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The bifurcations and control of the flow in a planar X-junction are studied via linear
stability analysis and direct numerical simulations. This study reveals the instability
mechanisms in a symmetric channel junction and shows how these can be stabilized
or destabilized by boundary modification. We observe two bifurcations as the Reynolds
number increases. They both scale with the inlet speed of the two side channels and are
almost independent of the inlet speed of the main channel. Equivalently, both bifurcations
appear when the recirculation zone(s) reach a critical length. A two-dimensional station-
ary global mode becomes unstable first, changing the flow from a steady symmetric state
to a steady asymmetric state via a pitchfork bifurcation. The core of this instability,
whether defined by the structural sensitivity or the disturbance energy production, is at
the edges of the recirculation bubbles, which are located symmetrically along the walls
of the downstream channel. The energy analysis shows that the first bifurcation is due to
a lift-up mechanism. We develop an adjustable control strategy for the first bifurcation
with distributed suction/blowing at the walls. The linearly optimal wall-normal velocity
distribution is computed through a sensitivity analysis and is shown to delay the first
bifurcation from Re = 82.5 to Re = 150. This stabilizing effect arises because blowing
at the walls weakens the streamwise velocity gradient around the recirculation zone and
hinders the lift-up.At the second bifurcation, a three-dimensional stationary global mode
with a span-wise wavenumber of order unity becomes unstable around the asymmetric
steady state. Nonlinear three-dimensional simulations at the second bifurcation display
transition to a nonlinear cycle involving growth of a three-dimensional steady structure,
time-periodic secondary instability, and nonlinear breakdown restoring a two-dimensional
flow. Finally, we show that the sensitivity to wall suction at the second bifurcation is as
large as it is at the first bifurcation, providing a possible mechanism for destabilization.

Key words: Global instability, Flow focusing, X-junction, sensitivity analysis, control

† Email address for correspondence: olot2@cam.ac.uk



2 I. Lashgari, V. Citro, L. Brandt, M. P. Juniper and O. Tammisola

1. Introduction

In this study, we examine the stability and control of the flow in a planar two-
dimensional X-junction, which comprises three inlet channels and one outlet channel.
We employ three-dimensional direct numerical simulation (DNS) and global linear sta-
bility analysis to discover the nature of the first and second bifurcations. Finally we use
adjoint-based sensitivity analysis to control the flow by applying apply optimal steady
suction/blowing at the wall.

The present study is mostly fundamental in nature. The flow in the X-junction is a
complex, wall-bounded, separated flow. Understanding the bifurcation mechanisms of
this flow and designing control strategies to influence them is interesting in its own
right, and adds to the physical understanding of a more general class of separated flows,
in particular channel junctions and similar configurations (for example Oliveira et al.
2012; Poole et al. 2007; Chiang & Sheu 2002; Lanzerstorfer & Kuhlmann 2012). In the
present manuscript we show that the critical parameter for the onset of both 2D and
3D instabilities of the X-junction is the length of the recirculation bubble(s) rather than
the Reynolds number. This indicates that similar instabilities can be found at lower or
higher Reynolds flows that develop a similar topology to these recirculation zones.

X-junctions exist in many natural phenomena, such as river junctions, and industrial
applications, such as micromixers and flow focusing devices. Even though the typical
Reynolds number in river engineering is higher than that in the present study (order of
1000-100000), the mean flow streamlines and the recirculation zone downstream of the
junction are qualitatively similar (see e.g. Best 1987). The structure of the recirculation
zone of a river is directly connected to sediment transport and accumulation (river bed
formations) (Best & Reid 1984; Shabayek et al. 2002). Conversely, the Reynolds number
for micromixers and flow focusers is often low (Re<10), except for inertial micromixers (at
Re=100-1000), where the formation of the recirculation zone downstream of the junction
is evident even without non-Newtonian effects.

Micromixers are designed to mix two fluids as efficiently as possible at small length
scales, most often at low Reynolds numbers and in the absence of turbulence (Nguyen
& Wu 2005). Flow focusers are often used to produce controlled-size droplets (Joanicot
& Ajdari 2005), and have been tested for the purpose of creating thread-like fibres in
materials processing (Kinahan et al. 2011; H̊akansson 2012). In the present work we
propose a control strategy by fluid injection/removal (steady suction/blowing), which
could be applicable for recirculatory flows in mixers and focusers despite the low Reynolds
number.

Both mixing and focusing of the flow in X- and T-shaped junctions have been in-
vestigated in previous studies. However, there have only been a few studies in the area
of inertia-driven hydrodynamic instabilities. Oliveira, Pinho & Alves (2012) numerically
and experimentally studied the vortical structure of a Newtonian fluid through an X-
junction. Their numerical study was two-dimensional. They defined the velocity ratio,
Vr, as the ratio of the maximum velocity in the side channel to that in the main channel,
and the width ratio, Wr, similarly. They found that the critical Reynolds number, based
on the exit channel quantities, is about Re ≈ 140 for Vr = 50. They showed that the
instabilities take the form of central vortices in the exit channel.

Mixers have been studied in more detail. Flow regimes in a T-mixer with a rectangular
cross section are reported in the numerical study by Kockmann et al. (2003). As they
increased the Reynolds number, they observed laminar flow, then vortical flow, and
then engulfment flow, in which the streamlines in the mixing channel are asymmetric.
Tomas, Ameel & Guilkey (2010) experimentally studied a Newtonian fluid within a T-
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junction with a rectangular cross section. They observed that the flow first bifurcates to
a steady asymmetric state at Reynolds number, Re = 105, and then a highly oscillatory
asymmetric flow occurs in the range 190 < Re < 240. At higher Re, the flow regains its
symmetric state and the rate of mixing decreases. Recently, Fani et al. (2013) studied
the engulfment regime in a three-dimensional T-mixer with a quadratic cross-section by
direct numerical simulation and a global stability analysis. The mechanism of engulfment
was found to be the tilting of the vortical structures at the beginning of the exit channel.
They also studied the sensitivity to the perturbation inlet velocity and reported that the
flow with non-fully-developed inflow condition tends to be more stable.

Other studies in planar X-junction geometries, (Poole et al. 2007, 2014) considered
rheology measurements. These authors recently extended their studies to the inertial
regime (Poole et al. 2014). In their DNS of Newtonian inertial fluids on the same two-
dimensional configuration as ours, but with a different inflow-outflow structure, they
find a very similar symmetry-breaking bifurcation at the same length of the recirculation
bubbles (L ≈ 6) as ours (but at much higher Re).

