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Abstract

Background: This study examined whether objective measures of food, physical activity and built environment
exposures, in home and non-home settings, contribute to children’s body weight. Further, comparing GPS and GIS
measures of environmental exposures along routes to and from school, we tested for evidence of selective daily
mobility bias when using GPS data.

Methods: This study is a cross-sectional analysis, using objective assessments of body weight in relation to multiple
environmental exposures. Data presented are from a sample of 94 school-aged children, aged 5–11 years. Children’s
heights and weights were measured by trained researchers, and used to calculate BMI z-scores. Participants wore a
GPS device for one full week. Environmental exposures were estimated within home and school neighbourhoods,
and along GIS (modelled) and GPS (actual) routes from home to school. We directly compared associations between
BMI and GIS-modelled versus GPS-derived environmental exposures. The study was conducted in Mebane and Mount
Airy, North Carolina, USA, in 2011.

Results: In adjusted regression models, greater school walkability was associated with significantly lower mean BMI.
Greater home walkability was associated with increased BMI, as was greater school access to green space. Adjusted
associations between BMI and route exposure characteristics were null. The use of GPS-actual route exposures did not
appear to confound associations between environmental exposures and BMI in this sample.

Conclusions: This study found few associations between environmental exposures in home, school and commuting
domains and body weight in children. However, walkability of the school neighbourhood may be important.
Of the other significant associations observed, some were in unexpected directions. Importantly, we found no
evidence of selective daily mobility bias in this sample, although our study design is in need of replication in a
free-living adult sample.
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Background
The aetiology of obesity is complex and multifaceted,
and likely the product of a number of factors at individ-
ual, social and environmental levels [1]. Children’s diet-
ary and physical activity behaviours, and therefore their
body weight, may be partly shaped by a range of food,
physical activity and built environment exposures [2,3],
which offer the opportunity to consume as well as ex-
pend energy. Neighbourhood characteristics linked to
health have been recently implicated in design theories
such as ‘New Urbanism’, ‘Smart Growth’ and ‘Neotradi-
tonalism’ [4]. These describe the importance of walkable,
pedestrian-orientated neighbourhoods, with well-connected
streets, mixed land uses and good access to local amenities
such as stores selling healthy food and green space. Such
environmental characteristics have been hypothesised to
act either directly (for example through promotion of phys-
ical activity), or via a pathway involving increased sense of
community and social cohesion on behavioural outcomes
and health [5]. These urban design principles reinforce the
role of the planner in public health promotion. However,
we need to better understand the extent to which expo-
sures of this kind contribute to adiposity in children.
Recent reviews have noted a number of significant

associations between neighbourhood food and built en-
vironment characteristics and body weight in children
[6-10]. For example, greater proximity to convenience
stores has been associated with higher body mass index
[11], and greater density of recreational facilities with
lower odds of overweight [12]. However, unexpected as-
sociations between environmental exposures and body-
weight have also been reported [13,14]. In a recent
systematic review of children’s green space access and
physical activity [15], only 6 of the 14 studies identified
indicated positive associations. Overall, the evidence
base remains inconclusive, perhaps because studies often
fail to simultaneously capture multiple environmental
exposures related to both energy intake (such as food
outlet access) and energy expenditure (such as green
space access) [3,16].
Studies also tend to focus exclusively on environmen-

tal exposures within home ‘neighbourhoods’. While defi-
nitions of neighbourhood vary between studies [17],
ranging from buffers around the home address, to an
administrative boundary of residence, to measures ac-
counting for perceived neighbourhood boundaries, the
use of any such definition invokes the notion of the ‘resi-
dential trap’ [18]; the assumption being that only the
‘local’ matters for health [19]. We know however that
children spend a substantial amount of time outside of
their home neighbourhood, and are as such spatially pol-
ygamous, in their simultaneous experience of and inter-
action with multiple spatial contexts [20]. One study
found that adolescent girls spent more than a third of
their waking hours more than 1 km from their homes
[21]. Another demonstrated that boys, and children
living in rural areas more generally, tended to roam
frequently beyond their home 800 m street network
defined neighbourhoods and engaged in more vigor-
ous physical activity in these non-home locations [22].
Others have also found substantial contributions to
daily levels of moderate to vigorous physical activity
(MVPA) while travelling outside of home neighbour-
hoods [23,24].
The high degree of spatial polygamy demonstrated

even among children, makes it clear that “the human
scale of activity no longer appears to coincide with the
local scale of the residential neighbourhood” [2,20]. This
recognition has led to the development of the concept of
the ‘activity space’ [25]. Activity spaces contain “the sub-
set of all locations within which an individual has direct
contact as a result of his or her day-to-day activities”
[26], as bound by time, obligational and transport
constraints [27]. For social and behavioural scientists in
particular, the polycentric environmental exposures
associated with key daily anchor points and movements
between these locations within activity spaces, are
potentially critical [20,28]. In particular, behaviours
practised in these wider non-home contexts have
the potential to confound exposure-outcome models
based on the home neighbourhood only. This is be-
cause such behaviours are erroneously attributed to a
home exposure, when in fact they were undertaken in
a non-home setting, which may be radically different
in terms of its environmental characteristics [29].
Schools for example, are often cited as a potentially

