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A series of idealized numerical models have been developed to investigate the effects of partially resolved
symmetric instability (SI) in oceanic general circulation models. An analysis of the energetics of symmet-
ric instability is used to argue that the mixed layer can be at least partially restratified even when some SI
modes are absent due to either large horizontal viscosity or coarse model resolution. Linear stability anal-
ysis reveals that in the idealized models the amount of restratification can be predicted as a function of
the grid spacing and viscosity. The models themselves are used to demonstrate these predictions and
reveal three possible outcomes in steady-state: (1) incomplete restratification due to viscosity, (2) incom-
plete restratification due to resolution, and (3) excessive restratification due to anisotropy of the viscos-
ity. The third outcome occurs even on a high-resolution isotropic grid and in two separate numerical
models, and thus appears to be a sort of robust numerical feature. The three outcomes are used to
recommend criteria that a successful SI parameterization should satisfy.
� 2014 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license (http://

creativecommons.org/licenses/by/3.0/).
1. Introduction

Regional ocean models are able to resolve smaller-scale features
than are normally permitted by climate-scale GCMs. The oceanic
submesoscale in particular is a popular topic of study in such mod-
els, due to its role as a ‘‘bridge’’ between the large-scale circulation
and small-scale flows where mixing and dissipation can occur.
Relatively little is known about the dynamics of submesoscale
flows because of limitations in computational and observational
resources (Capet et al., 2008a), but they are generally understood
to have the following characteristics: (1) frontal structures are
ubiquitous and are associated with potential and kinetic energy
(Spall, 1995; Thomas and Ferrari, 2008; Thomas et al., 2008), (2)
a variety of instabilities develop which feed off of the kinetic
and/or potential energy and generate submesoscale motions
(Mahadevan and Tandon, 2006; Mahadevan, 2006; Capet et al.,
2008a,b,c; Fox-Kemper et al., 2008; Klein et al., 2008), (3) the
Rossby (Ro) and Richardson (Ri) numbers are Oð1Þ, meaning that
balanced models are not appropriate to describe the motion
(Molemaker et al., 2005), and (4) submesoscales interact vigor-
ously with other small-scale, high-frequency motions including
Langmuir turbulence (Li et al., 2012; Van Roekel et al., 2012) and
near-inertial waves (Whitt and Thomas, 2013; Joyce et al., 2013),
thereby enhancing the downscale energy cascade.
The role of the submesoscale as an intermediate-scale bridge
between the mean circulation and small-scale processes makes
its study all the more important. Even in regional models, however,
computational limitations affect how much of the submesoscale
range can actually be represented in a model – a simulation run
at coarse resolution inherently deemphasizes small-scale
processes, and a fine-scale simulation with a smaller domain size
may miss important interactions between the submesoscale and
mesoscale flows. With respect to the small-scale processes, it is
an open question as to what resolution is necessary to begin
resolving certain types of submesoscale instabilities. The focus of
this paper is on the resolvability of one such type of instability,
namely symmetric instability (hereafter SI). Research on SI is at
an early stage, and to the authors’ knowledge no previous studies
have systematically explored what resolution is required to resolve
it in ocean models.

As computational power increases, models are able to simulta-
neously resolve a richer set of dynamics by running at higher spa-
tial resolution and incorporating more complex physical and
biogeochemical parameterizations. However, higher spatial resolu-
tion introduces a new set of challenges as well, the first among
these being the issue of double-counting (Delworth et al., 2012).
It is commonly thought that as models enter an ‘‘eddy-permitting’’
regime, where some (but not all) of the mesoscale eddies are
explicitly resolved, parameterizations should either be turned off
or minimized in order to prevent both resolving and parameteriz-
ing the same eddies. One reason for this is that parameterizations
can out-compete the resolved eddies for the energy sources
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required to grow, leaving the resolved eddies weak and ineffectual
(Henning and Vallis, 2004). Therefore, one of the first steps to
developing a skillful parameterization is to know when its use is
appropriate, and when it should be turned off to avoid double-
counting.

The issue of double-counting is not confined to just mesoscale
eddies, however. Submesoscales develop at scales less than
10 km, and these in turn will become partially resolved as GCM
resolution becomes even finer in upcoming model generations. SI
is one such submesoscale process, and ocean models will increas-
ingly pass into a regime that could be described as ‘‘SI-permitting’’.
As is the case with mesoscale eddies, explicitly resolving only some
of the SI modes can be expected to present a challenge in prevent-
ing double-counting by a parameterization. As of the writing of this
paper no parameterization exists for SI in the oceanic mixed layer,
and any forthcoming attempt at one will require knowledge of how
SI behaves when it is partially resolved.

Symmetric instability in a stably stratified flow occurs when the
Ertel PV takes on the opposite sign of f (Hoskins, 1974). Fronts in
the surface mixed layer of the ocean feature strong lateral density
gradients, which in conjunction with wind forcing and/or buoy-
ancy fluxes create conditions favorable to the development of SI
(Thomas and Taylor, 2010). SI is capable of restratifying the mixed
layer on timescales shorter than that of baroclinic instability
(Haine and Marshall, 1998; Boccaletti et al., 2007; Li et al., 2012),
and both types of instability are central to setting the stratification
of the surface ocean at strong fronts.

Energetically, SI can be described as a small-scale shear instabil-
ity that extracts energy from the vertically-sheared thermal wind
(Taylor and Ferrari, 2010; Thomas and Taylor, 2010) and acts as a
mediator in the dissipation of oceanic kinetic energy, helping to
drive a forward cascade of energy from large to small scales. The
term ‘‘mediator’’ is used here because the SI itself is not responsible
for dissipation – its length scales are orders of magnitude larger
than the dissipation scale, and so it relies on even smaller-scale tur-
bulence to transfer energy downscale to be dissipated. Taylor and
Ferrari (2009) showed that finite-amplitude SI develops secondary
Kelvin–Helmholtz instabilities along bands of enhanced shear,
which then break down into smaller-scale turbulence. However,
Kelvin–Helmholtz instabilities are generally understood as 3D pro-
cesses that are directly resolved in isotropic, very fine-scale simula-
tions such as large-eddy simulations; aside from exceptional
circumstances, they would not be resolvable in a regional model
with a highly anisotropic grid. This introduces the related question
of how and whether SI can restratify the mixed layer in a model
when its associated secondary instabilities are not present?.

The objective of this paper is to investigate the level of spatial
resolution necessary to explicitly resolve SI and to explore how
the resolution threshold varies as a function of the mean flow
parameters. The spatial scales at which models become SI-permit-
ting are expected to also straddle the threshold between hydro-
static and non-hydrostatic flows; therefore, the resolution
requirement is explored in both regimes. The discretization of
the grid and the level of model viscosity can also affect the stability
of the flow to SI, and so these possibilities are explored as well.

The main text that follows will be subdivided into two sections.
The basic stability, energetics, and growth of SI will be discussed in
Section 2. The differences between the growth of inviscid and vis-
cously damped SI modes is shown, along with implications about
what this may mean for the resolvability of SI in ocean models.
Section 3 shows the results from a series of 2D simulations run
at various resolutions, illustrating how the post-restratification
character of the mixed layer can vary depending on the model
viscosity and grid spacing. A summary of the main results and
conclusions appears in Section 4. A detailed linear stability analysis
of SI can be found in Appendix A.
2. Energetics of SI

The surface ocean is marked by the presence of sharp lateral
density gradients formed as a result of frontogenesis. The presence
of these lateral gradients modifies the turbulence that arises at the
surface due in part to buoyancy loss (Haine and Marshall, 1998)
and down-front wind stress (Thomas and Taylor, 2010), and intro-
duces a variety of secondary effects that modulate buoyancy trans-
port through the mixed layer (Thomas and Lee, 2005).