The stability analysis and control of the inertia-dominated flow in an X-junction is
also interesting from a fundamental point of view because the flow contains confined
jet-like structures and recirculation regions. The flow in a planar X-junction exhibits
two bifurcations as the Reynolds number is increased from zero. A similar bifurcation
pattern has been observed in a channel with a sudden expansion (Fearn et al. 1990; Fani
et al. 2012), contraction (Chiang & Sheu 2002), or both (Mizushima & Shiotani 2000).
The flow first bifurcates to an asymmetric steady state through a pitchfork bifurcation.
Further increasing the Reynolds number, the flow develops a time-dependent nonlinear
cycle, initiated by a stationary global instability of a single recirculation bubble. Similar
instabilities are observed in the flow behind a bump (Gallaire et al. 2007; Passaggia
et al. 2012), behind a backward facing step (Barkley et al. 2002; Marquet et al. 2009;
Lanzerstorfer & Kuhlmann 2011), in boundary layer recirculation bubbles (Rodriguez &
Theofilis 2010) and in a lid-driven cavity (Albensoeder et al. 2001; Haque et al. 2012).

Adjoint-based sensitivity analysis of flows was first introduced by Hill (1992) and has
been used extensively to examine the receptivity to internal and external modifications
(Sipp et al. 2010; Luchini & Bottaro 2014). In this study, we use a global stability and
a structural sensitivity analysis to investigate the dynamics of instabilities in a planar
X-junction flow. Structural sensitivity analysis was introduced by Chomaz (2005) and
Giannetti & Luchini (2007) to identify the origin of instabilities in open shear flows. The
structural sensitivity is defined as the region of the flow where a force-velocity feedback
results in the largest drift of the eigenvalue. In this paper, we also seek the most efficient
control strategy to delay or promote the first pitchfork bifurcation. We use the sensitivity
to boundary velocity modification, introduced by Hill (1992) and used among others in
Marquet & Sipp (2010), to obtain an optimal suction/blowing distribution at the wall.
Furthermore, we map the control effect on the flow by using the base flow sensitivity
(Marquet, Sipp & Jacquin 2008; Pralits, Brandt & Giannetti 2010). Similar techniques
were used by by Meliga and Chomaz (2011) on the flow in a confined impinging jet. They
employed an adjoint based method to control the global modes by optimal body and wall
forcing on a broadly comparable geometry to that in the present work. Promoting the
first and second bifurcations is useful in order to increase mixing by large-scale structures,
e.g. in inertial micromixers, while delaying the first bifurcation is useful in order to obtain
mixing by diffusion or maintain symmetric flow, e.g. in flow focusers for fibre fabrication.
We also aim to shed further light on the physical mechanisms behind the first bifurcation,
and proposed control strategies.

This paper is organized as follows. We describe the flow configuration, the governing
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Figure 1. Schematic of the geometrical configuration and coordinate system

equations and the stability formulations in §2. We introduce the numerical methods and
validation in §3. We report the results of the stability analysis and control of the first
bifurcation in §4, and the results of the second bifurcation in §5. The conclusions are
presented in §6.

2. Configuration and problem formulation

The flow setup and coordinate system are shown in figure 1. The geometry consists
of a main channel aligned with the x-axis, and two identical side channels attached
perpendicularly to the main channel at the same position, forming a cross. The origin of
the coordinate system is located at the centre of the cross. The mean flow is homogenous
in the spanwise direction (z). The geometry comprises three inlets (one for the main
channel and two for the side channels) and one outlet (for the main channel). The side
channels have the same inflow conditions. The flow is governed by the non-dimensional
incompressible Navier–Stokes and continuity equations,

∂u

∂t
+ u · ∇u = −∇p+

1

Re
∇2u

∇ · u = 0,

where u = (u, v, w) is a vector of nondimensional velocity components, and p is the
non-dimensional pressure. Two non-dimensional parameters define the characteristics of
the flow: the Reynolds number (Re) and the velocity ratio (Vr). The Reynolds number
is defined as

Re =
U1h

ν
, (2.1)

where U1 is the maximum inflow velocity of the main channel, h is the half width of the
channels and ν is the kinematic viscosity. The velocity ratio is defined as

Vr =
U2

U1
, (2.2)

where U2 is the maximum inflow velocity of the side channels. In this paper, we study
the stability of the X-junction flow in the Reynolds number regime 60 < Re < 700 and
velocity ratio 0.5 < Vr < 4. The choice of the value of Vr is based on the experiments by
Tomas et al. (2010) and H̊akansson (2012).
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2.1. Linear stability analysis

In order to perform a linear stability analysis, we decompose the flow into a two-
dimensional steady base flow and an infinitesimal three-dimensional unsteady perturba-
tion. The base flow and perturbation velocities and pressure are denoted by Q = (Ub, Pb)
and q = (u′, p′) respectively. The perturbation q takes the form of two-dimensional global
modes,

u′(x, y, z, t) = û(x, y) exp(σt+ iβz);

p′(x, y, z, t) = p̂(x, y) exp(σt+ iβz), (2.3)

where the span-wise wavenumber, β, exploits the homogeneity of the base flow in the
span-wise direction. For a given β, the complex frequency, σ, can be computed by solving
the linearized eigenvalue problem,

σû + û · ∇Ub + Ub · ∇û = −∇p̂+
1

Re
∇2û (2.4)

∇ · û = 0.

To compute the base flow, we set up parabolic inflow conditions for all the inlets and a
stress free outflow condition for the outlet. For the stability analysis, we set a Dirichlet
boundary condition for all the inlets and traction free boundary condition for the outlet
as suggested by Barkley et al. (2008). The total field (the base flow plus the perturbation)
satisfies the outlet boundary condition. The real and imaginary part of the eigenvalue
σ are the growth rate and oscillation frequency of the corresponding global mode. If
there exists any eigenvalue with <{σ} > 0, the flow is linearly unstable. Conversely, if
all eigenvalues have <{σ} < 0, the flow is linearly stable and infinitesimal perturbations
eventually decay to zero.

2.2. Structural sensitivity

The generalized Lagrange identity is used to derive the adjoint equations. We introduce
a similar ansatz for the non-trivial solution of the adjoint system:

u′+(x, y, z, t) = û+(x, y) exp(−σt+ iβz);

p′+(x, y, z, t) = p̂(x, y)+ exp(−σt+ iβz), (2.5)

where u′+ = (u′+, v′+, w′+) and p′+ are the adjoint velocity and pressure perturbation
fields. The adjoint eigenvalue problem is:

−σû+ −∇Ub · û+ + Ub · ∇û+ = −∇p̂+ − 1

Re
∇2û+ (2.6)

∇ · û+ = 0.

We calculate the direct and adjoint global modes to construct the structural sensitivity
(Giannetti & Luchini 2007). This gives the core of the instability, defined as the region
where a local feedback force proportional to the velocity results in the largest drift of the
leading eigenvalue. The sensitivity tensor is:

S(x0, y0) =
û+(x0, y0)û(x0, y0)∫

D
û+ · ûdA

. (2.7)

The core of the instability can be identified by different norms of the tensor S. Here
we use the spectral norm, which measures the effect of the maximum possible coupling
among the velocity components.
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2.3. Base flow sensitivity

The sensitivity to generic base flow modifications, SBF , where the modified base flow is
not necessarily a solution to the steady Navier–Stokes equations, represents the variation
of the complex eigenvalue, δσ, with respect to the small modification of base flow, δU.
The sensitivity to base flow modification is given by (see Marquet et al. 2008)

SBF =
−(∇û)H · û∗ +∇û+ · û∗∫

D
û+ · ûdA

, (2.8)

where ∗ and H stand for complex conjugate and transpose conjugate respectively. We
denote the horizontal and vertical component of the sensitivity to base flow modification
by SU and SV . Note that for a zero-frequency mode, SBF is a real quantity. This is
because two-dimensional modifications of the two-dimensional base flow can only change
the growth rate of the mode, while the frequency remains zero.

