speed of the jet increases approximately linearly with time
after the boundary deformation stops. For smaller values of ε, the jet’s acceleration is
smaller, and by fitting the slopes of plots of the jet velocity, we find that the acceleration
a ∼ ε4. This result is consistent with the fact that the domain perturbation has only
been carried out to O(ε2) in velocity, so the higher order acceleration is absent.

The radial dependence of the free-surface deformation h(r, t; ε) at t = 10 is plotted
in figure 12, comparing simulation results to domain-perturbation solutions. The O(ε)
solution has reached a steady state at this point and is plotted to demonstrate that the
O(ε2) contribution is crucial to the dynamics. In addition, the comparison of profiles from
the simulation and the O(ε2) domain-perturbation solution reveals that the acceleration
of the jet growth is due to a narrowing and steepening of the profile. Despite these
differences that inevitably arise at late times, the O(ε2) domain-perturbation solution
captures the early-time behavior well and gives a reasonable estimate for the initial jet
velocity, even at this large value of ε.

8. Implications for BA-LIFT
The boundary deformation observed in BA-LIFT experiments can be approximated

by the functional form

h̄b(r̄, t̄) = Hb(E)
(

1 − [r̄/Rb(E)]2
)1.25

F (t̄), (8.1)
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Figure 13. Comparison of the model functional form (8.1) with the Gaussian deformation
profile (6.1) at steady state. By setting Rb =

√
2.5c, the curvatures of the profiles match at

r = 0.

E (µJ) Hb (µm) Rb (µm) c (µm) ε β We r∗
d (µm) Rb/3 (µm)

4.5 2.1 14.4 9.1 0.23 0.55 14000 2.1 4.8
5.1 3.6 16.6 10.5 0.34 0.48 21000 6.9 5.5
5.4 4.3 17.7 11.2 0.39 0.45 26000 11 5.9
6.0 5.8 19.6 12.4 0.47 0.40 35000 20 6.5
8.0 10.7 24.8 15.7 0.68 0.32 71000 77 8.3

Table 3. Blister parameters and corresponding length scales and nondimensional values given
a laser pulse energy E and film thickness H = 5 µm. c = Rb/

√
2.5 is the length scale used for

nondimensionalization. The upper bound r∗
d on the radius of a drop that could be produced by

the deformation is calculated using (8.4) with ρ = 1030 kg/m3, γ = 40.8 mN/m and τ = 37 ns.
A typical drop radius Rb/3 is included for comparison to r∗

d.

where the blister height Hb and radius Rb increase with laser pulse energy E; the time
evolution is given approximately by

F (t̄) = 2
π

arctan
(

t̄

τB

)
, (8.2)

with τB = 23.6 ns (Brown et al. 2012). These empirical fits were used in Brown et al.
(2012) in volume-of-fluid simulations of the Navier-Stokes equations to investigate the
threshold laser energy required to transfer a droplet as a function of various fluid prop-
erties. To apply the domain-perturbation results to these BA-LIFT transfers, the blister
radius Rb needs to be converted to an effective Gaussian width c. Figure 8 shows that
taking Rb =

√
2.5c makes the deformations match fairly well in the central region, with

equal curvatures at r = 0. Thus, nondimensionalizing by the length scale c = Rb(E)/
√

2.5
allows one to compute effective values for ε and β given E and H. Table 3 provides some
examples of parameters corresponding to blisters formed at various pulse energies in the
simulations of Brown et al. (2012).

The difference between the time evolution (8.2) used in Brown et al. (2012) and the
simple exponential decay used earlier can also be taken into account. After nondimen-
sionalizing time in (8.2) by τB and differentiating, we can calculate

∫∞
0 f2(t) dt = 1/π.

