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A B S T R A C T

Regulation by non-coding RNAs was found to be widespread among plasmids and other
mobile elements of bacteria well before its ubiquity in the eukaryotic world was sus-
pected. As an increasing number of examples was characterised, a common mechanism
began to emerge. Non-coding RNAs, such as CopA and Sok from plasmid R1, or RNAI from
ColE1, exerted regulation by refolding the secondary structures of their target RNAs or modi-
fying their translation. One regulatory RNA that seemed to swim against the tide was Rcd,
encoded within the multimer resolution site of ColE1. Required for high fidelity mainte-
nance of the plasmid in recombination-proficient hosts, Rcd was found to have a protein
target, elevating indole production by stimulating tryptophanase. Rcd production is up-
regulated in dimer-containing cells and the consequent increase in indole is part of the
response to the rapid accumulation of dimers by over-replication (known as the dimer ca-
tastrophe). It is proposed that indole simultaneously inhibits cell division and plasmid
replication, stopping the catastrophe and allowing time for the resolution of dimers to mono-
mers. The idea of a plasmid-mediated cell division checkpoint, proposed but then discarded
in the 1980s, appears to be enjoying a revival.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

If the ambition of every bacterium is to become two bac-
teria (Jacob, 1974), then the ambition of every plasmid is
to make sure it gets into both of them. To persist in a cell
population a plasmid must minimise the probability of loss
at division and neutralise the growth advantage that any
plasmid-free cells are likely to enjoy. This short review
focuses on the role of one regulatory RNA, Rcd, in multicopy
plasmid maintenance. However, to set the story in context,

we should review briefly the mechanisms of action of the
multiple small, non-coding RNAs involved in the control of
plasmid replication, conjugation and host-killing. Their
targets are typically cis-encoded complementary RNAs so
these regulators are sometimes called anti-sense RNAs.
By binding to their targets they alter function by chang-
ing higher-order RNA structure or regulating translation
(reviewed by Brantl, 2007).

2. Creating the paradigm of plasmid regulatory RNAs

Keeping copy number high enough to ensure that plas-
mids are delivered to both daughters at cell division, but
not so high that it imposes an unnecessary load on the host,
is particularly important for multicopy plasmids. ColE1 pro-
vides a well characterised example of copy number control
by a small RNA (Cesareni et al., 1991). An RNA pre-primer
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(RNAII) transcribed from a constitutive promoter 555 bp
upstream of the origin of replication folds into a complex
secondary structure with multiple stem-loops (Masukata and
Tomizawa, 1986). As an essential prelude to replication ini-
tiation, RNAII forms a stable complex with DNA at the origin
of replication and the primer for leading strand replica-
tion is created by RNaseH cleavage of the RNA strand in
the complex (Itoh and Tomizawa, 1980). Primer forma-
tion, and hence replication initiation, is regulated by small,
non-coding counter-transcript (RNAI) that is expressed from
a constitutive promoter 445 bp upstream of the origin of rep-
lication and on the opposite strand to RNAII (Tomizawa and
Itoh, 1981). RNAI is therefore perfectly complementary to
RNAII. When RNAI binds RNAII the secondary structure of
the pre-primer is changed and it can no longer form the
stable complex with DNA at the origin (Masukata and
Tomizawa, 1986). In the absence of the complex, RNaseH
cannot cleave RNAII to form a primer, so replication cannot
initiate.

At the heart of ColE1 replication control is the ability of
a small regulatory RNA to change the higher-order folding,
and hence the function, of a relatively large RNA target. The
mechanism is reiterated in pT181, a small multicopy Staphy-
lococcal plasmid (Novick, 1989). In this case initiation is
triggered by the RepC protein nicking the origin DNA and
regulation of initiation is at the level of transcription of repC
mRNA. Binding of an antisense regulatory transcript to the
nascent mRNA alters its secondary structure, leading to the
formation of a transcription terminator and attenuation of
rep gene transcription. A third example of this common
mechanism is provided by the low copy number plasmid
RI where replication is triggered by the RepA protein. A small,
unstable RNA (CopA) inhibits replication by binding to a
complementary region in the repA mRNA, inhibiting the
translation of RepA (Nordström et al., 1984). Here again func-
tionality depends upon altered target folding although this
time the system operates through the mechanism of trans-
lational coupling where CopA regulates the translation of
an ORF (Tap) that is translationally linked to RepA (Blomberg
et al., 1992, 1994).

Elsewhere on plasmid R1 we find a remarkably similar
regulatory RNA mechanism controlling a host killing system
The parB locus of R1 is comprised of three genes: hok, mok
and sok (Gerdes et al., 1988). The hok (host killing) gene
encodes a protein toxin whose expression is regulated at
the level of translation by the anti-toxin Sok (suppression
of killing), a small anti-sense RNA complementary to the
5 end of hok–mok mRNA. Finally, mok (modulation of
killing) provides the regulatory link between the toxin and
anti-toxin components.

