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We present a novel method for extracting the radiance from High Temperature Events (HTEs) recorded by geo-
stationary imagers using Independent Component Analysis (ICA).We use ICA to decompose the image cube col-
lected by the instrument into a sum of the outer products of independent, maximally non-Gaussian time series
and images of their spatial distribution, and then reassemble the image cube using only sources that appear to
be HTEs. Integrating spatially gives the time series of total HTE radiance emission. In this study we test the tech-
nique on a number of simulated HTE events, and then apply it to a number of volcanic HTEs observed by the
SEVIRI instrument.We find that the technique performswell on small localised eruptions and can be used to cor-
rect for saturation. The technique offers the advantage of obviating the need for a priori knowledge of the area
being imaged, beyond some basic assumptions about the nature of the processes affecting radiance in the
scene, namely that (i) HTE sources are statistically independent from other processes, (ii) the radiance registered
at the sensor is a linear mixture of the HTE signal and those from other processes, and (iii) HTE sources can be
reliably identified for the reconstruction process. This results in only five free parameters — the dimensions of
the image cube, an estimate of the data dimensionality and a threshold for distinguishing between HTE and
nonHTE sources. While we have focused here on volcanic HTEs, the methodology can, in principle, be extended
to studies of other kinds of HTEs such as those associated with biomass burning.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
1. Introduction

Satellite images have been used to observe thermal emissions from
High Temperature Events (HTEs) for over four decades, including ter-
restrial volcanic activity (e.g. Gawarecki, Lyon, & Nordberg, 1965;
Glaze, Francis, & Rothery, 1989; Hanel et al., 1979; Harris et al., 1997;
Oppenheimer, 1991), wildfires (e.g. Justice et al., 2002; Kaufman et al.,
1998; Roberts & Wooster, 2008), burning fossil fuels (Casadio, Arino,
& Minchella, 2012; Kwarteng & Bader, 1993) and eruptions on the
Jovianmoon Io (e.g. Carr, 1986; Davies, 1996;McEwen et al., 1998). Fre-
quently the total radiance emitted (spatially integrated, in band radi-
ance with units of W m−2 μm−1 sr−1) by the HTE as a function of
time is of interest and is used to derive some useful physical parameter
such as radiative power, fire fuel consumption or lava effusion rate (e.g.
Harris et al., 2000; Roberts,Wooster, & Perry, 2004; Roberts et al., 2005).
However, isolating the HTE radiance from other sources, such as
reflected sunlight and thermal emission from ground, clouds and atmo-
sphere as well as instrument response effects such as stray light image
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artefacts and saturation is difficult. For single images, a relationship be-
tween neighbouring pixels is frequently used, for examplemean neigh-
bour subtraction or the band ratio method, however thesemethods are
prone to large errors (Wooster & Kaneko, 2001). Alternatively, the non-
HTE processes can be explicitly modelled, for instance including back-
ground surface temperature as a free parameter in subpixel thermal
unmixing (although this is usually assumed a priori, e.g. Oppenheimer,
1993). However such approaches require additional assumptions or inde-
pendent sources of information. If sequences of images are available, time
series based techniques can be applied, for instance Kalman filters have
been used to identify anomalous radiance values (Van Den Bergh &
Frost, 2005; Van Den Bergh, Udahemuka, & Van Wyk, 2009; Zakšek,
Shirzaei, & Hort, 2013). Geostationary imagers are particularly suited to
the time series approach due to their consistent acquisition geometry,
which excludes complicating factors such as changes in view angle,
pixel size and irregular acquisition intervals which make analysing data
from Low Earth Orbit (LEO) imagers more difficult.

Given this regular sampling in space, time and wavelength by geosta-
tionary sensors, the sensor can be thought of as generating a consistently
sampled hypercube of data. Mining this hypercube for signals of interest
can be considered a ‘big data’ problem (e.g. Sellars et al., 2013), which
lends itself tomatrix factorization (Skillicorn, 2012). The image cube is ‘flat-
tened’ and represented as amatrix, which is decomposed into a number of
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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matrices that reveal some fundamental structure of the data. In this study,
we use Independent Component Analysis (ICA) (Stone, 2004) to de-
compose the data matrix into a matrix of statistically independent
sources and a mixing matrix that determines the contribution of
each source to each signal in the data matrix, in an attempt to sepa-
rate the HTE sources from other sources of radiance. ICA has been
used extensively in remote sensing, e.g. for de-noising satellite grav-
ity data from the GRACE instrument and estimating continental hy-
drology (Frappart, Ramillien, Maisongrande, & Bonnet, 2010;
Frappart et al., 2011), cloud masking Meteosat images (Macías-
Macías, García-Orellana, González-Velasco, & Gallardo-Caballero,
2003), unmixing hyperspectral data (Nascimento & Bioucas Dias,
2005; Tu, 2000), analysing the spatial distribution of crop types from
MODIS images (Ozdogan, 2010), change detection between images
(Zhong & Wang, 2006) and processing SAR images (Fiori, 2003)
amongst other applications. In this study we extend the application of
ICA to the extraction of HTE radiance time series.

The advantage of the ICA approach is that it makes no assumptions
about the nature of the physical processes contributing to the radiance
registered at the sensor beyond mutual statistical independence and a
linear mixing model. No ancillary information such as surface type, nu-
merical weather prediction data, andmodel of the local diurnal cycle, is
required to extract the HTE radiance registered at the sensor. In some
circumstances, ICA can also be used to correct for instrument saturation.

In this study, we apply ICA to time series of images from the geosta-
tionary SEVIRI imager, and test the procedure on a number of simulated
and observed volcanic eruptions. In the next section we describe the
SEVIRI instrument, the source of the data used in the real world case
studies. In Section 3 we present an overview of ICA and our application
of it to the retrieval of HTE radiance and correcting for saturation. In
Section 4 we present the results for the simulations and each case
study and in Section 5 we assess the effectiveness of the technique.

2. Datasets

In this section we present an overview of the geostationary imager
used to test the technique.We chose the SEVIRI imager as it is currently
the most advanced geostationary multispectral imager with a field of
view that includes numerous active volcanoes, and selected two volca-
nic events with spatial and temporal characteristics that lend them-
selves to the application of ICA (spatially localised, effectively a point
source on the scale of a SEVIRI pixel, some saturation, little to no
plume and cloud cover) to test the algorithm as a proof of concept.