Recalling (4.7) and the fact that
∫∞

0 e−2t dt = 1/2, we then choose τ = (π/2)τB ≈ 37 ns
instead of τB as the time scale for nondimensionalization in order to make the quantitative
results for the domain-perturbation remnant flow apply to the BA-LIFT simulations.
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Figure 14. Remnant kinetic energy in the fluid from axisymmetric domain-perturbation calcu-
lations, Ēk(∞), compared to total kinetic energy in the full simulations of Brown et al. (2012)
at 300 ns (t ≈ 8.1) and its corresponding fit, as a function of laser energy above the threshold for
blister formation, Eth = 3.65 µJ. The film thickness is fixed at H = 5 µm, and the parameters ε
and β are obtained from the empirical fits Hb(E) and Rb(E) from Brown et al. (2012) together
with c = Rb/

√
2.5. The remnant kinetic energy from the domain-perturbation calculation is

dimensionalized by ρc5/τ2, with ρ = 1030 kg/m3 and τ = 37 ns.

An initial check we can do with this mapping from E and H to ε and β is examine the
remnant kinetic energy as a function of E at fixed H. This can be compared to figure
11(b) of Brown et al. (2012), in which the (dimensional) kinetic energy at 300 ns (t ≈ 8.1)
is plotted versus E−Eth at H = 5, where Eth = 3.65 µJ is the threshold energy for blister
formation. Figure 8 combines that data with the remnant kinetic energy calculated from
the domain perturbation and dimensionalized by ρc5/τ2, showing excellent agreement
with the simulation data and the fit from Brown et al. (2012). As the full numerical
simulations included viscosity and surface tension, this agreement verifies that the initial
transfer of energy in BA-LIFT is indeed dominantly inertial and that the axisymmetric
domain-perturbation approach captures the energy transfer quantitatively.

The remaining kinetic energy in the fluid after the boundary motion stops can be
related to jet formation by considering surface energy. Surface tension will oppose the
formation of a jet, and if the kinetic energy in the fluid is too low, the jet will retract
back into the liquid layer. There is a threshold energy at which the jet forms a drop,
and for higher energies, the velocity of the jet increases and a larger volume of liquid is
transferred (Brown et al. 2012). We can estimate how this threshold for fluid transfer
depends on the problem parameters by assuming that all kinetic energy is converted to
surface energy of the drop. The condition that a drop of radius rd can be produced is
then that

Ēk > Ēs = 4πr2
dγ, (8.3)

where γ is the surface tension.
Substituting the dimensional form of (6.4) for Ēk for times t � 1, the upper bound r∗

d

on the radius of a drop that might be produced is

r∗
d = cε2

√
We Êk,4(β)

4π
, (8.4)
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where We ≡ ρU2L/γ = ρc3/γτ2 is the Weber number. For the BA-LIFT simulations in
Brown et al. (2012), the fluid properties used were those of the liquid NMP, which has
γ = 40.8 mN/m, ρ = 1030 kg/m3, and µ = 1.7 mPa·s. The corresponding values of We
and r∗

d are included in table 3. The drop radius is not known a priori, but simulations
of BA-LIFT suggest that the drop radius increases with both blister radius and film
thickness and typically falls in the range Rb/10 to Rb/2 (Brown et al. 2012). As an
approximation, then, a typical drop radius Rb/3 can be compared to r∗

d. If r∗
d � Rb/3,

no drop will be produced by the blister, and if r∗
d � Rb/3, the jet will have sufficient

energy to pinch off into one or more drops. An approximate threshold for pinch-off is
given by r∗

d = Rb/3, and Rb/3 is included in table 3. The blister from a 4.5 µJ pulse
does not leave enough kinetic energy in a 5-µm thick film to eject a droplet, as it does
not satisfy r∗

d > Rb/3, but the higher laser energies do, so they are expected to produce
droplets. Indeed, 5.1 µJ is the threshold laser energy to transfer a droplet from a 5-µm
thick film, and the radius predicted by volume-of-fluid simulations is rd ≈ 5.4 µm (Brown
et al. 2012) (compare to the estimate Rb/3 ≈ 5.5 µm). The difference between r∗

d ≈ 6.9
µm and rd can be attributed to viscous losses and residual surface and kinetic energies
after pinch-off.