important non-home setting within activity spaces [2].
Children spend a lot of time in these locations, around
which unhealthy food outlets have also been shown to
cluster [30,31]. Again, unobserved environmental expos-
ure to food and built environments in the school setting,
may act as potentially important source of confounding
in home only models of individual-environment associa-
tions. Moreover, while associations have been observed
between school-based built and food outlet exposures,
dietary outcomes [32-35], and odds of overweight and
obesity [36], associations with body mass index (BMI)
have not been comprehensively tested. In a recent UK
study, Harrison et al. [37] suggested that associations be-
tween school-based unhealthy food outlet access, green
space availability and mixed land use, with lower body
weight may exist, but predominantly for girls.
Routes between home and school, and their associated

environmental exposures are also increasingly consid-
ered as important activity space correlates of behaviours
and adiposity [28,38]. These routes may provide import-
ant opportunities to access food outlets and physical ac-
tivity facilities, while habitual behaviours may develop as
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a result of repeated daily exposure to the same journey
environments. However, consistent evidence of the asso-
ciation between journey exposures to food and built en-
vironment characteristics and body weight has again not
been found [37,39,40]. This may be because, despite the
importance of these studies in considering previously
neglected exposure settings and therefore advancing to-
ward a more complete assessment of cumulative daily
environmental exposure, routes to school have mostly
been modelled based on the shortest street network dis-
tance between home and school [37,39,40], with only
one study accounting for transport mode choice [29].
Global positioning systems (GPS) devices have been

used to record actual routes to school [23,41]. GPS de-
vices allow calculation of actual environmental exposure,
and are therefore a potentially powerful tool for advan-
cing activity space exposure assessment, beyond the use
of modelled GIS routes. It has also been shown that
modelled GIS and actual GPS routes are not necessarily
equal, in terms of the routes themselves or their associ-
ated exposures [42,43]. Route selection remains a multi-
faceted decision, based on a range of factors including
time, habitual and personal commitments, perceptions
of safety and mode of transport [44-46]. However, be-
cause routes are so highly modifiable, the use of actual
GPS routes in exposure assessment may hold implica-
tions for causal inference, described as ‘selective daily
mobility bias’ [27,47]. For example, routes (and thus ‘ex-
posures’) may be selected based on preferences related
to BMI, such as the desire to access food. Resulting asso-
ciations between BMI and food outlet exposure may
therefore reflect participant preferences to be ‘exposed’,
more so than the effects of the exposure per se. Using
GPS, Harrison et al. [43] showed how food outlet expos-
ure was greater on the way home from school than on
the way to school in a sample of UK school children, a
finding that may reflect some degree of this route self-
selection. The suggestion is therefore that outcomes
such as BMI might be better explained by actual GPS
route exposures (which may reflect behavioural prefer-
ences and are readily modifiable) than by modelled GIS
route exposures, however this hypothesis has not yet
been tested in the literature.
This study aimed to assess home, school and journey

exposures to food, physical activity and built environ-
ments, and their associations with measured BMI in a
sample of school-aged children in North Carolina (NC).
We used GPS devices to accurately capture journeys to
school, and their associated exposures, in an evolution
from previous modelling of these routes using GIS. As
part of this, we directly address Chaix et al.’s [47] impli-
cation of selective daily mobility bias through using GPS
data, through a formal comparison of GIS modelled
versus GPS actual route environmental exposures.
According to the selective daily mobility bias thesis,
GPS derived actual route environmental exposures
should better predict BMI than their modelled expos-
ure equivalents.

Methods
Study participants
The study sample was drawn from children participating
in an evaluation study of a natural experiment, using
baseline data only. Mebane on the Move is a grass-
roots campaign, designed to promote healthier life-
styles and prevent obesity through physical activity in
the small town of Mebane, NC. Mebane on the Move
is comprised of a number of initiatives, from establish-
ing walking trails, adding footpaths to roads, and
adding pedestrian crossings to streets, to free fitness
classes for town residents and the formation of run-
ning clubs in schools. This intervention has been
described in detail elsewhere [48]. As part of an evalu-
ation of this natural experiment, a demographically
matched yet geographically distinct ‘comparison’ town
(Mount Airy, NC) was identified. The researchers
recruited a sample of children aged 5–11 years and
their parents through three schools in each town (six
schools in total).
A sub-sample of 94 children across Mebane and

