
DOI: 10.1111/cgf.12532 COMPUTER GRAPHICS forum
Volume 34 (2015), number 6 pp. 228–239

Shading Curves: Vector-Based Drawing With Explicit
Gradient Control

Henrik Lieng, Flora Tasse, Jiřı́ Kosinka and Neil A. Dodgson

The Computer Laboratory, University of Cambridge, UK
henrik.lieng@hib.no, fp289@cam.ac.uk, jiri.kosinka@cl.cam.ac.uk, nad@cl.cam.ac.uk

Abstract
A challenge in vector graphics is to define primitives that offer flexible manipulation of colour gradients. We propose a new
primitive, called a shading curve, that supports explicit and local gradient control. This is achieved by associating shading
profiles to each side of the curve. These shading profiles, which can be manually manipulated, represent the colour gradient out
from their associated curves. Such explicit and local gradient control is challenging to achieve via the diffusion curve process,
introduced in 2008, because it offers only implicit control of the colour gradient. We resolve this problem by using subdivision
surfaces that are constructed from shading curves and their shading profiles.

Keywords: paint systems

ACM CCS: I.3.3 [Computer Graphics]: Picture/Image Generation–Generation, Graphics Utilities

1. Introduction

Vector graphics provides a powerful framework for drawing com-
pelling 2D imagery. An important aspect of such drawing is to be
able to control colour gradients [OBW*08, FSH11]. Currently, there
are three ways to manually manipulate colour gradients: diffusion
curves (DCs) [OBB*13], the linear gradient tool and the gradient
mesh tool. The last two tools are found in vector drawing appli-
cations like Adobe Illustrator and CorelDRAW (gradient mesh is
called ‘mesh fill’ in Corel DRAW).

Our approach is related to the DC primitive. A DC is a free-form
curve (modelled as a B-spline curve) that is associated with colours
on each side of the curve. These colours are smoothly propagated, or
diffused, filling the entire image. Its advantage is that it is associated
with a natural type of input while supporting smooth propagation
of colours [OBB*13]. By contrast, the linear gradient tool does not
support smooth propagation of colours (although it can be associ-
ated with free-form curves) and the gradient mesh tool is restricted
to rectangular control meshes and does not support free-form curves
as input (although it produces smooth propagation of colours). How-
ever, a limitation of DCs is that they do not support explicit control
of the colour gradient (Sections 3 and 6).

To achieve explicit control of the gradient of the colour that is
related to the curve, instead of performing diffusion, we associate

shading profiles to each side of the curve. Figure 1 (top) shows how
shading of two rings can be achieved with such shading profiles.
First, the boundary curves are drawn, defining the shapes of the ob-
jects. A bounded region can be associated with a colour, resulting in
a flat-shaded image with a colour defined in each region. In addition,
each side of a curve is associated with a luminance or colour ad-
justment value. This value specifies the modification in luminance
(or colour) of the underlying colour of the flat-shaded image. Then,
a shading profile, which can be manually adjusted, represents the
resulting profile of the luminance (or colour) adjustment in the per-
pendicular direction to the curve. Figure 2 shows the influence of
shading profiles on the resulting image. While our primitive can be
employed in many artistic settings, it is particularly motivated by
the problem of drawing shade and light (Section 3). We therefore
refer to our primitive as a shading curve.

It is not clear how one could use diffusion to propagate colours
in accordance with shading profiles (Section 6). First-order DCs
[OBW*08] are restricted to (colour) value constraints and do not
natively support manipulation of the colour gradient. By contrast,
second-order DCs [FSH11], support first-derivative constraints to
alter the colour gradient in a given direction. However, these first-
derivative constraints are restricted to zero derivatives, which can-
not represent a general shading profile. For that reason, we chose to
use a method different from diffusion and employ Catmull–Clark

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited. 228



H. Lieng et al. / Shading Curves 229

Figure 1: Drawing with shading curves. Left: input curves, colours and a shading profile at the given curve location. In this example, the
shading profile represents difference in luminance to the colour of its related region. That is, the luminance at the curve in the resulting image
is the luminance of the yellowish colour plus 40. Middle: intermediate image extracted from the depth buffer of rendered surfaces created with
our framework. The shapes of the surfaces are dictated by the shading profiles. Right: combining the flat colour image with the luminance
modification produces the final result.

Figure 2: Our shading curve supports manipulation of shading profiles, which dictate how the colour, associated with a shading curve,
propagates out from the curve. Such shading profiles can give rise to a wide range of effects. In (a) and (b), the colouring related to an
S-shaped curve is largely controlled via shading profiles. In (c), the extent of a cast shadow is controlled principally by moving the enlarged
control point. In (d), a specular highlight is created with a bell-like profile. We also refer to the Supporting Information Video S1, which
demonstrates interactive manipulation of shading profiles.

subdivision surfaces constructed from shading curves and their as-
sociated profiles. Catmull–Clark subdivision is related to several
attractive properties, such as the local convex hull property and lo-
cal support [dB78], [PR08], which have enabled us to demonstrate
explicit and local control of the colour gradient. A challenge faced
with this approach is to convert the shading curve primitive to con-
trol meshes for Catmull–Clark subdivision. A robust solution to this
problem is presented in Section 4.2.

In summary, our contributions are a new way to define smooth
gradient profiles for vector graphics and a robust solution for deter-
mining the locations of control points for subdivision surfaces from
free-form curves.

2. Related Work

As mentioned earlier, controlling colour gradients is currently
achieved with three approaches: DCs, the linear gradient tool and
the gradient mesh tool. In Section 6, we compare our approach with
all of these three methods. In this section, we describe previous
solutions proposed in the literature to alter the colour gradient with
DCs and alternative methods to achieve shading effects with vector
graphics.