We can examine other simulation results from Brown et al. (2012) to check if this
result holds as parameters are varied. For a 10-µm thick film, the threshold laser energy
is about 5.7 µJ, which corresponds to ε = 0.43, β = 0.85, and r∗

d = 10.2 µm. This is
consistent with producing a droplet of radius Rb/3 = 6.2 µm, again leaving some extra
energy. The large β resulting from this thicker film means that a 5.1 µJ laser pulse would
only leave enough energy to produce a hypothetical droplet of radius r∗

d = 4.3 µm, so 5.1
µJ is clearly below the threshold laser energy for this film thickness.

Alternatively, the results from the domain-perturbation calculation can be used to
predict the optimum film thickness given other blister parameters. Taking the blister
corresponding to a 5.1 µJ laser pulse with its length scale c = 10.5 µm, the optimum
film thickness for transferring kinetic energy to the liquid layer is given by H = cβk ≈
3.7 µm. One could also optimize the velocity of the forming jet, v2(0, β, ∞), by taking
H = cβv ≈ 4.0 µm. The film thickness that minimizes threshold laser energy in figure 17
of Brown et al. (2012) lies between 2.5 and 5 µm, so these values of 3.7 µm or 4.0 µm
are in agreement. Furthermore, the domain-perturbation results reveal that viscosity is
not required to explain why the threshold laser energy for transfer increases as the film
thickness decreases below the critical value.

9. Discussion
In this paper we have shown that the deformation of a flat solid boundary into a bump

protruding into an initially quiescent liquid layer induces a fluid flow that can lead to
jet formation. While the solid boundary is deforming, the liquid layer deforms with it.
The velocity field is in the direction of the solid boundary deformation and also laterally
outward from the bump. As the boundary motion slows and approaches its final shape,
kinetic energy is removed from the liquid, yet a flow remains. This remnant flow is still
in the direction of the bump, but the lateral motion has reversed; the slowing of the
boundary leads to a low pressure region just above the bump, and liquid is drawn in
toward the center from the surrounding fluid. It is this inward flow that can lead to jet
formation and is the basis of the laser-induced printing technique BA-LIFT.

A domain-perturbation method for ε � 1, where ε = kHb/2 (or Hb/c in the axisym-
metric case) is the effective aspect ratio of the solid boundary deformation, was used to
obtain an asymptotic solution for the velocity field in this boundary-driven fluid flow.
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At leading order, O(ε), the slowing of the boundary deformation toward a steady state
eliminates all fluid motion, but at O(ε2), a remnant flow is found, arising from the non-
linear interaction between the solid boundary motion and the free surface. This remnant
flow is inward toward the crest of the deformation and perpendicular to the free surface
at the crest.

The dimensional velocity after the boundary motion stops scales as ε2/kτ = H2
b k/τ ,

with a β dependence that has a maximum at βv ≈ 0.706 and decreases as e−β for large
β, where β = kH is proportional to the ratio of the layer thickness to the radius of
the solid deformation. The total kinetic energy (per unit width into the page) remaining
in the fluid after the deformation scales as ρε4/(k4τ2) = ρH4

b /τ2 with a β dependence
that reaches a maximum at βk ≈ 0.611 and decays as e−2β for large β. These results are
independent of the temporal evolution f(t) and suggest that β ≈ 0.6−0.7 may be optimal
for forming a strong liquid jet with the other parameters held fixed. In general, we see
that jet velocities can be increased by decreasing the time scale for boundary deformation
τ , increasing the maximum boundary displacement Hb, or choosing a layer thickness to
make β closer to βv. The effect of increasing k and using a narrower deformation is more
complex because both ε and β change, but if β < βv, increasing k will increase the jet
velocity.