SI can be viewed as a hybrid of convective and inertial instabil-
ities (Haine and Marshall, 1998). Since it is characterized by
slantwise motions tilting across the lateral buoyancy gradient, SI
is sometimes called ‘‘slantwise convection’’ (Emanuel, 1994).
However, as pointed out by Thorpe and Rotunno (1989), SI has
many features that are distinctly different from convection. For
example, the most unstable motions are often aligned with isopyc-
nals and are associated with a very small buoyancy flux. In fact,
while convection is generated through a conversion of potential
energy (PE) to kinetic energy (KE) by lowering the center of mass
of the fluid, it is possible for SI to raise the center of mass and
reduce the vertical stratification. Therefore, to avoid confusion,
the term SI will be used rather than slantwise convection through-
out the rest of this paper.

SI is one among a hierarchy of hydrodynamical instabilities
thought to be prevalent in the ocean mixed layer. It is character-
ized by perturbations that are independent of the along-front
direction. It also differs from baroclinic instability in that it can
derive its energy by reducing the geostrophic shear via turbulent
Reynolds stresses (Thomas et al., 2013) in addition to extracting
PE from the background flow.

The growth of symmetric instability is best understood in terms
of the Ertel potential vorticity (PV), which can be defined as

q ¼ f kþr� uð Þ � rb; ð1Þ

where here the Coriolis parameter f is a constant under the f-plane
approximation. Define the buoyancy frequency N2 ¼ @b=dz and the
horizontal buoyancy gradient M2 ¼ @b=dx, taking both to be con-
stant but not necessarily equal to each other. Let the velocity field
be v ¼ VBðxÞ þ VGðzÞ, where VB is a barotropic velocity and VG the
thermal wind velocity in balance with the lateral stratification, so
that dVG=dz ¼ M2=f . Furthermore, assume that the flow is homoge-
neous in the along-front direction y. The PV for this basic state is
q ¼ ðf þ fÞN2 �M4=f , where f ¼ dVB=dx is the relative vorticity,
and can become negative for a sufficiently strong lateral buoyancy
gradient. An alternative criteria for the growth of symmetric insta-
bility in such a balanced model is that the bulk Richardson number

Ri ¼ N2

dVG
dz

� �2 �
f 2N2

M4 ð2Þ

is such that

Ri <
f

f þ f
if f f þ fð Þ > 0: ð3Þ

Under these conditions SI is the most unstable mode when
0:25 < Ri < 0:95 (Stone, 1966, 1970). The stratification throughout
most of ocean interior is strong enough to render the flow stable
to SI, with the notable exception of the surface and bottom bound-
ary layers (Allen and Newberger, 1998). In the surface mixed layer,
conditions for SI to grow are realized by surface forcing that
destroys PV until regions of negative PV develop (Thomas, 2005).
SI will then quickly restore the fluid to a marginally stable state
(Thorpe and Rotunno, 1989) by mixing in fluid of higher PV from
either the thermocline or the surface boundary layer. This mixing
was discussed at length by Taylor and Ferrari (2009), who showed
that SI locally enhances the shear to such an extent that secondary



1 A flow is unstable to inertial instability if f@M=@x < 0. In baroclinic flow the
inertial instability becomes known as symmetric instability, and this criterion
generalizes to f@M=@xjq < 0, where the subscript q indicates that the derivative is
evaluated along an isopycnal surface (Holton and Hakim, 2012).
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Kelvin–Helmholtz (KH) instabilities can form, which efficiently mix
higher-PV fluid from below. It is less clear, however, how this mix-
ing occurs in models whose grids are too coarse to resolve KH
directly. It is therefore useful to consider the growth rate and ener-
getics of SI before proceeding to the modelling analysis.

2.1. Linear theory of SI

Consider a flow with a balanced initial state as above. Lineariz-
ing the primitive equations with respect to this initial state and
seeking normal mode solutions for the zonal perturbation velocity

u0 ¼ u0eikxþimzþrt ; ð4Þ

in an infinite domain, the growth rate for nonhydrostatic, viscous SI
with an anisotropic viscosity (Appendix A) is

r¼ M4

N2 � f f þ fð Þ�N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

k2

m2þ1

 !�1=2

�mhk2�mvm2: ð5Þ

As noted in Taylor and Ferrari (2009), viscous damping acts to sup-
press the modes with the largest wavenumbers (smallest modes)
first. Furthermore, the presence of a nonzero f can either stabilize
or destabilize the flow when there is cyclonic or anticyclonic rota-
tion, respectively. This can have a strong influence on the growth
rate of SI. Indeed, Thomas et al. (2013) found that f ¼ �0:6f on
the North Wall of the Gulf Stream, which is strong enough to nearly
negate the influence of planetary rotation in (5).

Importantly, in the inviscid limit the growth rate depends on k
and m only through the perturbation slope k=m, which yields
important information about the orientation of the unstable
modes. To explore this, first let mh ¼ mv ¼ 0, which gives the invis-
cid growth rate

r ¼ M4

N2 � f f þ fð Þ � N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

k2

m2 þ 1

 !�1=2

: ð6Þ

In the limit when k� m, the growth rate for hydrostatic flow is
recovered, from which it is easily seen that the fastest growing
modes satisfy

k
m
¼ M2

N2 ð7Þ

and are aligned with isopycnal surfaces. Note that this is not the
case in the nonhydrostatic limit – the fastest growing modes occur
at the slope

k
m
¼ 1þ 1

4
N2 � f f þ fð Þ

M2

 !2
2
4

3
5

1=2

� 1
2

N2 � f f þ fð Þ
M2

 !
; ð8Þ

which is shallower than the isopycnal slope when Ri < f=ðf þ fÞ. In
addition to the fastest-growing modes, it is useful to consider the
extent of the range of k=m where SI may grow. Setting r ¼ 0, one
finds that the region unstable to SI is bounded by the slopes

k
m
¼ M2

N2 �
f
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ri
� 1þ f

f

� �s
: ð9Þ

The unstable slopes thus form a wedge, symmetric about the
isopycnal slope, where SI can extract energy from the background
flow. The mechanism of energy extraction is not symmetric about
the isopycnal slope, however; SI gains its energy differently
depending on which part of the wedge the unstable mode occupies,
and parcel excursion theory may be employed to illustrate how this
works.
2.2. Parcel excursion theory

Haine and Marshall (1998) used parcel excursion theory to ana-
lyze the energetics of a hierarchy of hydrodynamical instabilities.
They noted that the extraction of energy from the mean flow by
SI is maximized if fluid parcels are exchanged along isopycnals,
but they did not focus attention on the energetics of SI modes that
are not so aligned. Here the techniques from their analysis are
repeated, but with further consideration paid to the full arc of
unstable SI modes.

In a zonally invariant model, the absolute momentum is given
by

M¼ v þ fx: ð10Þ

The absolute momentum is a conserved quantity in inviscid flow
with no variations in the y-direction (DM=Dt ¼ 0) and is often used
as the determining factor for inertial instability,1 which itself can be
considered a form of SI in the limit where N2 ¼ 0. Assuming thermal
wind balance, the slope of the absolute momentum surfaces is

@M
dx
@M
dz

¼
@v
@x þ f
@v
@z

¼
f @v
@x þ f 2

M2 ¼ f f þ fð Þ
M2 ; ð11Þ

where again f ¼ @v=@x is the vertical component of the relative vor-
ticity. If the initial PV is negative (unstable to SI), this implies that

Ri ¼ N2f 2

M4 <
f

f þ f
; ð12Þ

or equivalently that

M2

N2 >
f f þ fð Þ

M2 : ð13Þ

Then the isopycnal slope is steeper than that of the absolute
momentum contours (which for brevity will henceforth be referred
to asM-surfaces), with equality when Ri ¼ f= f þ fð Þ (neutral to SI).
For an unstable initial state one can also show that

f f þ fð Þ=M2 > M2

N2 � f
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ri� 1þ f

f

� �r
, so that theM-surface always lies

within the SI-unstable arc. It is useful to begin by considering the
energetics when parcels are exchanged along M-surfaces.