2.4. Sensitivity to boundary velocity modification

The sensitivity to boundary velocity modification, Sb, can be derived by explicitly includ-
ing the boundary condition as a constraint in the Lagrangian functional, and considering
the boundary velocity UB as a control variable. A procedure similar to Marquet et al.
(2008); Marquet & Sipp (2010), then gives:

Sb = P+n +Re−1∇U+ · n, (2.9)

where U+ and P+ are the adjoint base flow velocity and pressure. The eigenvalue drift
is obtained by integrating SB over the domain boundary B:

δσ =

∫
B

Sb · δUB . (2.10)

3. Numerical methods

We compute the base flows with the spectral element method, SEM, implemented in
the code nek5000 (see Tufo & Fischer 1999). In this approach, the computational domain
is divided into quadrilateral spectral elements. The equations are cast into weak form
and discretized following the PN −PN−2 SEM discretization by Maday & Patera (1989).
The velocity space consists of N th-order Lagrange polynomial interpolants, hNi (x), based
on tensor-product arrays of Gauss-Lobatto-Legendre (GLL) quadrature points in a local
element, Ωe, e = 1, ..., E, satisfying hNi (ξNj ) = δij , where ξNj ∈ [−1, 1] denotes one of
the N + 1 GLL quadrature points and δij is the Kronecker delta. SEM combines the
geometrical flexibility of finite elements with the high accuracy of spectral methods. It
results in exponential convergence of the solution when the polynomial order is increased,
called p-refinement (see Patera 1984). It can also be used for localized refinement by
increasing the number of elements, called h-refinement.

We use the stability solver DOG (Barkley et al. 2008) to investigate three-dimensional
instabilities about the two-dimensional base flows. The perturbation fields are considered
as Fourier modes and dealt with in Fourier-transformed space. A time stepping technique
is used to calculate the evolution of the direct and adjoint equations. A built-in library,
together with ARPACK, calculates the eigen-solution of the stability problem.

The three-dimensional global modes (β 6= 0), discussed in § 4.2.4, are computed using
the FreeFem++ open-source finite element software (Pironneau et al. 2013), validated in
§ 3.1 against Nek5000 and DOG. For this we use P2-P1 Taylor-Hood elements.
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Reynolds number coarser mesh finer mesh relative error (%)

80 0.0 - 0.0626i 0.0 - 0.0633i 0.0111
90 0.0 + 0.0476i 0.0 + 0.0472i 0.0084
100 0.0 + 0.1288i 0.0 + 0.1285i 0.0023

Table 1. Influence of the grid resolution on the growth rate of the leading eigenvalues

Code inlet length outlet length growth rate

Nek5000 4 40 0.0476
Nek5000 8 40 0.0811
Nek5000 16 40 0.0815
Nek5000 8 80 0.0811

DOG 8 40 0.0807
FreeFem++ 8 40 0.0813

Table 2. Influence of the domain size on the growth rate of the leading eigenvalues at Re = 90

3.1. Validation

In this section, we show the effect of the resolution and domain length on the stability
of the flow in order to validate the numerical methods. We ensure that the leading
eigenvalue does not vary when the number of elements and the polynomial order, Np,
are increased, and also when the inlets and outlet channels are lengthened. These results
are summarized in tables 1 and 2. In the first study, we compare two meshes: a coarser
mesh with 1072 elements and Np = 8, and a finer mesh with 2544 elements and Np = 8.
The inlet and outlet lengths are 4 and 40 respectively, while the width of the main
and side channels are 2. Table 1 shows that the growth rate of the leading eigenvalue
changes by less than 0.1% so we choose the coarser mesh for the rest of this study. In
the second study, documented in table 2, we quantify the effect of the domain length on
the stability, employing three different numerical codes. Based on this result, we choose
the inlet lengths to be 8 and the outlet length to be 40. These tests shows a very good
agreement between the results obtained with the three different stability solvers.

4. First bifurcation

4.1. Linear stability analysis

For Vr = 3 and Reynolds number Re < 82.5, the DNS converges to a steady and stable
symmetric flow in the X-junction (see figure 2a). At the beginning of the outlet channel,
a symmetric jet forms and establishes two recirculating regions. Further downstream, the
flow recovers the Poiseuille channel flow profile due to the action of viscous dissipation.
As the Reynolds number increases, a steady and stable asymmetric state appears (see
figure 2b). At the start of the outlet channel, the jet tilts towards one of the walls and
the two recirculation regions have unequal sizes. There is an equal probability for the
jet to tilt towards the upper or lower wall. The same phenomenon has been observed in
similar flow configurations (see the experimental studies by Cherdron, Durst & Whitelaw
(1978) and Fearn, Mullin & Cliffe (1990) on the laminar flow over a planar symmetric
sudden expansion). We define the Reynolds number at which the flow changes its state
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Figure 2. Horizontal velocity distribution for Vr = 3 (a) symmetric steady state at Re = 80
(b) asymmetric steady state at Re = 110

from steady symmetric to steady asymmetric, as the critical Reynolds number of the
first bifurcation, Rec1. The attachment of a jet to the adjacent wall, the Coanda effect,
has been studied for some time (see the early work by Bourque & Newman 1960). It is
understood as a consequence of the pressure difference established in the cross-stream
direction (see e.g Sobey & Drazin 1986). To better understand the nature of the first
bifurcation, we perform a global stability analysis around the symmetric base flow. In
order to obtain the steady but unstable symmetric base flow at Re > Rec1, we simulate
the flow in only half of the domain, imposing the symmetry boundary condition on
the axis of symmetry. The global analysis in the full domain around this symmetric
flow at Re > Rec1 has stationary unstable modes for all velocity ratios. In the linear
framework, the flow therefore becomes globally unstable through a pitchfork bifurcation.
In figure 3(a), we show the growth rate of the leading global modes as a function of the
span-wise wavenumber, β, for the symmetric basic flows at Re = 82.5, 90 and 115 and for
Vr = 3. The most unstable mode has zero span-wise wavenumber; i.e the first bifurcation
is two-dimensional, and the critical Reynolds number for the first bifurcation is 82.5. The
eigenvalue spectrum of the flow at Re = 82.5 is shown in figure 3(b) for a zero span-wise
wavenumber. The distribution of the eigenvalues is symmetric around the zero frequency
axis, and the least stable eigenvalues are discrete (well separated from the continuous
spectrum further down in the figure).