The domain-perturbation solution is extended from two dimensions to an axisymmetric
formulation with a Gaussian boundary deformation replacing the sinusoidal deformation
of the 2D case. The same qualitative results apply, with 1/c replacing k as the length scale
and an energy scale of ρc5ε4/τ2. Quantitatively, the critical values for β are βv ≈ 0.384
and βk ≈ 0.354 in the axisymmetric case, and the remnant kinetic energy decays as e−2.5β

for large β. These critical values of β are not directly comparable to the values from the 2D
case, as the Gaussian and sinusoidal boundary deformations have differing characteristic
widths. By replacing the sinusoidal functional form by

[
1 + cos

(
x

√
2/c
)]

/2, it matches
the Gaussian form (6.1) in the same manner as figure 8, with equal curvatures at x = 0.
With this rescaled sinusoidal boundary deformation, the critical values of β = H/c in
the 2D case would be a factor of

√
2 smaller, or βv ≈ 0.499 and βk ≈ 0.432, closer to the

axisymmetric values.
Numerical simulations confirm the domain-perturbation results and test their limits

for larger ε in the axisymmetric case. Velocity slices from simulations have similar forms
to the domain-perturbation results for ε . 0.4 at t = t∗ + 5, with vertical stretching and
focusing at r = 0 significant for larger values of ε. The time evolution of the free surface
was investigated in §7.3, showing an initial period of time when the deformation of the
solid boundary rapidly deforms the free surface according to the O(ε) solution, followed
by a later period when the domain-perturbation results predict that the remaining O(ε2)
velocity field continues to deform the free surface at a constant rate, increasing the length
of the forming jet. This agrees well at smaller ε, but at the rather large ε = 0.4 relevant for
drop formation, numerical simulations reveal that the jet narrows and begins to accelerate
beyond the O(ε2) remnant jet speed around the transition time t∗, given by (6.5). The
domain-perturbation results still provide a reasonable estimate for jet velocity, however,
and nonzero surface tension will eventually stop this inertial acceleration anyway.

The remnant kinetic energy transferred to the fluid predicted by the axisymmetric
domain-perturbation results shows excellent agreement with previous simulations of BA-
LIFT after converting blister parameters to an effective Gaussian width and time con-
stant. The conversion of the remnant kinetic energy into surface energy was used to make
a simple estimate (8.4) of the threshold for drop formation.

The effects of surface tension and viscosity are insignificant on the time scale of the
solid boundary deformation in BA-LIFT and hence are appropriately neglected, so our
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results reveal the early-time dynamics of the purely inertial free-surface flow driven by
a deforming solid boundary. These dynamics are crucial to understanding the nature of
the induced jet.
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Appendix A. Axisymmetric domain-perturbation solution
The boundary conditions (3.6)–(3.7) at the free surface are unchanged from the 2D

case after making the substitutions x → r and y → z and defining u and v as radial and
vertical velocities, respectively. At z = 0, the kinematic conditions replacing (3.5) are

v1 = e−r2/2f(t), (A 1a)

v2 = −F (t)e−r2/2
(

ru1 + ∂v1

∂z

)
. (A 1b)

A.1. O(ε) solution
Consider a solution for φ1 of the form given in (6.3), with coefficients A1(k, t) and B1(k, t).
The boundary velocity (A 1a) decays to 0 for large r, so C(t) = 0. The dynamic condition
(3.6a) requires that A1(k, t) = 0, and the kinematic condition (A 1a) leads to

−
∫ ∞

0
B1(k, t) cosh βkJ0(kr)k dk = e−r2/2f(t). (A 2)

The Hankel transform of e−r2/2 is e−k2/2, so the solution for B1(k, t) is given by

B1(k, t) = f(t)B̂1(k) = −f(t)e−k2/2/ cosh βk. (A 3)

