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ABSTRACT: Effective parallel tempering simulations rely crucially on a
properly chosen sequence of temperatures. While it is desirable to achieve a
uniform exchange acceptance rate across neighboring replicas, finding a set of
temperatures that achieves this end is often a difficult task, in particular for
systems undergoing phase transitions. Here we present a method for
determination of optimal replica spacings, which is based upon knowledge of
local minima in the potential energy landscape. Working within the harmonic
superposition approximation, we derive an analytic expression for the parallel
tempering acceptance rate as a function of the replica temperatures. For a
particular system and a given database of minima, we show how this expression
can be used to determine optimal temperatures that achieve a desired uniform
acceptance rate. We test our strategy for two atomic clusters that exhibit broken ergodicity, demonstrating that our method
achieves uniform acceptance as well as significant efficiency gains.

1. INTRODUCTION
Effective equilibrium sampling of complex systems remains a
major challenge in computational thermodynamics. Systems
exhibiting broken ergodicity, reliant on rare event fluctuations,
or otherwise locally “trapped”, are characterized by long
equilibration times due to large (free) energy barriers
separating metastable states. This problem is particularly
acute for systems undergoing strong first-order-like phase
transitions, such as transitions corresponding to protein
crystallization, crystal polymorphism, and other changes in
morphology for condensed-matter systems.1−3

Parallel tempering (PT)3−5 has emerged as a powerful
method to analyze such complex systems. Here, several copies
of a given system are simulated at different temperatures, with
occasional moves that attempt to swap configurations of
neighboring replicas. By virtue of these exchange moves, the
low-temperature replicas gain access to larger thermal
fluctuations of the high-temperature replicas, facilitating quicker
transitions between metastable states.
The effectiveness of a given PT simulation depends crucially

upon the sequence of temperatures that define the replicas. The
temperature spacing should be small enough to produce a
reasonable acceptance rate between neighboring replicas, yet
large enough so that computational resources are not wasted on
an unnecessarily large number of replicas. Generally, a uniform
acceptance rate is desirable across all neighboring replica
pairs.6−11 This condition ensures that the progression of replica
trajectories among a ladder of temperatures is uniform,
providing an equilibration of the combined replica system
that is not hindered by bottlenecks along the temperature axis.
In general it is a difficult problem to find a temperature

progression that achieves a uniform acceptance rate, often
requiring an iterative or adaptive approach before production
runs.12−14 However, theoretical progress has also been made

under certain assumptions about the thermodynamic behavior
of the system of interest. Kofke has shown that a geometric
progression of temperatures
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leads to a uniform acceptance rate for systems with constant
heat capacity.7,8 Today the geometric spacing is a standard rule
of thumb, considered a best guess if nothing else is known
about the system of interest. Yet it is not always optimal.
Indeed, systems undergoing phase transitions will generally
have a significant heat capacity peak, in which case a constant
heat capacity approximation is ovbiously inaccurate, and hence
a temperature progression given by eq 1 is certainly not optimal
(see Figure 1). Other methods for determination of optimal PT
temperatures have focused on uniform acceptance for solvated
protein systems,15 optimizing replica diffusion through iterative
approaches,16 or have made temperature a dynamical
parameter.17−20 In the following we will be concerned with
obtaining a uniform acceptance profile, although the method
we describe can be used to optimize according to other criteria.
In the present contribution we present a method for

determining optimal PT temperatures, which can be especially
useful for systems undergoing phase transitions. The method
relies upon knowledge of the competing phases, represented as
configurational basins on the potential energy landscape. Using
the harmonic superposition approximation (HSA),2 in which
the landscape is approximated by harmonic wells at the various
minima, we approximate thermodynamic quantities, such as the
energy density of states, heat capacities, and the various free
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energies of the competing phases. With the approximate
distributions obtained by the HSA we can estimate the parallel
tempering acceptance probability, using information contained
solely within a database of configurational local minima. To
arrive at our result, we subdivide the configuration space into
separate basins of attraction on the potential energy landscape
and express the PT acceptance rate of a given replica pair as a
weighted sum over contributions from individual pairs of
minima (eq 2). In this way, the replica pair acceptance rates are
determined explicitly from the relative weights of the various
competing phases, along with their associated conditional
acceptance probabilities. Using the known analytic energy
distributions within the HSA, we derive an analytic expression,
eq 10, for the conditional acceptance rates. The overall PT rate
is then obtained by weighting each of these terms by the HSA
local free energies of the individual wells. With this expression
at our disposal, we find an optimized temperature progression
via a simple algorithm, described in Section 3, which matches
each neighboring pair of temperatures to a target acceptance
rate.
Our method exploits the HSA to represent the landscape.

