
Genetic
EpidemiologyRESEARCH ARTICLE

A Method for Gene-Based Pathway Analysis Using
Genomewide Association Study Summary Statistics
Reveals Nine New Type 1 Diabetes Associations

Marina Evangelou,1 ∗ Deborah J. Smyth,1 Mary D. Fortune,1 Oliver S. Burren,1 Neil M. Walker,1 Hui Guo,1

Suna Onengut-Gumuscu,2 Wei-Min Chen,2 Patrick Concannon,2 † Stephen S. Rich,2 John A. Todd,1 and Chris Wallace1,3

1JDRF/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, NIHR Cambridge Biomedical Research Centre,
Cambridge Institute for Medical Research, University of Cambridge, Cambridge, CB2 0XY, UK; 2School of Medicine, University of Virginia,
Charlottesville, Virginia, United States of America; 3Medical Research Council Biostatistics Unit, Institute of Public Health, Cambridge,
CB2 0SR, UK

Received 9 January 2014; Revised 2 June 2014; accepted revised manuscript 29 July 2014.

Published online 4 November 2014 in Wiley Online Library (wileyonlinelibrary.com). DOI 10.1002/gepi.21853

ABSTRACT: Pathway analysis can complement point-wise single nucleotide polymorphism (SNP) analysis in exploring
genomewide association study (GWAS) data to identify specific disease-associated genes that can be candidate causal genes.
We propose a straightforward methodology that can be used for conducting a gene-based pathway analysis using summary
GWAS statistics in combination with widely available reference genotype data. We used this method to perform a gene-
based pathway analysis of a type 1 diabetes (T1D) meta-analysis GWAS (of 7,514 cases and 9,045 controls). An important
feature of the conducted analysis is the removal of the major histocompatibility complex gene region, the major genetic
risk factor for T1D. Thirty-one of the 1,583 (2%) tested pathways were identified to be enriched for association with
T1D at a 5% false discovery rate. We analyzed these 31 pathways and their genes to identify SNPs in or near these
pathway genes that showed potentially novel association with T1D and attempted to replicate the association of 22 SNPs
in additional samples. Replication P-values were skewed (P = 9.85 × 10−11) with 12 of the 22 SNPs showing P < 0.05.
Support, including replication evidence, was obtained for nine T1D associated variants in genes ITGB7 (rs11170466,
P = 7.86 × 10−9), NRP1 (rs722988, 4.88 × 10−8), BAD (rs694739, 2.37 × 10−7), CTSB (rs1296023, 2.79 × 10−7), FYN
(rs11964650, P = 5.60 × 10−7), UBE2G1 (rs9906760, 5.08 × 10−7), MAP3K14 (rs17759555, 9.67 × 10−7), ITGB1
(rs1557150, 1.93 × 10−6), and IL7R (rs1445898, 2.76 × 10−6). The proposed methodology can be applied to other GWAS
datasets for which only summary level data are available.
Genet Epidemiol 38:661–670, 2014. Published 2014 Wiley Periodicals, Inc.∗∗
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Introduction

It is increasingly recognized that pathway analysis can com-
plement point-wise single nucleotide polymorphism (SNP)
analysis in exploring genomewide association study (GWAS)
data, through the identification of pathways and SNPs (genes)
associated with the tested phenotype. A number of pathway
analysis methods have been proposed recently that incor-
porate biological knowledge about genes (or SNPs) to find
pathways associated with the tested phenotypes [Carbonetto
and Stephens, 2013; Eleftherohorinou et al., 2009; Evangelou
et al., 2012, 2013; Holmans et al., 2009; O’Dushlaine et al.,
2009; Schaid et al., 2012; Wang et al., 2007, 2011; Yu et al.,
2009]. These methods can be characterized by a number of
aspects, including the tested null hypothesis, the input data,
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their test statistics and the way of assessing the significance of
each pathway. One of the two null hypotheses is the compet-
itive (enrichment) one, that states that the pathway genes are
no more associated with the phenotype than the nonpathway
genes. Therefore, an enriched pathway, contains more signif-
icantly associated genes than would be expected by chance.
Additionally, a number of studies have been published that
compared some of these methods under different settings
[Evangelou et al., 2012; Tintle et al., 2009]. Evangelou et al.
[2012] showed that the Fisher’s method and the adaptive rank
truncated product method are the most powerful methods
for testing the competitive null hypothesis, in agreement with
the previous literature.

One of the crucial steps of a gene-based pathway analysis is
the assignment of a gene statistic that represents the associa-
tion of each gene with the tested trait. Two popular statistics
are the minimum P -value statistic and the Fisher’s method
statistic [Chapman and Whittaker, 2008]. Permutation pro-
cedures are needed to adjust for gene size and linkage dise-
quilibrium (LD) between the SNPs assigned to the gene, both
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of which are considered to be confounding factors of pathway
analysis [Evangelou et al., 2012; Wang et al., 2007]. In many
cases, only summary GWAS statistics are publicly available
and therefore, in this present study, we propose using geno-
type data available from reference panels, for example, we
have used the genotype data of the WTCCC controls, for
generating the null distribution of the two aforementioned
gene statistics.