Haine and Marshall (1998) show that the change in potential
energy DP due to parcel exchange is given by

DP ¼ q0N2Dy2s s�M2

N2

 !
; ð14Þ

where Dy is the horizontal distance of the parcel displacement and s
is the slope of the surface along which parcels are exchanged.
Similarly, they also showed that the change in kinetic energy DK
by such an exchange is

DK ¼ q0Dy2 f f þ fð Þ �M2s
h i

ð15Þ

and the total energy change, DE ¼ DP þ DK, is

DE ¼ q0Dy2 f f þ fð Þ �M2sþ N2s s�M2

N2

 !" #
: ð16Þ

Factoring M2 out of the bracketed expression in (15), one has

DK ¼ q0Dy2M2 f f þ fð Þ
M2 � s

� �
ð17Þ
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revealing that there is no change in mean KE when parcels are
exchanged alongM-surfaces. SI modes aligned with these surfaces
thus grow purely via the extraction of background PE, forming a
Fig. 1. (a) Change in total, kinetic, and potential energy per unit density per square
meter for a parcel displacement Dy over all slopes unstable to SI. The parameters
were set to be f ¼ 10�4 s�1;N2 ¼ 1:6� 10�6 s�2, M2 ¼ 2:5� 10�7 s�2; @v=@x ¼ 0,
and Ri ¼ 0:25. The change in total energy tends to zero at the edges of this ‘‘unstable
arc’’. (b) The SI obtains its energy differently depending on the angle k=m. In zone 1,
the SI gains energy by reducing the geostrophic shear, but some of this gain is offset
by conversion to mean PE. In zone 2, the SI gains energy both through reducing PE
and through geostrophic shear production. In zone 3, SI reduces the mean PE but
also contributes some energy to the background KE.

Fig. 2. Schematic of an idealized mixed layer showing SI-unstable zones. The mixed
layer extends from �H < z < 0 and lies atop a highly stratified thermocline that is
stable to SI. The SI modes extract energy from the background flow differently
depending on which zone their slopes fall into. Isopycnals are shaded gray lines, and
represent the boundary between zones 1 and 2. The absolute momentum contour
represents the boundary between zones 2 and 3.

Fig. 3. (a) Isopycnals (gray) and contours of cross-frontal velocity (black), taken
from a 20 km-wide section of simulation A3 (Section 3) during the exponential
growth phase at t ¼ 5 days. The boundary between the mixed layer and thermo-
cline occurs at z ¼ �300 m. Though only the mixed layer is unstable to SI, the SI
overturning cells penetrate into the thermocline, entraining highly stratified, high-
PV fluid. This fluid is then rapidly mixed upwards, increasing the stratification and
mean PV of the mixed layer. (b) Change in mean PV of the mixed layer over the
course of the simulation. The change prior to t � 4 days is not shown because it is
smaller than the machine precision.
dichotomy with isopycnal-aligned modes, which grow purely via
reduction of the geostrophic shear.

One can extend this analysis to consider modes whose slope is
between or around the isopycnals andM-surfaces as well. Substi-
tuting (9) into (16) reveals that DE ¼ 0 at the edges of the unstable
arc; furthermore, Fig. 1 reveals that the extraction of energy
smoothly transitions to zero as the edges are approached. Three
‘‘zones’’ thus exist: zone 1 contains all modes whose slope is stee-
per than the isopycnal, which grow by reducing the geostrophic
shear but convert some of the extracted KE to mean PE in the back-
ground stratification; zone 2 lies between the isopycnal and the
M-surface, where both the background PE and KE are reduced;
zone 3 lies between the M-surface and the shallowest unstable
slope, where the background PE is reduced but some KE is trans-
ferred back into the mean flow. A schematic of these zones appears
in Fig. 2.
2.3. Restratification by SI in models

The energetics of the unstable SI modes reveal that restratifica-
tion is indeed possible in the absence of secondary Kelvin–Helm-
holtz instabilities. Here restratification is defined as an increase
in bulk Ri, which can be achieved by either an increase in N2, a
decrease in M4, or even a decrease in N2 which is offset by a larger
decrease in M4. This definition differs from the usual meaning of
restratification that @N2=@t > 0, but is required because as SI acts
to restore to zero PV (so that @q=@t > 0) it adjusts the horizontal
as well as vertical stratification so that @Ri=@t > 0. This restratifica-
tion is induced by an extraction of mean KE or PE depending on
which zone the mode occupies, which manifests as a tilting of iso-
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pycnal surfaces toward the horizontal. The overall effect is a simul-
taneous decrease of both N2 and M2 in zone 1, an increase of N2 and
decrease of M2 in zone 2, and an increase of both in zone 3. Though
either of M2 or N2 can increase (decrease) during this process, the
other decreases (increases) enough so that Ri increases in all cases,
thereby restratifying the flow. However, a subtlety of this process
is that in the absence of mixing the PV of the fluid is conserved.
Thus, in an unbounded fluid where a source of higher-PV fluid is
absent, the overall stability of the flow to SI is unchanged.

To change the stability of the flow to SI requires a source of
higher-PV fluid. Now suppose a more realistic scenario, where a
mixed layer unstable to SI overlies a thermocline whose higher
stratification makes it stable to SI. In this case the SI overturning
cells which grow from the released mean energy penetrate into
the thermocline, entraining higher-PV fluid (Taylor and Ferrari,
2009) and increasing the mean PV in the mixed layer (Fig. 3). As
the restratification and mixing continue the bulk Richardson num-
ber will increase until the flow becomes SI-neutral, whereupon

Riq¼0 ¼ f=ðf þ fÞ: ð18Þ

The adjustment of the background flow by the SI modes allows
one to consider what happens when model resolution is decreased
and SI begins to be explicitly resolved. First consider an idealized
simulation where Dz is fixed and uniform throughout the domain,
and where Dx is chosen such that only modes in zone 3 (e.g. those
with the shallowest slope) are resolved. As PE is released and the
isopycnals slump toward the horizontal, more of the unstable arc
becomes resolvable as the slope of the unstable modes decreases.
Modes in zone 2 may then become resolved, which extract energy
from both the vertical shear and the background PE. If the restrat-
ification persists to the point where the isopycnal slope itself is
resolved, it is likely that the flow will fully restratify until (18) is
reached.

However, this does not necessarily mean that a flow with
unstable SI modes can always fully restratify. Despite the fact that
the mean effect of SI will decrease the isopycnal slope, it does not
decrease the slope of the shallowest mode. This can be seen by
taking the slope of this mode, which was shown in (9) to be

S ¼ k
m
¼ M2

N2 �
f
N

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
Ri
� 1þ f

f

� �s
ð19Þ

and noting that @S=@N > 0. Therefore, as the flow restratifies the
slope of this mode increases and the mode becomes unresolved if
S > H=Dx, where H is the depth of the mixed layer. It is possible
that, for the scenario above where only zone 3 modes are resolved
at the outset, the shallowest modes will become unresolved before
the isopycnal slope becomes resolved (i.e. M2=N2 < H=Dx), and the
restratification will terminate at a stage when Rit¼0 < Ri < f=
ðf þ fÞ. The addition of viscosity complicates this scenario since it
damps modes asymmetrically about the most unstable slope.