First-order DCs are rasterized via Laplacian diffusion [OBW*08]
[thus solving the partial differential equation (PDE) �f = 0]. The
Dirichlet boundary conditions associated with the PDE (specifying
values of the unknown function) correspond to the colours associ-
ated with each side of the free-form curve drawn by the artist. That
is, Laplacian diffusion is performed by diffusing colours specified

Figure 3: Influence of DCs on colour propagation. The results with
first-order and second-order DCs were drawn with prototype soft-
ware provided in [OBW*08] and [FSH11], respectively. The dashed
regions (bottom right) illustrate that second-order DCs’ derivative
constraints give rise to different types of behaviour depending on
the local configuration of value constraints.

at curves to the image domain, which produces a harmonic colour
function.

Laplacian diffusion does not natively support manipulation of the
colour gradient. However, several extensions have been suggested to
achieve some degree of manipulation: Gaussian blurring can be used
to smooth the sharp transition across the curve [OBW*08], weights
for rational harmonic functions can be utilized to alter the relative
influence of a boundary condition [BEDT10] and diffusion barriers

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



230 H. Lieng et al. / Shading Curves

have been proposed to limit the extent of the colour propagation
[BEDT10] (Figure 3, top).

Gradient control can be achieved by higher order interpolation.
To this end, the DC primitive has been extended to second-order
interpolation with the bi-Laplacian operator [FSH11, BBG12] (thus
solving the PDE �2f = 0). Curves and points related to Neumann
boundary conditions (derivatives of the unknown function) can be
specified. Derivative curves constrain the first derivative to zero
either along the curves or across the curves [BBG12].

While the zero-derivative constraints provide a way to manipu-
late the gradient of the colour function [FSH11, BBG12], they do
not achieve explicit colour gradient control. We have found these
constraints to have two types of behaviour on the colour function, as
demonstrated in Figure 3 (bottom). The first type of behaviour sup-
presses the propagation of colour. This can be seen in the top portion
of the example, where the black colour is suppressed (red-dashed re-
gion). This is because there are only white point constraints located
normal to the derivative curve; the other black point constraints are
occluded by tear curves (the boundary of the apple). The colour
of the white point constraint located normal to the curve is there-
fore propagated to the zero-derivative curves. In the bottom portion
of the image, however, both black and white constraints are located
normal to the zero-derivative curves, without being occluded by tear
curves. In this scenario, the derivative curves give rise to a wavy-
shaped colour profile (blue-dashed region). As a consequence of
these two different types of behaviours, zero-derivative constraints
can give rise to unpredictable behaviour because their influence on
the colour gradient depends on the spatial configuration of neigh-
bouring colour constraints. By contrast, our approach lets the user
manipulate the colour gradient out from curve locations explicitly
without being influenced by neighbouring curves, as demonstrated
in the Video S1 and in Figure 2.

An alternative way to shade vector-based drawings is to convert
the image into a pseudo-3D representation (that is, a normal vector
is associated with each pixel) or a full 3D representation (with depth
coordinates and normal vectors). Standard 3D shading techniques
can then be used to shade the image. If normal vectors have been
extracted, a local shading model, like Phong shading, is suitable
[WTBS07, WOBT09, SBSS12] and if depth information has been
extracted, global rendering methods, like path tracing, can be used
[SKČ*14].

We decided not to pursue this line of research. The rationale for
this decision is that estimating normal vectors and depth informa-
tion in the general setting of 2D images is challenging and therefore
prone to give a result other than that desired by the artist. A manual
method, like ours, provides the user with a type of input that is
directly associated with the resulting image: the input colours are
associated with the colours of the objects and the shading profile
represents the propagation of those colours. Note that we are not
arguing that manual methods are ‘better’ than automatic methods.
However, we do argue that a user of future drawing technology
should be allowed to draw shading and abstract colourings manu-
ally. There is therefore incentive to improve such manual drawing
technologies.

Alternatively, one can model full 3D representations, purely
via the 2D domain, which can be later rendered and viewed in

Figure 4: Drawing chiaroscuro with a traditional method (top;
images from [Civ05]) and with the shading curve (bottom). Such
drawing can be performed in three stages. Stage 1: outline object
boundaries and main tonal areas. Stage 2: fill in each area with a
tone or colour, and with the shading curve: define the extent of the
propagation of colours (green and red quads and triangles). Stage
3: smooth out the colours or tones, and with the shading curve:
adjust shading profiles globally and locally.

traditional 3D applications [Joh02, JC08, OSJ11, AJC11]. Such
methods typically inflate bounded domains to surfaces, using input
curves as boundary conditions. Note that several methods employ
Laplacian diffusion to achieve such inflation (e.g. [JC08, AJC11],
which is similar to how DCs are used for colour diffusion. In this re-
spect, Andrews et al. [AJC11] provide several mechanisms to adjust
the gradient of the surface using internal curves, an approach akin
to our slope curves and the zero-derivative constraints employed
by Finch et al. In general, however, such methods are not directly
suitable for colour interpolation because additional aspects, such
as avoiding colour saturation, would have to be incorporated. Note
that a reconfiguration of 2D-to-3D modelling methods that employ
Laplacian diffusion would correspond to first- and second-order
DCs, which we compare against in Section 6.

Finally, Olsen et al. [OSJ11] use the distance transform (DT) for
the inflation of their surfaces, which can seem similar to our usage
of the DT (Section 4). However, the two methods employ the DT
for different purposes. The method of Olsen et al. uses the DT to
inflate their meshes (that is, defining z coordinates). By contrast,
our solution uses the DT to place the boundary of the shading
from a given curve [that is, defining (x, y) coordinates]. Our use
of the DT in this setting is therefore novel, as further described in
Section 4.

3. Drawing with Shading Curves

The shading curve is inspired by chiaroscuro drawing [Cen54] (Fig-
ure 4). We suggest the following approach to drawing with shading
curves:

(1) Draw areas of constant tone with curves, including object
boundaries and main tonal areas.