Figure 4 shows the spatial structure of the most unstable global mode for Re = 90 and
β = 0. Only part of the domain is shown; the domain size is larger in the simulations.
The global modes have highest amplitude around the recirculation bubble and the u-
perturbation is the strongest. This increases the speed at the outer edge of the bottom
bubble and decreases the speed at the outer edge of the top bubble. The v-perturbation
moves the flow down around x = 2 and up around x = 6. The p-perturbation shows
that the pressure decreases in the bottom bubble around x = 4 and increases in the top
bubble. The structure of the global modes suggest that the streamwise acceleration leads
to lower pressure at the lower recirculation zone (the opposite for the top bubble), which
in turn induces a cross-stream pressure gradient which helps to maintain the asymmetry.
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Figure 3. (a) Growth rate of the leading eigenvalues about the symmetric base flows for Vr = 3
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Figure 4. Spatial structure of the direct global modes, (a) horizontal velocity, (b) vertical
velocity, and (c) pressure around the symmetric base flow at Re = 90, Vr = 3 and β = 0

This effect is similar to the asymmetric attachment in stenotic flow which is described in
the work by Sherwin & Blackburn (2005): “the axial perturbation velocities induce a weak
cross-flow pressure gradient and flow... Therefore the perturbation flow tends to deflect
the centreline of the enclosed jet away from the tubes axis of symmetry, promoting a mild
Coanda-type attachment”. The growth of the u-perturbation itself can be explained by a
lift-up mechanism, as will be detailed in a later paragraph.

The region with the highest structural sensitivity, which is also known as the core of
the instability, is the region of the flow in which force-velocity feedback has the greatest
influence on the eigenvalue. This core is found by overlapping the direct and adjoint
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global modes and is shown in figure 5(a). It is localized at the edge of the recirculation
bubble(s), suggesting that the instability can be controlled by manipulating the bubble.
This will be confirmed in §4.2, where passive control by optimal suction/blowing at the
wall is examined. Here we depict only the spectral norm of the sensitivity tensor. The u+u
component of the sensitivity tensor is significantly stronger than the other components
and has the same structure as the spectral norm.

In figure 5(b), we present the spatial map of the production of the perturbation kinetic
energy for the same flow. The production term is normalized by the overall perturbation
kinetic energy in the domain. The regions of largest transfer of the kinetic energy from
the base state to the perturbations are found in the shear layer at the edge of recircu-
lation bubbles. Interestingly, the core of the instability corresponds to the region of the
maximum positive and negative production.

More specifically, we compute the contribution of the term uvdU/dy in the production
of the perturbation kinetic energy. The spatial map of this term is depicted in figure 5(c),
and can be compared to the map of total energy production in 5(b). We observe that
total energy production and energy production by the term uvdU/dy are almost identical
in amplitude and shape, from which we conclude that the instability growth is due to
this term.

The disturbance extracts energy from the base flow through the uvdU/dy-term in
several shear flow instabilities, most notably, the Kelvin-Helmholtz instability, Tollmien-
Schlichting waves, and the lift-up effect. To determine the instability mechanism in our
flow, we note that the present instability is stationary, the mode shape streamwise elon-
gated, and the streamwise velocity component order of magnitude larger than the vertical
component (figure 4 a and b). This strongly indicates a lift-up mechanism, where a small
initial v-perturbation induces a strong u-perturbation (for a review on lift-up see Brandt
(2014)).

This instability is different from the lift-up in parallel flows due to the feedback pro-
vided by the recirculation region, which leads to a self sustained mechanism. This is sim-
ilar to the finding of Kuhlmann 2011 who note that the instability behind a backwards-
facing step is caused by a lift-up effect, which gains its exponential growth through
recirculation for some specific value of the step height. The present configuration with
two symmetric bubbles is more unstable than the case of a single bubble, because the
2D asymmetric instability mode sets in at lower Reynolds numbers. This can also be
explained by the energy budget: the antisymmetric global mode involving two bubbles
allows the v-perturbation to be constant in the vertical direction, minimizing dv/dy, and
thereby minimizing the global dissipation.

The critical Reynolds number for the first bifurcation depends significantly on Vr.
Figure 6(a) shows that the critical Reynolds number decreases monotonically from about
530 for Vr = 0.5 to about 60 for Vr = 4. Nonlinear simulations on the two-dimensional
domain give the same result for the first bifurcation (not shown here). If we define
the Reynolds number based on the maximum velocity at the side channels, however,
the neutral curve for the first bifurcation is almost independent of the velocity ratio:
Rec = 262.5–245 for Vr = 0.5–4. We also examine two extreme cases: Vr = 10 and
Vr = 0.2. For Vr = 10, Rec ≈ 260 based on U2, similarly to the previous cases. For
Vr = 0.2 however, Rec ≈ 310, i.e. the flow is more stable when the side flow is weaker.
This shows that the critical Reynolds number of the first bifurcation is mainly determined
by the inlet velocity of the side channels.

To visualize the bifurcation of the flow in the X-junction quantitatively, we introduce
a measure of the deviation from the symmetric flow: the v-velocity at (x, y) = (3, 0), on
the centreline. In figure 6(b), we show the maximum and minimum value (in time) of
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Figure 5. (a) Spatial map of structural sensitivity; (b) production of the perturbation kinetic
energy; (c) lift-up perturbation kinetic energy around the symmetric base flow at Re = 90,
Vr = 3 and β = 0.

this measure as a function of the Reynolds number. Up to Re = 110, the flow is steady
and v is constant. The first bifurcation is evident at Re = 82.5. We will return to this
figure when examining the second bifurcation.

For this flow, the point of first bifurcation seems to be determined by the size of
the recirculation region. Figure 7 shows the stagnation streamline that starts from the
upper right corner, (x, y) = (1, 1), and separates the recirculating bubble from the flow
that passes through the X-junction. For a fixed velocity ratio Vr = 3, figure 7(a), the
bubble elongates as the Reynolds number increases. For the cases along the neutral curve,
figure 7(b), the bubble has almost the same size for various velocity ratios and Reynolds
numbers. It seems therefore that the first bifurcation occurs when the bubble reaches a
critical length, which is about 6.1.

This result also provides a physical explanation for the scaling found in figure 6(a).
The shape of the recirculating region at the critical conditions is unaffected by the main
stream when Vr > 0.5. This is because the side flows force the horizontal stream to
flow down the middle of the exit channel without affecting the dynamics of the bubbles.
This explains the dependency of the bifurcation thresholds on the velocity of the side
channels. For low velocity ratios however, i.e Vr = 0.2, the stability boundary is different
and Rec is higher. Based on these principles, we anticipate that the critical condition for
the T-junction will be very similar to that of the X-junction.

To investigate whether the bifurcation is supercritical or subcritical, we have performed
nonlinear simulations with various amplitudes of initial noise and have observed that the
final steady symmetric solution is attained for all cases when Re < Rec1. This is also
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ratio (b) Bifurcation diagram of the X-junction flow with velocity ratio Vr = 3

true when we simulate the flow using an asymmetric solution as the initial condition. We
conclude therefore that the first bifurcation is supercritical.