The SEVIRI instrument is a multispectral imager aboard the
Meteosat 2nd generation geostationary meteorological satellites op-
erated by EUMETSAT. The instruments provide coverage of Africa,
Europe and the Middle East at intervals of 15 min or less in 12 chan-
nels across the visible, short wave and thermal infrared. The sam-
pling interval at nadir is 1 km for the panchromatic and 3 km for
the other bands, with an overlap factor (detector size to sampling
distance) of 1.6 (Pasternak, Hollier, & Jouan, 1993). The pixel spacing
and IFOV size increase radially from the subsatellite point as the view
angle increases (Müller, 2010). The SEVIRI instrument operates on a
whisk-broom principal, sweeping the Instantaneous Field Of View
(IFOV) of each detector across the surface of the Earth in an east–west
direction while the satellite spins at 100 rpm, and while an adjustable
mirror steps successive scan lines South to North (Aminou, 2002;
Aminou, Jacquet, & Pasternak, 1997). In this study we use level 1.5
data in which the instrument counts are radiometrically calibrated
and resampled onto a regular grid (Just, 2000), and convert the radiance
to units ofWm−2 μm−1 sr−1. The viewing geometry is stable temporal-
ly and spectrally, with a relative error in the alignment between two
consecutive images of 0.3 km at the SubSatellite Point (SSP) or 0.1 of a
pixel and a misregistration between bands is 0.1 km in the E–W and
N–S directions. As a result of this stable view geometry and band align-
ment, each pixel in a time series of images can be considered a time
series of radiances at 12 differentwavelengthsmeasured over a (rough-
ly) constant region of the Earth's surface, a property we leverage in ap-
plying Blind Signal Separation in the next section. Most of the SEVIRI
bands do not saturate for the range of thermal radiation typical of volca-
nic eruptions at the pixel integrated scale of a SEVIRI pixel. However,
band 4 does saturate for comparatively small events. Radiances signifi-
cantly in excess of saturation generate saturation artefacts down scan,
resulting in an ‘after image’ radiance anomaly that decays with succes-
sive observations. The SEVIRI instrument is currently used for monitor-
ing wildfire and volcanic activity (e.g. Calle, Casanova, & Romo, 2006;
Ganci et al., 2012; Gouhier et al., 2012; Hirn, Di Bartola, & Ferrucci,
2009; Roberts et al., 2004).

The majority of recently active volcanoes lie at the margins of the
Earth disc visible from the METEOSAT geostationary orbits, in Iceland,
Reunion and Italy, resulting in oblique view angles and large pixel
areas. Nyamuragira and Nyiragongo in the Democratic Republic of
Congo lie closer to nadir, however these volcanoes are frequently ob-
scured by cloud. Recent activity in the Afar Depression in northern
Ethiopia is comparatively close to nadir and has occurred in a relatively
cloud free arid environment, and thus provides the optimal test cases
and are the focus of this paper — we choose the May 2010 Manda
Hararo fissure eruption and the 2010 Erta Ale lava lake overflows as
our case studies.

In this study we apply the extraction technique to radiance data
from band 4 in units of W m−2 μm−1 sr−1, and we use the term ‘ra-
diance’ to refer to this in band radiance, ‘spatially integrated radi-
ance’ to refer to the radiance summed over all pixels, and ‘total
radiance’ to refer to the radiance summed over all pixels and across
time. Statistical extraction techniques are likely to be most useful
for band 4 asmodelling the background requires amodel of both var-
iation in surface temperature and reflected sunlight during the diur-
nal cycle, and so is the interval of the spectrum where the modelling
approach would be most challenging. It is also the band where satu-
ration is the greatest problem, presenting an opportunity to test the
saturation correction procedure.

3. Method

An overview of the procedure is given in Fig. 1. Fig. 1A shows the
image cube, which can be represented as a sequence of images in
time (top) or a collection of time series of radiance, one for each
pixel (below). Using ICA, the pixel time series are unmixed into a col-
lection of mutually independent source time series, where each
source implicitly defines an image of the magnitude of its contribu-
tion to each pixel. We thus decompose the original image cube into
a sum of the outer product of each source time series — image pair,
as shown in Fig. 1B. We then identify the sources which contain
HTE signals, and recompose the image cube restricting the summa-
tion to the outer products of HTE sources only. We thus derive an
image cube containing only HTE signals, as shown in Fig. 1C. Inte-
grating over each image gives us a time series of the spatially inte-
grated radiant output of all HTE sources. In the next sections, we
describe the ICA algorithm used in detail, discuss how HTE sources
can be identified and how it can be used to correct for saturation.

3.1. Independent Component Analysis

We treat the time series of radiances associated with each pixel as a
vector, whichwewill refer to as signals, and assume each signal is a lin-
ear function of a number of processes that contribute radiance to each
pixel, whichwe refer to as sources. The relationship between the signals
and sources can be expressed as a matrix equation known as the gener-
ative equation:

X ¼ A � S ð1Þ



Fig. 1. Summary of the volcanic radiance extraction process using the Erta 'Ale 2010 overflows as an example. (A) The image cube can be considered a sequence of images in time or a
collection of time series for each pixel — we apply ICA to the pixel time series. A subset of 5 pixels covering an interval of 4 days is shown, offset vertically for clarity. Note the diurnal
cycle, positive volcanic thermal anomalies late on the 11th andnegative cloud thermal anomalies on the 13th. (B) Thedata expressed as a sumof the outer products of independent sources
isolated by ICA and their spatial distributions— a subset of 6 sources for the period between the 11th and the 15th are shown. The images on the left show the spatial distribution of se-
lected sources plotted in the graphs on the right; black indicates a low contribution to that pixel, white a high contribution. The sole volcanic source is highlighted in red. (C) The sumof the
outer product of the volcanic sources and their spatial distribution (in this case, for just one source) give the volcanic radiance time series for each pixel.
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where X is the matrix of signals, with each row the radiance time series
for a single pixel, S is the matrix of sources, where each row is the radi-
ance time series for a single source, and A is the mixing matrix, where
each row defines amixing vector. Amixing vector is a list of coefficients
that determine the magnitude of the contribution of each source to a
given signal, so the first row of A determines the relative mixture of
sources in the first signal, the second row the mix in the second signal,
and so on. The assumption of a linear mixing model is an appealing as-
pect of ICA asmany volcanic eruptions are small on the scale of a SEVIRI
footprint, and so can be modelled as point sources contributing linearly
to neighbouring pixels weighted by the point spread function — this
property will be leveraged to apply a correction for saturation effects
later.