Several statistical models have been proposed that incor-
porate the pathway membership of SNPs or genes for finding
SNPs associated with complex traits. Examples include the
Bayesian hierarchical models proposed by Evangelou et al.
[2013] and Carbonetto and Stephens [2013], and the variable
selection method applied by Eleftherohorinou et al. [2009]. In
the present study, we used the enriched pathways to increase
our prior belief for association of SNPs near pathway genes.
Instead of applying a complex statistical model for finding
SNPs associated with the tested phenotype, we propose a sim-
ple procedure for prioritizing SNPs. SNPs in or near genes
in enriched pathways that have small P -values and that have
not been reported previously as associated with the tested
phenotype are selected for further analyses. We propose that
by using additional samples for replicating the association,
novel associations can be found. We argue that SNPs with
combined P -values less than 5 × 10–6 and with replication
P -values less than 0.05 in additional cohorts are potential dis-
ease associated SNPs, because their membership of enriched
pathways increases the prior belief of association.

In this study, we explored the genetic architecture of type 1
diabetes (T1D) using pathway analysis, through which path-
ways statistically enriched for association with T1D are de-
fined and used to identify additional T1D loci and candi-
date genes. T1D is a common autoimmune disease resulting
from destruction of the insulin producing beta cells in the
pancreas. Genetic predisposition to T1D has been explored
through linkage and association studies. The strongest ge-
netic risk factor for T1D lies in the major histocompatibility
complex (MHC) region (chromosome 6p21), with 49 further
loci showing association (T1DBase, 05/05/2014 - Burren et al.
[2011]). T1D has a classic polygenic mode of inheritance and
hence many more susceptibility loci remain to be mapped,
as evident, for example, from the strong linear correlation
between the number of samples analyzed and the number of
loci reaching genome wide significance in published studies
of genetic association in autoimmune diseases [Parkes et al.,
2013].

Materials and Methods

Materials

GWAS Data

The Barrett et al. [2009] meta-analysis study includes three
constituent studies: WTCCC, T1DGC, and GoKinD/NIMH.
The standard quality control filters applied include SNPs with
minor allele frequency (MAF) greater than 0.01, less than 5%

missing data, and with the Z2-statistic for Hardy-Weinberg
equilibrium within the controls smaller than 25. In total,
822,739 SNPs were retained for analysis.

Further, the available raw genotype data of the first two
GWAS were analyzed. The WTCCC GWAS was described by
The Wellcome Trust Case Control Consortium [2007]. The
2,000 WTCCC cases are part of the genetic resource for in-
vestigating diabetes (GRID) collection of the JDRF/wellcome
trust diabetes and inflammation laboratory (DIL) [Todd
et al., 2007]. One thousand and five hundred controls of
this GWAS were recruited by the WTCCC in collaboration
with the UK Blood Services and the other 1,868 controls
are patients with bipolar disorder included in the WTCCC
study. The individuals of this study were genotyped on the
Affymetrix 500K Chip. The T1DGC GWAS was first pre-
sented in Barrett et al. [2009] and includes 4,000 British cases
from the JDRF/Wellcome Trust DIL collection. In addition,
4,000 controls are included from the British 1958 Birth Co-
hort. The individuals of this GWAS were genotyped on the
Illumina 550K platform. Barrett et al. [2009] analyzed both
GWAS data using imputation to combine information across
the different SNP content on the different chips. The sam-
ples that passed the quality control filters applied in Barrett
et al. [2009] were included in the pathway analysis presented
here. In total, the WTCCC GWAS includes 1,933 cases and
3,339 controls. The T1DGC GWAS includes 3,983 cases and
3,999 controls. Similar quality control filters as the ones ap-
plied in Barrett et al. [2009] were applied to the genotype
data of both GWAS, except we set a more stringent threshold
for missing data of < 2%.

SNPs within an extended MHC gene region
(chr6: 25,000,000–35,000,000) were removed for all
three datasets. As discussed by Elbers et al. [2009], the MHC
region should be removed from a pathway analysis as it is
a region that could potentially bias the analysis by favoring
pathways related with immune functions. In T1D the causal
genes in the MHC region have been identified as the HLA
class II and class I genes and hence exclusion of the MHC
region does not compromise our study.

For the purposes of this study, the genotype data of 1,350
controls recruited by the WTCCC in collaboration with the
UK Blood Services, were used as the reference genotype panel
for estimating the null distributions of the computed gene
statistics. As discussed earlier, these controls were genotyped
both on the WTCCC chip (Affymetrix 500K chip) and on the
T1DGC chip (Illumina 550K platform).

GWAS Genes

One of the major steps of conducting a gene-based pathway
analysis is the assignment of SNPs to genes. Our assignment
was based on autosomal protein coding genes downloaded
from Ensembl (Flicek et al. [2013], October, 2012) human
assembly build GRCh37.