4.2. Control of the first bifurcation

A traditional way to control globally unstable open shear flows is by a control cylinder.
However, for a complex wall-bounded geometry, small amplitude suction or blowing at
the walls presents a more versatile option because the amplitude distribution can be
varied more easily. We therefore try to control the first bifurcation of the X-junction by
small-amplitude steady (time-independent) suction or blowing at the walls.

4.2.1. Sensitivity to wall suction

The sensitivity Sb(x, y) represents the change in the growth rate due to a localized
velocity change of amplitude A = 1 at the boundary location (x, y), in the linear limit.
The eigenvalue drift for different amplitudes and finite actuation areas can be obtained
from Sb by integration (Equation 2.10). Figure 8 (a) shows the real part of Sb,n, which
is the change in the growth rate σr due to control in the horizontal channel. By suction
we mean a velocity at the wall in the direction of the outgoing normal. We show the
sensitivity for two different Reynolds numbers: Re = 90 (just above bifurcation) and
Re = 150 (far from bifurcation). The main observation is that the sensitivity to suction
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Figure 7. Recirculation bubble of symmetric base flows for (a) a fixed velocity ratio, Vr = 3,
and Re = 60 (red line - - -), Re = 80 (black line — ), Re = 115 (blue line . . . ) and Re = 162.5
(green line - . - . - .) (b) some cases along the neutral curve for Re = 520, Vr = 0.5(red line - -
-), Re = 162.5, Vr = 1.5(blue line ...), Re = 80, Vr = 3(black line —) and Re = 60, Vr = 4(green
line - . - . -)

is largest just downstream of the junction, around x = 3, and that suction there increases
the instability growth rate, for both Re = 90 and Re = 150. Therefore, suction in this
location is destabilizing.

The sensitivity is lower at Re = 150 than at Re = 90, and both stabilizing and
destabilizing effects are observed for the same actuation. This indicates that a lower
amplitude is needed to control the flow at Re = 90 than at Re = 150. Also, at Re = 150
the departure from the steady symmetric solution will be greater than it is for the Re=90
flow, suggesting that the sensitivity at Re = 150 might be less relevant for control of the
bifurcated flow.

Figure 8(b) shows the sensitivity along the upstream and downstream walls of the
vertical channel at Re = 90 and Re = 150. The sensitivity is generally lower in the
vertical channel than in the horizontal channel, apart from at the corners, where they
are equal. The sensitivity is large and negative close to the downstream corner, which
means that suction there is stabilizing. However, this region where suction is stabilizing
is very small, making control near the corner difficult. Comparing the results at the same
height y in the upstream and downstream channel, it is interesting to note that the
sensitivity is higher on the upstream wall, except at the corner.

4.2.2. Passive control by distributed suction and blowing

The sensitivity distributions, such as the curves in figure 8, are also gradient distri-
butions. This means that real(Sb,n) gives the suction distribution that increases the
eigenvalue growth rate most, of any suction distribution with a given L2-norm (and with
a low enough amplitude so that the linear analysis is valid). Correspondingly, −real(Sb,n)
gives the distribution that decreases the eigenvalue growth rate most. If −real(Sb,n) is
applied at the boundary, the critical Reynolds number should increase.

We therefore test how far the linearly optimal distribution can increase the critical
Reynolds number. The procedure is as follows. We choose a suction amplitude A and
first compute the base flow and modes at bifurcation; then extract the optimal stabilizing
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Figure 8. (Colour online) Sensitivity of the growth rate to suction at the main channel walls:
(a) horizontal channel (w.r.t. x) and (b) vertical channel (w.r.t. y), left wall (blue) and right wall
(green). Re = 90 (plain solid line) and Re = 150 (solid line with circles). Sensitivity to blowing
is the same curve negated. The sensitivities to suction at both side channels are equal and are
the same at the upper and lower walls of the horizontal channel. The minimum value of the solid
line in the downstream corner is outside the axis in both subfigures: it is real(Sb,n) = −1.8.

suction distribution −real(Sb,n) and scale it so that the ratio of the absolute value of
the maximal suction velocity, and the maximal inflow velocity, is equal to A. Next, we
apply the optimal suction distribution at the boundary, and recompute the base flow and
the global modes. If all global modes now have negative growth rates, then all steps are
repeated at higher Re. We keep increasing the Reynolds number until the growth rate
of the leading mode is positive despite the control. In this way, we have found the new
critical Reynolds number corresponding to the suction amplitude A.

The critical Reynolds numbers for A = 0, 0.01, 0.02 and 0.03 are shown by vertical
lines in figure 9. First, it is remarkable that suction of such a small maximal amplitude
as 3% of the inflow velocity can stabilize the flow until Re = 150, which is almost double
the critical Reynolds number of the uncontrolled case. Higher suction amplitudes were
also tested but did not result in any further increase of the critical Reynolds number.
The change of the flow rate due to suction or blowing in the configuration with A = 0.03
is also around 3%, which is small. Changes in the total flow rate due to control could be
adjusted for by applying suction/blowing in the region downstream (x > 10), if desired.
In this region, the instability is not sensitive to suction or blowing, and hence the flow
rate adjustment would not interfere with the control effect.

The linear growth rate without suction is also shown in the same figure and reaches
values up to σr = 0.27 at Re = 150. The growth rate with the linearly optimal suction
still becomes negative at this Re (the flow is stabilized). Therefore suction/blowing is a
robust and efficient way to control the X-junction flow. Next, we will investigate how the
control works in more detail.

4.2.3. Physical interpretation of suction control

The optimal suction distribution has several simultaneous effects on the base flow.
We cannot create arbitrary base flow changes because the base flow has to satisfy the
Navier–Stokes equations. Some of the changes induced by the optimal suction might have
a large effect on the growth rate, and some might have no effect at all but be merely a
consequence of the fact that the base flow has to satisfy the Navier–Stokes equations.
To find out where the effective base flow changes induced by suction are located, we
investigate the product of the base flow sensitivity (Eq. 2.8) and the base flow change:∫
B

SBF · (Us −U0), where Us is the base flow velocity vector with suction, and U0 the
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Figure 9. (Colour online) The effect of optimal boundary suction/blowing. The curve (blue
online) gives the global mode growth rate of the uncontrolled base flow. The vertical lines
(colour online, labeled) give the stability limits at different values of suction.

base flow velocity vector without suction. This product gives a spatial map of the control
effect, and the real part, displaying stabilization, is shown in figure 10 for Re = 90 and
Re = 150. Inside and just outside the recirculating region, the suction induces stabilizing
and destabilizing base flow modifications respectively. It can be seen that the stabilizing
influence occurs almost entirely inside the recirculation bubble, where the wavemaker
defined by the structural sensitivity (figure 5) is located. This is true for both Re = 90
and Re = 150, although the optimal suction distributions themselves (figure 8) are
qualitatively different. Hence, in line with the stability results, we find the suction to be
optimal because of its effect on the most influential region of the flow: the recirculation
bubble.