The process of extractingmatrices A and S from X is amatrix decom-
position, and is underdetermined, requiring extra assumptions to ob-
tain a unique solution (Skillicorn, 2012), for example, if one assumes
that the sources are uncorrelated, or nonnegative, or sparse, one obtains
the statistical analysis techniques of principal component analysis, non-
negative matrix factorization and sparse component analysis respec-
tively. These techniques are frequently referred to as Blind Signal
Separation, as the source signals and mixing system are unknown,
and only basic assumptions about them (e.g. sparsity and linearity)
are made (Comon & Jutten, 2010). For ICA, the extra assumption we
make that permits a unique decomposition is that each source is a series
of instances of a random variable with a non-Gaussian probability dis-
tribution such that the sources are statistically independent of each
other. The assumption of nonGaussianity is an application of the heuris-
tic that “nonGaussianity is interesting” (Hyvärinen, Karhunen, & Oja,
2001), and is a consequence of the central limit theorem, by which a
distribution that is the sum of a number of non-Gaussian distributions
tends to become more Gaussian-like. This implies that the more non-
Gaussian a source is, the less likely it is to be a mixture of different pro-
cesses. We therefore apply ICA in the hope that volcanic thermal
sources are strongly non-Gaussian and will tend to give more Gaussian
signals when mixed with radiative signals from other environmental
processes (the diurnal cycle, cloud cover, etc.). Given volcanic thermal
signals tend to be isolated discrete events between long periods of
quiescence, one might expect the signals to be strongly non-Gaussian
a priori.

In this study we use the FastICA algorithm of Hyvärinen (1999)
and Hyvärinen et al. (2001), that finds the unmixing matrix, W, an
estimate of the inverse of A, by maximising the non-Gaussianity
(and statistical independence) of the extracted sources using a
fixed point algorithm. The FastICA algorithm consists of an initial
prewhitening stage and an iteration stage. In the prewhitening
stage the data are centred by subtracting the mean of each signal and
then ‘rotated’ in the data space such that the signals are uncorrelated
and any signals that appear to be mostly noise are discarded. This is ac-
complished by pre-multiplying the centred data by a whitening matrix
P,which gives thefirst k Principal Components (PCs) of the data. Ideally,
the number of principal components to be retained would be deter-
mined by the data dimensionality, but this can be hard to determine
in natural datasets, so a trial and error approach is used — too few PCs
retained results in useful information being discarded but too many
can result in sources that are isolated spikes due to overfitting
(Hyvärinen, Särelä, & Vigário, 1999). The iteration stage then finds an
orthogonal rotation matrix that further rotates the signals in data
space such that they are oriented in directions that are nonGaussianity
maxima. Each unmixing vector, which is a row ofW, thus defines a pro-
jection of the whitened data along a direction that is a nonGaussian
maximum — these are the sources. The relationship between the
sources and the signals is given by

S ¼ W � P � XC ð2Þ

where XC is thematrix of centred signals, P is thewhiteningmatrix,W is
the unmixingmatrix and S is the sourcematrix. The size of the contribu-
tion of the sources to each pixel is given by

Y ¼ Pþ �W−1 ð3Þ

where P+ is the pseudo inverse of the whitening matrix P, W−1 is the
inverse of the unmixing matrix W, and Y is the matrix of the spatial
maps of the contributions of each source to each signal. Each source

image of Fig.�1
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can thus be considered a time series vector in the time dimension or an
image vector in the space dimension. For more details, see Appendix A.

The centred signals are therefore the dot product of the source ma-
trix S and the spatial contribution matrix Y:

XC ¼ Y � S ð4Þ

However Eq. (4) can also be expressed as a sum of outer products,
which is given by

XC ¼
X

i
yi⊗si ð5Þ

where si is the vector for the ith source given by the ith row of S, yi is the
spatial contribution for the ith source given by the ith column of Y, and
⊗ denotes the outer product. The advantage of this representation is
that the outer product yi ⊗ si represents that particular source as an
image cube, giving the amount of radiance that source contributes to
each pixel at each point in time, and Eq. (5) describes the original data
as the sum over all the source image cubes. If the HTE sources can be
identified, then the summation can be limited to the HTE image cubes,
giving an image cube containing the total HTE radiance in each pixel
at each point in time.

The ICA model still holds if the original data are linearly filtered by
multiplication by a matrix from the right (Hyvärinen & Oja, 2000),
such that the algorithm can be applied to the filtered data, but the
sources are found using the original unfiltered data. This is a useful
property as filtering the data can improve source separation, for in-
stance by increasing source smoothness that increases independence
and by reducing noise (Pignat et al., 2013). In this study it was occasion-
ally necessary to filter the raw radiance data by differencing the time se-
ries over an interval of 96 observations to suppress the diurnal cycle.

3.2. Combining the sources

The signals are recombined by (i) identifying the sources that have
isolated HTE radiance, (ii) subtracting the nonzero background from
the source and its spatial contribution (taken as the mean of the edge
pixels around the spatial contribution image, and the mean of the first
few hundred source values), and (iii) taking the outer product of the ze-
roed source and spatial contribution to get the radiance contribution to
each pixel. In cases where the HTE is effectively a point source on the
scale of a SEVIRI pixel there is usually only one and it can be found by
inspection. However it may be more effective to automatically classify
HTE sources where large numbers of sources would have to be labori-
ously inspected, for instance when conducting numerous tests using
randomly generated simulated HTEs, or where theHTE is spatially com-
plex, such as a large advancing lava flow or scattered and migrating
wildfires where there may be numerous HTE sources. In this study we
automatically classify the sources as HTE/not HTE by means of a ‘HTE
index’, calculated by taking the product of the magnitude of the skew-
ness of the image and time series vectors. HTE sources tend to be very
localised in space and time giving a high skewness for the time series
and image, and we take the magnitude since sources are only specified
up to sign, and so can give a positive or negative skew value. In this
study, we identify the HTE source by choosing the one with the highest
HTE index as all of ourmodelled and observedHTEs are effectively point
sources on the scale of the SEVIRI pixel and are accounted for by a single
source, however a threshold could be used where more than one HTE
source is expected.

This approach effectively has five free parameters, the width and
height in pixels and the length in images of the image cube to pro-
cess, an estimate of the dimensionality of the data (how many PCs
to retain), and in more complicated cases some HTE index threshold
for distinguishing between HTE and nonHTE sources.
3.3. Saturation correction

Extracting the sources using Independent Component Analysis
permits for saturation correction. In this approach, we treat the sat-
urated pixels as missing data (for this study, we assume that the
down scan ‘after image’ effect mentioned earlier is negligible). Due
to the large size of the instrument Point Spread Function (PSF), any
given point source emitting radiance will be sampled by a number
of pixels, weighted by the magnitude of the PSF of each pixel above
that point. If the radiance is intense enough to saturate a given
pixel, a neighbouring pixel with a lower sensitivity at that geograph-
ic location may record the full time series unsaturated. We illustrate
this with an example from the May 2010 Manda Hararo fissure erup-
tion in Fig. 2. The HTE source is a fissure and advancing lava flow that
is small on the scale of a SEVIRI pixel, however given the large size of
the PSF, the signal is registered in many neighbouring pixels. Despite
the fact that the pixel directly above the eruption saturates during
peak volcanic activity, neighbouring pixels faithfully record the var-
iation in radiance over the whole eruption, albeit at reduced ampli-
tude and therefore lower signal to noise ratio.