Because the HSA becomes exact in the limit of zero
temperature, we expect our method to be ideal for transitions
at low temperatures compared to the barrier heights between
phases. Indeed, low-temperature solid−solid phase transitions
of many atomic clusters are very accurately described by the
HSA.2 While the HSA is in practice never an exact
approximation, it is clear why this method could more
accurately predict thermodynamics of systems undergoing
phase transitions: While a constant heat capacity assumption
is certainly unjustifiable for an arbitrary system, at a relatively
low temperature it is reasonable to assume that, within a certain
basin of attraction, the system samples an energy landscape that
is roughly harmonic, to a first approximation.
While our method relies upon knowledge of competing

minima, finding these structures is computationally inexpensive
compared to characterizing the thermodynamics.21,22 Because
the end result of such techniques is not thermodynamics but a

list of minima, the dynamics does not require detailed balance
to be satisfied. Software such as GMIN23 and its python-based
counterpart pele24 employ global optimization tools of energy
landscape exploration and provide rapid, efficient, and accurate
determination of low-lying minima. We also note that recent
developments in thermodynamic sampling algorithms (which
do satisfy detailed balance) have exploited the HSA to obtain
more accurate thermodynamic results using information
contained in a database of minima. Examples include parallel
tempering with an auxiliary “reservoir” replica, which samples
the HSA distribution,25,26 superposition-enhanced nested
sampling, which draws samples from the HSA,27 and the
hybrid basin-sampling method.21 Similar methods such as
smart-darting,28 based upon smart-walking,29 employ similar
ideas with collective movesets that hop between minima.
The remainder of the paper is organized as follows. In

Section 2 we derive an expression for the PT acceptance
probability within the HSA approximation. Our central result,
eq 10, allows us to estimate PT acceptance rates solely from a
database of minima. Following this estimation, in Section 3 we
describe how this expression can be exploited to determine a
set of temperatures which achieve a uniform acceptance rate. In
Section 4 we then test this prescription on two systems
exhibiting low-temperature solid−solid phase transitions,
namely Lennard-Jones clusters with 31 and 75 particles, LJ31
and LJ75, showing that our method can achieve uniform
acceptance rates across phase transitions and perform more
efficiently than simulations using standard temperature
progressions. Finally, in Section 5, we discuss the conditions
under which the current strategy can be most effective and
useful.

2. DERIVATION OF ACCEPTANCE PROBABILITY
EXPRESSION

Consider a PT simulation for a system described by a potential
energy V(x), where x is a point in the system’s configuration
space. Let A and B be two replicas in this simulation, at
temperatures TA and TB, respectively, which sample the system
canonically, so that ρA(x) ∝ e−V/kTA etc. In the following we
assume TB > TA. We desire an expression for the average PT
acceptance rate, ⟨Pacc⟩, between our pair of replicas (A, B). To
begin our analysis we divide the configuration space into a finite
number of wells, indexed by w. Here a point x in configuration
space belongs to well w if it lies in the corresponding basin of
attraction for a given local minimum, defined by steepest-
descent pathways which converge to the minimum in
question.2,30 Without loss of generality we can write any
configuration space average as a weighted sum over conditional
averages. Hence we can express the average PT acceptance
probability of this pair as

∑⟨ ⟩ = ̅ ′
′

′P p p P w w( , )
w w

w
A

w
B

acc
,

acc
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where pw
i = Zw

i /Zi is the equilibrium occupation probability for
well w in replica i and P̅acc is the average acceptance probability,
conditioned upon A and B residing in wells w and w′,
respectively.
We desire an explicit expression for ⟨Pacc⟩ in terms of TA and

TB, via eq 2. While the well weights pw
i can be approximated by

the corresponding HSA well free energies (see Section 3), more
challenging is the conditional acceptance, P̅acc(w, w′). The

Figure 1. Bottleneck problem in parallel tempering: While a geometric
spacing of temperatures (eq 1) provides a uniform acceptance rate
when the heat capacity is roughly constant, in the vacinity of a phase
transition it leads to a bottleneck. These effects are clearly illustrated
for two atomic clusters of 31 (left panels) and 75 atoms (right panels)
that exhibit broken ergodicity.2
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central result of this section is an analytic expression for P̅acc(w,
w′), eq 10, which we now derive.
We begin by writing the conditional acceptance rate as a

configuration-space average:

∫ ∫ρ ρ̅ ′ = | | ′ βΔ ΔP w w x x w y y w( , ) d ( ) d ( )min{1, e }A B
V

acc

(3)

where Δβ = βB − βA < 0, ΔV(x, y) = V(y) − V(x), and βi = 1/
kTi. The conditional configurational distributions ρi(x|w) ∝
e−βiV for x ∈ w and 0 otherwise. Using properties of the min
function it can easily be shown31 that eq 3 can be rewritten as

∫ ∫ ρ ρ̅ ′ = | | ′
βΔ Δ >

P w w x y x w y w( , ) 2 d d ( ) ( )
V x y A Bacc

( , ) 0 (4)

or alternatively, in terms of energy distributions pA and pB:

∫ ∫̅ ′ = ϵ ϵ| ϵ′ ϵ′| ′
−∞

∞

−∞

ϵ
P w w p w p w( , ) 2 d ( ) d ( )A Bacc (5)

The distribution pi(ϵ|w) corresponds to the canonical energy
distribution of replica i (at temperature Ti) when restricted to
well w.
Our expression for the conditional acceptance probability, eq

5, is exact, but the energy distributions pi(ϵ|w) are unknown. In
the following analysis we approximate these quantities by the
(known) HSA distributions, described by a gamma distribution.
For replica A, for instance, we have

β
κ

ϵ| =
Γ

ϵ − ϵ
κ

κ β− − ϵ−ϵp w( )
( )

( ) eA
A

w
1 ( )A w

(6)

where ϵw is the potential energy of the local minimum
associated with well w, Γ is the gamma function, and 2κ is the
number of configurational degrees of freedom. Note that this
distribution only depends on the energy, ϵw, of the minimum in
question and not the shape (curvature) of the well. In the limit
κ → ∞ this distribution approaches a Gaussian, described by
cumulants:

μ κ σ κ= + ϵ =w T w T( ) ; ( )A A w A A
2 2

(7)

μ κ σ κ′ = + ϵ ′ =′w T w T( ) ; ( )B B w B B
2 2

Assuming this Gaussian limit has been reached (since 2κ is the
number of degrees of freedom, this is not a severe assumption),
we can evaluate eq 5 as

∫ ∫

∫ μ
σ
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In going from the first to second line, we used the definition
of the error function and exploited the fact that it is an odd
function. Equation 8 is an integral of a Gaussian convoluted
with an error function, which is

μ
̅ ′ =

Δ ′

′

⎛
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⎞
⎠⎟P w w

r
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2
ww

ww
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where Δμww′ = μB(w′) − μA(w) and rww′ = (σA(w)
2 +

σB(w′)2)1/2.
Substituting in the cumulants for our replicas, eq 7, we arrive

at our final expression:
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γ
= −
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0 2
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Here γ = TB/TA, ΔT = TB − TA, and Δϵww′ = ϵw′ − ϵw is the
potential energy difference between the local minima
corresponding to wells w and w′.
It is instructive to consider limiting cases of eq 10. For w =

w′, we have Δϵww′ = 0, and our expression reduces to the
previous result derived by Kofke for constant CV systems with
Gaussian energy distributions (see eq 13 of refs 8 and 7). Here
we find that γ = TB/TA alone controls the acceptance rate,
validating a geometric temperature progression. However, if w
≠ w′, then the acceptance deviates from “geometric behavior”
by a factor Δϵww′/κΔT, which becomes significant when the
energy splitting between minima is comparable to the
difference in average internal energy of the two replicas. We
expect such deviations to appear near a phase transition, when
multiple wells contribute to the thermodynamics.

3. OPTIMIZING THE REPLICA SPACING
With eq 10 in hand, we can now estimate the full acceptance
probability ⟨Pacc⟩, in terms of TA and TB. The occupation
probabilities pw

i , which weight the individual contributions
P̅acc(w,w′), are conveniently expressed in terms of their free
energies f w. For a replica at inverse temperature β, we have

=
∑

β

β

−

′
− ′

p
e

ew

f

w
f

w

w (12)

Within the HSA, the free energy is given by

β= ϵ − −f sw w w
1

(13)

with local minimum potential energy ϵw and well entropy

κ ν= − ̅ −s nln lnw w w (14)