Ultimately, the rate at which the SI modes become resolvable or
unresolvable is a nontrivial function of Ri, the relative vorticity, and
the viscosity, and in general it is extremely difficult to predict what
the ultimate stabilized state will be. In cases where the starting Ri
is very small, the difference between the isopycnal slope and the
shallowest unstable slope is very large (in fact, it can become infi-
nite as Ri! 0), meaning that even on coarse grids some restratifi-
cation could occur. Granted, the growth rates of the modes in the
very small Ri limit are very small as well, and it is likely that even
in the absence of explicit viscosity/diffusion some numerical
diffusion will restratify more quickly than the SI modes. Perhaps
more importantly the flow will be unstable to KH instability, or a
boundary layer parameterization such as KPP (Large et al., 1994)
would become active.
3. Simulations

Since SI is faster than many processes that are commonly
resolved in ocean models, when SI is active the mean-flow proper-
ties might be expected to remain close to the SI-neutral state
where q ¼ 0 and Ri ¼ f=ðf þ fÞ. However, when SI is only partially
resolved, the neutral state when r ¼ 0 may not necessarily corre-
spond to q ¼ 0. In this section the properties of the neutral state
for partially-resolved SI will be examined. This will help to diag-
nose the effects of resolved and unresolved SI in ocean models.

Partial resolution of SI can be achieved by varying the viscosity
and horizontal grid spacing, the two main controllers over how
fully SI can restratify the mixed layer. This is best demonstrated
using a set of simplified, idealized models where many of the flow
parameters can be taken as constant. Though the linear theory of
Appendix A is employed here to predict how much restratification
takes place, it must be emphasized that the goal here is not to
develop a parameterization for partially-resolved SI in GCMs.
Rather, the models here serve to demonstrate that even in a highly
simplified setting a combination of viscosity and gridscale
effects can influence SI restratification, yielding a stable state not
satisfying (18).

A suite of idealized models has been set up using an incom-
pressible, nonhydrostatic, Boussinesq Navier–Stokes solver, the
details of which can be found in Taylor (2008) and Bewley
(2010). An important advantage of this model is that it is
pseudo-spectral in the horizontal directions. Since the horizontal
numerical viscosity and diffusivity are extremely small in these
simulations, this allows the effects of the explicit model viscosity,
diffusivity, and grid resolution to be isolated.

Since SI can grow independent of the along-front direction (see
Appendix A) and the goal here is not to model baroclinic mixed
layer instability as in Boccaletti et al. (2007) or Fox-Kemper et al.
(2008), it is sufficient to run the simulations in 2D, as in previous
studies (e.g. Thorpe and Rotunno, 1989, Griffiths, 2003, Taylor
and Ferrari, 2009). Thus the models are run as 2D cross-channel
spindown simulations of a symmetrically unstable front. Akin to
Taylor and Ferrari, 2009, the initial state consists of a weakly strat-
ified surface layer from �300 m < z < 0 lying atop a more strongly
stratified ‘‘thermocline’’ from �400 m < z < �300 m. A constant
background M2 is used for both the surface layer and the thermo-
cline. The horizontal boundary conditions are set up in a ‘‘frontal
zone’’ configuration; that is, the density and velocity fields are
decomposed into departures from a constant background state
defined by

bTðx; z; tÞ ¼ M2xþ bðx; z; tÞ; ð20Þ
uTðx; z; tÞ ¼ VGðzÞjþ uðx; z; tÞ; ð21Þ
dVG

dz
¼ M2

f
; ð22Þ

where the subscript T indicates the total field. The model is set up to
be horizontally periodic in the perturbation variables (no subscript),
while the background state is assumed to be constant in time. The
use of periodic boundary conditions allows the flow to freely evolve
with no influence from lateral boundaries and no need to specify
inflow/outflow conditions. The upper boundary is adiabatic with a
rigid lid, and both vertical boundaries are set to be free-slip on
the perturbation velocity u. Throughout the rest of this paper this
model setup will be referred to as ‘‘frontal zone’’. Finally, the initial
density field is perturbed by a white noise with an amplitude of
10�4 kg m�3.

Four sets of simulations have been conducted in order to test
the sensitivity of restratification by SI to different combinations
of M2;N2, and mh. The parameter choices for each set of simulations
are listed in Table 1. The simulation parameters for each set are
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chosen such that the initial Richardson number in the surface layer
is 0.25, which is neutral to KH instability (Stone, 1966) but still
unstable to SI. The Richardson number in the thermocline is set
at 12.5 so that it is stable to both types of instability.

Each simulation set consists of seven individual simulations run
at varying resolutions; individual simulations will henceforth be
referred to by a numerical subscript (e.g. A1;B3, etc.). The advan-
tage of using a frontal zone 2D model is that f and the domain-
averaged M2 are constant in time, so that the time evolution of
Ri is governed only by the change in N2. Then the linear growth
rates for viscous hydrostatic and nonhydrostatic SI, which are

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

� mhk2 þ mvm2
� �

ð23Þ

and

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

1þ k2

m2

 !�1=2

� mhk2 þ mvm2
� �

; ð24Þ

respectively, can be used to predict the restratification potential of
the SI modes. That is, using f ¼ 0, setting k and m according to the
grid spacing and holding M2; f ; mh, and mv constant, the growth rates
can be plotted purely as a function of N2. Furthermore, beginning
with an initial state where Ri ¼ 0:25, it is known a priori that N2

must increase by a factor of 4 to reach the stable state of Ri ¼ 1.
Then the growth rates can be calculated for a discrete set of values
of N2 between N2

0 and 4N2
0 to predict the SI-stable value of N2 that

will be reached, and by extension the stable value of Ri. Note that
(23) and (24) require both M2 and N2 to be constant in space and
time and the perturbations to be small in amplitude, and are
approximations to the instantaneous growth rate found by holding
N2 fixed at each instant in time.

The grid spacing Dx is varied from simulation to simulation to
test the hypothesis that the amount of restratification depends on
how well the SI modes are resolved. The pseudo-spectral numerical
solver uses a Two-Thirds Rule de-aliasing (Orszag, 1971) to prevent
aliasing of high-wavenumber modes, making the shortest resolved
wavelength in the model k ¼ 3Dx. The higher-resolution simula-
tions (subscripts 1 through 5) are meant to demonstrate that the
restratification can be limited by the stratification and viscosity,
not necessarily the model resolution. The lowest-resolution simula-
tions do not resolve the most-restratifying mode, and demonstrate
restratification that is limited (subscript 6) and completely negated
(subscript 7) due to the model resolution. The dimensional width of
the domain varies according to the choice of Dx for each individual
simulation, but the depth of the mixed layer is set to be 300 m in all
cases. A uniform grid of size ðNy;NzÞ ¼ ð128;80Þ points is used, with
the vertical grid spacing set to a constant Dz ¼ 5 m. Using this
number of points in the horizontal ensures that the domain is
wide enough to resolve multiple SI overturning cells in all cases,
and that the largest SI modes will not be excluded even in the
finest-resolution runs.

The vertical diffusivity jv ¼ 1� 10�6 m2 s�1 was set to be very
small to prevent highly stratified fluid from diffusing up from the
thermocline, and for simplicity in the stability analysis (Appendix
A) the vertical viscosity was set to match this value. At higher val-
ues (i.e. jv P 1� 10�4 m2 s�1), diffusion caused the lowest parts of
the mixed layer to become stabilized to SI before the instability
became nonlinear. This effectively reduced the lengthscale of the
gravest vertical mode and reduced the amount of restratification
that could occur. It was also difficult to quantify the effective value
of m by the time the SI modes became nonlinear with this larger
diffusivity. Using the simulation parameters in Table 1, the linear
stability analysis was insensitive to setting mv to this smaller value,
so for the purpose of this modeling exercise the smaller viscosity/
diffusivity sufficed.