We therefore simply exclude the signal from the pixel(s) that con-
tain saturated observations, and rely on neighbouring pixels to faithfully
record the HTE signal. Fig. 3 shows the effect of progressively removing
pixels on the extracted HTE source, again using the May 2010 Manda
Hararo eruption as an example. Removing just the saturated pixel re-
sults in a ‘steeper’ source (red curve in Fig. 3A) as the artificially low sat-
uration values are removed from consideration. As further pixels are
removed, the extracted source becomes noisier, however it is still
recognisable even after all pixels in a 3 × 3window surrounding the sat-
urated pixel have been removed. Plotting the HTE source for all pixels
against that for unsaturated pixels (Fig. 3C) shows an excellent correla-
tion (R2 of 0.998) for images where the central pixel is unsaturated,
showing thatwith orwithout the saturated pixel, for unsaturated obser-
vations, ICA is extracting the same radiance pattern, validating our as-
sumption that the same source is being recorded in all pixels in the
neighbourhood of the eruption. The relationship breaks down for im-
ages where the central pixel is saturated, as expected.

The HTE source extracted from unsaturated pixels is then used to
calculate the contribution of that source to each pixel, including saturat-
ed pixels, according to equation

Y ¼ X � Šþ ð6Þ

where X and Š are the submatrices of the data and sourcematrices with
times that contain one or more saturated observations (columns) re-
moved (for a derivation, see Appendix A). The image cube giving the
HTE signal in each pixel is given by the outer product of source and spa-
tial contribution pair, as before.

In summary, to perform the saturation correction, we apply ICA
on the pixel time series with the time series with saturated pixels ex-
cluded to get the source, find the spatial contribution image for that
source by excluding images with saturated pixels, and then recon-
struct the image cube as before.

3.4. Simulated volcanic eruptions

It is difficult to assess the effectiveness of the technique as measure-
ments of remote, hazardous volcanic events at the scale of a SEVIRI pixel
are nearly impossible to ground truth. However we can test the proce-
dure on a synthetic dataset.We use synthetic datasets chosen to resem-
ble the actual examples presented in this study to check the validity of
those results as a proof of concept; we do not attempt to exhaustively
check the procedure's effectiveness on a wide range of different types
of HTE, nor the effects of varying algorithm parameters.

We produce a ‘synthetic volcanic eruption’ radiance curve described
by a plausible functional form (and hopefully therefore a plausible



Fig. 2. The signal from an effective point source is registered inmany pixels. (A) SEVIRI band 4 (3.9 μm) image of theMay 2010Manda Hararo eruption acquired 2010/05/21 at 03:12 UTC,
overlaid on topography from the SRTM digital elevation model. Blue colour indicates low radiance, red high radiance. Contours show the point spread function for the central pixel, red
polygon extent of erupted lava. PSF calculated using the method of Lee and Atkinson (2000) from the instrument MTF (Aminou et al., 1999). The registration between the image and the
lava flow location has an error on the order of a few hundredmetres. Note that although the lava flow is small on the scale of a single pixel, the large spatial extent of the PSF results in the
volcanic radiance contributing substantially to pixels in a 7× 7 pixelwindow. The saturation correction techniqueworks on theprinciple that if theHTE signal is sufficient to saturate pixels
with highPSF values over the radiance source, neighbouringpixelswith a lower sensitivity over the sourcewill record the source unsaturated. (B) Radiance time series frompixels outlined
in blue in (A). The time series for the pixel over the lava flow saturates during the peak of the eruption, whereas that for the neighbouring pixel faithfully records the full variation in ra-
diance. Even three pixels away from the lava flow, a very weak HTE signal is apparent.
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statistical distribution of values, which is what the ICA algorithm acts
upon) by convolving an area effusion rate function with a cooling func-
tion tomodel the radiance emitted due to the progressive emplacement
of infinitesimal area elements of coolingmaterial in a manner similar to
that of Carr (1986) and Davies (1996). For the area effusion rate func-
tion we use a linear waxing and exponential waning function similar
to the trend for volumetric effusion rate curves noted by Wadge
(1981), and for the cooling curve we use an exponential, analogous to
cooling curves observed of basalt surfaces (Ball, Pinkerton, & Harris,
2008). This gives a radiance curve defined by 6 parameters, start time,
stop time, time of maximum effusion rate, effusion rate decay coeffi-
cient, cooling rate decay coefficient, and a scaling factor that sets the
maximum radiance value. We assume that the volcanic source of radi-
ance is a point source on the scale of a SEVIRI pixel, calculate the
SEVIRI PSF following the method of Lee and Atkinson (2000) using the
instrument MTF (Aminou, Ottenbacher, Jacquet, & Kassighian, 1999),
and weight the contribution of the signal to each pixel by the PSF. This
signal is then added to a HTE free radiance time series in an image
cube covering the southern segment of the Manda Hararo rift during
May to June 2010. The volcanic radiances are added during a cloud
free interval. We model three scenarios; ‘simple’, ‘complex’, and ‘satu-
rated’. In the ‘simple’ scenario, we use the single waxing waning func-
tion to create a radiance signal analogous to that of a small basaltic
fissure eruption like theManda Hararo event. In the ‘complex’ scenario,
we simulate the Erta 'Ale lava lake overflows by summing a number of
waxing and waning functions offset in time to simulate a number of
small lava lake overflows, and add the convolution with the cooling
curve to a triangle function that simulates the slow rise and fall of the
lava lake surface into and out of the instrument field of view. The ‘satu-
rated’ scenario is the same as the ‘simple’, except we clip the radiances
at 2.337 W m−2 sr−1 μm−1, the saturation limit for SEVIRI band 4,
and use these to test the saturation correction.

4. Results

In this section we present the results of applying the HTE extrac-
tion process to the simulated volcanic eruption scenarios, and two
case studies. For the simulated volcanic eruptions, we test the

image of Fig.�2


Fig. 3. The effect of progressively excluding pixels from the ICA algorithm on the extracted HTE source. (A) Extracted sources; blue curve: all pixels, red curve: central saturated pixel ex-
cluded, yellow curve: saturated pixel and all pixels in 4 cardinal directions excluded, green curve: all pixels in a 9 × 9 window centred on the saturated pixel excluded. Note that as more
pixels are excluded, the extracted signal becomes noisier. (B) SEVIRI image acquired at peak of eruption, showing pixels excluded in (A). Pixels are colour coded to curves. (C) Plot of
sources extracted from all pixels (blue curve in (A)) against source extracted from all unsaturated pixels (red curve in (A)). Observations where no pixel is saturated in the image plotted
in blue, observationswhere the central pixel is saturated plotted in red. Note that for imageswhere the central pixel is unsaturated, both sources exhibit a linear relationship with an R2 of
0.998, however for a saturated central pixel they exhibit a poorer correlation and a shallower slope due to underestimation of the radiance due to saturation.
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effectiveness of the procedure in two ways: Firstly we find the coef-
ficient of determination (r2) between the simulated and extracted
source and spatial contribution (the PSF function in this case) to
see if the ‘shape’ of these vectors are recovered accurately (we
don't check that they have the right magnitude given that ICA only
recovers them up to sign and scaling). Secondly, we test the absolute
accuracy of the procedure by comparing the volcanic radiance inte-
grated across all pixels and observations to see if we recover the
same total radiant output from the event.