The molecular mechanism behind the operation of Hok–
Sok is surprisingly complex (Franch and Gerdes, 1996) but
at its heart is the contrast between the stability of hok mRNA
and the instability of Sok. In plasmid-containing cells, Sok
is present at high concentrations and by complementary base
pairing to hok–mok mRNA it prevents translation of the Mok
ORF. Hok is translationally coupled to Mok so there is no
expression of the Hok toxin either. Following plasmid loss
the Sok RNA concentration falls rapidly, allowing transla-
tion of hok mRNA and killing of the plasmid-free cell by the
Hok protein.

3. Challenging the paradigm

The discovery of these and many other regulatory
systems during the heyday of plasmid biology in the 1980s
and 1990s revealed the important role of regulatory RNAs
long before their ubiquity was recognised in eukaryotes. They
seemed to share a simple mechanism of action, exerting their
effects through interactions with RNA targets with speci-
ficity provided by complementary base pairing. Proteins were
not major players in these systems, although they were not
entirely absent and in several cases they assisted the key
RNA–RNA interactions. In ColE1, for example, the Rom (or
Rop) protein was identified as a secondary repressor of
replication (Cesareni et al., 1982; Twigg and Sherratt, 1980).
Although thought initially to regulate transcription of the
rom gene, it was shown subsequently to increase the rate
of binding of the RNA I repressor to RNA II (Tomizawa and
Som, 1984) by interacting with the double stranded stems
of inhibitor and target (Helmer-Citterich et al., 1988). In a
similar way, the FinO protein acts as a secondary repres-
sor of F plasmid conjugative transfer. Again, its role is indirect
and repression is exerted by stabilising the small regula-
tory transcript FinP and assisting its interaction with its
target, traJ mRNA (Lee et al., 1992; van Biesen and Frost,
1994).

In the early 1990s, it was reported that a small regula-
tory RNA (Rcd) was encoded within the multimer resolution
site of ColE1 (Patient and Summers, 1993) and that knock-
ing out its promoter (Pcer) was detrimental to plasmid
maintenance. Following the precedent established by the
many plasmid regulatory RNAs described previously, it
seemed likely that Rcd would exert its effect by interac-
tion with a larger RNA target. However, Rcd was to challenge
the antisense RNA paradigm as its primary target was shown
eventually to be a protein rather than an RNA.

4. The role of Rcd in plasmid stability

The discovery of Rcd arose from studies of plasmid
dimers and their effect on the stability of ColE1-like plas-
mids. In the absence of active partitioning, multicopy
plasmids must maintain a high copy number in dividing cells
to ensure distribution to both daughters. Anything that
reduces the number of independent plasmids in a cell pres-
ents a threat to plasmid stability; for example non-random
distribution or clustering of plasmids (Yao et al., 2007).
Plasmid dimerisation also reduces copy number (Chiang and
Bremer, 1988) and has long been known to correlate with
instability (Summers and Sherratt, 1984).

Plasmid dimers form at low frequency by homologous
recombination between monomers and even a relatively
small proportion of dimers has a large detrimental effect
on plasmid stability (Summers and Sherratt, 1984). The
reason for this was unclear until a combination of comput-
er modelling and experimental work led the formulation
of the dimer catastrophe hypothesis (Summers et al., 1993)
which explained that dimers were clustered in relatively few
cells, rather than being distributed through the cell popu-
lation. At the heart of hypothesis was the trivial observation
that plasmid dimers have two replication origins in each
molecule. Crucially these origins fire independently so a
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dimer replicates twice as often as a monomer, causing
dimers to accumulate rapidly and clonally in the descen-
dants of the cell in which a single dimer has arisen by
recombination. Dimer-only cells appear just a few genera-
tions after formation of the first dimer and these cells have
a depressed copy number and a very much higher proba-
bility of producing plasmid-free segregants. This process
seems to have the potential to run away; tetramers should
out-replicate dimers, octamers should out-replicate tetram-
ers etc. However this is balanced by a growth disadvantage
for multimer-containing cells that eventually brings the
system to equilibrium.

The dimer catastrophe is bad news for both plasmid ColE1
and its bacterial host. An increased loss rate is an obvious
problem for the plasmid but it also represents a direct threat
to fitness of its bacterial host since plasmid-free cells are
killed by exogenous colicin (Cascales et al., 2007). Recent
reanalysis of the dimer catastrophe hypothesis (Field and
Summers, 2011) confirmed the detrimental effect of plasmid
loss but highlighted the reduced growth rate of dimer-
containing cells as an even more serious threat to host
fitness.