(2) Fill in each individual area with constant colour and select the
influence of that colour to adjacent areas.

(3) Smooth out the colours with shading profiles. Refine colours
and tones locally by adjusting the attributes of the shading
curves.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



H. Lieng et al. / Shading Curves 231

Figure 5: Creating a 3D control mesh from a curve. Attributes used
to control the shape of the corresponding surface are associated
with the curve: an extent attribute is associated with the extent of
the mesh in the image plane perpendicular to the curve, a height
attribute is associated with the height of the mesh perpendicular
to the image plane and a shape attribute defines the shape of the
surface normal to the curve. The resulting subdivision surface can
be used for various effects. In this example, a green colouring is
created from the depth buffer of the surface rendering.

In addition to the shading curve primitive, we have found it help-
ful to treat boundary curves and interior curves differently. Thus,
we have implemented two types of shading curves with differ-
ent behaviour. The first type of curve, the boundary curve, de-
fines a sharp transition across the curve. It is therefore suitable for
object boundaries since they are typically defined as hard edges
(e.g. Figure 2c). By contrast, the second type of curve, the slope
curve, defines a smooth transition across the curve. Slope curves
are useful for shading highlights and transitions within the object
interior, such as specular highlights and cast shadows from other
objects (e.g. Figure 2d).

4. Manipulation and Rasterization of Shading Curves

In this section, we present the framework for defining and rendering
shading curves. Figure 5 shows the pipeline of the framework and
the Video S1 shows interactive manipulation of shading curves. Our
framework takes, as input, a set of cubic B-spline curves in 2D. A
set of attributes is associated with either side of each curve. These
attributes are stored along with the curve control points. A user
can chose to globally manipulate attributes, by selecting curves or
to perform local manipulations, by selecting curve control points.
From this set of inputs, our framework creates 3D control meshes,
which define Catmull–Clark subdivision surfaces. The depth buffer
of an OpenGL rendering is then used to create the desired effect,
implemented as either a luminance alteration or a colour profile.

There are two computational steps involved in our pipeline: creat-
ing 3D control meshes from curves (Section 4.2) and rendering the
surfaces (Section 4.3). The framework is computationally efficient
and the user is able to refine the input interactively. Note that both
computational steps must be performed if shading curves are moved
in the image plane. In contrast, it is not necessary to recreate the 3D
control meshes if curves are not moved (e.g. control meshes do not
have to be recreated if shading profiles are manipulated).

Figure 6: Notational labels added to the example given in Figure
5. There is no notational difference between the two control meshes
associated with the curve. In this illustration, they are marked in
red and green colours and the black control points are shared.

Before the computational steps are presented, we need formal
definitions of the input curves and the output control meshes. These
definitions are presented next.

4.1. Definitions

An input B-spline curve is defined by a sequence of n control points
Qi = (xi, yi), i = 1, . . . , n (Figure 6, left). The 2D unit normal
vector of the curve at the position related to Qi , computed from the
curve’s first derivative [dB78], is denoted Ni . It is assumed that the
normal vectors are consistently oriented. Three attributes, extent,
height and shape, are attached to each control point:

� extent, ei ∈ R
+
0 : defines the extent of the mesh in the direction

Ni from Qi ;
� height, hi ∈ R: defines the height of the mesh in the perpendicular

direction to the image plane at Qi ;
� shape, ((αi,2, βi,2), (αi,3, βi,3)); αi,j , βi,j ∈ [0, 1] ⊂ R: defines the

shape of the surface profile from Qi towards Ni .

Figure 7 illustrates how these shading profiles can be edited in
a user interface by manipulating curves (rendered as cubic Bézier
curves) defined in a normalized coordinate system. The extent and
height attributes are, in our prototype system, edited via sliders.

With the input curves and attributes defined, the output 3D control
meshes are now described. A control mesh is created on the side
of the curve related to the direction of Ni . A mesh in the opposite
direction −Ni can also be created. Note that there is no requirement
that both meshes are created and they can be treated as completely
separate. In our prototype system, the user can manually enable or
disable the meshes on either side of the curve. In addition, control
meshes are created separately for each curve. Given a set of disjoint
curves, our framework therefore creates a set of disjoint control
meshes. If multiple curves are joined at a junction point, the related
control meshes can be merged (see the supplementary document,
Section 1, for implementation details).

The 3D control points derived from and associated with Qi are de-
fined as Pi,j = (xi,j , yi,j , zi,j ),i = 1, . . . , n; j = 1, . . . , m, where
n is the number of control points associated with Qi and m is
the number of control points associated with the shading profile

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



232 H. Lieng et al. / Shading Curves

(αi,2,βi,2)

(αi,3,βi,3)

(αi,2,βi,2)
(αi,3,βi,3)

Figure 7: The three attributes of a shading curve manipulated in
our prototype user interface: shape—the shading profile—is ma-
nipulated by the inner control points of a cubic Bézier curve. The
extent and height (strength) attributes are edited with sliders. The
red/green colourings are used to separate the two sides of the curve.

(Figure 6, right). We have found m = 4 sufficient to demonstrate
our results in Section 5. A rectangular grid of size n × m is initially
assumed to be created out from the curve. However, some quads
will later be deliberately degenerated to triangles.

The coordinates (xi,4, yi,4) represent the location of the ‘outer-
most’ control points, Pi,4, of the mesh. A naı̈ve definition of this
point is

(xi,4, yi,4) = Qi + Niei . (1)

This solution, however, can give rise to folding artefacts when
the surface is projected to 2D. Note that this problem has been
encountered previously in vector graphics (see the supplementary
document, Section 2, for a brief review). However, previous solu-
tions are not robust to the geometrical layout of the input curves.
Placing (xi,4, yi,4) is therefore the principal problem of our frame-
work. We present a robust solution to this problem in Section 4.2.