For the real HTE events, the original, decomposed and recombined
datasets are large, so presenting an overview of all extracted sources
and HTE signals for each dataset is difficult. As a result, to give an over-
view of the decomposition into sources stage, we present a selection of
the sources extracted by the FastICA algorithm showing the range of
HTE, diurnal cycle and cloud process dominated sources found. For the
recombination to give the HTE signal per pixel, we then show examples
of the recovered HTE signals for a representative selection of pixels, as
well as the original signals, and their residuals after subtracting the
HTE signal. Finally, we show the extracted total HTE signal for the
given event, showing the total radiant output in that band from the
HTE event integrated over all pixels, which is typically the parameter
of interest.

4.1. Simulations

For the ‘simple’ scenario, we simulated 50 random volcanic erup-
tions (6 free parameters per eruption) and added them to a cloud free
period in a 9 × 9 pixel by 1500 image data cube covering the lower
part of the Manda Hararo rift. The image cube was prefiltered, and ICA
was performed with the first 40 PCs, and the HTE source was assumed
to be that with the highest HTE index. Radiance time series for the
pixel directly above the source for all 50 simulations are shown in
Fig. 4A. The volcanic source and spatial contribution image are recov-
ered with a high degree of accuracy up to offset, sign and scaling as
shown in Fig. 4B, where the r2 for both relationships are above 0.9 for
all simulations. The relationship between total simulated and total re-
covered volcanic radiance was found to be

recovered ¼ 0:998 � simulated−5:70 ð7Þ

with an r2 of 0.988, as shown in Fig. 4C, close to the expected 1:1
relationship.

For the ‘complex’ scenario, we simulated 50 random volcanic erup-
tions, each consisting of 30 simple eruptions summed with a triangle
function (124 free parameters for each simulation), added to a cloud
free period in a 9 × 9 pixel window × 2500 image data cube. Radiance
time series for the pixel directly above the source for a selection of sim-
ulations are shown in Fig. 5A. The image cube was prefiltered, and ICA
was performed with 40 PCs and the source with the highest HTE
index was assumed to be the volcanic signal. The r2 between the
modelled and recovered volcanic sources and spatial contribution was
again usually above 0.9 (Fig. 5A), however there was greater scatter, in-
cluding a recovered source with r2 near 0 for both where the algorithm
failed to identify the volcanic source. The relationship between the total
modelled and total recovered volcanic radiance was found to be

recovered ¼ 1:07 � original−36 ð8Þ

with a correlation coefficient r2 of 0.983.
For the ‘saturation’ scenario, we modelled 50 random volcanic

eruptions using the same procedure as in the ‘simple’ scenario,
and then clipped the radiance values to the saturation value of
2.337 W m−2 sr−1 μm−1 after adding to the background 9 × 9 pixel
by 2500 image data cube. Example radiance time series for the central
pixel in the 9 × 9 window are shown in Fig. 6A. The image cube was
prefiltered, and ICA was performed using 40 PCs and the source with
the highest HTE index was assumed to be the volcanic source. In this
analysis we grouped the simulations by the number of pixels that be-
came saturated. The r2 for the sources and spatial contributions for sim-
ulations with one saturated pixel are all above 0.9, however as the
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Fig. 4. A) Fifty simulated radiance curves showing the background and added synthetic volcanic signal for the central pixel in the 9 by 9 pixel window. B) Plot of correlation coefficients
between themodelled and recovered source (Y axis) andmodelled and recovered contributions of the source to eachpixel (X axis). C) Plot of total recovered volcanic radiance against total
simulated volcanic radiance. Best fit line gives slope of 0.998 indicating that recovered total radiance is consistently underestimated slightly, an intersect of−5.70, andwith an R2 of 0.988.
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number of saturated pixels goes up, the correlation coefficients, and the
fidelity of the recovered source, decreases (Fig. 6B). This has a large ef-
fect on the relationship betweenmodelled and recovered total volcanic
radiance (Fig. 6C), where the relationship is given by

recovered ¼ 26:0þ 0:876 � simulated ð9Þ

with an r2 of 0.992 for single saturated pixel simulations. As the number
of saturated pixels increases, the recovered total volcanic radiance
Fig. 5. A) Subset of the fifty simulated radiance curves showing the background and added syn
coefficients between themodelled and recovered source (y-axis) andmodelled and recovered c
against total simulated volcanic radiance. Bestfit line gives slope of 1.07 indicating that recovere
of 0.983.
increasingly underestimates the original. This effect appears to be less
pronounced for high values of total radiance, which may be a function
of simulationswith long durationswith a greater proportion of nonzero,
nonsaturated values.

4.2. The 2010 Erta 'Ale overflows

The 2010 Erta 'Ale overflows were a series of fluctuations in the
height of the lava lake at the summit of the Erta 'Ale basaltic shield
thetic volcanic signal for the central pixel in the 9 by 9 pixel window. B) Plot of correlation
ontributions of the source to each pixel (x-axis). C) Plot of total recovered volcanic radiance
d total radiance is consistently overestimated slightly, an intersect of−36.0, andwith anR2
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Fig. 6. A) Subset of the fifty simulated radiance curves showing the background and added synthetic volcanic signal for the central pixel in the 9 by 9 pixel window. B) Plot of correlation
coefficients between themodelled and recovered source (Y axis) andmodelled and recovered contributions of the source to each pixel (X axis). Blue dots are for simulationswith a single
saturated pixel, red for three, yellow for four and green for five. C) Plot of total recovered volcanic radiance against total simulated volcanic radiance. Best fit line to points with a single
saturated pixel gives slope of 0.876 indicating recovered total radiance is consistently slightly underestimated, an intersect of 26.0, and with an R2 of 0.992.
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Fig. 7. Selected sources extracted from the SEVIRI image time series of theNovember 2010
Erta 'Ale overflows using FastICA. The graphs on the right show the temporal variation of
each source, the images on the left show the spatial distribution of the source in the 9 by 9
pixelwindow. Source1 is theHTE sourcewith a PSF like spatial contribution, sources 2 and
3 describe the diurnal cyclewith a 24hour periodicity and spatial contribution that resem-
bles the landcover distribution surrounding the lava lake. The remaining sources are dom-
inated by cloud noise.