SNPs were mapped to genes according to their physical
distance: a SNP was mapped to every gene whose coding
sequence had an overlap with a 50 kb range around the
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Table 1. Summary statistics of the database genes within the
two GWAS and the meta-analysis data of Barrett et al. [2009]. The
“Theoretical” represents the genes of each pathway database as
these were downloaded. These numbers are reduced when SNP
coverage within the studies is taken into account

Database Study Minimum Median Mean Maximum

BioCarta Theoretical 1 15 16.97 84
Meta-analysis 1 13 14.79 76
WTCCC 1 13 14.75 76
T1DGC 1 13 14.70 76

Reactome Theoretical 1 16.50 46.31 1,740
Meta-analysis 0 15 37.23 1,506
WTCCC 0 14 36.75 1,497
T1DGC 0 15 37.15 1,496

SNP. In total, 18,528 overlapping genes were identified in
the meta-analysis dataset. The WTCCC and T1DGC GWAS
genes included were 18,353 and 18,477, respectively.

Pathway Databases

Three hundred and fourteen BioCarta and 1,272 Reactome
[Croft et al., 2011; Matthews et al., 2009] pathways were
downloaded (October, 2012). Three of the Reactome path-
ways did not have any of our GWAS genes. The downloaded
BioCarta pathways have annotations for 1,572 genes. An av-
erage BioCarta pathway contains 17 genes and the largest
pathway contains 84 genes. On the other hand, the Reac-
tome pathways have annotations for 6,497 genes. An average
Reactome pathway contains 46 genes and the largest Reac-
tome pathway contains 1,740 genes. The two databases share
1,132 genes. Not all pathway genes are included in the lists
of GWAS genes, and vice-versa. The three datasets have very
similar presentation of genes for either database (Table 1).

Methods

Gene Statistics

The measure that summarises the association between dis-
ease and all the SNPs assigned to a gene into a single statistic
is a crucial step in a gene-based pathway analysis. A number
of different gene statistics have been proposed over the years.
One popular choice is the minimum P -value of all the SNPs
assigned to the gene, i.e. the P -value of the most significant
SNP. Chapman and Whittaker [2008] discussed that the min-
imum P -value has very good performance in cases of both
low and high LD between the SNPs mapped to the gene.

An alternative, also presented in Chapman and Whittaker
[2008] is the Fisher’s statistic

FM = –2
J∑

j =1

log(p j ) (1)

where p j , j = 1, . . . , J denote the single-SNP analysis
P -values of association of the SNPs assigned to the gene with
the studied phenotype. The Fisher’s statistic has very good

performance in cases where LD is high, but has low power
in cases with no LD between the SNPs [Chapman and Whit-
taker, 2008]. The two tested gene statistics are denoted by
(A) and (B), respectively. Gene size, i.e. the number of SNPs
mapped to a gene, and the LD between the SNPs mapped to
a gene can be confounding factors in a gene-based pathway
analysis. In order to correct for both gene size and LD between
the SNPs assigned to each gene the phenotype permutation
procedure discussed in Evangelou et al. [2012] can be used.

Here, the phenotypes were permuted 1,000 times and
single-SNP analysis was redone. The two aforementioned
gene statistics were then recomputed for each gene. The ad-
justed minimum P -value statistic of each gene is given by

ˆ̂p =

∑1,000
b=0 I(p̂ (b) ≤ p̂ (0))

1, 001
(2)

where p̂ (0) corresponds to the minimum P -value of the gene
calculated using the observed data and p̂ (b) corresponds to
the minimum P -value of the gene computed using the bth
permuted dataset.

The corresponding adjusted statistic using the Fisher’s
statistic is given by

˜̂p =

∑1,000
b=0 I(FM(b) ≥ FM(0))

1, 001
(3)

where, similarly, FM(0) is the Fisher’s method statistic cal-
culated using the observed data and FM(b) is the Fisher’s
method statistic computed using the bth permuted dataset.

Often, only summary statistics are available for published
GWAS, preventing the null distribution of the two gene statis-
tics from phenotype or SNP permutations to be computed.
In this study, we propose an alternative way of computing the
null distribution of the gene statistics by using the genotype
data from a reference panel, motivated by the work of Liu
et al. [2010] and Swanson et al. [2013] who used genotype
data from the HapMap reference panels [The International
HapMap Consortium, 2003] for estimating the null distribu-
tion for gene-based association tests. We, on the other hand,
used the genotype data of the WTCCC controls, to secure
that all GWAS genotyped SNPs are included in the study.

We repeatedly generated Z-statistics for all the SNPs as-
signed to a gene from the multivariate normal distribution
with mean zero and variance �, where � is the covariance
matrix of the SNP genotype data estimated from the refer-
ence genotype panel. The diagonal of � is set equal to 1.
Subsequently, SNP P -values were calculated by comparing
the Z-statistics with a Normal (0,1) distribution. Both the
minimum P -value statistic and the Fisher’s method statis-
tic were computed for each gene. This process was repeated
10,000 times. Finally, the simulated gene statistics were com-
pared to the original gene statistics, and adjusted P -values for
both gene statistics were generated as described in Equations
(2) and (3). Here, we would like to note, that both the gene
statistics were computed based on the SNPs shared between
the GWAS platforms and the reference panel.