The O(ε) velocity potential and components can then be written as

φ1(r, z, t) = −f(t)
∫ ∞

0
e−k2/2 sinh[k(β − z)]

cosh βk
J0(kr) dk, (A 4a)

u1(r, z, t) = f(t)
∫ ∞

0
e−k2/2 sinh[k(β − z)]

cosh βk
J1(kr)k dk, (A 4b)

v1(r, z, t) = f(t)
∫ ∞

0
e−k2/2 cosh[k(β − z)]

cosh βk
J0(kr)k dk. (A 4c)

Since h1(r, t) =
∫ t

0 v1(r, β, s) ds, we find

h1(r, t) = F (t)
∫ ∞

0

e−k2/2

cosh βk
J0(kr)k dk. (A 5)

A.2. O(ε2) solution for t � 1
We begin by supposing a solution of the form (6.3) for φ2, now with coefficients A2(k, t)
and B2(k, t), and again taking C(t) = 0. The dynamic condition (3.6b) at the free surface
leads to ∫ ∞

0

∂A2(k, t)
∂t

J0(kr) dk = −
(

ḟF + f2

2

)(∫ ∞

0
B̂1(k)J0(kr)k dk

)2

, (A 6)
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which clearly has a separable solution A2(k, t) = Â2(k)a(t), where

∫ ∞

0
Â2(k)J0(kr) dk =

(∫ ∞

0
B̂1(k)J0(kr)k dk

)2

=
(

v1(r, β, t)
f(t)

)2

≡ v̂2
1(r, β), (A 7)

and

a(t) = −f(t)F (t) + 1
2

∫ t

0
f2(s) ds. (A 8)

The transform (A 7) must be solved for numerically for a given β by computing

Â2(k) = k

∫ ∞

0
v̂2

1(r, β)J0(kr)r dr. (A 9)

The equation for the time dependence a(t) is analogous to that in (3.21) for ȧn(t) in
the 2D case, and at long times we again use f(t) → 0 and define

a∞ ≡ lim
t→∞

a(t) = 1
2

∫ ∞

0
f2(t) dt. (A 10)

For example, a∞ = 1/4 for f(t) = e−t.
The solid boundary condition (A 1b) can be written as

∫ ∞

0

(
A2(k, t) sinh βk + B2(k, t) cosh βk

)
J0(kr)k dk =

f(t)F (t)e−r2/2
∫ ∞

0
e−k2/2 tanh βk

(
rJ1(kr) − kJ0(kr)

)
k dk. (A 11)

For t � 1, the boundary deformation stops and f(t) → 0, leaving

lim
t→∞

B2(k, t) = − tanh(βk)Â2(k)a∞. (A 12)

The remnant velocity potential and components at long times can then be written

φ2(r, z, ∞) = a∞

∫ ∞

0
Â2(k)

(
cosh[k(β − z)] − tanh βk sinh[k(β − z)]

)
J0(kr) dk,

(A 13a)

u2(r, z, ∞) = −a∞

∫ ∞

0
Â2(k)

(
cosh[k(β − z)] − tanh βk sinh[k(β − z)]

)
J1(kr)k dk,

(A 13b)

v2(r, z, ∞) = −a∞

∫ ∞

0
Â2(k)

(
sinh[k(β − z)] − tanh βk cosh[k(β − z)]

)
J0(kr)k dk.

(A 13c)
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A.3. Time-dependent O(ε2) solution
With further similar calculations, one can obtain the time-dependent O(ε2) solution as

φ2(r, z, t) =
∫ ∞

0

(
A2(k, t) cosh[k(β − z)] + B2(k, t) sinh[k(β − z)]

)
J0(kr) dk, (A 14a)

B2(k, t) = Ĉ2(k)
cosh βk

f(t)F (t) − A2(k, t) tanh βk, (A 14b)

Ĉ2(k) =
∫ ∞

0
R2(r)J0(kr)r dr, (A 14c)

R2(r) = e−r2/2
∫ ∞

0
e−k2/2 tanh βk

(
rJ1(kr) − kJ0(kr)

)
k dk. (A 14d)

This result is completely analogous to the 2D case, in which bn(t) has the transient
contribution −

(
tanh β/(n cosh nβ)

)
f(t)F (t) in (3.20). For t � 1, f(t) approaches 0

and this term dies out, as does the (Ĉ2(k)/ cosh βk)f(t)F (t) term, leaving the constant
remnant solution found earlier.