63T. Barnie, C. Oppenheimer / Remote Sensing of Environment 158 (2015) 56–68
volcano in the axial volcanic range of the same name in northern Afar
(Barberi & Varet, 1970; Field et al., 2012). The lava lake sits in a pit ap-
proximately 30 m deep within a 1 km by 3 km caldera at the volcano
summit. The increase in height of the lava lake raised the lake surface
out of the satellite view shadow below the pit rim and into the field of
view of the instrument, resulting in a thermal anomaly. Fluctuations
in the lake height varied the proportion of the lake in view, and resulted
in overflows onto the caldera floor. Individual overflows were regis-
tered as spikes in the SEVIRI radiance time series for the pixel covering
the lava lake, and were simultaneously observed by a field team on the
ground (Field et al., 2012). Field et al. (2012) isolated the thermal anom-
aly associatedwith the lava lake and overflows by subtracting the signal
from a neighbouring pixel with no thermal anomaly, however the
resulting thermal anomaly signal was still contaminated with a diurnal
signal. In this study we attempt to isolate the signal using ICA. We
choose this event as it is unusual for a volcanic eruption in being small
enough not to saturate band 4. It is also very spatially small and local-
ised, being effectively a point source on the scale of a pixel point spread
function,making it a useful test of whether thewhisk broom acquisition
and resampling significantly undermine the ICA assumption of instanta-
neous linearmixing. As for theMay 2010Manda Hararo eruption, being
in northern Afar, the aridity of the environment, and the relative lack of
cloud during this event result in an excellent signal, that has facilitated
previous Earth Observations studies (e.g. Oppenheimer & Francis,
1997).

We applied the ICA procedure to time series of radiance from SEVIRI
pixels in band 4 in a 9 by 9 window surrounding the lava lake, acquired
between 23:57 UTC 2010/10/26 and 01:57 UTC 2010/12/16 using the
40 most significant principal components. Prefiltering was found to be
unnecessary in this case. A subset of the sources extracted is shown in
Fig. 7. There appeared to be only one volcanic source, which was easily
identified by a spatial pattern that resembles the instrument Point
Spread Function (consistent with small lava lake footprint compared
to the scale of a SEVIRI pixel) and a time series that is flat with positive
excursions. Two sources capture the diurnal cycle (sources 2 and 3), and
are easily identifiable by their 24 h periodicity and spatial contribution
images that reflect variation in surface type across the Erta 'Ale range.
The rest are dominated by cloud during periods of cloud cover. Taking
the outer product of the volcanic source and its spatial contribution
gives the volcanic signal for each pixel in the 9 × 9 window, examples
of which are shown in Fig. 8. Subtracting the volcanic signal from the
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Fig. 8. Comparison of signal (blue curve) extracted volcanic radiance (yellow curve), and
the residual after subtracting the volcanic radiance from the signal (red curve) for a subset
of the data between 8 and 15 November 2010. Note that the residuals are relatively
smooth during periods of HTE radiance, indicating most of the HTE radiance is accounted
for by the HTE source.
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original signal leaves a residual which should closely resemble the diur-
nal temperature cycle (in cloud free conditions) — by inspection, this
appears to be the case. Summing the volcanic signal in each pixel
gives the total volcanic radiant output during the eruption, as shown
in Fig. 9. We can get a measure of the noise in the extracted total volca-
nic radiance by taking the Standard Deviation. During a cloud free peri-
od this comes to 0.0239 while during cloudy periods the cloud
introduces extra noise, giving a standard deviation of 0.0778. During pe-
riods of cloud free volcanic thermal signal, the standard deviation varies
between 0.080 and 0.27.

4.3. The May 2010 Manda Hararo Eruption

TheMay 2010Manda Hararo eruptionwas of fissural type and asso-
ciated with the 14th and last dike intrusion in the Manda Hararo rifting
cycle that lasted from 2005 to 2010 in northern Afar, Ethiopia (Ayele
et al., 2009; Grandin et al., 2010; Hamling et al., 2009; Wright et al.,
2006). During a rifting cycle vertical sheets of magma are intruded
along the length of rift segments at plate boundaries, accommodating
the divergent motions of the plates by the creation of new crust, a
process that has been called ‘the quantum event of sea floor spreading’
(Delaney et al., 1998). The intrusions take place on a timescale of hours,
with tens of dikes intruded over 5 to 10 years, between quiescent pe-
riods lasting centuries to millennia. If the intrusions reach the surface,
fissural eruptions occur. Most rift segments are underwater at mid
ocean ridges making rifting events difficult to observe, so the rare
Fig. 9. Spatially integrated volcanic radiance emitted by the November 2010 Erta 'Ale lava lake
cloud noise.
subaerial events such as that at Manda Hararo provide an important
glimpse of these ‘quantum events’. The aridity and inaccessibility of
the Manda Hararo segment make monitoring by remote sensing both
applicable and necessary. The May 2010 event intruded 0.081 km3 of
magma in a dike up to 1.6 m wide, 18 km long and up to 9 km deep,
and extruded 2.3 × 105 m3 of lava from a ~600 m long fissure forming
a ~2 m thick lava low (Ian Hamling, Barbara Hofmann, personal com-
munication, 2014). The fissure eruption is an ideal test of the ICAmeth-
od because it is a small, localised eventwith limited saturation in band 4
and no cloud cover, and is comparatively close to satellite nadir for a
volcanic event.

We applied the ICA procedure to a time series of 1500 SEVIRI image
subsets in a 9 × 9 window between 2010/05/16 00:57:00 UTC and
2010/05/31 15:57:00 UTC using the 30 most significant PCs. Again,
prefiltering was unnecessary in this example. The central pixel was
found to be saturated during the peak of the eruption, so that pixel
was excluded from the ICA procedure, as discussed in the saturation
correction section. A subset of the extracted sources is shown in
Fig. 10. As with the Erta 'Ale overflows, the Manda Hararo eruption
was a spatially small event on the scale of a SEVIRI pixel and is
partitioned into a single source with a PSF-like spatial distribution, as
is the diurnal cycle, and most of the remaining sources are dominated
by cloud noise. We find the spatial contribution of the volcanic source
using the saturation correction discussed earlier, and take the outer
product of the volcanic source and its corrected spatial contribution to
obtain an image cube giving the volcanic signal in each pixel. Examples
of the original pixel signal, the extracted volcanic signal and the residual
are shown in Fig. 11. Again, by inspection, the residual resembles the di-
urnal cyclewithout thermal anomalies, with the exception of the period
of saturation in pixel 41, where the recovered volcanic signal is greater
than that registered due to saturation. Integrating spatially gives the ra-
diance time series shown in Fig. 12. The standard deviation during cloud
free periods is 0.0488, during cloudy periods is 0.187, and over the du-
ration of the eruption is 2.24.
5. Discussion