For the purposes of distinction between the statistics, the
adjusted P -values of the gene statistics computed using the
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Table 2. The names of the methods applied to the data. FM stands for Fisher’s method and ARTP stands for adaptive rank truncated
product method. The gene statistics computed are the minimum P -value statistic and the Fisher’s method statistic, which were adjusted
either using a phenotype permutation procedure or using the reference genotype data for generating the corresponding SNP P -values

Name Gene statistic Procedure Pathway analysis method

FM-(MIN) Minimum P -value Phenotype permutation FM
FM-(FM) Fisher’s statistic Phenotype permutation FM
FM-(MINS ) Minimum P -value Reference genotype data FM
FM-(FMS ) Fisher’s statistic Reference genotype data FM

ARTP-(MIN) Minimum P -value Phenotype permutation ARTP
ARTP-(FM) Fisher’s statistic Phenotype permutation ARTP
ARTP-(MINS ) Minimum P -value Reference genotype data ARTP
ARTP(FMS ) Fisher’s statistic Reference genotype data ARTP

reference genotype data will be referred to as the simulated
gene statistics and indicated with subscript S .

Pathway Analysis Methods

As discussed by Evangelou et al. [2012] the Fisher’s method
and the adaptive rank truncated product method can be
adapted to test the competitive null hypothesis by using the
gene statistics ri . The ri, i = 1, . . . , K statistics equal the ranks
of the genes of the study divided by the total number of genes
in the study (K ). The distribution of the gene statistics is
a Uniform (0,1) and deviation from uniformity suggests en-
richment of the pathway. By using the proposed gene statistics
the analytic distribution of the Fisher’s method and the em-
pirical distribution of the adaptive rank truncated product
method are used for testing the significance of the pathways
[Evangelou et al., 2012].

Fisher’s method (FM). The FM statistic equals

– 2
m∑

i=1

log(ri) (4)

where m is the pathway size. The significance of the computed
FM statistic is compared with its exact χ2 distribution with
2m degrees of freedom.

Adaptive rank truncated product method (ARTP). The
ARTP method is a generalization of the FM where only
the best H gene statistics within each pathway are con-
sidered for computing the rank truncated product given
by

WH =

H∑

i=1

log(r(i)) (5)

with the gene statistics ranked from the smallest to the
largest r(1) ≤ . . . ≤ r(m). The rank truncated product com-
bines the H smallest gene statistics of the tested pathway.
The truncation point H as well as the significance of the
P-value of the ARTP statistic were calculated using the em-
pirical distribution of ARTP proposed by Evangelou et al.
[2012].

In summary, there are eight combinations of pathway anal-
ysis methods and gene statistics (Table 2). All methods were

applied to the data of the T1DGC and WTCCC GWAS for
comparison.

Simulation Study

A simulation study was also performed to examine the
type-I error of the methods. We aimed to compare the type-I
error of the methods as well as to test how pathway size af-
fects their type-I error. For estimating the type-I error of the
methods across different pathway sizes, 1,000 random path-
ways of different sizes were created from the list of T1DGC
GWAS genes. A 95% confidence interval for a type-I error of
5% ranges between 0.0431 and 0.0569.

Extending Pathway Analysis

Pathway analysis was extended for identifying genes (and
SNPs) potentially associated with T1D. We searched through
the P -values of the genes within the enriched pathways and
we selected the ones that had relatively small P -values but
have not been reported previously as associated with T1D.
The SNP with the strongest association with T1D within
each of the selected genes was genotyped on additional case-
control and family datasets either using TaqMan or the Im-
munoChip platform, a custom Illumina chip designed for
dense coverage of autoimmune and autoinflammatory asso-
ciated regions (Cortes and Brown [2011], ImmunoBase). We
performed an inverse variance meta-analysis for combining
the results of the additional cohorts. Further, using Fisher’s
method we combined the meta-analysis P -values of Barrett
et al. [2009] with the P -values of the additional cohorts.
SNPs with combined P -values less than 5 × 10–6 and with
replication P -values less than 0.05 are highlighted in the Re-
sults Section. We ensured that there was no sample overlap
between Barrett et al. [2009] and replication cohorts.

Results

Validation of Proposed Methodology

The permutation- and simulation- adjusted P -values were
very similar for the minimum P -value gene statistic for
both T1DGC and WTCCC GWAS, with their corresponding
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Table 3. Spearman correlations of the P -values computed for
each tested pathway, for each tested database for both T1DGC and
WTCCC GWAS

Database Methods compared Spearman correlation

T1DGC
BioCarta FM-(MIN) vs FM-(MIN)S 0.9939

FM-(FM) vs FM-(FM)S 0.9755
ARTP-(MIN) vs ARTP-(MIN)S 0.9854
ARTP-(FM) vs ARTP-(FM)S 0.9496

Reactome FM-(MIN) vs FM-(MIN)S 0.9878
FM-(FM) vs FM-(FM)S 0.8378
ARTP-(MIN) vs ARTP-(MIN)S 0.9389
ARTP-(FM) vs ARTP-(FM)S 0.8833