The free-surface deformation can be solved using (3.16), or

∂h2

∂t
(r, t) = −

∫ ∞

0
B2(k, t)J0(kr)k dk. (A 15)

Integrating the time dependences leads to

h2(r, t) =
∫ ∞

0

[(
a∞t − 1

2
F 2(t)

)
Â2(k) tanh βk − 1

2
F 2(t) Ĉ2(k)

cosh βk

]
J0(kr)k dk. (A 16)

At long times, h2(r, t) grows linearly with time, and we recover

∂h2

∂t
(r, ∞) = v2(r, β, ∞) = a∞

∫ ∞

0
Â2(k) tanh(βk)J0(kr)k dk. (A 17)

Appendix B. Numerical method
The finite-difference scheme is derived by transforming Laplace’s equation from Carte-

sian coordinates (x, y) to curvilinear coordinates (ξ, η) with the mapping

x = ξ, y = hb(ξ, t) + q(ξ, t)η, (B 1)

where hb(ξ, t) is the boundary displacement, as before, and q(ξ, t) is a scaling factor for
cell heights such that ny evenly spaced grid points extend from the solid to the free
surface at all values of x; figure 15 shows a mesh after the solid boundary has finished
deforming for β = 0.7 and ε = 0.2. The curvilinear coordinate values remain constant
and uniformly spaced throughout the simulation, with nx points in the range −π 6 ξ 6 π
and ny points in the range 0 6 η 6 β. Only the y values of grid points change with time,
and these changes are captured in the time dependence of hb(ξ, t) and q(ξ, t).

Appendix C contains details on the discretization of Laplace’s equation in the curvi-
linear coordinate system, which results in a sparse linear system of equations of the form
Aφ = b. After initializing the domain to be a Cartesian grid on [−π, π] × [0, β] with
q(ξ, 0) = 1, the numerical procedure for each time step of duration ∆t is as follows:

(1) Iteratively solve the linear system of equations for φ at all interior grid points
with successive over-relaxation, using periodicity in the x direction and a Dirichlet
condition at η = β, keeping φ fixed.
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Figure 15. Grid used for numerical simulations with ε = 0.2 and β = 0.7 at t = 20. ξ is constant
along vertical grid lines, and η (defined in (B 1)) is constant along the curves going left-to-right.
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Figure 16. Grid used for axisymmetric numerical simulations with ε = 0.4 and β = 0.4 at
t = 10.

Before each iteration of the linear solver, the η = 0 boundary condition ∂φ/∂n =
nyVb(x, t) must be applied. This is done by discretizing

∂φ

∂n
= nx

∂φ

∂x
+ ny

∂φ

∂y
= nx

(
∂ξ

∂x

∂φ

∂ξ
+ ∂η

∂x

∂φ

∂η

)
+ ny

(
∂ξ

∂y

∂φ

∂ξ
+ ∂η

∂y

∂φ

∂η

)
. (B 2)

using central differences in ξ and one-sided second-order differences in η, leading to
an inner linear system of equations to update φ along η = 0.
(2) Advance in time the grid points on the free surface by advecting them according
to the velocity field and updating φ with the Lagrangian form of (2.3b), Dφ/Dt =
1
2
(
u2 + v2).

(3) Interpolate to obtain y and φ values of new grid points equally spaced in ξ.
This sequence of steps is used with a second-order Runge-Kutta time integrator and

a time step between 0.001 and 0.1, depending on ε. The solver for Laplace’s equation
is validated against simple test cases with analytical solutions to ensure that the dis-
cretization in curvilinear coordinates is performed correctly and Dirichlet and Neumann
boundary conditions are applied correctly on curved boundaries.