The results from the simulations indicate that for most ‘simple’ and
‘complex’ scenarios, the procedure recovers the shape of the source
and spatial contribution vectors with a high degree of fidelity, with co-
efficients of determination typically greater than 0.9. The total radiant
output is also recovered with minor systematic bias, and the relation-
ship between the original and recovered values has a high correlation
coefficient. For scenarios with a single saturated pixel the total radiance
is only slightly underestimated, however as the number of saturated
pixels increases the total radiance is increasingly underestimated.
From these observationswe draw the conclusion that the ICAprocedure
is valid for the extraction of the thermal signal from HTEs that can be
considered point sources at the scale of a SEVIRI pixel, exhibit variations
in radiance that are consistentwith basic conceptualmodels of lavaflow
overflows found by summing the per pixel volcanic radiances. Negative peaks are due to
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Fig. 10. Selected sources extracted from the SEVIRI image time series of the May 2010
Manda Hararo eruption using FastICA. The graphs on the right show the temporal varia-
tion of each source, the images on the left show the spatial distribution of the source in
the 9 by 9 pixel window. The central pixel time series was excluded from the ICA proce-
dure due to saturation. Source 1 is the HTE source with a PSF like spatial contribution
and a waxing and waning source time series radiance pattern, sources 2 and 3 are domi-
nated by the diurnal cyclewith a 24 h periodicity, and the remaining sources are dominat-
ed by cloud noise.

Fig. 12. Spatially integrated volcanic radiance emitted by the May 2010 Manda Hararo
eruption found by summing the per pixel volcanic radiances. Negative peaks are due to
cloud noise.
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emplacement, and have saturation in not more than one or two pixels.
However it should be noted that the simulations do not take into ac-
count the delays in acquisition time down and across scan as a function
of the SEVIRI instrument's whisk-broom mode of operation which vio-
lates the assumption of linear mixing of sources in pixels, as the time
delay results in the volcanic radiance being sampled at slightly different
times in each pixel (0.6 s difference between scan lines), a problem
Pixel 39

Pixel 40

Pixel 41

Pixel 42

Pixel 43

May20 May21 May22 May23

Fig. 11. Comparison of signal (blue curve) extracted volcanic radiance (yellow curve), and
the residual after subtracting the volcanic radiance from the signal (red curve) for a subset
of the data between 19 and 24 May 2010. Note the residual curves are relatively smooth
during the eruption period, indicating theHTE source accounts formost of the volcanic ra-
diance, with the exception of pixel 41 which lies directly above the eruption and experi-
enced saturation.
documented before in sequentially acquired thermal images of volcanic
activity (Oppenheimer, Rothery, Pieri, Abrams, & Carrere, 1993). The
simulated volcanic radiance is also added directly to the background,
so the effect of varying atmospheric conditions altering the signal on a
per pixel basis is not modelled. In addition, the resampling that takes
place during the conversion of level 1 to level 1.5 data is not taken
into account, however the effect of this, if any, on the assumptions
made by the ICA model is not clear. The simulations also do not take
into account of the impact of plumes on the recovered HTE, which
might be expected to partially or totally obscure the HTE, resulting in
an underestimation or gaps in the recovered total radiance. The plume
radiance signal may also be strongly correlated with the HTE source,
resulting in a recovered source that mixes HTE and some plume radi-
ance. Thus the presence of plume may violate the FastICA assumptions
of source linear mixing and independence. However, the former may
only affect HTEs substantially obscured by the plume while the latter
may be alleviated by the effect of ambient environmental effects on
the plume lessening the correlation with HTE radiance. It should also
be noted that cloud contamination affects all HTE retrieval techniques,
and doubly affects the neighbouring pixel subtractionmethod, as the ef-
fect of cloud contamination is propagated betweenpixels by subtracting
one from the other. The effect of all of these complications would have
to be investigated in more detail before the approach could be reliably
operationalized. The simulated eruption scenarios can thus be consid-
ered to establish the validity of the ICA model under ‘ideal’ conditions.

Havingestablished that under ideal conditions, volcanic signals anal-
ogous to real examples can be extracted accurately, we applied the pro-
cedure to the two case studies. ICA successfully decomposed the image
cube into sources that represent different physical processes, success-
fully isolating the volcanic and diurnal signals into separate sources,
with appropriate spatial contribution images (PSF-like for the volcanic
sources and resembling landcover variation for the diurnal cycle). A
close examination of the residuals after subtraction of the recovered
per pixel volcanic signal indicates that the recovered volcanic source ac-
counts for most of the radiance of volcanic origin. This appears to con-
firm the fundamental assumptions that sources of volcanic radiance
are sufficiently non-Gaussian in nature to be separated from other
sources of radiance by ICA, and that the mixing model is close enough
to linear that nonlinearities resulting from whisk broom acquisition
and resampling between level 1 and level 1.5 data do not substantially
interfere in the process. The noise in the recovered signal varies greatly
depending on the amount of cloud present; during clear periods the
noise was found to be between 0.0239 and 0.0488 W m−2 sr−1 μm−1,
however during cloudy periods it increased to between 0.0778 and
0.187 W m−2 sr−1 μm−1. Cloud contamination is likely not modelled
well by ICA since an ‘ideal’, unchanging cloud moving across a number
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of pixels would contribute to pixels at different times, despite constitut-
ing a single source, violating the linear mixing assumption, and would
be better modelled with a convolutive ICA model (e.g. Douglas, Gupta,
Sawada, & Makino, 2007), however suchmodels are complex and com-
putationally expensive, and are beyond the scope of this paper. Cloud
contamination appears to be accommodated in regular ICAwith instan-
taneous mixing as an increase in ‘noise’ in all sources when cloud is
present. Neither of the case studies exhibited significant plumes that re-
sulted in obscuration of, or correlation with, the HTE.

The HTEs studied appear to be recovered well, as supported by the
simulations. However HTEs that vary in radiant output on a timescale
comparable to the sampling delay between neighbouring pixels and
produce large saturation effects will likely be poorly recovered. The for-
mer problem might be alleviated by increasing the number of PCs
retained, such that the separate HTE source is recovered for adjacent
scans, however the latter will likely remain a problem as the down
scan saturation anomaly will contaminate unsaturated pixels directly,
and indirectly during resampling, and may be so large as to exclude
the PSF of all neighbouring pixels, resulting in a ‘sensitivity hole’ in
which signals are not recorded unsaturated in any pixel.

Finally, in this paper we have modelled our volcanic HTE radiance
as a convolution of a cooling curve and an area emplacement curve,
based on the ideas of Carr (1986) and Davies (1996). The recovered
radiances could be deconvolved with a guessed cooling curve to get
an estimate of the area effusion rate provided the assumptions of
the simple convolutive model hold, and with multispectral observa-
tions, more sophisticated models could be inverted.