WTCCC
BioCarta FM-(MIN) vs FM-(MIN)S 0.9761

FM-(FM) vs FM-(FM)S 0.9739
ARTP-(MIN) vs ARTP-(MIN)S 0.9793
ARTP-(FM) vs ARTP-(FM)S 0.9303

Reactome FM-(MIN) vs FM-(MIN)S 0.9784
FM-(FM) vs FM-(FM)S 0.9729
ARTP-(MIN) vs ARTP-(MIN)S 0.9638
ARTP-(FM) vs ARTP-(FM)S 0.9210

Table 4. Type-I error of the gene statistics combined with Fisher’s
method for the different pathway analysis methods

Method

Pathway size FM-(MIN) FM-(FM) FM-(MINS ) FM-(FMS )

20 0.044 0.053 0.045 00057
50 0.043 0.041 0.043 0.044
100 0.059 0.071 0.060 0.058
200 0.053 0.054 0.048 0.049
500 0.042 0.053 0.046 0.055
1000 0.044 0.051 0.048 0.050

Spearman correlations equal to 0.9883 and 0.9690, respec-
tively. Similarly, the Spearman correlations of the Fisher’s
method statistic were 0.9949 and 0.9896 for the two GWAS.

The eight methods were applied to both GWAS for compar-
ing the agreement between the pathway P -values computed
by each pair of competitive methods. Similarly to the observa-
tions of the gene statistics, a very high correspondence was ob-
served between FM-(MIN) and FM-(MIN)S for both GWAS
across all 1,583 tested pathways (Spearman correlations are
0.9892 and 0.9785 for T1DGC and WTCCC, respectively).
The observed correlation between FM-(FM) and FM-(FM)S

for both GWAS was similar (T1DGC ρ= 0.9823 and WTCCC
ρ = 0.9735 across all 1,583 tested pathways), although lower
correlations were observed between the P -values computed
using ARTP method (Table 3). Further, the simulation study
showed that the type-I error of the gene statistics combined
with Fisher’s method is broadly maintained (Table 4).

Given these results, we believe that the approximate null
distribution is appropriate for both the FM-(MIN) and FM-
(FM) methods, and we proceeded by analysing the Barrett
et al. [2009] meta-analysis P -values using both methods.

Table 5. Pathways with FDR P -values of FM-(MIN)S method less
than 0.05

Number Pathway
FDR p -value
FM-(MIN)S

i Activation of Csk by cAMP-dependent Protein Kinase
Inhibits Signaling through the T Cell Receptor

0.0436

ii IL-2 Receptor Beta Chain in T cell Activation 0.0293
iii HIV Induced T Cell Apoptosis 0.0106
iv CTL mediated immune response against target cells 0.0323
v Antigen Dependent B Cell Activation 0.0364
vi IL-10 Anti-inflammatory Signaling Pathway 0.0115
vii Stathmin and breast cancer resistance to

antimicrotubule agents
0.0460

viii T Helper Cell Surface Molecules 0.0021
ix NO2-dependent IL 12 Pathway in NK cells 0.0372
x T Cytotoxic Cell Surface Molecules 0.0014
xi IL 17 Signaling Pathway 0.0387
xii The Co-Stimulatory Signal During T-cell Activation 0.0003
xiii Lck and Fyn tyrosine kinases in initiation of TCR

Activation
0.0012

xiv Role of Tob in T-cell activation 0.0414
xv T Cell Receptor and CD3 Complex 0.0414
xvi Selective expression of chemokine receptors during

T-cell polarization
0.0395

xvii B Lymphocyte Cell Surface Molecules 0.0375
xviii Monocyte and its Surface Molecules 0.0460
xix Adhesion Molecules on Lymphocyte 0.0429
xx Double Stranded RNA Induced Gene Expression 0.0375
xxi IFN alpha signaling pathway 0.0375
xxii Immune System 0.0216
xxiii Adaptive Immune System 0.0216
xxiv Integrin cell surface interactions 0.0216
xxv Semaphorin interactions 0.0299
xxvi Immunoregulatory interactions between a Lymphoid

and a non-Lymphoid cell
0.0012

xxvii Effects of PIP2 hydrolysis 0.0216
xxviii Interleukin-6 signaling 0.0445
xxix Signal regulatory protein (SIRP) family interactions 0.0216
xxx Catecholamine biosynthesis 0.0299
xxxi GRB7 events in ERBB2 signaling 0.0264

Results of the Meta-Analysis Study

The complete lists of enriched pathways (P ≤ 0.05) found
by both methods are presented in Supplementary Tables
S5–S8. We corrected for multiplicity of the tested path-
ways by computing the false discovery rate (FDR) P -values
of the pathways [Benjamini and Hochberg, 1995]. Thirty-
one BioCarta and Reactome pathways had FM-(MIN)S FDR
P -values less than 0.05, whereas 21 pathways were identified
by FM-(FM)S as enriched. As a larger number of pathways
were identified by FM-(MIN)S method, we are presenting
these enriched pathways in Table 5. Four of the enriched path-
ways of Table 5, the BioCarta pathways “Adhesion molecules
on Lymphocyte,” “Antigen dependent B cell activation,” “B
lymphocyte cell surface molecules,” and “Lck and Fyn tyro-
sine kinases in initiation of TCR activation” were previously
identified by Peng et al. [2010] as enriched with T1D by
analysing only the WTCCC GWAS dataset.