3.1. Hydrostatic and nonhydrostatic models

One consequence of varying N2 and M2 is that the dynamics
may become sensitive to whether the hydrostatic approximation
is employed. Because the balanced Richardson number can be
tuned by adjusting the values of M2;N2, and f, the individual
parameters for each set are chosen to fix the hydrostatic parameter
(Marshall et al., 1997)

g ¼ c2

Ri
; ð25Þ

where c ¼ h=L is the aspect ratio of the motion. For g� 1 it is
appropriate to use the hydrostatic approximation to the vertical
momentum equation.

The parameter c is estimated according to the initial M2 and N2

from the simulations. Because the unstable modes lie in an arc
symmetric about the isopycnal, the mean aspect ratio of the
motions can be taken as c ¼ M2=N2, and simple algebra gives

g ¼ f 2

N2

1

Ri2 : ð26Þ

The parameter choices in Table 1 are chosen so that g ¼ 0:1 for the
‘‘hydrostatic’’ parameters and g ¼ 10 for the ‘‘nonhydrostatic’’
parameters. Note that in both cases, the fully nonhydrostatic equa-
tions are solved. To check whether the results are sensitive to
whether a model is run in hydrostatic mode, a parallel set of the
g ¼ 0:1 simulations was run using the MITgcm (Marshall et al.,
1997) in hydrostatic mode and with identical initial conditions.
The hydrostatic MITgcm gave nearly identical results (not shown)
as long as the grid spacing Dx was less than half the wavelength
of the most unstable mode; when Dx was set above this threshold
the MITgcm was prone to numerical instability which eventually
led to the simulation crashing. This numerical instability influenced
the choice to use the nonhydrostatic solver for these simulations
over the MITgcm. Nonetheless, previous work by Mahadevan
(2006) suggests that the average vertical fluxes at the length scales
in these simulations should be similar regardless of whether the
model is run hydrostatically or nonhydrostatically, so it is likely
that the results from the nonhydrostatic solver are robust for the
g ¼ 0:1 simulations at all resolutions.

The simulation parameters in Table 1 were chosen specifically
to demonstrate cases of grid-arrested restratification (Sets A and
C) and completed restratification (B and D) by varying mh. The
amount of restratification that takes place is not uniquely depen-
dent on the parameter choices in each set; all of the parameters
can be varied in relation to one another to change the anticipated
final value of Ri. Fig. 4 shows the growth rate plots for each param-
eter set. In each case the horizontal viscosity damps the highest
wavenumber modes, so that increasing the resolution beyond a
certain point does not permit extra modes to become resolved or
further restratification to occur. The growth rates are calculated
by fixing the vertical wavenumber m ¼ 2p=H, corresponding to a
wavelength equal to the depth of the mixed layer. Setting m in this
way guarantees the plotted growth rates are for those modes least
affected by viscous damping since it is the smallest vertical
wavenumber allowed in the mixed layer. Furthermore, for any
wavenumber k the modes with minimal m will have the largest
slope. Therefore, in a scenario such as (19) where the slope of
the unstable modes becomes greater than the maximum resolvable



Table 1
Parameters for the hydrostatic and nonhydrostatic simulations. A subscript S denotes a property of the surface layer, and T refers to a property of the thermocline. Seven
simulations were conducted per set at different horizontal resolutions Dx. The shortest resolved wavelength due to the Two-Thirds filter is equal to 3Dx. The bulk Richardson
number of each simulation when the model becomes SI-neutral is Rit¼1 , and can be compared with the prediction from linear theory RiL when all modes are resolved. Individual
simulations are referred to by their set label (A through D) and a numerical subscript.

HYDROSTATIC

N2
S ¼ 1:6� 10�6 s�2 N2

T ¼ 8� 10�5 s�2 M2 ¼ 2:5� 10�7 s�2 f ¼ 10�4 s�1

mv ¼ jv ¼ 10�6 m2 s�1 g ¼ 0:1 H ¼ 300 m
SET A: mh ¼ jh ¼ 80 m2 s�1; RiL ¼ 0:76 SET B: mh ¼ jh ¼ 10 m2 s�1; RiL ¼ 1:00

A1 : Dx ¼ 250 m Rit¼1 ¼ 0:71 B1 : Dx ¼ 250 m Rit¼1 ¼ 1:12
A2 : Dx ¼ 500 m Rit¼1 ¼ 0:79 B2 : Dx ¼ 500 m Rit¼1 ¼ 1:08
A3 : Dx ¼ 1000 m Rit¼1 ¼ 0:77 B3 : Dx ¼ 1000 m Rit¼1 ¼ 1:06
A4 : Dx ¼ 2000 m Rit¼1 ¼ 0:77 B4 : Dx ¼ 2000 m Rit¼1 ¼ 1:23
A5 : Dx ¼ 3000 m Rit¼1 ¼ 0:77 B5 : Dx ¼ 3000 m Rit¼1 ¼ 1:37
A6 : Dx ¼ 4000 m Rit¼1 ¼ 0:56 B6 : Dx ¼ 4000 m Rit¼1 ¼ 1:37
A7 : Dx ¼ 5000 m Rit¼1 ¼ 0:25 B7 : Dx ¼ 5000 m Rit¼1 ¼ 0:25

NONHYDROSTATIC

N2
S ¼ 1:6� 10�8 s�2 N2

T ¼ 8� 10�7 s�2 M2 ¼ 2:5� 10�8 s�2 f ¼ 10�4 s�1

mv ¼ jv ¼ 10�6 m2 s�1 g ¼ 10 H ¼ 300 m
SET C: mh ¼ jh ¼ 1 m2 s�1; RiL ¼ 0:63 SET D: mh ¼ jh ¼ 0:1 m2 s�1; RiL ¼ 1:00

C1 : Dx ¼ 25 m Rit¼1 ¼ 0:56 D1 : Dx ¼ 25 m Rit¼1 ¼ 1:17
C2 : Dx ¼ 50 m Rit¼1 ¼ 0:52 D2 : Dx ¼ 50 m Rit¼1 ¼ 1:20
C3 : Dx ¼ 100 m Rit¼1 ¼ 0:56 D3 : Dx ¼ 100 m Rit¼1 ¼ 1:17
C4 : Dx ¼ 200 m Rit¼1 ¼ 0:54 D4 : Dx ¼ 200 m Rit¼1 ¼ 1:26
C5 : Dx ¼ 300 m Rit¼1 ¼ 0:55 D5 : Dx ¼ 300 m Rit¼1 ¼ 1:35
C6 : Dx ¼ 400 m Rit¼1 ¼ 0:41 D6 : Dx ¼ 400 m Rit¼1 ¼ 1:35
C7 : Dx ¼ 500 m Rit¼1 ¼ 0:25 D7 : Dx ¼ 500 m Rit¼1 ¼ 0:25

Fig. 4. Linear growth rate plots for each simulation set as a function of horizontal wavelength k and balanced bulk Richardson number. The growth rate is calculated by taking
M2; f , and viscosity as in Table 1, and by letting m ¼ 2p=H be the vertical wavenumber. Plots (a) and (c) predict restratification will be arrested prior to achieving (18) no
matter how small Dx is set. The restratificaton potential is further reduced when the most restratifying mode is not resolved, which in the simulations occurs when
Dx > 3000 m and Dx > 300 m, respectively. Plots (b) and (d) suggest that the simulation parameters will allow the fully restratified state to satisfy (18).
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Fig. 5. Growth of mean Ri and q averaged over the depth range from �250 m to �50 m, along with their maximum values predicted by linear theory (dashed line). The
restratification in Sets A and C is arrested by a combination of the horizontal viscosity and grid resolution, while the restratification in Sets B and D exceed the predicted value
due to a numerical artifact of anisotropic viscosity (see Section 3.1.3). The resolution of simulation7 from all sets is set so that no SI modes are resolved, and thus Ri and q
remain at their initial values.
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slope H=Dx, the modes with m ¼ 2p=H will be the last to be
resolved. For these reasons taking the minimum m in Fig. 4 repre-
sents the maximum predicted restratification by SI.