Mount Airy study sites agreed to wear a Qstarz BT-
Q1000X GPS device on the left hip, over one full week
(five weekdays and two weekend days) during baseline
assessments in 2011. GPS devices recorded precise geo-
graphic locations at 60 second intervals (epochs). In this
sub-sample, children’s heights and weights were also
measured by trained research staff (using a Seca 124
portable stadiometer and a Tanita BWB-800 portable
scale, respectively), and age-specific BMI z-scores calcu-
lated relative to growth charts from the US Centers
for Disease Control and Prevention (CDC) [49]. Parents
returned an accompanying self-report questionnaire,
which included a range of socio-demographic questions,
as well as home address and school attended by their
child. Parents also reported their child’s weekly fre-
quency of travel to school by different transport modes.
We geocoded addresses in a GIS (ArcGIS 10, ESRI Inc.,
Redlands, CA), using an address locator derived from
2010 US TIGER street network data. For this study, we
defined the school location according to the precise lo-
cation of the main school entrance, determined using
aerial imagery, as in previous work [37]. This study was
conducted according to the guidelines laid down in the
Declaration of Helsinki and all procedures involving par-
ticipants were approved by the Duke University Medical
Center Institutional Review Board. Parents of children
provided written and informed consent and children
provided assent.
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Environmental exposures
Defining environments
In order to quantify actual environmental exposure
while travelling to and from school, we first exported
GPS coordinates from the GPS devices, merged them
into a single database, and subsequently stratified by
school attended, participant ID and calendar date. The
GPS points were then plotted using GIS software. Using
school day start and end times as a guide, journeys to
and from school were then isolated by removing GPS
points before children left for school in the morning,
after children arrived at school until the time at which
they left school, and after children arrived back home.
The GPS tracks were manually trimmed in this way for
all journeys (n = 775), for all children (n = 94). In order
to produce a route to and from school, we joined these
points using TIGER street network data as a framework.
As a result of GPS sampling at 60 second epochs, it was
important to ‘snap’ GPS points along the road network
in this way, as opposed to simply connecting points with
straight lines, based solely on shortest Euclidean distance
(Figure 1). Modelled GIS routes were defined using
the shortest distance along the street network between
homes and schools. We buffered GPS tracks and GIS
routes by 100 m, within which to estimate environ-
mental exposure. There is growing precedent for use
of this 100 m route exposure delineation in the litera-
ture [37,39,50].
Complementing route exposure estimates, we also cal-

culated potential environmental exposures in home and
school neighbourhoods using GIS. We defined this po-
tential exposure in two ways, depending on the environ-
mental attribute we intended to capture (see Table 1).
One approach defined ‘neighbourhoods’ as 800 m street
Figure 1 Recorded GPS data points, joined via the shortest Euclidean
network (right). This illustration shows how snapping to the street netwo
network buffers around home and school locations,
using the TIGER street network data. Precedent for the
use of 800 m street network neighbourhoods has been
set in the literature [31,51]; for a child, 800 m represents
about a 10 minute journey if travelling on foot [22].
However, many homes and schools were likely to have
no or few facilities within these 800 m neighbourhoods,
thereby necessitating the use of facilities beyond these
limits. Our second approach was therefore to define po-
tential access using inverse distance weighting (IDW).
This technique does not require a neighbourhood extent
to be formally defined, and as such can also help to
overcome concerns regarding the importance of the very
local [18,19]. Using this approach, all discrete point facil-
ities (food outlets and physical activity locations) within
a 6 km street network cut-off contribute to exposure,
with the inverse distance (1/d) between point facilities
(i) and homes or schools (j) then weighted according to
a suggested distance decay parameter (k) of 2 [52]. Pre-
cedent for the use of this inverse distance weighting ap-
proach has been set previously [37].

Characterising environments
Table 1 provides a description of the exposures calcu-
lated, calculation details, and details of data sources
used. The relationships between these exposures, which
are hypothesised to both encourage and discourage en-
ergy intake and expenditure in children, and BMI, forms
the basis of the analysis in this work. Firstly, using loca-
tion data provided by Reference USA, a commercial data
company from whom we purchased data for this study,
we calculated potential access to all food outlets and
takeaway food (‘fast food’) outlets using IDW. We used
North American Industry Classification System (NAICS)
distance (left), and constrained (‘snapped’) to the TIGER street
rk likely results in a more accurate estimation of the route travelled.



Table 1 Details of exposure metrics, and descriptive statistics for home, school and route environments

Variable Description - home/school
neighbourhoods

Description – routes Data
source

Descriptive statistics (Mean, SD)

Home School Modelled
route

Actual
route

Access to facilities:

Takeaway food
outlets

The inverse distance weighted
sum of distance to all outlets/
facilities within 6 km of
home/school

Number of outlets/facilities
along the route, divided by
route length

A, B, C 3.29 (2.84) 4.40 (2.10) 0.33 (0.52) 0.19 (0.37)

All food outlets 6.38 (5.10) 8.44 (3.08) 0.64 (0.96) 0.37 (0.51)

Physical activity
facilities

0.81 (0.62) 1.13 (0.34) 0.09 (0.16) 0.07 (0.10)

Green spacea Area of green space within
neighbourhood as a percentage
of neighbourhood area

Area of green space along
the route, divided by route
length

C, D 62.21 (15.15) 51.66 (11.48) 111.16 (25.50) 116.98 (191.84)

Road safety:

Density of fatal
road traffic
accidents

Number of fatal road traffic
accidents in the neighbourhood
2002–2011, divided by total
length of roads within the
neighbourhood

Number of fatal road traffic
accidents along the route
2002–2011, per km of route
length

C, E 0.03 (0.07) 0.04 (0.05) 0.14 (0.34) 0.14 (0.20)