B.1. Extension to axisymmetric domains
The finite-difference method is extended to solve for axisymmetric flows by making the
substitutions x → r and y → z. ξ and η are still defined as in (B 1), with nr points in
the range 0 6 ξ 6 6 and nz points in the range 0 6 η 6 β for the Gaussian boundary
deformation (6.2). Figure 16 shows a mesh after the solid boundary has finished deforming
for β = 0.4 and ε = 0.4.

A symmetry boundary condition must now be applied at ξ = 0 before each iteration
of the linear solver. This is the Neumann condition ∂φ/∂n = ∂φ/∂r = 0, which is solved
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in a similar fashion to the boundary condition η = 0 in the 2D case. This Neumann
condition is also applied at ξ = 6, where velocities are negligible.

Most of the results of appendix C still hold, with the modification that each Bij is
multiplied by the corresponding value of r. This change arises because in cylindrical
coordinates, Laplace’s equation can be written

∇2φ = 1
r

[
∂

∂r

(
r

∂φ

∂r

)
+ ∂

∂z

(
r

∂φ

∂z

)]
= 0, (B 3)

so by inspection of (C 1), Bij can absorb the extra factor r for cylindrical coordinates. As
the coordinate transformation (B 1) does not change r values, this simple modification
works for transformed cylindrical coordinates as well. The solver is again validated against
simple test cases, checking Dirichlet and Neumann conditions with curved and stretched
domains.

Appendix C. Discretization of Laplace’s equation
With the coordinate transformation (B 1), ∇2φ = 0 becomes

∇2φ = 1
J

∂

∂ξj

(
Bkj

J

∂φ

∂ξk

)
, (C 1)

where Bkj = βikβij , βij is the cofactor of ∂xi/∂ξj in the matrix

M =


∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

 , (C 2)

and J = det(M) is the Jacobian determinant of the transformation (Ferziger & Perić
2002). We can thus find in two dimensions that

B11 =
(

∂y

∂η

)2

+
(

∂x

∂η

)2

, (C 3a)

B21 = B12 = −∂y

∂ξ

∂y

∂η
− ∂x

∂ξ

∂x

∂η
, (C 3b)

B22 =
(

∂y

∂ξ

)2

+
(

∂x

∂ξ

)2

. (C 3c)

A Cartesian mesh with a 9-point stencil in (ξ, η) space is used to discretize (C 1).
Referring to a central point φ(i∆ξ, j∆η) = φi,j as φP , neighboring points on the mesh
can be described as φE , φNE , φN , φNW , φW , φSW , φS , and φSE , where for example
φNW = φi−1,j+1. Lower-case subscripts in φe, φn, φw, and φs denote values halfway
between grid points.

Starting with the discretization of the inner derivatives, (C 1) becomes

∇2φ = 0 = ∂

∂ξ

[
1
J

(
φe − φw

∆ξ
B11 + φN − φS

2∆η
B21

)]
+ ∂

∂η

[
1
J

(
φE − φW

2∆ξ
B12 + φn − φs

∆η
B22

)]
.
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Discretizing the outer derivatives then yields

0 = 1
(∆ξ)2

[(
B11

J

)
e

(φE − φP ) −
(

B11

J

)
w

(φP − φW )
]

+ 1
4∆ξ∆η

[(
B21

J

)
E

(φNE − φSE) −
(

B21

J

)
W

(φNW − φSW )
]

+ 1
4∆ξ∆η

[(
B12

J

)
N

(φNE − φNW ) −
(

B12

J

)
S

(φSE − φSW )
]

+ 1
(∆η)2

[(
B22

J

)
n

(φN − φP ) −
(

B22

J

)
s

(φP − φS)
]

.

We now have an algebraic system of equations that can be written as∑
d

Adφd = 0 (C 4)

for each direction d. It is solved with a successive over-relaxation method with a relaxation
factor ω = 1.925, which was found to work well in reducing solution times.
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