To quantify in more detail how the control changes the recirculation bubble, we inves-
tigate three base flows at Re = 90: (a) without suction/blowing, (b) with optimal sta-
bilizing suction/blowing −real(Sb,n), and (c) with optimal destabilizing suction/blowing
real(Sb,n) (see figure 11). The most stable flow has the fewest streamlines with reverse
flow and the smallest recirculation bubble - i.e. there is both weaker and less recircula-
tion. By looking at −real(Sb,n) (the negative of the curve in figure 8a), we observe that
this is achieved by blowing from the wall in the location of the recirculation bubble. The
attenuation of the instability can be attributed to two factors. Firstly, blowing decreases
the velocity gradient between the main stream and the bubble, decreasing vdU/dy and
hence weakening the energy production by lift-up. Secondly, blowing also counteracts the
recirculation, which is needed to produce exponential growth of the otherwise algebraic
lift-up mechanism.

4.2.4. Control of three-dimensional modes

Previously, we showed that the optimal wall suction distribution can be computed
for the leading two-dimensional eigenmode, and stabilizes that mode up to Re = 150.
However, to confirm that the flow is indeed stabilized by suction, we also need to stabi-
lize all three-dimensional eigenmodes, β 6= 0. It is impossible to experimentally design
different controls for different wavenumbers. Therefore we proceed to examine whether
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Figure 11. Streamlines around the recirculation bubble of the base flow: (a) Base flow with
zero wall velocity, (b) Base flow with optimal stabilizing suction/blowing distribution at the
wall, magnitude 1%, (c) Base flow with optimal destabilizing suction/blowing distribution at
the wall, magnitude 1%.

the two-dimensionally optimal suction stabilizes all modes, whether optimal or not, for
β 6= 0.

The leading eigenvalues for different values of β are shown in figure 12 for the case
Re = 150, with suction and without suction. Interestingly for the cases without suction,
spanwise periodic modes become gradually less and less stable by increasing the Reynolds
number. The spanwise wavenumber of the least stable mode becomes different from zero
at Re ≈ 120, and approaches β = 0.5 when Re = 150. To understand this effect,
we analyze the perturbation energy budget for the cases Re = 90 and Re = 150 at
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Re β production dissipation

90 0 0.474 -0.325
90 0.5 0.296 -0.377
150 0 0.536 -0.257
150 0.5 0.599 -0.254

Table 3. Perturbation kinetic energy budget
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Figure 12. (Colour online) Re = 150: Growth rate of the most unstable eigenvalue as a
function of β, with (red stars) and without (blue stars) 2D optimal suction

β = 0 and β = 0.5. The production and dissipation of the perturbation kinetic energy,
normalized by the kinetic energy, are shown in table 3. The wavenumber selection only
depends on which wavenumbers experience most energy production by the lift-up effect.
Dissipation does not vary significantly with β, whereas the production grows with Re
for β = 0.5. Thus lift up is more effective at finite β despite the presence of a spanwise
velocity component in the dissipation term.

When applying control by optimal suction, we see that the eigenvalues become stable
for all β. Results for Reynolds numbers lower than 150 also show the same behaviour.
This confirms that the control works well for two- and three-dimensional modes, and the
flow is indeed stabilized up to Re = 150. Furthermore, we observe that the modes at
nonzero spanwise wavenumbers are more affected by suction than the two-dimensional
mode and the controlled flow is characterized again by a least stable mode of β = 0.

5. Second bifurcation

5.1. Linear analysis

When the Reynolds number is increased beyond the first bifurcation, the flow maintains
its steady asymmetric state until Re = Rec2, the critical Reynolds number for the sec-
ond bifurcation. For Re > Rec2, it bifurcates again due to the action of stationary global
modes around the steady asymmetric base flow. For Vr = 3, a global stability analysis
gives an unstable global mode with β = 1 for Re = 115. In figure 13(a), we show the
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Figure 13. (a) Growth rate of the leading eigenvalues around the asymmetric base flows for
Vr = 3 at Re = 115(black ©) and 120(red +) (b) Eigenvalue spectrum at Re = 115, Vr = 3 and
β = 1

leading eigenvalues as a function of the span-wise wavenumber at Re = 115 and 120. The
second bifurcation is also of the pitchfork type. Figure 13(b) shows the eigenvalue spec-
trum of the asymmetric base flow at Re = 115. The spectrum is discrete and symmetric,
as for the symmetric base flows.

We present the features of the most unstable global mode around the asymmetric base
flow in figure 14. The structure of the modes illustrates the asymmetry of the underlying
base flow; in this case, the jet is tilted towards the lower wall. The u-component is
the strongest and is maximal at the larger recirculation bubble, close to the upper wall
of the outlet channel. The v and w-perturbation modes also display their maximum
amplitude next to the larger bubble. The strong u-perturbation of the global direct
mode together with the strong v+-perturbation of the global adjoint mode (not shown
here), suggests that the lift up mechanism is active in the shear layer associated with
the largest recirculating region (see Marquet et al. 2009). The perturbation transports
the base flow momentum from the regions of low-speed to those with higher-speeds and
creates a large u-perturbation.

Figure 15 shows the overlap of the direct and adjoint global modes, which is the core
of the instability at the second bifurcation. The core is located in the larger recirculation
bubble. Note that the core of the instability at the second bifurcation is in the middle
of the bubble and extends over the whole bubble, while the core of the instability at the
first bifurcation was localized at the downstream edges of the two bubbles (see §5.1).
The instability is three-dimensional and steady, which is similar to the instabilities that
develop along the streamlines in the flow behind a bump or in a cavity (see e.g Gallaire
et al. 2007; Albensoeder et al. 2001; Rodriguez & Theofilis 2010) and at the recircu-
lation region over a backward-facing step (see e.g Marquet et al. 2009; Lanzerstorfer
& Kuhlmann 2011). Lanzerstorfer & Kuhlmann (2011) used the energy production, to-
gether with the flow streamlines, to distinguish between three types of instability for the
backwards-facing step: centrifugal, elliptic and lift-up mechanism. We shall attempt to
do the same for the second bifurcation. The energy production for the instability leading
to the second bifurcation is shown in figure 15 (b). The maximum of the production is in
an area of curved streamlines, but the velocity increases radially outwards (to the middle
stream), which precludes centrifugal instability. Furthermore, elliptic instability would
be indicated by a maximum production in the centre of a vortex, while in our case the
maximum is at the outer edge of the recirculation region. Similarly to the analysis of
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Figure 14. Spatial structure of the direct global modes, (a) stream-wise, (b) cross-stream and
(c) span-wise around the asymmetric base flow at Re = 120, Vr = 3 and β = 1

the first bifurcation, we present the spatial structure of the lift-up term (uvDU/Dy) in
the production of the perturbation kinetic energy in 15 (c). The lift-up term presents
a structure relatively similar to the total production, both with a localized maximum
at the downstream edge of the larger recirculation bubble where the base flow shear is
strongest. We conclude that also the second bifurcation is due to the lift-up mechanism
(Lanzerstorfer & Kuhlmann 2011), and the vertical velocity perturbation extracts en-
ergy from the base flow shear (dU/dy) to produce in this case streamwise-elongated low
and high speed streaks. We also show that the structural sensitivity (figure 15 a) is the
largest in the middle of the bubble, indicating that velocity perturbations initiated there
participate in the streamline displacement and the lift-up.