Proportion of
roads that are
major roads

Length of major roads within
the neighbourhood, divided
by total length of roads within
the neighbourhood

Percentage of the route
that is along a major road

C 0.09 (0.13) 0.12 (0.09) 39.95 (33.53) 36.00 (24.57)

Street connectivity:

Effective walkable
area and route
length ratio

Effective walkable area: ratio of
the area within an 800 m street
network distance of a location
to the total area within an
800 m Euclidean radius

Route length ratio: ratio of
length of route to the
Euclidean distance between
home and school

C 0.18 (0.07) 0.25 (0.02) 1.16 (0.25) 2.78 (2.12)

Connected node
ratio

Ratio of junctions to junctions
and cul-de-sacs

n/a C 0.79 (0.11) 0.90 (0.06) n/a n/a

Land use mix:

Herfindahl-Hirschmann
Indexb

The sum of squares of the
percentage of each land use
type in the neighbourhood

The sum of squares of the
percentage of each land
use type along the route

D 3716.44
(148.55)

3686.80
(730.00)

3564.09
(817.50)

3447.12
(703.70)

Data sources: A = ReferenceUSA 2011 [53]; B = Geo-coded by trained researcher, 2011; C = Topologically Integrated Geographic Encoding and Referencing (TIGER)
2011 [54]; D = US National Land Cover Database (NLCD) 2006 [55]; E = National Highway Traffic Safety Administration (NHTSA) Fatality Analysis Reporting System
(FARS) 2002–2011 [56].
aUS NLCD land uses summed to represent ‘green space’: developed open space, woodland (combining deciduous forest, evergreen forest, mixed forest) and grassland.
bNine different US NLCD land uses included: open water, developed open space, developed low-high intensity, barren land, woodland, scrubland, grassland,
farmland and wetland.
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codes, also provided by Reference USA, to identify take-
away food outlets: we categorised ‘Limited-service res-
taurants’ and ‘Snack and non-alcoholic beverage bars’
(NAICS codes 722110 and 722213) as unhealthy sources
of takeaway food. To confirm primary food outlet classi-
fication, where this was otherwise not clear, we made
phone calls and field visits. We also calculated access to
formal physical activity facilities, which included ‘com-
munity centres’ and ‘sports facilities’ (locations ground
truthed by a trained researcher), in this way.
We estimated other attributes of the physical activity

and built environments within our 800 m street network
home and school neighbourhoods. We calculated neigh-
bourhood percent green space [37,57,58]; density of fatal
road traffic accidents as a measure of road safety [37];
proportion of ‘major’ roads using TIGER road type
definitions (defining S1100 ‘primary road’ and S1200
‘secondary road’ segments as ‘major’) [37,59,60]; neigh-
bourhood effective walkable area [59,60] and connected
node ratio [61,62], as measures of walkability; and land
use mix, which is also a measure of walkability [62],
using the Herfindahl-Hirschmann Index [37] and con-
sidering nine land use types.
With the exception of the connected node ratio, we

also characterised route exposure to the environmental
traits outlined above. Some modification of these home
and school metrics was necessary (see Table 1). For ex-
ample, ‘effective walkable area’ was calculated for homes
and schools, but was adapted to the equivalent ‘route
length ratio’ for routes. We averaged actual GPS expo-
sures where more than one journey was recorded per
child, resulting in an exposure estimate representative of
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that experienced throughout the time the child wore the
GPS device.
Statistical analysis
Descriptive statistics were calculated for the full sample
and stratified by sex. We used the following strategy to
estimate associations between potential environmental
exposures at home and school, potential exposures along
modelled GIS routes to school, and actual exposures
along GPS routes, with continuous BMI z-score. As
many of the environmental exposure metrics created
were not normally distributed, we transformed all of our
environmental variables into tertiles of exposure. The
continuous extents of exposure tertiles are presented in
Additional file 1: Table S1. Firstly, we present unadjusted
associations, as mean BMI z-scores across tertiles of ex-
posure, with a test for trend (Pearson’s correlation ana-
lysis). We tested for differences in mean BMI z-score
between GIS-modelled and GPS-actual route methods,
within route exposure tertiles, using analysis of variance
(ANOVA). Secondly, we conducted bivariable linear re-
gression analyses, regressing BMI z-score onto exposure
tertiles (relative to the least exposed reference tertile 1),
while adjusting for sex, and the highest educational at-
tainment of the head of the household. To keep these
models as parsimonious as possible, education was se-
lected as a measure of socio-economic status at the ex-
pense of income, while race was not included as a
covariate because there was little heterogeneity in race
in this sample. Using age-specific BMI z-scores meant
that we did not need to add age as a covariate in these
models. We tested for trend in these relationships in
parallel models with continuous exposures (data not pre-
sented), and tested for differences in means of predicted
BMI z-scores between GIS-modelled and GPS-actual
route exposure tertiles using ANOVA. All analyses were
conducted using PASW Statistics 21 (PASW Statistics
Inc., Chicago, 2009).
Results
Descriptive statistics for environmental exposures at
home, at school and while commuting to and from
school are presented in Table 1. Exposure to all types
of food outlets, takeaway food outlets, as well as for-
mal physical activity facilities was greater at school
than at home. Green space access was greater at home,
while in general school neighbourhoods were more
walkable (better connected, with fewer cul-de-sacs in
particular). Environmental exposures along actual and
modelled routes were similar, but the greater route
length ratio for actual GPS routes (2.78) compared to
modelled GIS routes (1.16) suggests that the former
were longer on average.
The characteristics of the study participants are shown
in Table 2. There were a slightly greater number of boys
in the sample, who also had higher median BMI z-scores
(boys, 0.95; girls, 0.80). The median age for the sample
was 8 years. One third (n = 31, 33.0%) of participants
belonged to households with annual incomes over
$90,001, while the majority of parents held at least a col-
lege degree (n = 66, 70.2%). Each week, the majority of
study participants (n = 91, 96.8%) travelled inactively to
school by either car or bus, or included at least some
sort of motorised transport in their usual weekly com-
mute patterns.
Table 3 shows unadjusted associations for BMI z-score