Here the entropy is specified by two standard features of the
well: (1) the geometric mean vibrational frequency, vw̅, which
describes the curvature of the minimum; and (2) the number of
distinguishable permutation-inversion isomers, nw, determined
by the point group associated with the given minimum.2

Equations 2, 10, and 12−14 provide an explicit expression for
our acceptance probability, which we write as

⟨ ⟩ ≡P g T T( , )A Bacc (15)

and depends upon the database of minima. Using this
expression, we now optimize a sequence of M temperatures,
as follows. First, a target acceptance rate pacc* is chosen, and an
initial temperature T1 is specified. A sequence of temperatues
T2, ..., TM is then built from the bottom up: given a temperature
Ti, Ti+1 is determined from the condition:

= *+g T T p( , )i i 1 acc (16)

This is a standard optimization problem, which can be solved in
various ways.2,32 Hence we generate a sequence of M
temperatures which, within the HSA approximation, each
have a uniform acceptance of pacc* and which relies only on the
database of minima.
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4. PERFORMANCE ON TEST SYSTEMS
In this section we evaluate the effectiveness of our method by
applying it to two model systems, clusters of Lennard-Jones
particles, interacting via the pairwise potential:

σ σ= ϵ −⎜ ⎟ ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥u r

r r
( ) 4

12 6

(17)

These clusters can exhibit strong first-order transitions at low
temperatures2,25,26,33−35 and as such are prototypical examples
of complex systems exhibiting broken ergodicity. Hence they
have been used extensively for benchmark studies of
thermodynamic sampling methods.2,21,25−27 In what follows
we will focus on LJ31 and LJ75, clusters of 31 and 75 particles,
respectively. Both of these systems exhibit low-temperature
solid−solid transitions indicated by pronounced peaks in the
heat capacity profile (Figure 1), making them ideal candidates
for testing our method.
To evaluate the effectiveness of our strategy we perform two

PT simulations for each of our LJ systems: one simulation
employing an HSA-optimized set of temperatures, and the
other using a standard geometric temperature progression.
Because this approach is intended to be useful near low-
temperature phase transitions, we consider a temperature range
that spans the peak in the heat capacity profile (Figure 1). For
each of our test systems this range was achieved using M = 12
replicas. The precise HSA-optimized sequence was determined
via the optimization scheme described in Section 3, using a
relatively cautious14,36 target acceptance rate of pacc* = 0.22. The
corresponding reference simulations employed a temperature
sequence defined by the recursion Ti = γTi−1, where the
constant γ was chosen to achieve the acceptance rate pacc* = 0.22
for the lowest temperature pair.
In order to uniquely specify the temperature sequence, we

must also specify initial conditions from which the optimization
scheme and geometric recursion begin. Rather than (arbitrarily)
choosing an initial temperature T1, we instead require an
intermediate replica R ≈ M/2 to be located at the peak of the
CV curve, i.e., TR = T*. In this way, the temperature progression
of the HSA and reference simulations coincide exactly at replica
R, located at the CV peak. For our simulations we chose R = 5
and 6 for LJ31 and LJ75, respectively. This choice of initial
condition is convenient for the purposes of the advanced
simulation strategy which we describe below, in addition to
being less arbitrary than a value of T1 chosen ad hoc. In Figure
2 we compare the temperature set obtained from HSA
optimization to the reference geometric progression for the
case of LJ31. The corresponding plot for LJ75 is qualitatively
similar.
To ameliorate poor PT convergence due to broken

ergodicity, we employed an advanced simulation technique,
reservoir replica exchange,25,26 whereby the PT simulation
employs an additional “reservoir replica,” which samples the
HSA approximation to the underlying landscape. Because the
reservoir replica is an efficient sampler, it provides an ersatz
high-temperature replica: its frequent transitions between
metastable states provide a channel for rapid PT equilibration
when coupled to the sequence of M “physical” replicas. By
employing this method, we were able to obtain converged
thermodynamics without the need for additional replicas with
temperatures approaching melting. For our simulations, the
reservoir replica was coupled to replica R at the CV peak (TR =
T*), shown elsewhere to be a good choice for these clusters.26

Since replica R coincides for our HSA and reference
simulations, the reservoir method couples to the same
distribution in both the HSA and reference simulations,
reducing any systematic discrepancies due to this auxiliary
sampling.
We now present the results of our PT simulations, focusing

first on the acceptance rate. Figure 3 displays the acceptance

profile of LJ31 for both the reference and HSA-enhanced
simulations. The reference simulation exhibits a roughly
constant profile near the terminal temperatures but displays a
noticeable dip in the vicinity of the phase transition. The HSA-
enhanced simulations, however, display a profile that is much
more uniform across the phase transition. Our simulations of
LJ75 show similar behavior: Figure 4 indicates that the reference
simulations of LJ75 fail to achieve a uniform profile near the
phase transition, whereas with the HSA-optimized set this dip is
absent. From these results it is clear that HSA-optimized
temperature set can achieve a more uniform acceptance profile
than standard geometric progression.

