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We analyse the combinatorial aspect of global optimisation for multicomponent systems, which involves
searching for the optimal chemical ordering by permuting particles corresponding to different species. The
overall composition is presumed fixed, and the geometry is relaxed after each permutation in order to relieve
local strain. From ideas used to solve graph partitioning problems we devise a deterministic search scheme
that outperforms (by orders of magnitude) conventional and self-guided basin-hopping global optimisation.
The search is guided by the energy gain from either swapping particles i and j (∆Eij) or changing the
identity of particles i (∆Ei). These quantities are derived from the underlying (arbitrary) energy function,
hence not constituting external bias, and for site-separable force fields each ∆Ei can be approximated simply
and efficiently. In our self-guided variant of basin-hopping, particles are weighted by an approximate ∆Ei
when randomly selected for an exchange, yielding a significant improvement for segregated multicomponent
systems with modest particle-size mismatch.

Multicomponent clusters are of great contemporary in-
terest for many applications, ranging from the use of al-
loyed metallic nanoparticles (nanoalloys)1 in catalysis to
the rational design of functional mesoscopic structures
formed from colloidal pseudoatoms.2 Theory and simu-
lation have been productive in explaining and predicting
the properties of both nanoalloys and colloidal clusters,
with reliable structure prediction typically being a key
objective. The global optimisation procedures required
for model systems with chemical disorder are complicated
by the combinatorial number of arrangements that may
be possible for each underlying framework. In the present
contribution we demonstrate a general and effective way
to deal with this problem in a deterministic manner,
which should expand the capability of theory and sim-
ulation to make efficient predictions and establish design
principles for multicomponent systems.

Global optimisation for multicomponent systems is of-
ten split into two parts: (i) geometry optimisation via
displacement moves and (ii) combinatorial optimisation
of chemical ordering via exchange moves. A displace-
ment move is an operation that alters the coordinates of
at least one particle, without affecting the labels. Ex-
change moves do the converse: they interchange the la-
bels of at least two unlike particles without affecting the
coordinates; and they are often followed by a local relax-
ation of the geometry. The purpose of exchange moves is
to find the most favourable permutational isomer (homo-
top3) for a given geometrical motif, and this is the issue
addressed in the present contribution.

A common approach for homotop search is basin-
hopping (BH)4,5 with particle exchanges only.6 With
prior knowledge of the system, the randomly chosen ex-
change moves can be weighted in a way that biases the
search and improves the efficiency.7 Here we will show
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that a deterministic algorithm based on Kernighan and
Lin’s (KL)8 heuristic for partitioning graphs can be a
more effective alternative. The heuristic is similar to the
iterated local search (ILS) proposed by Lai et al.,9 but
with a number of subtle and important differences. We
will also show how BH (with exchanges only) can be made
self-guided by weighting individual particles in a way that
does not constitute an external bias. For atom-separable
potentials this weighting scheme can be approximated to
achieve less reliable but computationally much more ef-
ficient results, providing a competitive alternative to the
“tailored” exchange moves7 that rely on chemical intu-
ition. For the sake of brevity we shall restrict our dis-
cussion to binary systems, but the methodology can be
applied to ternary and more complicated systems.

For a binary cluster with NA particles of type A and
NB = N −NA of type B, each geometry might support
up to N !/(NA! ×NB !) distinct homotops. This number
is often reduced by symmetry, but an exhaustive search
for clusters with N >∼ 35 is still practically unfeasible. A
Markovian random search without any guidance or bias
is also not ideal, because it can potentially require even
more than N !/(NA!×NB !) iterations due to multiple vis-
its to the same configuration. On the other hand, it is
clear that at most min(NA, NB) exchanges should ever be
needed to reach one homotop from another. This obser-
vation implies that, if the most favourable homotop were
known, it could be obtained from any other permuta-
tional isomer by exchanging no more than min(NA, NB)
unlike pairs. Hence, a perfect search strategy would
be the one that never requires more than min(NA, NB)
swaps to find the best homotop. Also note that at ev-
ery instance there are only NA×NB possible choices for
a swap. Determining the “gain” (to be defined) associ-
ated with every possibility and using this information to
guide the search becomes a feasible strategy. In the ideal
case where swaps provide perfect guidance, the maximum
number of possibilities that will need to be considered is

NA ×NB ×min(NA, NB) <∼ N3. (1)
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Viewing a particle exchange as the basic step in com-
binatorial optimisation naturally leads to the notion of
a locally optimal solution: it is one that cannot be im-
proved by any single swap. Determining the number of
locally optimal homotops would be a non-trivial task, but
our intuition suggests that the number should be signifi-
cantly smaller than N !/(NA!×NB !). It is also clear that
the best (globally optimal) homotop must belong to this
smaller set. Hence, there is potentially great utility in
methods that can efficiently find a local optimum with
respect to pair swaps, but not necessarily produce the
global optimum. A powerful heuristic procedure due to
Kernighan and Lin8 (KL) achieves precisely this result.