across tertiles of home, school and commuting environ-
mental exposures. Increased exposure to all and particu-
larly takeaway food outlets was associated with increased
mean BMI, but only around the home. Greater home
access to physical activity facilities and greater school
access to green space was associated with significantly
higher BMI. Greater school walkability (effective walk-
able area) was associated with lower mean BMI, but
associated with higher mean BMI in home neighbour-
hoods. Similarly, greater school land use mix (higher
walkability) was associated with significantly lower
mean BMI at school, but higher BMI at home. In
terms of route exposures, whether based on actual
GPS routes or modelled GIS routes, all associations
with BMI were null. There were no significant differences
in mean BMI between GPS-actual and GIS-modelled ap-
proaches to estimating environmental exposures.
Table 4 shows adjusted bivariable regression models

for the relationships between home, school and journey
environmental exposures and BMI. Greater school green
space access was associated with significantly higher
mean BMI (test for trend, β = 0.031, 95% CI 0.010,
0.051). Greater home walkability (effective walkable
area) was associated with significantly higher mean
BMI (β = 3.634, 95% CI 0.211, 7.056), whereas greater
school walkability was associated with significantly
lower BMI (β = −16.572, 95% CI −28.239, −4.904). All
other adjusted associations were null. There were no
significant differences in predicted BMI z-scores be-
tween GPS-actual and GIS-modelled approaches to
estimating environmental exposures.

Discussion
We explored associations between home, school and
route exposures to food, built and physical activity envi-
ronments, in relation to BMI, in a sample of 94
school-aged children in North Carolina, USA. We also
addressed the potential impact of selective daily mo-
bility bias through a formal comparison of modelled
GIS versus actual GPS route environmental exposures.
We found limited evidence of significant associations



Table 2 Descriptive statistics for NC on the Move analytic sample study participants (n = 94)

Count (%), or median, IQR, unless
otherwise stated

Girls Boys All

Number of children 46 (48.9) 48 (51.1) 94 (100.0)

Number of trips 392 (50.6) 383 (49.4) 775 (100.0)

Age in years (mean, SD) 7.96, 1.62 8.13, 2.10 8.04, 1.85

Child BMI z-scorea 0.80, −0.05–1.78 0.95, 0.14–1.67 0.88, −0.04–1.72

Child race White 38 (82.6) 41 (85.4) 79 (84.0)

Household income Up to $15,000 2 (4.3) 5 (10.4) 7 (7.4)

$15,001 to $30,000 5 (10.9) 10 (20.8) 15 (16.0)

$30,001 to $60,000 10 (21.7) 4 (8.3) 14 (14.9)

$60,001, to $90,000 10 (21.7) 16 (33.3) 26 (27.7)

More than $90,001 19 (41.3) 12 (25.0) 31 (33.0)

Parent education level 1st to 8th grade 1 (2.2) 0 (0.0) 1 (1.1)

9th to 12th grade 2 (4.3) 3 (6.3) 5 (5.3)

Vocational or some college 8 (17.4) 14 (29.2) 22 (23.4)

College graduate 19 (41.3) 13 (27.1) 32 (34.0)

Graduate or professional school 16 (34.8) 18 (37.5) 34 (36.2)

Child’s most frequent mode of travel to school per week On foot 1 (2.2) 2 (4.2) 3 (3.2)

Bus 12 (26.1) 14 (29.2) 26 (27.7)

Car 25 (54.3) 27 (56.3) 52 (55.3)