In response to the threat posed by the dimer catastro-
phe, site-specific recombination is employed to resolve
plasmid multimers to monomers. The Xer–cer multimer res-
olution system of plasmid ColE1 has been studied in detail
(Blakely et al., 1993; Colloms et al., 1990; Stirling et al., 1988,
1989; Summers and Sherratt, 1984). The plasmid and host
cooperate in this process because, although the cer recom-
bination site is of necessity on the plasmid, four essential
proteins (XerC, XerD, ArgR and PepA) are all encoded on the
host chromosome. At first sight Xer–cer recombination
appears to offer a complete solution to the problem of
plasmid multimers but this was called into question when
the discovery of Rcd showed that although dimer resolu-
tion is necessary, it is not sufficient to ensure plasmid high
fidelity maintenance of ColE1 (Patient and Summers, 1993).
The reason is that it is not sufficient to possess a mecha-
nism of dimer eradication but that the timing of their
eradication is also crucial (Summers, 1998). Specifically it
must be complete before the cell divides as this is when
the plasmid can potentially be lost by the cell. The role of
the Rcd transcript appears to coordinate dimer resolution
and cell division.

5. The control of Rcd synthesis

Rcd is transcribed from a promoter, Pcer, encoded within
the ColE1 multimer resolution site (Summers and Sherratt,
1988) and mutations in the Pcer promoter or the rcd coding
region (Balding et al., 2006) reduce plasmid stability without
affecting dimer resolution by XerCD. Pcer is up-regulated in
cells containing plasmid multimers (Patient and Summers,
1993) so the transcript is produced in cells undergoing a
dimer catastrophe. It was observed that cells which over
express Rcd arrest their cell cycle prior to division, leading
to the hypothesis that Rcd (regulator of cell division) was
a component of a checkpoint that prevents division of cells
suffering a catastrophe (Patient and Summers, 1993).

It is not immediately obvious how a promoter can detect
whether it is in a plasmid monomer or dimer. However,

one possibility is that cer sites interact more often and more
stably in a dimer than sites in two monomers (Summers,
1998). Thus persistent cer–cer interactions indicate the
presence of dimers. Blaby and Summers (2009) proposed
a model of Pcer control that suggested Pcer is inactive in the
nucleoprotein complex that assembles at an individual cer
site in a plasmid monomer because it is repressed by prox-
imity of the XerCD recombinase. However, when the two
sites in a plasmid dimer interact, the nucleoprotein complex
isomerises removing XerCD from one of the Pcer promot-
ers and inducing Rcd transcription. However, whilst
plausible, this model still lacks experimental testing.

6. The target of Rcd: Tryptophanase and
indole production

When the role of Rcd in plasmid stability was first de-
scribed, the fact that its size and predicted secondary
structure (Balding et al., 2006) were similar to many plasmid-
encoded regulatory RNAs suggested that it would most likely
follow their example and target a complementary RNA.
However, extensive sequence analysis and hybridisation
assays failed to identify a convincing antisense target and
raised the possibility that Rcd might interact with a protein.

More than a decade after it was first described, RNA
affinity chromatography identified tryptophanase as an Rcd
binding protein (Chant and Summers, 2007). Tryptopha-
nase converts tryptophan to indole, pyruvate and ammonia
(Newton and Snell, 1964). In the presence of Rcd the
affinity of tryptophanase for tryptophan is increased by ap-
proximately fivefold, which stimulates indole production.
Over the range 3–5 mM indole was shown to exert signif-
icant inhibition of cell growth and division (Chant and
Summers, 2007) suggesting that an increased indole con-
centration is the mechanism by which Rcd prevents the
division of cells containing plasmid dimers.

The mechanism by which indole inhibits E. coli cell di-
vision has recently been elucidated. Indole acts as an
ionophore to reduce the proton gradient across the cyto-
plasmic membrane. This prevents MinD oscillation, which
in turn disrupts the proper localisation of FtsZ, inhibiting
septum formation (Chimerel et al., 2012). This is the first
example of a natural ionophore regulating a fundamental
biological process.

7. The indole concentration paradox

A potentially serious criticism of the suggestion that Rcd
inhibits cell division by stimulating indole production is that
the experimental inhibition of E. coli cell division requires
the addition of 3–5 mM indole to a culture supernatant. This
is approximately 10 times the maximum concentration of
indole that is detected in culture supernatants of E. coli
grown in LB medium under standard laboratory condi-
tions (approximately 0.5 mM (Li and Young, 2013)).
Unsurprisingly the biological relevance of higher indole
concentrations has been questioned.

A possible solution to the concentration paradox has
come from recent measurements of indole production during
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stationary phase entry by plasmid-free cells (Gaimster et al.,
2014). It was shown that indole production rate peaked
rapidly as cells entered stationary phase and this led to a
high but transient concentration of cell-associated indole
similar to those resulting from the addition of 4–5 mM indole
to the culture supernatant, which is sufficient to inhibit both
cell division and growth. It is therefore possible that tryp-
tophanase stimulation by Rcd during a dimer catastrophe
raises cell-associated indole to a level sufficient to block
cell division.