Fig. 5 shows the evolution of the Richardson number and poten-
tial vorticity for each simulation set until all runs have become
neutral to SI. The results are averaged in x and over all points in
z from �250 m to �50 m depth so as to avoid contaminating the
statistics with the surface boundary layer and with fluid diffused
from the thermocline. Linear theory predicts an exponential
growth of the unstable modes; after a few days the SI becomes
nonlinear and leads to a rapid increase in Ri and q. The actual time
before the increase in Ri and q depends on the growth rate of the
fastest-growing mode, which in turn is a function of the flow
parameters and the viscosity. When this mode is not resolved
the growth rate depends on the fastest resolved mode, which can
be substantially slower (simulations 6 in all sets).

The simulations reveal three possible outcomes:
3.1.1. Case I: restratification limited by viscosity
The first outcome is demonstrated in simulations A1�5 and C1�5,

where the steady-state Richardson number matches the value pre-
dicted by linear theory to within 5% and 16%, respectively. In these
simulations the grid spacing is sufficiently fine to resolve the most-
restratifying mode, so that restratification is incomplete only due
to the horizontal viscosity. The incomplete restratification occurs
for any grid spacing finer than the ones used here, since the hori-
zontal viscosity damps out the modes that would restratify to
the point where Ri ¼ 1. The prediction for Set C performed slightly
worse because the smaller viscosity allowed stronger overturning
cells to form, which penetrated more deeply into the thermocline
(as in Fig. 3). High-PV fluid entrained by the overturning
penetrated into the lowest part of the mixed layer and made it sta-
ble to SI, increasing the effective vertical wavenumber of the
remaining SI modes. As an example of the effect this has on the
prediction from Fig. 4, increasing the vertical wavenumber from
m ¼ 2p=H � :0209 to m ¼ 2p=ðH � 10 mÞ � :0217 reduces the
predicted Ri from 0.63 to 0.57 – using the latter value would make
the results accurate to within 6%. This effect also occurred subtly
in simulation A1 due to the finer horizontal grid spacing, resulting
in a steady Ri slightly less than the linear prediction.
3.1.2. Case II: restratification limited by resolution
The second outcome is demonstrated in simulations A6 and C6,

where the most restratifying mode is not resolved and restratifica-
tion is arrested by a combination of the horizontal viscosity and the
coarseness of the grid. The steady-state Richardson number can
still be predicted by linear theory, however. Finding the predicted
value amounts to moving right along the k-axis in Fig. 4 to the
point where k ¼ 3Dx. At this point, which corresponds to the grid
cutoff scale, the maximal value of Ri with r > 0 is the predicted
restratification potential of the resolved SI modes. In simulation
A6 linear theory predicts the flow to become SI-neutral at
Ri � 0:56, matching the simulated value to within 1%. The predic-
tion for simulation C6 again did not perform as well due to entrain-
ment from the thermocline, yielding a steady Ri � 0:41 compared
with a predicted value of Ri � 0:47.

This outcome represents the most likely scenario that would
occur in an ocean model, where some combination of coarse grid
spacing and viscosity would limit the presence of SI modes and
thereby limit restratification of the mixed layer. Note, however,



Fig. 6. Evolution of horizontally-averaged Ri over time from simulations (a) A4 and (b) B4. Small-scale turbulence entrains high-PV fluid from the thermocline in both
simulations. (c) Cross-front velocity at t � 8 days in A4 compared with (d) the cross-front velocity at t � 4 days in B4. Both snapshots are taken shortly after the deepening of
the thermocline and well into the nonlinear SI phase. Overturning cells in A4 are well-organized and decay rapidly in the thermocline, while B4 features a chaotic velocity field
with gridscale noise. A numerical consequence of using anisotropic viscosity is that strong mixing occurs deep into the thermocline which should otherwise be stable to both
Kelvin–Helmholtz and symmetric instabilities. The entrained fluid gets mixed upward rapidly, exciting strong inertial oscillations and resulting in a mixed layer average
Ri > 1 and q > 0.
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that in the general case of an ocean model where mixed layer
depth, forcing, viscosity, and stratification are all varying in time
and space the restratification potential will not be easily predict-
able. Nonetheless, the cases here demonstrate that the grid spacing
can affect restratification by making some of the SI modes
unresolvable.

3.1.3. Case III: excessive restratification due to anisotropic viscosity
The third outcome is perhaps the most interesting, and occurs

when the horizontal and vertical viscosities are small enough to
permit a full restratification by the SI modes but are anisotropic
(Sets B and D). In finely-resolved simulations with isotropic viscos-
ity and nearly-isotropic grid spacing secondary Kelvin–Helmholtz
instabilities form in the shear zones between SI cells (Taylor and
Ferrari, 2009), which serve to mix potential vorticity across density
surfaces. Simulations with coarse horizontal resolution develop
these shear zones between cells as well, but the anisotropic
viscosity does not permit fully realized shear instability to form
at these locations.

The resulting flow features localized regions of vigorous, small-
scale noise (Fig. 6(d)) that act as a nonphysical source of mixing,
after which the steady-state flow is characterized by strong inertial
oscillations with Ri > 1 and q > 0. This overturning penetrates deep
into the thermocline and entrains a large amount of high-PV fluid,
which is then rapidly mixed up into the interior of the mixed layer
and causes the overshoot in Ri and q. Some entrainment is to be
expected in all scenarios since the SI overturning cells extend into
the thermocline (Fig. 3(a)), but in Sets B and D strong mixing occurs
in the interior of the thermocline and persists even after the major-
ity of the mixed layer restratification is complete, suggesting that
this mechanism is nonphysical (Fig. 6(b) and (d)). The velocity fields
in these simulations featured gridscale noise whose amplitude was
strong even in the thermocline, where the higher stratification
should have suppressed any physical instabilities. Gridscale noise



Fig. 7. Growth of mean Ri and q averaged over the depth range from �10 m to �40 m, for a mixed layer extending from 0 > z > �50 m as in Taylor and Ferrari (2009). Linear
theory predicts that the flow will become SI-neutral at Ri ¼ 1 and q ¼ 0 for all values of mh ¼ jh used here. Though the growth rates are slower for the more viscous
simulations and the onset of the nonlinear phase comes later, the restratification after this point occurs more quickly. Excessive restratification occurs as the viscosity and
diffusivity become more anisotropic (mv ¼ jv ¼ 10�4 m2 s�1), though the grid aspect ratio Dz=Dx ¼ 1 in all cases.
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in regions where the flow should be relatively quiescent might be
an indicator of this type of instability; further testing in other GCMs
is necessary to check whether this is true.

The unphysical mixing effect occurred in both the nonhydro-
static solver and the MITgcm, and as such the authors consider it
a general numerical issue that may arise when using anisotropic
viscosity. To explore further, another set of five simulations was
run with an isotropic grid (Dx ¼ Dz ¼ 1 m) and stratification
parameters as in Taylor and Ferrari (2009), except that the horizon-
tal viscosity and diffusivity were set to mh ¼ jh ¼ f10�4;

10�3;10�2;10�1;1gm2 s�1. This configuration was chosen because
in their original paper Taylor and Ferrari (2009) used isotropic vis-
cosity and diffusivity with mh ¼ jh ¼ 10�4 m2 s�1 on an isotropic
grid, and obtained full restratification to q ¼ 0 and Ri ¼ 1. The lin-
ear stability calculator predicts that full restratification would also
be achieved for any choice of mh in the set above. Therefore, if the
vertical viscosity is held fixed at mv ¼ 10�4 m2 s�1 and the horizon-
tal viscosity is increased, any overshoot in either Ri or q can be
attributed to anisotropic viscosity.