The KL heuristic was intended as a rapid search for
locally optimal partitions of an arbitrary graph, and the
procedure involves deterministic swapping of individual
nodes between subsets of given size. The optimality of
a partition is measured by a specified “cost” function.
Here we represent a multicomponent cluster as a gener-
alised graph: the particles correspond to mobile nodes
and the energy is the cost function, which does not have
to be pairwise additive, and the graph edges need not
be well-defined. The heuristic is well known to be ef-
fective in finding optimal solutions, and fast enough to
be practical for solving large problems. The probabil-
ity (p) that an optimal solution found by the KL proce-
dure is globally optimal diminishes with system size (N),
and the empirically-inferred scaling is approximately8

p(N) = 2−N/30. Assuming the same scaling applies to
multicomponent molecular systems, for a 30-particle bi-
nary cluster at 50/50 composition we would expect the
KL procedure to find the global minimum with p ∼ 0.5.
Here we shall not focus on the scaling with system size,
but rather consider all possible compositions for one par-
ticular size to demonstrate the effectiveness of the KL
procedure.

The KL heuristic starts from an arbitrary partition of
particles into two indexed subsets A = {ai}NA

i=1 and B =

{bj}NB
j=1, where each ai and bj is a label permanently fixed

to a particle, and the corresponding potential energy is E.
After initialising EO ← E, AO ← A, BO ← B and setting
the termination condition C to FALSE, the procedure
iterates according to the structure outlined in Fig. 1. The
algorithm is guided by the quantities ∆Eij , which we
refer to as swap gains, each corresponding to the change
in energy due to particles i and j trading places. The
lists A′ and B′ are intended for tracking particles that are
still in contention for a swap in the current pass (the do
loop); and whenever two particles are exchanged, their
labels are removed from A′ and B′. A pass will terminate
when A′ or B′ is depleted. The procedure finishes when
it fails to improve EO in an entire pass, guaranteeing
that the final AO and BO correspond to a locally optimal
partition. Whenever an improvement is made during a
pass, the best partition obtained during that pass is used
to seed the next pass.

Remarkably, for all the weighted graphs considered
by Kernighan and Lin (and all the model systems con-

while C is FALSE:
Update C to TRUE.
Set A′ ← A and B′ ← B.
do min(NA, NB) times:

Pick a′I ∈ A′ and b′J ∈ B′ with the lowest ∆EIJ .
Remove a′I from A′ and b′J from B′.
Move aI to B and bJ to A.
Update the total energy E.
if E < EO then:

Update EO ← E, AO ← A and BO ← B.
Reset C to FALSE.

end if.
end do loop.

end while loop.

FIG. 1. Pseudocode for the KL procedure (see text).

sidered below), no more than four passes were ever re-
quired to converge on a locally optimal (or near optimal)
partition.8 This upper bound does not appear to be sen-
sitive to system size, resulting in the total number of
scanned exchanges scaling as N2 logN .8 Note that it is
the removal of particles from contention that improves
the scaling from N3 to N2 logN , because during each
pass the number of swap possibilities is not fixed but
rapidly diminishes from NA × NB to |NA − NB |. It is
also important to note that swaps with positive as well
as negative ∆Eij can occur, which allows the system to
escape from relatively shallow minima, thus improving
the chances that the final partitioning is globally opti-
mal. These two key features distinguish the KL heuristic
from the “greedy” ILS of Lai et al.9