The z, or ‘height’, coordinates are now defined. The control points
along the original curve, Pi,1, are set according to the corresponding
height attribute. We can assume that the effect of the surface, being
adjustment in luminance or colour, should fair out to have zero
effect at the ‘other’ end of the control mesh at Pi,4. That is, surface
values of z = 0 do not alter the image. Given the related curve
control points Qi = (xi, yi, 0), the following coordinates can now
be defined:

Pi,1 = (xi, yi, hi);
Pi,{2,3} = αi,{2,3}

(
Pi,1 − Qi

) + βi,{2,3}
(
Pi,4 − Qi

)
;

zi,4 = 0.

Figure 8: Slope (top) and boundary (bottom) curves. Slope curves
compose single smooth surfaces and boundary curves compose two
separate surfaces.

The control points Pi,{2,3} related to the shape attribute are therefore
placed on the plane defined by Pi,1, (xi, yi, 0), and Pi,4, ensuring
that the profile is indeed modelled in the direction towards Pi,4.

By default, the height attribute defines changes in luminance
using the LAB colour space. To support coloured profiles, the RGB
colour space can optionally be used. Each curve therefore has an
optional colour attribute C on each side.

We have so far treated the control meshes on each side of the
curves as separate meshes. Thus, the transition across a curve will
typically be discontinuous. However, one might wish to model a
smooth transition across the curve. To this end, we have imple-
mented two types of curves: boundary curves for discontinuous
transitions and slope curves for continuous transitions (Figure 8).
The only technical difference between these two types of curves is
that, for each i, the Pi,1 on both sides of a slope curve are merged;
that is, they appear only once in the control mesh. The slope curve,
now only associated with a single (merged) control mesh, therefore
gives rise to a single smooth surface defined on both sides of the
curve.

All coordinates of the 3D control mesh have now been introduced.
In the supplementary document, Section 1, we describe additional
aspects related to these meshes, including design decisions at junc-
tions, high curvature points and curve-end points.

4.2. Defining the coordinates related to extent

In this section, we describe our solution to the placement of the
‘outermost’ mesh control points related to the extent attribute. This
placement captures the extent of the shading profile out from the
curve. Before presenting our solution (Section 4.2.2), we describe
this problem in more detail.

4.2.1. Problem description

To discuss this problem, we need some idea of what we mean by
a ‘good’ solution. Informally speaking, the control meshes should
behave naturally and should not give rise to visual artefacts when
applied to images. Such visual artefacts appear when the following
conditions are violated. When the control meshes are projected to
the 2D image, they should:

� Condition 1: not overlap each other;
� Condition 2: not fold.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



H. Lieng et al. / Shading Curves 233

Figure 9: When the 3D control meshes are projected to the (x, y)-
plane, overlaps between meshes and folds are unwanted. The rows
of the meshes have been coloured with a constant colour to highlight
the folding artefacts.

Figure 9 illustrates the visual artefacts related to the two condi-
tions. Mathematically, when either of these conditions is violated,
the resulting function defined by the projected surfaces gives rise to
discontinuities. Such discontinuities should be avoided since they
represent sharp jumps in the image, like image edges. Instead, the
resulting function should be smooth across the image, unless colour
jumps are specifically specified by, for example, drawing two curves
in separate layers.

Note that we are only concerned with the extents of the control
meshes projected to the 2D plane. This projection is defined by
simply neglecting the z coordinate. To this end, we will, in the
remainder of this section, refer to the mesh control points Pi,j as
2D points with the coordinates (xi,j , yi,j ). In addition, let the line
Pi,1–Pi,4 be Li and the curve defined by Pi,4 be the approximate
offset curve of the input curve.

4.2.2. Solution

Our solution performs a single step of tracing on the DT [RP66]
surface given by the input curves. The 3D coordinates of a DT
surface point are defined as an (x, y) position in image plane and
z, the distance to the closest curve point at (x, y) (Figure 10). This
surface has many useful properties:

� The gradient at any point not positioned at an input curve or at
the medial axis (MA) [Blu67] of the set of input curves points in
the direction normal to the curve;

� The slope of this gradient is 45◦;
� C0 creases in the surface relate to the input curves and the MA;
� The slope along the MA is less than or equal to 45◦;
� Stationary points (not related to curve points) and local extrema

on the surface lie on the MA transform.

A conceptual solution is now described. Imagine a particle
dropped on the DT surface for each Qi along Ni . Such a parti-
cle is dropped infinitely close to the curve point associated with Qi

in the direction of Ni (that is, it is dropped on the correct side of
the curve). These particles then follow the gradient field on the DT
surface.

According to the properties of the DT surface, the particles behave
as follows (Figure 10). As time increases, they move ‘upwards’
along the direction of the gradient, towards the MA. When the MA

Figure 10: Our solution traces particles on the DT surface. The
particles follow the gradient of the surface. Consequently, they are
implicitly traced along the MA.

is reached, they will continue to move along the MA until they
reach a local extremum and then remain stationary. Eventually, all
particles will reach a local extremum or the edge of the domain (i.e.
the image border). A particle also turns stationary if its z coordinate
(i.e. its DT value) equals the extent attribute.

A control point Pi,4 is placed on the location of its related station-
ary particle. Quads related to Qi and Qi+1 (that is: the quads defined
by Pi,1, Pi+1,1, Pi+1,4 and Pi,4) are degenerated to triangles if their
related particles coincide (that is: if Pi,4 = Pi+1,4, they merge into
a single control point). Our implementation of this solution traces
pixels on the discrete DT of the input curves (see the supplementary
document, Section 3, for implementation details).