Indeed, Fig. 7 demonstrates a progressively larger overshoot in
both Ri and q, as well as more energetic inertial oscillations, as mh is
increased away from mv ¼ 10�4 m2 s�1. These results suggest that
the use of anisotropic viscosity is at least partly responsible for
the excessive restratification, though this effect does seem to be
amplified as the grid aspect ratio Dz=Dx becomes smaller
(Fig. 5(b)). The converse scenario (isotropic viscosity and aniso-
tropic grid) was not tested due to the prohibitively small timestep
it would require – in order to permit SI the vertical viscosity (and
thus horizontal viscosity) must be kept very small, which makes
modelling of this situation prohibitively expensive.

As the stratification of the mixed layer plays a key role in com-
municating atmospheric forcing to the interior of the ocean, exces-
sive or improperly represented restratification could negatively
impact climate prediction on long time scales. Further investigation
of this numerical issue is beyond the scope of this paper. To the
authors’ knowledge this effect has not been previously documented,
but due to the ubiquity of using anisotropic viscosity in GCMs it is
possible that this it would occur in non-SI flow regimes as well.

4. Conclusion

In this paper a set of 2D numerical simulations have been con-
ducted to demonstrate how a combination of model viscosity and
grid resolution can affect mixed layer restratification by symmetric
instability. Linear theory is used to predict the growth and restrat-
ification potential of SI modes resolved in the model. By varying
the initial conditions and grid spacing, three possible scenarios
are found that might occur when SI is partially resolved.
The first scenario is a case where the horizontal resolution is
fine enough to resolve all of the SI modes necessary to restratify
the mixed layer to a marginally stable state (Ri ¼ 1 and q ¼ 0),
but where the horizontal viscosity is large enough to damp out
some of the modes needed to reach this state. The end result is that
the model equilibrates at a state that is unstable to SI (Ri < 1 and
q < 0). The second scenario is similar to the first but where the
model resolution is coarse enough that some of the SI modes are
unresolved. Linear theory predicts that this case would occur when
the grid spacing is too coarse to resolve the most-restratifying
mode. Finally, the third scenario features an unphysical numerical
instability that arises when mv – mh. In this case the flow becomes
too stratified (Ri > 1 and q > 0) as a result of numerical artifacts.
This occurs even when the grid resolution is sufficient to directly
resolve the shear instability, and so is attributed here to the use
of anisotropic viscosity. It is likely that this effect is not isolated
to the flow scenarios depicted here, for which further investigation
may be warranted.

It is important to note that the scenarios above are not neces-
sarily tied to the explicit model viscosity; that is, the numerical vis-
cosity can just as easily affect SI restratification in cases where it
dominates the model viscosity. Given that the relationship
between the numerical viscosity and model viscosity is affected
by the choice of advection scheme, these scenarios could occur in
idealized models or models running with extremely low model vis-
cosity as well as larger-scale GCMs. Inclusion of other parameter-
izations such as KPP (Large et al., 1994) or viscous closures
would also strongly affect the SI dynamics in the model, as they
could induce large mixed layer viscosities that could quash the
growth of SI modes.

It is of interest to submesoscale modelers to know at what
resolution SI begins to become resolved at the gridscale, and what
effect it would have upon the mixed layer stratification once it
becomes present. Fig. 4 demonstrates that the linear growth rate
can be used to predict the wavelength of the largest SI modes when
the mixed layer N2 and M2 are uniform and slowly varying in time.
A prediction made in this way would require knowledge of the
model viscosity and diffusivity, and would be improved by
accounting for contributions to each of these by other parameter-
izations such as KPP. For a more dynamically evolving mixed layer
the simple, if unsatisfying, answer is that the necessary resolution
depends heavily on the local flow parameters. Factors that would
make a true resolution-dependent prediction of SI more difficult
include (but are not limited to) the high variability of the buoyancy
frequencies and unstable layer depth in the mixed layer, the
common use of flow-dependent viscosity parameterizations (e.g.,
Smagorinsky, 1963, 1993), and the influence of other stratifica-
tion-sensitive parameterizations.
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In the future GCM resolution will become sufficiently fine to
resolve larger-scale (e.g. mesoscale baroclinic) instabilities, but it
will still be necessary to parameterize processes that occur at
and below submesoscale resolution. Indeed, climate-scale models
have a need for such parameterizations now. The results of this
paper suggest that any attempted parameterization for symmetric
instability should be able to modulate the mixed layer stratifica-
tion so as to ‘‘pick up’’ the restratification process when the
resolved modes are unable to proceed further. Two specific states
to check for would be where locally Ri < f=ðf þ fÞ; q < 0, or both,
as these conditions would occur when SI is fully unresolved or par-
tially resolved. Such a parameterization should also be self-tuning
so as to avoid the issue of ‘‘double-counting’’ (e.g., Delworth et al.,
2012), where the large modes are both resolved and parameter-
ized. These issues are beyond the scope of this paper, but the
results shown here may help in the construction and testing of a
parameterization in the future.
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Appendix A. Linear stability analysis of nonhydrostatic, viscous
SI

Begin with the primitive equations with anisotropic viscosity,
and assume the flow is homogeneous in y, so that @=@y ¼ 0. Then
the governing equation set is

Du
Dt
� f v þ 1

q0

@p
@x
� mh

@2u
@x2 � mv

@2u
@z2 ¼ 0; ðA:1Þ

Dv
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þ fu� mh
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@x2 � mv

@2v
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@x2 � jv

@2q
@z2 ¼ 0; ðA:5Þ

where b is the ‘‘hydrostatic parameter’’ (b ¼ 0 for hydrostatic flow,
and b ¼ 1 for non-hydrostatic). Consider a basic flow with

q ¼ qBðxÞ þ �qðzÞ þ q0ðx; zÞ; ðA:6Þ
u ¼ VGðzÞjþ VBðxÞjþ u0ðx; zÞ; ðA:7Þ

where the prime variables are asymptotically small perturbations
independent of y. Here the thermal wind velocity VG is in balance
with the mean buoyancy field, with VB a barotropic velocity that
varies over large lengthscales compared to u0. Using the smallness
of the perturbations to eliminate the nonlinear advection terms in
(A.1)–(A.5), the perturbation equations are
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For easier notation, the differential operators on the left hand side
will be grouped like so:
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@x
; ðA:13Þ

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
v 0 ¼ �u0

dVB

dx
� fu0 �w0

dVG

dz
; ðA:14Þ

b
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
w0 ¼ � g

q0
q0 � 1

q0

@p0

@z
¼ 0; ðA:15Þ

@u0

@x
¼ � @w0

@z
; ðA:16Þ

@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
q0 ¼ �u0

dqB

dx
�w0

d�q
dz

ðA:17Þ

and the horizontal shear will be written in terms of the relative vor-
ticity by substituting _VB= _x ¼ f. The first step is to take
ð@=@t � jh@