Using Enriched Pathways to Prioritize Potentially Novel
T1D SNPs

We explored the gene members of the 31 enriched pathways
listed in Table 5 by looking at their unadjusted minimum
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Table 6. Genes of the enriched pathways that have not been reported previously as associated with T1D, but have case-control meta-
analysis minimum SNP P -values less than 10−4. The most significant SNP assigned to each gene with its meta-analysis P -value are
given in columns 3 and 4. Columns 5 and 6 present the meta-analysis P -value of additional cohorts if available and the combined P -value
with Barrett et al. [2009] P -value, respectively. The seventh column presents any other immune (either autoimmune or autoinflammatory)
disease(s) that the genes are associated with (ImmunoBase, 26/08/2014). The disease symbols correspond to: UC, Ulcerative colitis; CEL,
Celiac disease; PSO, psoriasis; IBD, inflammatory bowel disease; ALO, Alopecia; and CRO, Crohn’s disease. The last column presents
the pathway number that each gene belongs to (Table 5)

Gene is located
Barrett et al. [2009] Additional cohorts or is a candidate

Most significant meta-analysis meta-analysis Combined gene within an Pathway
Gene Chr SNP SNP P -value SNP P -value P -value immune disease region membership

PSMB2 1p34.3 rs6703605 1.14 × 10–5 xxii, xxiii
IL6R 1q21.3 rs6427658 8.73 × 10–5 0.3260 3.26 × 10–4 AS, JIA, RA xxii, xxviii
FASLG 1q24.3 rs10912276 8.95 × 10–5 0.0290 3.60 × 10–5 CEL, CRO, IBD ii, iii, iv, v
PTPRC 1q31.3 rs2182419 2.31 × 10–6 0.9593 3.11 × 10–5 RA i, viii, x, xiii, xvii, xxii, xxiii, xxv
ITGA6 2q31.1 rs16860458 9.99 × 10–5 xxiv
RAF1 3p25.1 rs2450855 3.53 × 10–5 0.7642 3.10 × 10–4 ii, xxii, xxiii
TLR6 4p14 rs4321646 7.72 × 10–5 xxii
TLR10 4p14 rs4321646 7.72 × 10–5 xxii
TRPC3 4q27 rs4502701 6.44 × 10–6 0.3697 3.32 × 10–5 xxvii
IL7R 5p13.2 rs1445898 1.14 × 10–5 0.0146 2.76 × 10–6 MS, PBC, UC, T1D xxii
DCTN4 5q33.1 rs4246045 2.51 × 10–5 0.8456 2.50 × 10–4 CRO, UC, IBD xxii, xxiii
MAPK14 6p21.31 rs2237093 5.74 × 10–5 xxii
IRF4 6p25.3 rs2048698 6.59 × 10–5 0.0296 2.76 × 10–5 CEL, PSO, RA xxii
FYN 6q21 rs11964650 1.67 × 10–6 0.0183 5.60 × 10–7 UC, CRO, IBD xiii, xxii, xxiii, xxv
CTSB 8p23.1 rs1296023 3.93 × 10–5 3.73 × 10–4 2.79 × 10–7 xxii, xxiii
ITGB1 10p11.22 rs1557150 9.53 × 10–6 0.0119 1.93 × 10–6 xviii, xix, xxii, xxiii, xxiv, xxv, xxvi
NRP1 10p11.22 rs722988 1.80 × 10–6 0.0013 4.88 × 10–8 xxv
PSMC3 11p11.2 rs2293576 3.62 × 10–5 0.7537 3.14 × 10–4 MS xxii, xxiii
BAD 11q13.1 rs694739 3.98 × 10–6 0.0031 2.37 × 10–7 CRO, MS, UC, ALO, IBD ii, xxii, xxiii
AMICA1 11q23.3 rs11216829 2.66 × 10–5 0.5807 0.0002 xxii, xxiii, xxiv, xxvi
ITGB7 12q13.13 rs11170466 7.99 × 10–6 4.32 × 10–5 7.86 × 10–9 xxii, xxiii, xxiv, xxvi
DGKA 12q13.2 rs11171710 7.23 × 10–22 xxvii
DNAJC3 13q32.1 rs9302086 5.81 × 10–5 xx
HMGB1 13q12.3 rs1360485 4.94 × 10–5 0.3819 2.24 × 10–4 xxii
PRKCH 14q23.1 rs1111107 1.32 × 10–5 RA xxvii
SOCS1 16p13.13 rs149310 3.33 × 10–7 0.0064 4.48 × 10–8 CEL, CRO, JIA, MS, PBC, PSO, UC, IBD ii, xxii, xxiii
TP53 17p13.1 rs16956936 6.49 × 10–7 0.0834 9.60 × 10–7 xx
UBE2G1 17p13.2 rs9906760 5.87 × 10–6 0.0047 5.08 × 10–7 xxii, xxiii
MAP3K14 17q21.31 rs17759555 1.16 × 10–5 0.0047 9.67 × 10–7 MS xx, xxii, xxiii
CDC34 19p13.3 rs12982646 8.02 × 10–9 0.2323 3.93 × 10–8 xxii, xxiii
MADCAM1 19p13.3 rs12982646 8.02 × 10–9 0.2323 3.93 × 10–8 xxii, xxiii, xxiv, xxvi
SAE1 19q13.32 rs411560 4.69 × 10–5 MS xxii, xxiii