Figure 2. HSA-optimized temperature progression (blue), compared
to reference geometric progression (black) on a log scale, and their
ratio (inset) on a linear scale. The progression of the HSA-optimized
replicas mimics the reference sequence at high and low temperatures,
where a geometric sequence is known to be optimal. At the phase
transition (temperature index 6), there is a crossover.

Figure 3. Acceptance profile for LJ31: The average replica exchange
acceptance probability for pair (Ti, Ti+1) is plotted vs temperature
index i, for temperature spacings chosen geometrically (empty black
circles) and chosen by HSA-optimization (filled blue circles). The dip
in the geometric case coincides with the LJ31 heat capacity peak
(Figure 1). At higher temperatures both profiles deviate from uniform
behavior, as the HSA becomes less accurate.
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We have seen above that our strategy provides a more
uniform acceptance profile near a CV peak. We now investigate
whether it can also lead to gains in simulation efficiency. To
characterize convergence of our PT simulation, we need a
measure that captures the dynamics of our entire M replica
system. This measure can be achieved by following the replica
trajectories as they evolve between the set of M temperatures.
By “replica trajectory” we refer to a time series trace of the
temperature index k, where discrete jumps k → k ± 1 occur by
successful replica exchanges with neighboring temperatures. By
projecting onto k, the dynamics of a given replica trajectory r
are represented as a random walker in this discrete space, with
transitions in k related to the PT acceptance profile. The entire
M replica system will be converged once each of our M
trajectories has exchanged many times between the terminal
temperatures (k = 1 and k = M), and the time scale under
which these transitions occur will give an indication of the
convergence condition for our PT simulation.
To characterize convergence from our replica trajectories, we

use a technique developed by Doll et al.37 For each trajectory r,
let pr(t) = (p1

r , ..., pM
r ) denote the vector of observed occupation

probabilities up to time t. That is, element pk
r(t) is the fraction

of simulation time trajectory r was observed in temperature
index k up to time t. Since we have M trajectories, the dynamics
of our simulation are represented by M such vectors, p1, ..., pM.
Importantly, we know the converged limit of pr: As t→∞ each
temperature is equally occupied,37 so pr → peq = (1/M, ..., 1/
M) for each r. The approach of pr(t) to peq will determine the
overall simulation convergence. To analyze this convergence we
define an occupation-based entropy:37

∑= −
=

S t p t p t( ) ( )log ( )r

i

M

i
r

i
r( )

1 (18)

By following the approach of S(r) to its limiting value, Seq =
ln(M), we can straightforwardly probe convergence of our M
replica system. Below, we report values averaged over the M
replica trajectories: S(t) = (1/M)∑rS

(r)(t).
In Figures 5 and 6 we display S(t) for LJ31 and LJ75,

respectively. For both systems, we clearly see that S approaches
Seq quicker with HSA-optimized temperatures compared to the
reference simulations, indicating that HSA-optimized spacings
provide more rapid equilibration.
As a second test of convergence, we directly calculate a time

scale associated with the temperature index k for our replica

trajectories. For a given replica trajectory, we estimate a
characteristic relaxation time associated with k as

∫τ
σ

=
∞

tC t
1

d ( )
k

k2 0 (19)

where

= ⟨ ⟩ − ⟨ ⟩C t k t k k( ) ( ) (0)k
2

(20)

is the autocorrelation function of k and σk
2 is its variance. In

Table 1 we display our estimates of τ for simulations with HSA-
optimized and geometric temperature sequences. The values
are reported as averages over the M replica trajectories, with
individual τ values obtained from block averaging.38 As shown

Figure 4. Average replica exchange acceptance probability for LJ75, for
temperature spacings chosen geometrically (empty black circles) and
chosen by HSA optimization (filled blue circles).

Figure 5. Convergence of LJ31 parallel tempering simulations: The
convergence of the replica occupation-based entropy S (eq 18) to its
equilibrated value, Seq, is plotted on a log scale as a function of
simulation time. The HSA-enhanced temperature choice performs
significantly better than the standard geometric temperature
progression.