Multi-modalb 8 (17.4) 5 (10.4) 13 (13.9)
aBMI z-scores calculated relative to age-specific US national height and weight distributions, from the Centers for Disease Control and Prevention (CDC).
bDefined as the equal use of two or more different travel modes for journeys to and from school per week. NB All multi-modal commute patterns contained at
least one form of motorised transport in this sample.
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between BMI z-score and environmental exposures
across home and school neighbourhoods, although
greater school neighbourhood walkability was associ-
ated with significantly lower mean BMI. We observed
no significant associations between BMI and modelled
GIS nor actual GPS route environment exposures in
this sample. In unadjusted and adjusted analyses, BMI
z-scores were similar between exposure tertiles,
whether based on modelled GIS or actual GPS routes
between homes and schools.
This study addresses an important gap in the literature

through being the first to formally compare associations
between BMI and GIS modelled versus GPS actual en-
vironmental exposures. While GPS devices are increas-
ingly considered a powerful tool for advancing exposure
assessment beyond the use of modelled GIS routes, it
was important to consider how GPS derived exposure
might be vulnerable to ‘selective daily mobility bias’
[27,47]. Should route choice have been heavily based on
preferences related to BMI in this sample, we would
have expected actual route exposures to have been more
strongly associated with BMI than their modelled expos-
ure equivalents. While associations with modelled GIS
route exposures and BMI have been described elsewhere
in children [37], we were unable to replicate such find-
ings in this study using modelled GIS nor actual GPS
route exposures. Therefore, there was no evidence of
confounding whereby children with higher BMIs chose
to travel to school via more ‘obesogenic’ routes, and vice
versa for children with lower BMIs. In part, lack of evi-
dence for both route exposure effects and selective daily
mobility bias could be a reflection of the age of partici-
pants in this sample, as well as the types of journeys
made, which may have reduced the likelihood of route
self-selection. For example, when being driven to school
(55% of participants travelled to/from school exclusively
by car), route selection will be strongly influenced by the
priorities of parents for food, physical activity or other-
wise. There would have been an even greater lack of au-
tonomy over route choice when using the school bus,
which 27% of this sample used exclusively. While this
study represents a first step in examining the potential
for selective daily mobility bias when using GPS data,
our work is in need of replication in a free-living sample
of adults who are potentially more able to interact with
their environments.
We did observe a significant adjusted association be-

tween land use mix in the school neighbourhood and



Table 3 Unadjusted mean BMI z-scores within tertile of environmental exposure, with tests for trend

Mean BMI z-score per exposure tertile (Pearson’s correlation co-efficient)

Tertile Home School Modelled journey Actual journey

All food outlets 1 (least exposed) 0.606 1.031 0.852 0.811

2 0.710 0.592 0.700 0.979

3 1.157 (0.208)** 1.018 (−0.081) 0.863 (−0.053) 0.671 (−0.104)

Takeaway food outlets 1 (least exposed) 0.722 1.031 0.924 0.737

2 0.590 0.592 0.613 0.877

3 1.161 (0.207)** 1.018 (−0.091) 0.790 (−0.060) 0.851 (−0.142)

Physical activity facilities 1 (least exposed) 0.593 1.179 0.721 0.551

2 0.903 0.324 1.061 (0.052) 0.727

3 0.967 (0.177)* 0.681 (−0.140) - 1.197 (0.104)

Green space 1 (least exposed) 0.982 0.506 1.012 0.930

2 0.651 0.681 0.761 0.859

3 0.828 (−0.068) 1.379 (0.291)*** 0.690 (−0.024) 0.676 (−0.131)

Density of fatal road traffic accidents 1 (least exposed) 0.836 0.926 0.795 0.570

2 0.763 (−0.084) 0.681 (−0.094) 0.885 (−0.122) 0.857

3 - - - 1.038 (−0.020)

Proportion of roads that are major roads 1 (most walkable) 0.655 0.640 0.765 0.862

2 1.306 0.976 0.617 0.557

3 0.952 (0.094) 0.747 (0.095) 1.085 (0.126) 1.056 (0.062)

Effective walkable area/Route length
ratio (for journeys)

1 (least walkable) 0.548 1.379 1.066 0.773

2 0.808 0.681 0.663 0.850

3 1.110 (0.180)* 0.506 (−0.289)*** 0.743 (−0.083) 0.842 (0.071)

Connected node ratio 1 (least connected) 0.655 1.031 - -

2 0.905 0.681 - -

3 0.912 (0.027) 0.843 (−0.059) - -

Herfindahl-Hirschmann Index 1 (least mixed) 0.559 1.031 0.554 0.506

2 0.886 0.976 1.055 1.064

3 1.020 (0.175)* 0.413 (−0.171)* 0.849 (0.113) 0.888 (0.113)

***p < 0.01, **p < 0.05, *p < 0.1, with reference to test for trend (Pearson’s correlation analysis) between environmental exposure and BMI z-score.
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BMI, suggesting that greater walkability in this setting
was related to lower body weight. Methodologically, this
finding reiterates the importance of accounting for non-
home activity space environmental exposures in
furthering our understanding of behaviours and health
[20]. Similar associations, using similar measures of land
use mix, have been observed elsewhere. For example,
Harrison et al. [37] showed how greater land use mix
was associated with lower body weight in children, in
school neighbourhoods in the UK. These complemen-
tary findings support New Urbanism design approaches,
and help us understand the potentially important role of
the planner in promoting health through design [63].
Conversely, we observed significant positive associations
between BMI and land use mix in home neighbour-
hoods, suggesting that these areas are less supportive of
maintaining a healthy body weight. However, as the
relationship between increased neighbourhood walkabil-
ity and lower body weight is thought to be mediated
through increased physical activity levels, this unexpected
association might be explained by previous research
demonstrating the large proportion of physical activity
undertaken by children outside of the home neighbour-
hood [22-24]. While greater school green space exposure
was associated with having significantly higher mean
BMI, this could be explained in part by exposure mis-
classification. For example, our green space measure is
likely to have included areas that were privately owned
and were thus inaccessible, as well as areas that were
physically inaccessible or may have been perceived as un-
safe and therefore ‘off limits’ to children [64]. Green
spaces may also encourage sedentary rather than moder-
ate or vigorous physical activity, which would be more
likely to be translated into higher body weight [65].