P -values. We selected the genes with minimum meta-analysis
SNP P -values less than 10–4 that have not been reported
previously as associated with T1D (Table 6).

Almost 50% of our selected genes have been associated
with other immune diseases. For example, FYN lies in regions
that are associated with Crohn’s disease, inflammatory bowel
disease (IBD) and ulcerative colitis [Jostins and et al., 2012].
FASLG lies in a region known to be associated with Crohn’s
disease and IBD [Franke et al., 2010; Jostins and et al., 2012]
as well as with celiac disease [Trynka et al., 2011]. Moreover,
SNP rs10912276 of FALSG is in perfect LD (r2 = 1) with the
index SNP rs12068671 of the gene region for celiac disease
(P = 1.4 × 10–10, Trynka et al. [2011]).

The last column of Table 6 shows the pathways that the
genes belong to. The Reactome pathways “Immune system”
and “Adaptive immune system” contain 24 and 17 genes of
Table 6, respectively, and they share 17 genes. On the other
hand, 12 of the enriched pathways do not contain any of the
genes presented in Table 6. This suggests that the enrichment

of these pathways was driven by genes already known to be
associated with T1D. For example, one of them the “The Co-
stimulatory signal during T-cell activation” pathway contains
four genes that lie in regions associated previously with T1D:
CTLA4, IL2, ICOS, and PTPN11, where CTLA4 and IL2 are
likely causal gene candidates.

We tested whether the SNPs in Table 6 were associated
with T1D in additional case-control and family data. In
total, genotype data for additional samples existed for 22
out of 30 selected SNPs (Supplementary Table S1). Twelve
of the 22 SNPs had replication P -values less than 0.05 in
the additional samples, an event with associated probability
9.85 × 10–11, whereas just one of them would be expected
to have a P -value less than 0.05 by chance. The skewing of
the replication P -values toward smaller values for the SNPs
of Table 6 suggests that more of these SNPs are expected to
replicate with larger cohorts. We identified ten SNPs with
combined P -values less than 5 × 10–6 and with replication
P -values less than 0.05 in the additional cohorts in or near the
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genes IL7R, FYN, CTSB, ITGB1, NRP1, BAD, ITGB7, SOCS1,
UBE2G1, and MAP3K14. Although not all of these SNPs
have reached genomewide significance (P ≤ 5 × 10–8), their
membership of enriched pathways increases the prior for
association.

SNP rs11170466 of ITGB7 reached genomewide signifi-
cance (combined P -value=7.86 × 10–9, Table 6) and the sig-
nal is independent of the neighboring T1D region 12q13.3
(Supplementary Table S2). SNP rs11170466 is also a cis-eQTL
in blood cells for ITGB7 (unadjusted P -value 1.39 × 10–102),
where the minor allele is associated both with increased risk
of T1D and also with increased gene expression (Supple-
mentary Table S1, [Westra et al., 2012]). The minor allele
of SNP rs722988 of NRP1 reached genomewide significance
with combined P -value = 4.88 × 10–8.

SNP rs193779 near SOCS1 showed a strong associa-
tion with T1D (combined P -value= 4.48 × 10–8). However,
SOCS1 is located very close to an established T1D locus,
with SNPs in intron 19 of CLEC16A reported to alter T1D
risk through their effect on expression of DEXI [Davison
et al., 2011]. We conditioned on the most associated SNP
in the CLEC16A gene region and found the association with
rs193779 was considerably attenuated (P = 0.0006; Supple-
mentary Table S4).

SNP rs1296023 of CTSB showed evidence of association
with T1D (combined P -value=2.79 × 10–7; Table 6). This
is a novel association with T1D and the first association
of T1D on chromosome 8 (T1DBase). SNP rs694739 of
BAD also showed a strong association with T1D (combined
P -value = 2.37 × 10–7). BAD is an interesting causal candi-
date gene as it overlaps with a region on chromosome 11q13.1
known to be associated with multiple sclerosis, ulcerative col-
itis, IBD, alopecia, and Crohn’s disease (ImmunoBase). Our
tested SNP rs694739 has shown convincing evidence of asso-
ciation with multiple sclerosis, Crohn’s disease and alopecia
and it is considered to be the index SNP for these three dis-
eases in this gene region (ImmunoBase).