4.2.3. Discussion

Our solution satisfies Conditions 1 and 2, as long as the input curves
do not intersect (in such cases, the curves can be trivially split):
Control meshes of neighbouring curves do not overlap (Condition
1) as the meshes are constrained by the MA. Meshes do not fold
(Condition 2) as the paths created by the particles only merge; they
do not cross.

The offset curve defined by Pi,4 is restricted by the MA. However,
one might wish to extend the shading profile further. A future inves-
tigation could be to verify whether a weighted DT [KKB96] can be
used for this purpose. This extension would increase the complexity
of the curve primitive since a weight needs to be attached to it.

4.3. Rendering

The process of creating the final image from the control meshes is
straightforward: subdivide the control meshes given by Pi,j , ren-
der the surfaces off screen, and then apply these surfaces to the
underlying image.

In our prototype system, we allow users to associate a colour
with each image region bounded by the input curves. This approach
produces a flat-shaded image and represents the ‘underlying’ image.
This image is supplemented with a rendering of the surfaces to
produce the resulting image.

We render our surfaces as Catmull–Clark subdivision surfaces.
Since a surface must interpolate its boundary curve (defined by Qi)
in the image plane, boundary subdivision rules are used [DKT98].
We have used two subdivision steps to produce our results. In
some cases, where the surface is stretched over a large area, three

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



234 H. Lieng et al. / Shading Curves

subdivision steps can produce a visually smoother result. Note that
increasing to three subdivision levels still provides an interactive
system in our setup.

To create a complete per-pixel shading profile for the image, we
render the Catmull–Clark surfaces using OpenGL off-screen render-
ing. The shading image, S, is then extracted from the depth buffer.
The camera parameters are set so that depth values directly corre-
spond to the height attributes; thus S ∈ [−100, 100] for luminance
and S ∈ [0, 1] for colour.

Finally, this shading image is applied to the underlying image
I producing the resulting image R. Luminance adjustment in the
LAB luminance channel L is performed by

RL = IL + S.

The two other colour channels are set by the corresponding channels
in I .

In the setting of colour adjustment, the result is created by linearly
interpolating between the original image and an image, IC , defined
with the piecewise constant colour C:

R = S × IC + (1 − S)I.

5. Results

The shading curve is adaptable to a wide range of visualizations.
In this section, we discuss various types of visualizations that can
be drawn using shading curves and we describe ways in which this
primitive can be used. The prototype system was informally tested
with novice users (Figure 11), which indicated that the primitive is
easy to learn and use. Furthermore, we achieved interactive editing
with our implementation. The Sonic image (Figure 11) has most
surfaces (172) in a single layer. On a system running Ubuntu 12.04
on an Intel Core i7 CPU (870, 2.93 GHz x8), timing for the DT
tracing was 18 and 70 ms for the rendering of the subdivision sur-
faces. The performance for subdivision could be further improved
with a GPU implementation [NLMD12], where we should expect a
performance boost of at least one order of magnitude, according to
timings on such implementations.

Recall from Section 3 the three-stage approach to drawing
with the shading curve: (1) outline objects and main tonal ar-
eas, (2) fill in colours and define the influence of those colours
and (3) smooth out colours with shading profiles. In the follow-
ing, we present ways in which the final stage can be performed
efficiently.

Figures 12(a) and (b) show cartoon-like images created
using the default settings [(αi,2, βi,2) = (0.15, 1.0); (αi,3, βi,3) =
(0.4, 0.0); hi = ±20; ei = 3% of the image diagonal]; height is
manually set negative for dark shadings. Adding slope curves to
such images, as in Figure 12(d), can induce more glossy looks.
Simulated 3D effects can be achieved by varying the attributes
along the curves (Figures 12c and d). Increasing or decreasing the
height at selective locations along boundary curves adds a sense
of location of the main light sources in the scene, as well as their

Figure 11: Image shaded with our tool by a user with no artistic
training in less than 10 min. We provided the user with the input
curves (bottom right) which we traced from an image of Sonic
c©SEGA.

strength (Figure 12 g). The two other parameters, extent and shape,
are then varied to give the shading form. Extent is typically set equal
for all control points along a boundary at the preferred offset. Note
that if the extent is set too large, the surfaces will extend to local
maxima in the DT. See Figure 2(a) for an example where the extent
is set further than the MA, forcing many ‘outer’ mesh points to be
placed on a local maximum. This can be dealt with by the artist by
decreasing the extents. Such editing is analogous to editing using
the width tool in Adobe Illustrator.

The shading profile is the most important factor for creating var-
ious types of shadings (Figures 2 and 13). Varying the first shape
point related to Pi,2 between (0, 0) and (0, 1) (βi,2 = 0) in the nor-
malized coordinate system creates a steep shading fall-off, and is
suitable for more diffuse conditions. On the other hand, varying this
shape point between (0, 1) and (1, 1) (αi,2 = 1) creates a stronger
profile out from the boundary and is suitable for depicting cast
shadows and shading highlights. The second shape point, defining
Pi,3, should be placed along (0, 0) and (1, 0) (αi,3 = 0) for a smooth
fall-off to zero at Pi,4. The location of this fall-off in the image is
then controlled by this shape point. The offset curve defined by Pi,3

can also be shown in the main editing window so that the artist can
directly visualize this fall-off.

Figures 14 and 15 show multi-layered images shaded with the
chiaroscuro-inspired drawing technique. Each area is defined as
single layer and is blended with the underlying flat-shaded image
with either screen or multiply blending modes.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



H. Lieng et al. / Shading Curves 235

Figure 12: Images drawn with our system.

(αi,3,βi,3)

(αi,2,βi,2)

(αi,2,βi,2)

(αi,3,βi,3)

Figure 13: Shading profiles for various effects. Image at left, image
with overlaid control mesh at right. (a) The chin is emphasized with
a wavy profile. (b) The 3D shape of the glasses is conveyed by the
use of strong light and sharp fall-off of the profiles.