In figure 6(a), we show the critical Reynolds number for the second bifurcation. This
neutral curve has the same behaviour as that of the first bifurcation. The second bifur-
cation is also almost independent of the velocity ratio if the Reynolds number is based
on the maximum velocity in the side channel. For all velocity ratios greater than one,
the most dangerous mode is found to have span-wise wavenumber β = 1. However, for
Vr = 0.5, the mode with β = 1.4 is the most unstable.

5.2. Nonlinear analysis

In order to further understand the results of the linear analysis about the second bi-
furcation, we perform nonlinear simulations on a three dimensional periodic geometry
with span-wise length, Lz = 2π, corresponding to β = 1. We use 3, 6 and 9 spectral
elements in the span-wise direction (the polynomial order is 8 as in the 2D simulations)
to ensure that the final results are mesh independent. We construct an initial condition
for the DNS consisting of the asymmetric base solution combined with the spanwise peri-
odic perturbation leading to the strongest transient energy growth (computed separately
by standard direct-adjoint iterations). The initial condition is scaled to have maximum
span-wise velocity, the strongest component, equal to one. The non-linear evolution of the
initial condition shows that the span-wise velocity decays to zero and a two-dimensional
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Figure 15. (a) Spatial map of the structural sensitivity, (b) Production of the perturbation
kinetic energy around the asymmetric base flow at Re = 120, Vr = 3 and β = 1, the dashed
lines represent the base flow streamlines.

steady state is obtained asymptotically for all Re 6 105 (below the second bifurcation).
Interestingly, once all the disturbances have traveled out of the computational domain,
the larger recirculation bubble may have moved to the opposite side with respect to
the initial condition. We therefore find two possible steady two-dimensional solutions for
Re 6 105 once the convective instabilities have travelled out of the domain.

At Re > 110 and Vr = 3, the nonlinear flow becomes time-dependent and three-
dimensional. To ensure that this behaviour is independent of the outlet length, we have
run also a three dimensional nonlinear simulation at Re = 110 where the outlet length
is increased from Lout = 40 to Lout = 60. The flow has the same nonlinear cycle as in
the simulations with the shorter outlet length described below. In figure 16 we present
the time evolution of the span-wise velocity for the case Re = 120. Similar behaviour
is observed for Re ∈ [110 − 140]. The nonlinear evolution of the flow displays a cyclic
behaviour with a period of about 50 time units, where t0 in the figure is the initial time
of the cycle. The span-wise velocity first grows in time up to a critical threshold, where
the maximum non dimensional spanwise velocity becomes w ≈ 0.85 (see figure 16(a)).
Above this threshold, the flow develops instabilities at the end of the large recirculation
region, figure 16(b). These instabilities prevent the three-dimensional flow structurefrom
saturating nonlinearly to a stationary state. Instead, they break down the structure
and produce a convective packet traveling downstream, as shown in figure 16(c). Once
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Figure 16. Time evolution of the span wise velocity at Re = 120 and Vr = 3 (a) initial
amplification of velocity (b) onset of instability at w ≈ 0.85 (c) convective instabilities (d)
re-establishment of the span-wise velocity

the instabilities have been convected out of the domain, the flow returns to a nearly
two-dimensional state, the span-wise velocity starts to grow again at the end of the
re-circulation region, and the cycle repeats, figure 16(d). The behaviour of the flow is
similar at higher Reynolds number. In figure 17 we present the history of the v-velocity
extracted from the probe signals for Re = 110 and Re = 120 when Vr = 3. The cyclic
behaviour of the nonlinear simulation is evident. Upstream, the velocity varies smoothly
in time. Downstream, the flow shows rapid oscillations at the end of each cycle, which
correspond to the secondary instability and the formation of the traveling packet. The
period of each cycle for Re = 120 is shorter and not constant in time with respect to the
one for Re = 110.

In summary, we observe a steady two-dimensional flow at Re 6 105 and an unsteady
three-dimensional final state at Re > 110. This behaviour is also shown in figure 6(b).
The appearance of the nonlinear cycle is evident at Re = 110 where the v-velocity at
the centreline becomes time-dependent. This critical Reynolds number agrees qualita-
tively but not quantitatively with the results of the linear stability analysis, where the
asymmetric base flow results in an unstable stationary global mode at Re > 115. DNS
of the three-dimensional configuration with different initial conditions indicates that the
second bifurcation is weakly subcritical. In the subcritical case the cycle is initiated by
similar flow structures. The observed spanwise modulation growing at the beginning of
the cycle (figure 16(a) for Re = 120) resembles the leading global mode at the same
Reynolds number. This is also true for Re = 110. Hence, although the bifurcation is
weakly subcritical, we assume that the physical mechanism behind the nonlinear cycle
at Re = 110 is the same as global instability at Re > 115.

We further analyse the nonlinear cyclic behaviour of the flow by using the linearized
Navier–Stokes solver on a three-dimensional base flow. We create an artificial base flow
by adding the unstable span-wise dependent global mode to the two-dimensional base
flow at Re=120. The amplitudes of the unstable mode are chosen to produce a maximum
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Figure 18. (a) Spatial structure and (b) exponential growth of the energy of the unstable
traveling mode about the fictitious flow with w = 0.85 at Re = 120 and Vr = 3

span-wise velocity of the new base flow in the range 0 < w < 1. Marching the linearized
Navier–Stokes solver about this fictitious flow, we observe, for w > 0.85, the appearance
of an oscillatory mode that preserves its shape while growing exponentially in time. If
the maximum of w is less than 0.85, the non-stationary mode eventually decays - i.e.
the flow is stable. We depict the structure of the span-wise velocity component of the
oscillatory mode in figure 18(a). It emerges at the end of the larger recirculation bubble
and disappears downstream at a stream-wise location about 25. The frequency of the
oscillatory mode is about 1.25 which is close to the frequency of breakdown in the non-
linear simulation (about 1). Figure 18(b) presents the energy growth of the oscillatory
mode. A significant transient growth of energy is evident for 0 < t < 5, followed by
exponential growth. The presence of this oscillatory unstable mode, which grows expo-
nentially, reduces the span-wise modulation of the flow. Our hypothesis is that in the
nonlinear DNS, this oscillatory mode leads to chaotic flow and nonlinear breakdown to
a nearly two-dimensional flow at the end of each cycle. After breakdown, the span-wise
modulation caused by the global mode (β = 1) starts to grow again and a new cycle
starts.