Table 4 Predicted BMI z-score per tertile of environmental exposure, in home, school and route settings

β co-efficients for BMI z-scorea

Tertile Home 95% CI School 95% CI Modelled
journey

95% CI Actual
journey

95% CI

All food outlets 1 (least exposed) REF n/a REF n/a REF n/a REF n/a

2 0.010 −0.577, 0.596 −0.246 −0.874, 0.382 −0.246 −0.885, 0.393 0.157 −0.435, 0.748

3 0.425 −0.163, 1.013 0.136 −0.529, 0.802 −0.041 −0.611, 0.529 −0.154 −0.756, 0.449

Takeaway food outlets 1 (least exposed) REF n/a REF n/a REF n/a REF n/a

2 −0.154 −0.743, 0.435 −0.246 −0.874, 0.382 −0.455 −1.143, 0.233 0.324 −0.288, 0.937

3 0.347 −0.244, 0.939 0.136 −0.529, 0.802 −0.093 −0.630, 0.445 0.153 −0.441, 0.746

Physical activity facilities 1 (least exposed) REF n/a REF n/a REF n/a REF n/a

2 0.128 −0.477, 0.732 −0.763 −1.484, −0.042 0.325 −0.200, 0.851 0.341 −0.232, 0.913

3 0.359 −0.233, 0.950 −0.398 −0.938, 0.143 − − 0.906 0.317, 1.494

Green space 1 (least exposed) REF n/a REF n/a REF n/a REF n/a

2 −0.315 −0.897, 0.268 0.267 −0.283, 0.816 −0.253 −0.854, 0.347 −0.040 −0.627, 0.546

3 −0.183 −0.790, 0.424 0.892** 0.269, 1.515 −0.296 −0.876, 0.284 −0.320 −0.913, 0.274

Density of fatal road
traffic accidents

1 (least exposed) REF n/a REF n/a REF n/a REF n/a

2 −0.109 −0.719, 0.501 −0.137 −0.627, 0.353 0.033 −0.494, 0.561 0.323 −0.262, 0.908

3 − − − − − − 0.366 −0.238, 0.970

Proportion of roads that
are major roads

1 (most walkable) REF n/a REF n/a REF n/a REF n/a

2 1.002 0.192, 1.812 0.507 −0.099, 1.114 −0.116 −0.708, 0.476 −0.305 −0.902, 0.292

3 0.062 −0.474, 0.598 0.231 −0.434, 0.897 0.187 −0.426, 0.800 0.133 −0.462, 0.728

Effective walkable
area/route length
ratio (for journeys)

1 (least walkable) REF n/a REF n/a REF n/a REF n/a

2 0.105 −0.500, 0.710 −0.625 −1.207, −0.044 −0.423 −1.019, 0.172 0.126 −0.474, 0.726

3 0.610** 0.021, 1.200 −0.892** −1.515, −0.269 −0.447 −1.053, 0.160 −0.026 −0.640, 0.588

Connected node ratio 1 (least connected) REF n/a REF n/a − − − −

2 0.232 −0.364, 0.828 −0.140 −0.765, 0.485 − − − −

3 0.302 −0.285, 0.889 −0.005 −0.657, 0.647 − − − −

Herfindahl−Hirschmann
Index

1 (least mixed) REF n/a REF n/a REF n/a REF n/a

2 0.360 −0.244, 0.963 0.139 −0.460, 0.738 0.597 −0.007, 1.201 0.578 0.000, 1.156

3 0.493 −0.101, 1.086 −0.441 −1.102, 0.221 0.362 −0.230, 0.955 0.307 −0.276, 0.889

**p < 0.05, using tests for trend based on modelling continuous environmental exposures.
aβ co-efficients represent BMI z-scores across tertiles of environmental exposure, relative to the least exposed tertile 1. All models control for parental education
level and sex of child.
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In unadjusted analyses, we did find that home access
to takeaway food outlets was associated with higher
BMI. This observed association, although null when
adjusting for parental education and sex, is consistent
with previous research findings [11,37,66], and suggests
a pathway linking takeaway food outlet access, via un-
healthy dietary behaviour to increased body weight.
Recent data from London, UK, showed that 30% of fried
chicken shop customers were less than 12 years old, dem-
onstrating patronage of takeaway food outlets even in this
young age group [67]. This unadjusted association was
observed for the home environment only, which could be
due to a number of factors, including restrictions on leaving
school grounds at lunch to access takeaway food outlets,
and use of modes of transport between home and school
that might have limited engagement with the school food
environment before and after school.
This study has a number of limitations. For capturing