6. Comparisons with Related Work

Recall from Section 1 that there are three previous methods to ma-
nipulate colour gradients in vector graphics: DCs, the linear gradient

tool and the gradient mesh tool. In this section, we discuss the dif-
ferences between these methods and our approach.

6.1. Comparisons with DCs

Recall that there are two types of DCs: first-order DCs and second-
order DCs. In the following, we compare both of these two primitives
with our shading curve.

6.1.1. First-order DCs

The naı̈ve first-order DCs primitive (that is, not assuming additional
attributes like blur or weights) is simpler than our primitive. The DC
primitive can be associated with a single attribute on each side of the
curve: colour. By contrast, our method requires the additional width
attribute (assuming that height and shape are fixed). In certain types
of scenarios, where colour images produced by Laplacian diffusion
provide acceptable results, the DC primitive can be preferable as
less input is required.

The disadvantage of first-order DCs, compared to the shading
curve, is that they are limited to harmonic solutions. The artist
is therefore constrained to first-order diffusion conditions. Figure
16 demonstrates this point: the solution of first-order DCs is only

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



236 H. Lieng et al. / Shading Curves

smooth away from constraints. Thus, this solution produces creases
along curves, which can only be smoothed by post-processing op-
erations such as image blurring. By contrast, methods with control
over derivatives and gradients, such as the shading curve and second-
order DCs, support smoothness across input curves.

6.1.2. Second-order DCs

The limitations of first-order DCs motivated Finch et al. [FSH11] to
propose second-order DCs. The PDE is now constrained by RGB

colours and derivative constraints. In the framework proposed by
Finch et al., a curve associated with derivative constraints forces the
derivative of the colour function to zero either across the curve or
along the curve. See Figure 17 for an informal visual comparison
with our method.

The mathematical differences between our method
(subdivision—Catmull–Clark spline surfaces) and second-
order DCs (PDEs—thin-plate spline surfaces) give rise to practical
differences between the two approaches (see the supplementary
document, Section 4, for a brief introduction to these two types
of surfaces). The advantage of DCs is related to vivid colourings.
Our method uses surfaces as interpolants between an underlying
image and colour or luminance associated with shading curves.
Thus, colour propagation is controlled along a shading curve and
can only be manipulated in its perpendicular direction with shading
profiles. While DCs do not support the flexibility of shading
profiles, they support points as constraints. A point constraint adds
boundary constraints to its four nearest pixels. In this way, the
colouring of an object can be separated from the curves defining
the object’s boundary by placing point constraints inside the object.
This approach can be preferred over drawing ‘special’ curves, as
required by shading curves, to achieve certain colourings (see the
supplementary document, Section 5, for a practical example).

Aspects where the shading curve is preferable over DCs include
local gradient control, layering and computational efficiency:

� The shading profile, modelled with Catmull–Clark subdivision,
provides a local way to model colour gradients. The extents of
the edits are local because the control meshes are directly created
from the extent attribute of the shading curve. The shading pro-
file is guaranteed to influence only locally the colour/luminance
function owing to local behaviour of Catmull–Clark surfaces. By
contrast, DCs do not provide a way to locally control the colour
gradient. Instead of curved profiles, representing the gradient of
the colour/luminance function in a given direction, DCs’ deriva-
tive constraints are restricted to forcing the derivative to zero
in a given direction (Section 2). Thus, DCs do not possess the
same degree of freedom for manipulating the colour gradient. In
addition, the boundary conditions of DCs are global constraints,
influencing the entire colour function. Providing a similar mech-
anism to the shading profile with DCs is therefore challenging
(see the supplementary document, Section 4, for supporting in-
formation on this claim).

� DCs are not particularly suitable for layering. In image com-
positing, the spatial extent of a layer should be easily defined.
This is ensured with the shading curve using the extent attribute.
By contrast, the solution of DCs must be well defined inside the

boundary specified by the DCs. This boundary must be explic-
itly defined by curves, meaning that influences of open curves
and point constraints are not easily constrained. In practice, sin-
gle objects, fully enclosed by curves or the image border, can
be separated into layers. Local effects like specular highlights,
however, would not typically be treated by layering and should
be incorporated as a single layer to ensure that their effects are
smoothly blended with each other.

� Interactive performance is easily achieved with our method. Even
the naı̈ve CPU implementation provides acceptable performance.
On the other hand, a diffusion process solves a large, sparse, lin-
ear system which is naı̈vely time consuming. Approximate solu-
tions with low-resolution CPU finite element methods [BBG12]
or high-resolution (re-evaluation-only) boundary element meth-
ods [IKCM13] need to be employed in order to achieve interac-
tive speeds with second-order DCs.

In the supplementary document, Section 4, we discuss additional
practical aspects related to this comparison. In addition, obser-
vations from drawing sessions with novice users indicated that a
tool based on shading curves would be easier to learn compared to
second-order DCs and drawing sessions with professional design-
ers indicated that our primitive can complement the current suite
of tools (see the supplementary document, Section 7, for details on
these drawing sessions).

6.2. Comparisons with the linear gradient tool

Illustrator’s brush tool supports linear and radial directions of colour
gradients both along and across a brush stroke. The feature of apply-
ing the gradient across the stroke, named ‘gradient on a stroke’, was
added in version CS6 (2012). A linear or radial gradient is defined as
an editable univariate colour function (a curve in colour space) ap-
plied in a given (linear or radial) direction. The gradient-on-a-stroke
feature is similar to the shading curve since it can be combined with
Illustrator’s width tool, introduced in version CS5 (2010), to define
editable colour gradients out from curves in a given extent. While
the extent can be varied along the curve, using the width tool, the
colour gradient must remain constant for the entire stroke.