5.3. Sensitivity to wall suction

The second bifurcation is caused by a three-dimensional stationary global mode around
the asymmetric steady state. Here we examine the sensitivity of the second bifurcation
to wall suction/blowing.
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Figure 19. (Colour online) Sensitivity of the second bifurcation to wall suction (Re=115), at
the adjacent wall of the largest bubble (solid blue line) and at the opposite wall (dotted green
line)

The sensitivity to wall suction at both walls is shown in figure 19, for asymmetric
flow at Re = 115. Blowing away from the wall at the streamwise location of the two
asymmetric recirculation bubbles is stabilizing, and suction destabilizing, as for the first
bifurcation in § 4.2.1. The sensitivity at the second bifurcation is highest at the side of
the larger recirculation bubble.

Some general observations about the control of the second bifurcation can be made.
First of all, the magnitudes of the sensitivity to the wall suction are nearly twice as large
as for the first bifurcation. This means that control of the second bifurcation is likely to
be efficient. One should note that in order to obtain the best control effect, one would
need to know at which wall the larger bubble is. Since the Pitchfork bifurcation might
lead to a larger bubble on either wall, the control needs to be adjustable.

Stabilizing control of the second bifurcation at Re = 115 is probably of limited interest
because we have shown that the critical Reynolds number for the first bifurcation can be
increased as far as Re = 150 with control. However, destabilizing control of the second
bifurcation could be interesting for inertial micromixers, for which a time-dependent state
causes enhanced mixing.

6. Conclusions

In this paper, we have investigated the hydrodynamic instabilities of the flow in an
X-junction using three-dimensional Direct Numerical Simulation (DNS), linear global
stability, and sensitivity analysis.

For all the velocity ratios considered in this study, the X-junction exhibits two bifur-
cations as the Reynolds number is increased. The destabilization first occurs through a
pitchfork bifurcation to a two-dimensional, asymmetric steady state at Re ≈ 82.5 for
velocity ratio Vr = 3. Global stability analysis around a symmetric flow at Re > 82.5 de-
tects the zero-frequency unstable two-dimensional global mode, which is responsible for
this first bifurcation. The core of the instability, both in terms of the structural sensitivity
and the disturbance energy production, is localized symmetrically at the edges of the two
recirculation bubbles. The kinetic energy budget of the perturbation is analysed, and the
structure and amplitude of the lift-up term in the energy budget is shown to be almost
identical to the total production. This together with the mode shapes, stationary stream-
wise elongated modes with strong streamwise velocity, shows that the lift-up mechanism
causes the perturbation energy growth. This is similar to the finding of Lanzerstorfer
& Kuhlmann (2011) for the backwards-facing step, where at a certain parameter range,
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the vertical velocity perturbation extracts energy from the base flow shear to produce
streamwise-elongated low and high speed streaks. The first bifurcation in the X-junction
is however two-dimensional, as was the original lift-up mechanism identified by Landahl
(1975). The presence of two recirculation bubbles make it possible to form antisymmetric
modes, which induces a cross-stream pressure difference promoting asymmetry, and also
minimises the dissipation by vertical velocity gradients.

We show that the shape of the recirculating region at the critical condition is unaffected
by the velocity of the main channel and is determined only by the velocity of the side
channels. Therefore, the value of the critical Reynolds number based on the velocity of
the side channels is found to be almost constant for the range of velocity ratios studied.
Our hypothesis is that the instability appears at a critical size of the recirculation zones
(around 6 channel half widths for the first bifurcation), which are more affected by the
side flows than by the main flow. Also in a previous study, an instability in a junction
with different inflow-outflow structure appeared at the same length of the recirculation
zone (Poole et al. 2014).

An adjustable control strategy for the first bifurcation is proposed in the form of
distributed suction/blowing at the walls. This proves to be an efficient means to maintain
a symmetric flow. In the sensitivity distribution, the positive values represent suction
and the negative values represent blowing. This wall-normal velocity is then applied at
both walls symmetrically in actual computations, at different small amplitudes, and the
stability recalculated. The optimal stabilizing wall-normal velocity increases the critical
Reynolds number for the first bifurcation from Re = 82.5 to Re > 150, with normalized
amplitude of only 3% both in terms of maximum velocity and flow rate. The main
stabilizing effect is due to blowing from the wall, which reduces both the backflow and
the velocity gradient responsible for the lift-up mechanism.

The second bifurcation has more intricate dynamics. Linear stability of the steady
asymmetric base flow, obtained after nonlinear saturation of the first instability, reveals
that a new instability appears at Re ≈ 115 for Vr = 3, again as a zero-frequency global
mode. This unstable mode has a span-wise wavenumber β ≈ 1 for all velocity ratios Vr >
1. As for the first bifurcation, the Reynolds number for the second bifurcation is dictated
by the side channel velocities only or, physically, the size of the larger recirculation bubble.
The structural sensitivity is localized in the middle of the bubble but the maximum
perturbation kinetic energy is localized at the edge of the bubble. The lift up term of the
production of the perturbation kinetic energy is dominating and its structure is similar to
the total production. This suggests that the second bifurcation is also due to the lift-up
instability mechanism similar to the findings of Marquet et al. (2009) and Lanzerstorfer
& Kuhlmann (2011).

The behaviour at the second bifurcation is clearly defined by means of non-linear
simulations. These three-dimensional simulations show that the flow is steady and two-
dimensional, regardless of the initial condition, for Re 6 105. However, for Re > 110, we
observe a nonlinear cycle: a two-dimensional asymmetric flow, the growth of a spanwise
modulation, a time-dependent chaotic flow, traveling wave pocket and return to a nearly
two-dimensional asymmetric flow. We use the linearized Navier–Stokes solver to explain
the nonlinear breakdown of the flow by a secondary instability: we identify an oscillatory
unstable mode that grows exponentially about an artificial base flow, constructed by
combining the steady asymmetric base flow with the unstable three-dimensional steady
mode, when the amplitude of the spanwise modulation reaches a critical value. The
frequency of the oscillatory unstable mode is found to be similar to the one of the
nonlinear breakdown. The DNS indicates that the second bifurcation is weakly subcritical
because it occurs at Re = 110, while a three-dimensional global mode destabilizes first
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at Re = 115. However, the structure of the growing spanwise modulation resembles
the leading global mode (at Re = 110, it is marginally stable), and we conclude that the
same physical mechanism is active for Re > 110. The sketch representing the bifurcations
versus the Reynolds number for the flow with velocity ratio Vr = 3 is presented in figure 6
(b).

Finally, we show that the sensitivity to wall suction at the second bifurcation is twice
as large as at the first bifurcation – i.e. that this control is efficient. Given that the
critical Reynolds number for the first bifurcation can be increased as far as Re = 150 by
boundary blowing/suction, stabilization of the second bifurcation should be studied at
higher Reynolds number. Destabilizatin of the second bifurcation with control could be
useful in order to trigger instabilities that increase mixing in micromixers.
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