It should be emphasised that the elevation of cell-
associated indole during stationary phase is achieved by a
different mechanism from that proposed for Rcd. During
stationary phase entry indole production is stimulated by
the up-regulation of tryptophanase expression (Gaimster and
Summers, in preparation) while Rcd achieves its effect by
stimulating the action of existing enzyme. It remains to
be shown experimentally that tryptophanase stimulation
by Rcd can result in a pulse of cell-associated indole similar
to that seen during stationary phase entry.

8. Beyond cell division: The effects of Rcd and indole
on growth and plasmid replication

Reanalysis of the dimer catastrophe theory in 2011
suggested that simply preventing the division of dimer-
containing cells would be insufficient to contain the dimer
catastrophe, as dimers would continue to out-replicate

monomers in a non-dividing cell (Field and Summers, 2011).
This led to speculation that the Rcd checkpoint, and there-
fore indole, might inhibit plasmid replication as well as cell
division. Subsequent investigation supported this idea and
it was shown that 3–5 mM indole inhibits plasmid repli-
cation in vivo, probably through the inhibition of DNA gyrase
(Field and Summers, 2012). Finally it is worth noting that
indole inhibits the growth of cells as well as their division.
Thus cells exposed to 5 mM indole for 2 hours appear frozen
until the indole is removed and growth and division resumes
(Chimerel et al., 2012).

It is striking that Rcd stimulation of indole production
is responsible for the inhibition of three key processes: cell
division, plasmid replication and cell growth. In the absence
of evidence, Occam’s razor might have encouraged the view
that one common mechanism underpins all three. However,
it is clear that the mechanisms of by which plasmid repli-
cation and cell division are inhibited are radically different;
for one the target of indole is a protein but for the other it
is the cytoplasmic membrane. This makes it difficult to spec-
ulate on the mechanism by which indole inhibits growth.
One possibility is that making the membrane permeable to
protons down-regulates oxidative phosphorylation and that
the resulting ATP depletion inhibits growth. However pre-
liminary experiments (Field and Summers, unpublished)
have shown that the ATP concentration in cells treated with
5 mM indole declines only slowly while growth inhibition
is immediate.

Fig. 1. Red-mediated response to the ColE1 dimer catastrophe. Plasmid dimers express the non-coding RNA, Red, from the cer site. Red binds to trypto-
phanase increasing the production of indole. High levels of indole inhibit plasmid replication, cell division and growth, allowing the Xer–cer recombination
system to resolve plasmid dimers back to monomers.
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9. Back to the future: Plasmid control of cell division
is rehabilitated

Shunning a conventional anti-sense target, the mecha-
nism of action proposed for Rcd is strikingly different
from that of most regulatory RNAs in plasmid biology (the
hypothetical mechanism is summarised in Fig. 1). Interest-
ingly, the idea that a plasmid might regulate division of its
host is not new. In the 1980s it was proposed that the ccd
(coupled cell division) system of plasmid F to blocked di-
vision of cells containing a single plasmid in order to prevent
the formation of a plasmid-free daughter (Miki et al., 1984;
Ogura and Hiraga, 1983). This idea was abandoned when
it was found that a cell containing a single plasmid re-
mained capable of division (Hiraga et al., 1986; Jaffe et al.,
1985). The mechanism was reinterpreted as one of post-
segregational killing, with the CcdB toxin becoming active
in plasmid-free cells where it binds DNA gyrase and leads
to the introduction of double strand breaks in the DNA.
However in recent years plasmid-mediated cell division
control has been making a come back. In addition to Rcd
and the response of multicopy plasmid ColE1 to the dimer
catastrophe, the idea has also been revisited in studies of
the low copy number plasmid R1.

Besides a well-characterised toxin–antitoxin system (hok–
sok), R1 encodes a plasmid rescue system kis–kid (Bravo et al.,
1987). The toxin component, Kid, is activated in cells which
are under threat of loosing the plasmid through copy number
depression (Ruiz-Echevarría et al., 1995). It has been shown
recently that Kid activation results in inhibition of cell di-
vision and stimulation of DNA replication, preventing
plasmid loss and increasing its copy number (Pimentel et al.,
2014). The mechanism of cell division inhibition differs from
the Rcd-indole system and Kid directs cleavage of mRNA of
two proteins, FtsZ and ZapA, involved in cell division.

With examples now emerging in both high and low copy
number plasmids, it is clear that plasmids are no longer
passive passengers but are once again back in the driving
seat, controlling the most fundamental processes of their
host cell.
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