Mathematically speaking, the gradient-on-a-stroke tool and the
shading curve are different. Although both are defined similarly, Il-
lustrator’s brush tool is associated with a univariate colour function
and the shading curve is associated with a univariate shading pro-
file, the rendering of the two primitives is fundamentally different.
Illustrator’s tool renders the brush primitive with reference to its as-
sociated colour profile. By contrast, our method creates a bivariate
colour/luminance function (i.e. a surface), shaped according to the
shading profile. The rendering of the shading curve is related to the
surface instead of being directly produced from the original shading
profile. With Illustrator’s method, without any reference to a smooth
surface, it is not clear how smooth colour profiles can be achieved.

Hence, there are three potential sources of visual artefacts in Illus-
trator’s tool: the rendering procedure, the deformation procedure and
blending with underlying layers. Figure 18 shows images coloured
with Illustrator’s tool, where artefacts are visible. In comparison, our
rendering procedure, using subdivision surfaces, produces smooth
profiles without discontinuities.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



H. Lieng et al. / Shading Curves 237

Figure 14: Drawing with the chiaroscuro-inspired drawing technique. The smaller images, in the centre of the figure, comprise regions that
are each shaded with a single flat colour. The larger images at left and right are these same images shaded off using the proposed shading
curve framework. Curves were traced from images from c©Evie Moore, switchplane.com (left), and c©sha-x-dow.deviantart.com (right).

Figure 15: Using inspiration from vector shade trees [LMPB*13], our method, along with some artistic skill, can give rise to depictions of
complex materials.

Figure 16: Shading a sphere, a tube and a doughnut with three
different methods. The comparison between the two diffusion curve
methods is fair and accurate, as the inputs are the same. However,
the comparison to shading curves is inaccurate, as the inputs are
fundamentally different from DCs and they are defined separately in
different user interfaces. The results for the diffusion curve methods
are from [FSH11].

6.3. Comparisons with the gradient mesh tool

Illustrator’s gradient mesh tool allows the user to edit smooth (bi-
variate) colour functions with rectangular control meshes. Colours

Figure 17: Informal comparison between our method (left two im-
ages) and second-order diffusion (right two images) [FSH11].

and first derivative constraints are associated with mesh control
points. The control of the colour gradient is similar, but not equal,
to our method. While Illustrator’s tool does not support shad-
ing profiles, the derivative constraints directly correspond to the
first derivative of the colour function out from given locations in
the image. In addition, colours can be edited in the object inte-
rior at points (and not curves), which is not supported with our
method.

A major disadvantage of gradient meshes is that they are restricted
to rectangular control meshes. They do not support free-form curves
as input, which is a more natural type of input in drawing. This
difference is identical to the difference between DCs and gra-
dient meshes. Limitations related to rectangular control meshes
for drawing are well established; see [OBW*08] for more
discussion on this restriction and arguments to why control
meshes are undesirable compared to curves in the setting of 2D
drawing.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



238 H. Lieng et al. / Shading Curves

Figure 18: Visual comparisons between the shading curve and Il-
lustrator’s brush tool. Top: Two types of artefacts produced with
Illustrator’s tool are highlighted: the transition between the brush
colouring and the underlying layer is not smooth, as shown in the
cross section, and folds give rise to C0 crease artefacts, as shown in-
side the red ellipse. The comparisons are relatively fair as a similar
type of input is defined for both methods.

7. Conclusion

We have proposed shading curves as a new primitive for vector
graphics. Shading curves are associated with shading profiles, defin-
ing the colour gradient out from curves. Our primitive is converted
to 3D control meshes and rendered as Catmull–Clark subdivision
surfaces. Catmull–Clark subdivision is related to several attractive
properties, such as the local convex hull property and local support,
which have enabled us to demonstrate explicit and local control
of the colour gradient. Such local control is challenging to achieve
with (bi)Laplacian diffusion, which is used to render images created
using DCs.

Acknowledgements

Lieng was supported by a grant from the Norwegian Government.
Tasse was supported by a Google European Doctoral Fellowship
and an IDB Cambridge International Scholarship. Kosinka was sup-
ported by the Engineering and Physical Sciences Research Council
[EP/H030115/1]. Thanks to Search Press Limited for allowing us to
use an image from [Civ05].

References

[AJC11] ANDREWS J., JOSHI P., CARR N.: A linear variational
system for modeling from curves. Computer Graphics Forum
30, 6 (Sept. 2011), 1850–1861. http://graphics.berkeley.edu/
papers/Andrews-ALV-2011-09/.

[BBG12] BOYÉ S., BARLA P., GUENNEBAUD G.: A vectorial
solver for free-form vector gradients. ACM Transactions on

Graphics 31, 6 (2012), 173:1–9. http://dx.doi.org/10.1145/
2366145.2366192.

[BEDT10] BEZERRA H., EISEMANN E., DECARLO D., THOLLOT J.:
Diffusion constraints for vector graphics. In Proceedings of
NPAR (Annecy, France, 2010), vol. 10, ACM, pp. 35–42.
http://dx.doi.org/10.1145/1809939.1809944.

[Blu67] BLUM H.: A transformation for extracting new descriptors
of shape. Models for the Perception of Speech and Visual Form
1, (1967), 362–380.

[Cen54] CENNINI C. D.: The Craftsman’s Handbook: ‘Il Libro
dell’ Arte’. (D. V. Thompson, Trans.). Dover Publications,
Mineola, NY, USA, 1954. Original work published early 15th
century.

[Civ05] CIVARDI G.: Drawing Light & Shade: Understanding
Chiaroscuro. (L. Black, Trans.). Search Press Limited, Tunbridge
Wells, UK, 2006 (Original work published 2005).

[dB78] DE BOOR C. : A Practical Guide to Splines. Springer, New
York, NY, USA, 1978.

[DKT98] DEROSE T., KASS M., TRUONG T.: Subdivision surfaces in
character animation. In Proceedings of SIGGRAPH (Orlando,
FL, USA, 1998), vol. 25, ACM, pp. 85–94.