The computational bottleneck in the KL procedure is
the selection of an exchange pair, which requires scanning
all the possibilities to ensure the execution of the best
swap every time. For weighted graphs with a pairwise-
additive cost function the calculation of every ∆Eij is
relatively straightforward, and the total cost E can be
updated very efficiently.8 For an N -body system with
a general energy function the bottleneck may be more
severe. Most (semi-)empirical potentials for nanoalloys
are not pairwise additive, in which case calculating each
∆Eij may necessitate recomputing the total energy, and
all of these computations will typically scale as N2. Fur-
thermore, exchanging two dissimilar particles is likely to
result in undesirable local strain that should be relieved,
and relaxing the geometry after every exchange is com-
putationally expensive. To reduce this particular over-
head in their ILS algorithm, Lai et al.9 exploit a cor-
relation between ∆E∗ij before the relaxation and ∆Eij
after the relaxation, and they elect to rank all candi-
date pairs solely based on ∆E∗ij . They then sequentially
attempt exchanges according to this ranking, relax the
corresponding structures and accept the first encountered
improvement. This procedure reduces the number of lo-
cal relaxations required to identify an exchange pair that
warrants an improvement (not necessarily the best one).
However, the performance of this strategy is expected to
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deteriorate as the correlation between ∆E∗ij and ∆Eij
gets worse (e.g. lattice mismatched systems).10

We now define the notion of flip gain (analogous to
“cell gain” of Fiduccia and Mattheyses11), quantified by
∆Ei, which is the energy change due to a single particle
i switching type (i.e. “flipping”). There are only N pos-
sibilities for a flip at any given instance: fewer than the
number of unlike pairs, unless min(NA, NB) ≤ 1. The
computational cost of selecting exchange candidates can
be reduced by considering all the N flip gains instead of
all the NA×NB swap gains. Fiduccia and Mattheyses11

exploit this opportunity: they follow the same algorithm
as in 1, but each choice of a′I ∈ A′ is determined by the
lowest possible ∆EI and each b′J ∈ B′ by the lowest ∆EJ .
Although this strategy improves the scaling with system
size, it can compromise the quality of the final solution.
The potential error can be foreseen from the fact that
particles I and J with minimal respective flip gains (∆EI
and ∆EJ) will not necessarily yield the lowest possible
swap gain (∆EIJ). In general, one cannot immediately
infer the exact energy change resulting from a swap based
on flip gains alone, especially if the potential is not pair-
wise additive and the two atoms are close to each other.
Furthermore, relying on flip gains for guidance can result
in desirable swaps being systematically missed, causing
the algorithm to converge on a “good” solution that is
not actually locally optimal. Note that one can select
swap candidates based on flip gains calculated either in
the same instance or in two successive instances. In the
latter case, NA and NB are not strictly conserved, but
each fluctuates by one mid-way through every swap, al-
ways reverting to the original values at the conclusion of
each swap. Sequential updating guarantees the precise
knowledge of the resulting change in total potential en-
ergy before a flip is executed: the change will always be
equal to the corresponding flip gain. Of course, one still
has to decide which particle type to flip first, and this
choice may also affect the quality of the final solution.

If locating the globally optimal homotop is not the
ultimate goal, but rather the aim is to find a homotop
that is (in some sense) almost globally optimal, then re-
lying on flip gains to select swap candidates would be
the simplest strategy. By analogy with swap gains, for
multicomponent clusters it is useful to distinguish be-
tween approximate flip gains (∆E∗i ) before geometry re-
laxation and exact flip gains (∆Ei) after the relaxation.
Since most empirical potentials are site-separable, the to-
tal potential energy can be expressed as a sum over par-

ticles: E =
∑N
i=1Ei; which admits efficient approxima-

tion of flip gains within a single function call. We chose
to exploit this possibility by selecting swap candidates
based solely on ∆E∗i . The selection was performed se-
quentially with approximate flip gains updated mid-way
through each swap. We also tried performing an addi-
tional mid-swap quench, but this procedure resulted in
improvements that did not fully compensate for the cost
of having twice as many geometry relaxations. Hence,
in all the results that follow we essentially compare the

following three schemes (now implemented in GMIN12):

KL The heuristic in 1 with a′I and b′J picked sequen-
tially according to the minimum estimated flip
gain, without mid-swap relaxation. The particle
type with the lowest estimated flip gain was always
picked first. When the search converged, it was
restarted with another random initial condition.

BH∗ Self-guided basin-hopping with particles weighted
by exp(−∆E∗i /kBT ) in the random swap selection.

BH Standard basin-hopping with all particles weighted
uniformly (i.e. random swaps with fair selection).

Although the general idea behind BH∗ is similar to “tai-
lored” moves,7 the intention is not to impose any external
bias based on chemical intuition, but rather use the un-
derlying energy landscape to make the search self-guided.