2=@x2 � jv@
2=@z2Þ of (A.15) and substitute in (A.17):

b
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
w0

¼ � 1
q0

@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@p0

@z

� g
q0
�u0

dqB

dx
�w0

d�q
dz

� �
: ðA:18Þ

Define the basic flow frequencies

M2 � � g
q0

dqB

dx
N2 � � g

q0

d�q
dz
: ðA:19Þ

M2 does not necessarily have to be constant, but for VB to satisfy
thermal wind balance M2 must also vary over long lengthscales
compared to u0. Now taking @2=@x@z of (A.18), one has

b
@

@t
�mh

@2

@x2�mv
@2

@z2

 !
@

@t
�jh

@2

@x2�jv
@2

@z2

 !
@2w0

@x@z

¼� 1
q0

@

@t
�jh

@2

@x2�jv
@2

@z2

 !
@3p0

@x@z2�M2 @
2u0

@x@z
þN2 @

2w0

@x@z
: ðA:20Þ

Now use the continuity equation (A.16) to substitute

@u0

@x
¼ � @w0

@z
ðA:21Þ

giving

�b
@

@t
�mh

@2

@x2�mv
@2

@z2

 !
@

@t
�jh

@2

@x2�jv
@2

@z2

 !
@2u0

@x2

¼� 1
q0

@

@t
�jh

@2

@x2�jv
@2

@z2

 !
@3p0

@x@z2�M2 @
2u0

@x@z
þN2 @

2u0

@x2 : ðA:22Þ

Now all terms are functions of u0 except for one pressure term. To
eliminate this term, take @2=@z2 of (A.13):

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2u0

@z2 ¼ f
@2v 0
@z2 �

1
q0

@3p0

@x@z2 : ðA:23Þ

Now take ð@=@t � jh@
2=@x2 � jv@

2=@z2Þ of (A.23), giving

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

¼ f
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2v 0
@z2

� 1
q0

@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@3p0

@x@z2 : ðA:24Þ
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It is now possible to substitute in for the pressure term in (A.22).
This now becomes

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

¼ �b
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@x2

þ f
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2v 0
@z2 þM2 @

2u0

@x@z
� N2 @

2u0

@x2 : ðA:25Þ

This leaves only a v 0 term left to deal with. Take @2=@z2 of (A.14) to
get

@

@t
�mh

@2

@x2�mv
@2

@z2

 !
@2v 0
@z2 ¼�

dVB

dx
@2u0

@z2 � f
@2u0

@z2 �
dVG

dz
@2w0

@z2 ðA:26Þ

and substitute the continuity equation (A.16) again to get

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2v 0
@z2 ¼ �

dVB

dx
@2u0

@z2 � f
@2u0

@z2 þ
dVG

dz
@2u0

@x@z
:

ðA:27Þ

Taking f ð@=@t � jh@
2=@x2 � jv@

2=@z2Þ of (A.27),

f
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2v 0
@z2

¼ �f
dVB

dx
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

� f 2 @

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

þ @

@t
� jh

@2

@x2 � jv
@2

@z2

 !
f

dVG

dz
@2u0

@x@z
: ðA:28Þ

Taking the basic state to be in thermal wind balance gives

f
dVG

dz
¼ M2 ðA:29Þ

and for brevity one can write dVB=dx ¼ f, where f is the vertical
component of the relative vorticity of the base flow. These can
immediately be substituted into (A.28) to get

f
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2v 0
@z2

¼ @

@t
� jh

@2

@x2 � jv
@2

@z2

 !
M2 @

2u0

@x@z
� f 2 þ f f
� � @2u0

@z2

 !
: ðA:30Þ

One last operation is necessary: taking ð@=@t � mh@
2=@x2 � mv@

2=@z2Þ
of (A.25),

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !2
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

¼ �b
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !2
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@x2

þ f
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2v 0
@z2

þM2 @

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2u0

@x@z

� N2 @

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2u0

@x2 ðA:31Þ
and one may now substitute in for the v 0 term here using (A.30):

@

@t
� mh

@2

@x2 � mv
@2

@z2

 !2
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@z2

¼ �b
@

@t
� mh

@2

@x2 � mv
@2

@z2

 !2
@

@t
� jh

@2

@x2 � jv
@2

@z2

 !
@2u0

@x2

þ @

@t
� jh

@2

@x2 � jv
@2

@z2

 !
M2 @

2u0

@x@z
� f 2 þ f f
� � @2u0

@z2

 !

þM2 @

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2u0

@x@z

� N2 @

@t
� mh

@2

@x2 � mv
@2

@z2

 !
@2u0

@x2 :

ðA:32Þ

Now everything is in terms of u0, so consider normal modes (a wave
solution) of the form

u0 ¼ ûeikxþimzþrt : ðA:33Þ

Substituting (A.33) into (A.32) and eliminating like terms,

rþ mhk2 þ mvm2
� �2

rþ jhk2 þ jvm2
� �

�m2	 

¼ �b rþ mhk2 þ mvm2

� �2
rþ jhk2 þ jvm2
� �

�k2
� �

þ rþ jhk2 þ jvm2
� �

M2 �kmð Þ � f 2 þ f f
� �

�m2	 
� �
þM2 rþ mhk2 þ mvm2

� �
�kmð Þ

� N2 rþ mhk2 þ mvm2
� �

�k2
� �

: ðA:34Þ

Letting the Prandtl number be 1 (i.e. jh ¼ mh and jv ¼ mv ), (A.34)
simplifies to

� rþ mhk2 þ mvm2
� �2

m2 ¼ b rþ mhk2 þ mvm2
� �2

k2

�M2kmþ f 2 þ f f
� �

m2

�M2kmþ N2k2
: ðA:35Þ

Rearranging, this gives

rþ mhk2 þ mvm2
� �2

bk2 þm2
� �

¼ 2M2km� f 2 þ f f
� �

m2 � N2k2 ðA:36Þ

and the growth rate r is

r ¼
2M2km� f 2 þ f f

� �
m2 � N2k2

bk2 þm2

2
4

3
5

1=2

� mhk2 þ mvm2
� �

: ðA:37Þ
A.1. Cases

A.1.1. Case 1: inviscid, hydrostatic
Setting b ¼ 0; mh ¼ 0, and mv ¼ 0, (A.37) becomes

r ¼
2M2km� f 2 þ f f

� �
m2 � N2k2

m2

2
4

3
5

1=2

; ðA:38Þ

which simplifies to

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

: ðA:39Þ
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A.1.2. Case 2: viscous, hydrostatic
Setting b ¼ 0 but keeping the viscous terms, (A.37) becomes

r ¼
2M2km� f 2 þ f f

� �
m2 � N2k2

m2

2
4

3
5

1=2

� mhk2 þ mvm2
� �

; ðA:40Þ

which simplifies to

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

� mhk2 þ mvm2
� �

: ðA:41Þ

If the viscosity is isotropic (mh ¼ mv ), the solution is the same as in
Taylor and Ferrari (2009).

A.1.3. Case 3: inviscid, nonhydrostatic
Setting b ¼ 1 gives us the nonhydrostatic solution, and here we

set mh ¼ mv ¼ 0:

r ¼
2M2km� f 2 þ f f

� �
m2 � N2k2

k2 þm2

2
4

3
5

1=2

: ðA:42Þ

Dividing the numerator and denominator by m2 gives the alterna-
tive form

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

1þ k2

m2

 !�1=2

; ðA:43Þ

which reduces to the inviscid, hydrostatic growth rate in the limit
where k2

=m2 � 1.

A.1.4. Case 4: viscous, nonhydrostatic
Setting b ¼ 1 and retaining the viscous terms, we have

r ¼
2M2km� f 2 þ f f

� �
m2 � N2k2

k2 þm2

2
4

3
5

1=2

� mhk2 þ mvm2
� �

: ðA:44Þ

Performing the same simplification as in (A.43), this can be
rewritten

r ¼ M4

N2 � f 2 þ f f
� �

� N2 k
m
�M2

N2

 !2
2
4

3
5

1=2

1þ k2

m2

 !�1=2

� mhk2 þ mvm2
� �

: ðA:45Þ
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