Figure 6. Convergence of LJ75 simulations in terms of replica
occupation entropy S: In the long run, the HSA-enhanced temperature
choice shows an improvement over a standard geometric temperature
progression.

Table 1. Autocorrelation Time of PT Temperature Index k
for Reference Simulations (τgeom), HSA-Enhanced (τHSA),
and Their Ratioa

system τgeom τHSA τgeom/τHSA

LJ31 4.97 0.640 7.76
LJ75 1.42 0.90 1.59

aTimes are reported per 106 MC steps.
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in Table 1, the relative speedup due to HSA optimization
ranges from 1.59 for LJ75 to 7.76 for LJ31, providing an
improvement.
Based upon this time scale analysis, it is clear that LJ31

benefits from HSA-optimized temperatures. The results from
LJ75, on the other hand, are more difficult to discern: with HSA-
optimization, LJ75 only receives a marginal benefit as judged by
the convergence time scales. The fact that τHSA ≈ τgeom despite
a more uniform acceptance profile (Figure 4) may indicate that
the bottleneck for equilibration is not captured simply by a dip
in the acceptance profile, but rather is determined by rare
structural fluctuations within a given replica acting on much
longer time scales. Indeed, it is known that low-temperature
simulations of LJ75 are extremely difficult to converge, even
when using parallel tempering.26 In this case, the convergence
time scales reported for LJ75 can only be considered lower
limits to equilibration.

5. DISCUSSION AND CONCLUSION
We have applied our optimization technique to systems
undergoing first-order-like phase transitions, for which there
is currently no successful analytic theory for PT temperature
spacings. The results above clearly show that our optimized
temperature sequence can provide PT results with (1) a more
uniform acceptance profile and (2) faster convergence. A
standard geometric progression of temperatures applied to such
a situation leads to a bottleneck in the acceptance profile, which
ultimately slows system equilibration and hinders replica
mixing. This failure is due to the breakdown of the assumption
of constant heat capacity, resulting from a shift of metastability
from one phase to another. Our approach, on the other hand,
can be very effective in this regime. The method is based upon
the HSA, an approximation of the underlying canonical
distribution that is able to predict changes of state and other
nontrivial thermodynamic behavior. By utilizing the HSA, our
temperature optimization scheme is sensitive to changes in
populations of various phases that occur near such transitions
and hence can tolerate a nonuniform heat capacity.
Although our method requires no particular assumptions

about the heat capacity profile, it does, importantly, rely on the
HSA to faithfully represent the underlying canonical distribu-
tion. This representation is necessary in order to accurately
estimate the thermodynamic behavior of the system, in
particular its acceptance probability profile. Because the HSA
is accurate only for low temperatures (and only exact at T = 0),
our method will generically be most reliable for systems in or
near the solid phase. We therefore intend to use it for suitable
applications, such as crystal polymorphs, crystal−quasicrystal
coexistence, and other systems undergoing structural rearrange-
ments.
In a similar vein, our method also requires a database of

configurational minima of the potential energy landscape,
which must first be found before the HSA can be constructed
and utilized. Although the total number of minima can often be
large, fortunately our method only requires those minima that
are important for the thermodynamics. For the systems we are
considering (solids at reasonably low temperatures), this
number is relatively small. Furthermore, finding these relevant
minima can be computationally inexpensive compared to
equilibrium thermodynamic sampling as a whole;22,21 primarily
because minima searching techniques need not satisfy detailed
balance and hence permit a wider range of step-taking routines.
By investing a relatively minor amount of time in global

optimization (minutes in the case of our test systems), we
obtain quicker convergence of our (much) longer PT
simulations thanks to the HSA-optimized temperatures.
Basin-hopping33,39,40 is one efficient strategy for minima
searching and exploration of the potential energy landscape
and is currently available in our group software.23,24

Finally, we mention that our method can be extended to
optimize temperatures according to other criteria as well. Here
temperatures were selected to achieve a uniform acceptance
profile. Others, however, argue instead that temperature
spacings should minimize replica round-trip times.16 To achieve
this, Katzgraber et al. use an iterative procedure that optimizes
the flow of replica trajectories between terminal temperatures,
achieving sizable efficiency gains over a uniform acceptance
strategy.16 The tools developed here, in particular the estimates
for acceptance rates, could be used to optimize in a similar way.
This analysis is in progress.
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