Our model system involves 22-particle binary Lennard-
Jones (BLJ) clusters. This size was chosen because the
global minimum structure5 in the homogeneous case has
relatively low symmetry (Cs), and all the homotops for
every composition can be enumerated to confirm that the
best homotop has indeed been found. The Lennard-Jones
potential was chosen for its simple and generic form:

E = 4
∑
i<j

εαβ

[(
σαβ
rij

)12

−
(
σαβ
rij

)6
]
, (2)

where α, β ∈ {A,B} specify the type of particles i and
j, and rij is the distance between i and j. The parame-
ters εαβ (the well depth) and σαβ (particle radius) must
also be specified, and the values considered in the present
work never led to significant departure from the geome-
try of the homogeneous global minimum.5 Starting from
this structure, we first specify a composition and per-
form an extensive combinatorial search (106 swaps for
BH and BH∗, and 100 restarts for KL) using a particu-
lar method, with the geometry relaxed after every swap.
Once the search has completed, we set the best encoun-
tered structure as a target, and then perform a hundred
more searches using the same method, each terminating
whenever the target is hit. All of the hundred searches
were initialised with a different, randomly chosen homo-
top. The entire procedure was carried out for all com-
positions (1 ≤ NA ≤ 21), and the search was performed
using each of the three aforementioned schemes. The ap-
proximate flip gains were forecast in a single function call
with transformed parameter matrices ε∗αβ and σ∗αβ :

εαβ =

[
εAA εAB
εAB εBB

]
7→ ε∗αβ =

[
εAB εAA
εBB εAB

]
and likewise for σ∗αβ . The per-particle energies E∗i accu-
mulated during this call represent the energy each parti-
cle would have (before geometry relaxation) if it were
(alone) to switch type. Subtracting the current per-
particle energies Ei (computed with εαβ and σαβ) will
yield approximate flip gains: ∆E∗i = E∗i − Ei.
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FIG. 2. Average number of swaps / quenches (N̄Q) required
to hit the target homotop as a function of NA — the number
of type-A particles in the cluster. Three parameter sets were
considered: (a) εAB = 1.2, εBB = 1.5; (b) εAB = 1.5, εBB =
1.2; (c) σAB = 1.025, σBB = 1.05; with the remaining εαβ
and σαβ in each case set to unity.

The hit statistics accumulated for three different pa-
rameter sets are shown in Fig. 2. The parametrisation
considered in Fig. 2a is intended to represent a segre-
gated system without lattice mismatch, in which case
BH∗ and KL both require up to two orders of magni-
tude fewer swaps (and quenches) to find the global min-
imum. It is important to note that the performance of
BH and BH∗ is sensitive to the temperature parameter
in the accept/reject condition, which may require some
tuning to achieve optimal performance, whereas KL has
no adjustable parameters.

In Fig. 2b we again consider a lattice-matched sys-
tem, but with well-depths set to encourage mixing.
For this case KL outperforms both BH∗ and BH when
min(NA, NB) >∼ 5, i.e. the most challenging cases. Note
that for NA = 10 and NA = 11 not all (99% and 98%) of
the KL runs found the global minimum within the spec-
ified upper bound of one hundred restarts. Still, there is
convincing evidence for KL outperforming the two vari-
ants of basin-hopping by two orders of magnitude.

The final parameter set considered in Fig. 2c represents
a system of size-mismatched particles that are otherwise
(chemically) equivalent. Note that the level of mismatch
was chosen to ensure significant strain yet not alter the

geometrical motif of the global minimum.13,14 Again, KL
performs better than BH and BH∗, especially for compo-
sitions near 50/50. However, for one data point in Fig. 2c
(indicated by an arrow) KL failed to find the globally
optimal solution in the initial search for a target. This
result prompted us to repeat the run with more restarts,
and we found that it located the global minimum only
6% of the time. In contrast, using exact flip gains leads
to a hit-rate of 70%. This result exemplifies a poten-
tial pitfall: lattice mismatch can weaken the correlation
between ∆Ei and ∆E∗i to the point that the approxi-
mate flip gains can systematically misguide the search.
The same caveat applies to approximate swap gains.10 A
detailed analysis of this issue and more benchmark cal-
culations are in progress.

To summarise, we have outlined a deterministic scheme
based on the Kernighan-Lin8 heuristic and shown that it
can outperform stochastic methods in combinatorial opti-
misation for binary clusters of 22 particles. We have also
proposed a self-guided variant of basin-hopping, which
improves conventional basin-hopping without relying on
any external bias. We anticipate that both these meth-
ods be effective for combinatorial optimisation of a wide
range of multicomponent clusters from the atomic to the
mesoscopic length scale.
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