6. Conclusions

In this studywehavepresented an approach for extracting the radiance
from High Temperature Events (HTEs) from time series of geostationary
satellite images using Independent Component Analysis. We decompose
the image cube constructed by the regular sampling in time and space of
geostationary imagers into the sum of the outer products of maximally in-
dependent nonGaussian radiance sources and their spatial distributions,
identify HTE sources on the basis of a HTE index, and sum over the HTE
sources to give an image cube with HTE signals only. Integrating over
each image then gives the total HTE radiance as a time series. In addition,
we take advantage of the fact that a point source is recorded in different
pixels at different amplitudes to apply a saturation correction.Wehave val-
idated this approach for simple, point source, volcanic sources using simu-
lated volcanic radiances based on conceptual models of lava flow
emplacement, and applied it to two case studies, the May 2010 fissural
eruption of the Manda Hararo rift system and the November 2010 Erta
'Ale lava lake overflows, both of which took place in Afar, Ethiopia. We
are able to recover the time series of the spatially integrated volcanic radi-
ant output of both eruptions, and apply a correction for saturation in the
case of the May 2010 eruption. Future work could involve further simula-
tions to include multiple point source HTEs and spatially complex HTEs
and application of themethod to awider range ofHTE phenomena, includ-
ing wildfires, as well as attempt to improve the saturation correction for
larger events.
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Appendix A

In this appendix we present a more detailed account of the FastICA
algorithm of Hyvärinen (Hyvärinen, 1999; Hyvärinen & Oja, 2000;
Hyvärinen et al., 2001) as applied to radiance time series, and its appli-
cation in the case of saturated pixels. Full derivations andmore in depth
explanations can be found in the aforementioned references, and Stone
(2004) gives an excellent introduction to the topic. In the following we
use the upper case symbols for matrices, lower case symbols for vectors
and functions, the symbol . to denote the dot product between any com-
bination ofmatrices and vectors and * denotesmultiplying each rowof a
matrix by the corresponding value in a vector.

The FastICA algorithm proceeds in two stages, a prewhitening stage
to decorrelate the data, and an iterative stage where a fixed point algo-
rithm is used to find an orthogonal unmixingmatrix that gives themax-
imally independent nonGaussian sources. In the whitening stage the
signals are first centred to give each a mean of zero:

XC ¼ X−X ðA1Þ

where X is the matrix of signals, X is a matrix with constant rows equal
to the signal means, and XC is the matrix of centred signals. The centred
signals are then decorrelated by finding the premultiplication matrix P
that gives the first k principal components, where k is an estimate of
data dimensionality (usually chosen by trial and error). The matrix P is
found by taking the covariance matrix of the centred sources:

CX ¼ 1
n
XC � XT

C ðA2Þ

where n is the length of the signals, XC
T is the transpose of the centred

source matrix and CX is the covariance matrix. The eigendecomposition
is then found

CX ¼ E � Λ � ET ðA3Þ

where E andΛ are the eigenvector and eigenvaluematrices respectively,
and the matrix P calculated.

P ¼ Λ−1=2 � E
� �

k
ðA4Þ

where (…)k denotes retaining the first k row/principal components. The
matrix of centred, uncorrelated signals is then given by Z:

Z ¼ P � XC : ðA5Þ

Once the signals have been whitened, the fixed point algorithm is
applied. Each iteration proceeds in four steps. First, the current estimate
of the source matrix Ŝ is updated from the current estimate of the
unmixing matrix W (for the first iteration W is initialised as a random
matrix and orthogonalised by Eq. (A9))

Ŝ←W � Z: ðA6Þ

The current estimate ofW is then updated in the direction of increas-
ing nonGaussianity

W←
1
N

Z � g Ŝ
� �

−W �
X

rows
g0 Ŝ
� �� �

ðA7Þ

whereN is the number of observations in a signal, and the function g is a
nonlinearity function, which is used to estimate the non—Gaussianity of
the source—weuse the standard g(Ŝ)= Tanh(Ŝ), and g ′ denotes its de-
rivative. The step in Eq. (A7) does not enforce the orthogonality condi-
tion on, so the matrix is then orthogonalised

W← W �WT
� �−0:5 �W: ðA8Þ

At the end of each iteration i, the current estimate of the
unmixing matrix, Wi, is compared with the previous one, Wi − 1. If
the Frobenius norm of the difference of the absolute matrices drops



67T. Barnie, C. Oppenheimer / Remote Sensing of Environment 158 (2015) 56–68
below a value ε (we take 10−5) as shown in Eq. (A9), the algorithm is
stopped, and otherwise steps A6 to A8 are repeated.

Abs Wi−1ð Þ−Abs Wið Þk k F≤ε ðA9Þ

where ‖ … F‖ denotes taking the Frobenius norm of the enclosed ma-
trix. We take the absolute values of the elements of the unmixing
matrices before differencing them because ICA only recovers source
up to sign — the value of W can be converged, yet the sign of the
unmixing vectors (rows) of thematrix can change from one iteration
to the next. We implemented the FastICA algorithm in Mathematica,
based on the code of Langlois, Chartier, and Gosselin (2010), but with
modifications for symmetric orthogonalisation and matrix opera-
tions to increase speed.

The contributions of each source to each pixel is then given by

Y ¼ Pþ �W−1 ðA10Þ

where Y is the spatial contributionmatrix, of columns that give the size of
the contribution of a given source to each pixel, P+ is the pseudoinverse
of P and W−1 is the inverse of W. Alternatively, Y can be found from
Eq. (A11):

Y ¼ XC � Sþ ðA11Þ

where S+ is the pseudoinverse of the recovered sources, S. This is useful
in the case where signals with one or more saturated observations have
been excluded for finding the sources. In this case matrices P and W
which give the sources in terms of the reduced number of signals cannot
be used to estimate Y; instead we wish to estimate Y from the centred
signals with any saturated values removed. We demonstrate how this
can be achieved as follows. We start by expressing the unsaturated
(but unknown) radiance time series XC as a function of the known
sources S of unknown spatial contributions Y.

XC ¼ Y � S: ðA12Þ

We then multiply by an identity matrix with rows removed that
correspond to sections of the time series when one or more pixels
is saturated, IS,

XC � IS ¼ Y � S � IS: ðA13Þ

This gives us an equation for Y in terms of

Y ¼ XC � ISð Þ � S � ISð Þþ ðA14Þ

or

Y ¼ XC � Šþ ðA15Þ

which gives us the spatial contribution matrix Y as a function of the
known, unsaturated radiances Š and the unsaturated signals XC .
The saturation correction is thus dependent upon the matrix
(XC ⋅ IS) ⋅ (S ⋅ IS)+ being a good approximation to XC ⋅ S+.
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