[FSH11] FINCH M., SNYDER J., HOPPE H.: Freeform vector
graphics with controlled thin-plate splines. ACM Transac-
tions on Graphics 30, 6 (2011), 166:1–10. http://dx.doi.org/
10.1145/2070781.2024200.

[IKCM13] ILBERY P., KENDALL L., CONCOLATO C., MCCOSKER

M.: Biharmonic diffusion curve images from boundary ele-
ments. ACM Transactions on Graphics 32, 6 (2013), 219:1–12.
http://dx.doi.org/10.1145/2508363.2508426.

[JC08] JOSHI P., CARR N. A.: Repoussé: Automatic inflation of
2D artwork. In Proceedings of SBM (Aire-la-Ville, Switzer-
land, Switzerland, 2008), Eurographics Association, pp. 49–55.
http://dx.doi.org/10.2312/SBM/SBM08/049-055.

[Joh02] JOHNSTON S. F.: Lumo: Illumination for cel animation. In
Proceedings of NPAR (New York, NY, USA, 2002), ACM, pp.
45–ff. http://dx.doi.org/10.1145/508530.508538.

[KKB96] KIMMEL R., KIRYATI N., BRUCKSTEIN A. M.: Sub-pixel
distance maps and weighted distance transforms. Journal of
Mathematical Imaging and Vision 6, 2–3 (1996), 223–233.
http://dx.doi.org/10.1007/BF00119840.

[LMPB*13] LOPEZ-MORENO J., POPOV S., BOUSSEAU A., AGRAWALA

M., DRETTAKIS G.: Depicting stylized materials with vector shade
trees. ACM Transactions on Graphics 32, 4 (2013), 118:1–10.
http://dx.doi.org/10.1145/2461912.2461972.

[NLMD12] NIESSNER M., LOOP C., MEYER M., DEROSE T.: Feature-
adaptive GPU rendering of Catmull–Clark subdivision sur-
faces. ACM Transactions on Graphics 31, 1 (2012), 6:1–11.
http://dx.doi.org/10.1145/2077341.2077347.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.



H. Lieng et al. / Shading Curves 239

[OBB*13] ORZAN A., BOUSSEAU A., BARLA P., WINNEMÖLLER H.,
THOLLOT J., SALESIN D.: Diffusion curves: A vector repre-
sentation for smooth-shaded images. Communications of the
ACM 56, 7 (2013), 101–108. http://dx.doi.org/10.1145/2483852.
2483873.

[OBW*08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H., BARLA P.,
THOLLOT J., SALESIN D.: Diffusion curves: A vector representation
for smooth-shaded images. ACM Transactions on Graphics 27,
3 (2008), 92:1–8. http://dx.doi.org/10.1145/1360612.1360691.

[OSJ11] OLSEN L., SAMAVATI F., JORGE J.: Naturasketch: Mod-
eling from images and natural sketches. Computer Graphics
and Applications 31, 6 (Nov. 2011), 24–34. http://dx.doi.org/
10.1109/MCG.2011.84.

[PR08] PETERS J., REIF U.: Subdivision Surfaces. Springer, New
York, NY, USA, 2008.

[RP66] ROSENFELD A., PFALTZ J. L.: Sequential operations in digital
picture processing. Journal of the ACM 13, 4 (1966), 471–494.
http://dx.doi.org/10.1145/321356.321357.

[SBSS12] SHAO C., BOUSSEAU A., SHEFFER A., SINGH K.:
Crossshade: Shading concept sketches using cross-section
curves. ACM Transactions on Graphics 31, 4 (2012), 45:1–11.
http://dx.doi.org/10.1145/2185520.2185541.

[SKČ*14] SÝKORA D., KAVAN L., ČADÍK M., JAMRIŠKA O., JACOBSON

A., WHITED B., SIMMONS M., SORKINE-HORNUNG O.: Ink-and-ray:
Bas-relief meshes for adding global illumination effects to hand-
drawn characters. ACM Transactions on Graphics 33, 2 (2014),
16:1–15. http://dx.doi.org/10.1145/2591011.

[WOBT09] WINNEMÖLLER H., ORZAN A., BOISSIEUX L., THOLLOT J.:
Texture design and draping in 2D images. Computer Graphics Fo-
rum 28, 4 (2009), 1091–1099. http://dx.doi.org/10.1111/j.1467-
8659.2009.01486.x.

[WTBS07] WU T.-P., TANG C.-K., BROWN M. S., SHUM H.-
Y.: Shapepalettes: Interactive normal transfer via sketching.
ACM Transactions on Graphics 26, 3 (2007), 44:1–6. http://
dx.doi.org/10.1145/1276377.1276432.

Supporting Information

Additional Supporting Information may be found in the online ver-
sion of this article at the publisher’s web site:

Figure S1: An example junction.

Figure S2: A high-curvature point: an additional set of control
points (red) are added at a high curvature control point so that the
surface follows the offset curve more closely.

Figure S3: Treatment at end points of open curves can be sharp or
smooth.

Figure S4: The problem of deforming skeletal strokes is similar to
our problem.

Figure S5: Folding avoidance with the method of Asente.

Figure S6: In contrast to our solution.

Figure S7: Limitation of the shading curve compared to second-
order DCs: vivid colourings can be achieved by a sparse set of point
constraints with second-order DCs.

Figure S8: Instruction images given to our interviewees.

Figure S9: Images shaded by our participants.

Figure S10: Images shaded by trained artists (columns 1–3) and
novice users (columns 4–6).

Video S1.

Supporting information will also be available at the project website:
http://www.cl.cam.ac.uk/research/rainbow/projects/shadingcurves.

c© 2015 The Authors
Computer Graphics Forum published by John Wiley & Sons Ltd.