actual route exposures, we acknowledge that the GPS
tracks recorded may not be representative of those usu-
ally travelled. Indeed, participants may have altered their
behaviours as a result of being included in the study, or,
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may have been traversing different routes to school dur-
ing the study period simply by chance. While capturing
GPS data over the course of a week adheres to prece-
dents set within the literature, data collection over a lon-
ger time frame might help to ensure that routes
captured are indicative of usual travel behaviour, al-
though this needs further investigation. We also con-
strained the path between recorded GPS points to the
street network, which may have introduced some ran-
dom error into our estimations of route exposure. Our
analysis may have been impacted by conventional limita-
tions widely associated with the use of GPS devices and
data, such as locational imprecision due to poor satellite
coverage in built-up or wooded areas. Many modern
smartphones are able to boost GPS trilateration accuracy
in urban areas by interfacing with nearby Wi-Fi net-
works and cell towers. Such technology may be harnessed
by researchers in the future, allowing a GPS user’s location
to be more accurately determined than is currently
possible.
For children living close to school, there was potential

for overlap and therefore collinearity between home and
school neighbourhood exposures. Overall however, the
average correlation between home and school exposure
estimates was weak (rp = 0.033). We also acknowledge
that while home, school, and commuting exposures are
theoretically important determinants of behaviour, expo-
sures during other times of day, for example after getting
home from school, and on weekends, also represent the-
oretically important behavioural correlates and therefore
potentially unobserved confounders of the associations
with weight status tested here.
In our analysis we were unable to use GPS data to cap-

ture actual environmental exposures close to homes and
schools, in the same way that we did for routes. How-
ever, in exploratory work we found that very little time
was actually spent in the vicinity of outlets in these
neighbourhoods, yielding insufficient data from which to
model associations with BMI in comparison with poten-
tial home and school exposures. For example, the GPS
data suggested that only nine children spent any time
within 50 metres of any type of food outlet in their
school neighbourhood, and just seven children spent any
time around any food outlet at home. Time spent near
physical activity facilities was equally limited.
We estimated visible environmental exposures along

journeys to and from school by buffering routes by
100 m, according to established precedent in the litera-
ture [37,39,50]. However, we acknowledge that this def-
inition of route exposure remains arbitrary and that our
results may be sensitive to this selection. We averaged
route exposures for children taking multiple routes to
school, however some children wore their GPS devices,
and therefore recorded more GPS tracks on more
occasions than others. It is, however, unclear if or how
disparities in wear time might bias our results.
While we identified some significant associations

throughout, our relatively small sample size (n = 94) may
not have allowed us to detect all meaningful associations
present within the data, and so our results should be
seen as exploratory. Where other studies have found
sex-specific neighbourhood environment effects in chil-
dren [8,66], our limited sample size prevented us from
stratifying our analyses. The need to transform our ex-
posure variables into tertiles (due to them not being nor-
mally distributed) may have reduced the sensitivity of
our analyses, and therefore further reduced our ability to
detect significant associations. Especially given the age
of participants in this sample, physical activity or dietary
behaviours may be more closely related to these environ-
mental exposures than BMI, however such outcome data
were not available. Further limitations related to our
sample of households include their relative affluence and
mostly high levels of education, which may limit general-
isability, as well as the high proportion of participants
commuting to and from school by motorised transport,
which may explain null associations between route expo-
sures and body weight. These issues related to study de-
sign and sampling should be resolved in future work.
Our data on food outlet and formal physical activity

locations was purchased from a commercial database
(Reference USA), and despite extensive precedent for
the use of such data in the literature, and the necessity
of using such an ‘extensive secondary’ food environment
data source [68], studies have suggested that datasets of
this type may not represent a complete record of all out-
lets and facilities [69,70]. Our food outlet classifications
were based on outlet name and extensive internet re-
search, guided by NAICS codes supplied by Reference
USA along with the dataset. However we were not able
to include a within-store audit of food types and prod-
ucts sold, and there is evidence that the accuracy of
NAICS codes varies by store type [71]. It is likely that
some of the food outlets we deemed unhealthy ‘take-
away’ food outlets also sold some healthier menu op-
tions, which may help to explain our null associations.
While we verified food outlet type where necessary by
phoning businesses, and in some cases conducting store
visits, we were still not able to account fully for such
within-store heterogeneity in this study.

Conclusions
This study examined multiple estimates of environmen-
tal exposure throughout children’s activity spaces. We
found few associations with measured BMI. Of those ob-
served, some were in unexpected directions, such as the
positive relationship between home neighbourhood
walkability and body weight. However we did find a
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negative association between body weight and school
neighbourhood walkability, which closely matches previ-
ous research findings. Importantly, we also found no evi-
dence of selective daily mobility bias, as suggested by
Chaix et al. [47], when utilising actual GPS route expo-
sures as compared to modelled GIS route exposures.
The use of GPS technology did not therefore appear to
confound the associations between environmental expo-
sures and BMI in this sample, although our assessment
of this bias is now in need of replication in other studies
with free-living adult samples, and in which exposure in
wider activity spaces can be considered.
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