SNPs rs9906760, rs11964650, and rs17759555 of UBE2G1,
FYN, and MAP3K14 showed association with T1D with com-
bined P -values less than 10–6. FYN has also been highlighted
by Carbonetto and Stephens [2013] as a novel candidate T1D
gene. FYN lies in a region of chromosome 6q21 known to be
associated with Crohn’s disease and ulcerative colitis [Jostins
and et al., 2012]. SNP rs11964650 is not in LD with the in-
dex Crohn’s disease and ulcerative colitis SNP of the region
(r2 = 0 with rs3851228, ImmunoBase). The UBE2G1 SNP
rs9906760 is related with decreased expression of cis-eQTL in
blood cells with an unadjusted P -value 1.13 × 10–10 [Westra
et al., 2012].

SNP rs1557150 near ITGB1 also showed association with
T1D, with combined P -value 1.93 × 10–6 (Table 6). We con-
firmed that the signal of SNP rs1557150 near ITGB1 is in-
dependent of the signal of SNP rs722988 of NRP1 (Supple-
mentary Table S3). SNP rs1445898 of IL7R with combined
P -value = 2.76 × 10–6 is a novel T1D association on chromo-
some 5.

FYN, CTSB, BAD, ITGB7, UBE2G1, and MAP3K14 are
members of the Reactome “Immune system” and “Adaptive

immune system” pathways and are six of the 17 genes shared
between the two pathways.

One SNP highlighted by our analysis is rs12982646
in CDC34/MADCAM1. Both genes are members of the
reactome pathways “Immune system” and “Adaptive im-
mune system,” and MADCAM1 member of the enriched
reactome pathways “Integrin cell surface interaction” and
“Immunoregulatory interactions between a lymphoid and a
nonlymphoid cell” (with combined P -value = 3.93 × 10–8).
Eleftherohorinou et al. [2009] also identified MADCAM1 as
associated with T1D. rs12982646 exceeded the genomewide
significance threshold in Barrett et al. [2009] but at the
time were unable to test for replication of the SNP because
reliable TaqMan data were not available. The replication
genotype data used here, both from ImmunoChip and a
new and robust TaqMan assay, did not show any evidence
of association (Table 6). All our samples were subsequently
genotyped on TaqMan, which confirmed the fidelity of
the genotype calls in the Barrett et al. [2009] study and
ImmunoChip (with 99.8% genotype agreement across
6,258 samples), but also showed no overall replication in
the independent samples (combined P -value = 0.2323).
Therefore, we conclude, that this SNP is either not associated
with T1D, or associated with too small an effect to be
detected in our available replication samples.

Discussion

Our results illustrate the additional biological understand-
ing and novel genetic associations that can be revealed in
existing GWAS data by pathway analysis. We have shown
by comparative analysis of real datasets that our proposed
methodology for obtaining the null distribution of gene
statistics using reference genotype panels and summary
GWAS statistics is comparable to that found by phenotype
permutations when full GWAS data are available. Although
motivated by published approaches to gene-based associa-
tion testing, this idea has not, to our knowledge, been ap-
plied to pathway analysis. Given the difficulties that can arise
accessing individual level genetic data, our method will al-
low broader application of pathway analyses to published
GWAS. Instead of using the genotype data from the available
controls, a potential alternative is the use of the freely avail-
able genotype data either from the 1,000 Genomes project
[The 1000 Genomes Project Consortium, 2012] or from the
HapMap project. A potential drawback of using such geno-
type data is the loss of some of the SNPs genotyped on the
GWAS platform but not included in the reference panel.

Over the last few years, a number of pathway analyses of
the WTCCC T1D GWAS data have been published [Car-
bonetto and Stephens, 2013; Eleftherohorinou et al., 2009;
Peng et al., 2010; Wang et al., 2011]. Most of these stud-
ies reported pathways related with “Antigen processing and
presentation,” “Jak-STAT signaling,” “MAPK signaling” and
“Type 1 diabetes mellitus” as enriched with T1D. A number
of our enriched pathways can be regarded as novel because
none of the previous published pathway analyses of T1D
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identified them, as for example the BioCarta pathway “The
Co-stimulatory signal during T-cell activation” and the Re-
actome pathway “Immunoregulatory interactions between a
lymphoid and a nonlymphoid cell.” The differences between
our results and the results of previous analyses can be charac-
terized by the greater sample size we used and by the exclusion
of the MHC region. Pathways such as “Antigen processing and
presentation” are characterized by the inclusion of the MHC
region. By taking into account the enrichment of MHC in
their proposed statistical method, Carbonetto and Stephens
[2013] reported the “IL-2 signaling pathway” [Geer et al.,
2010; Schaefer et al., 2009] as enriched for T1D.

Carbonetto and Stephens [2013] used their model-based
approach for prioritizing variants within the enriched “IL-2
signaling pathway,” their analysis of the WTCCC T1D GWAS
showed seven regions of the genome to have strong evidence
for association within the pathway. Three of these (RAF1,
MAPK14, FYN) had not been reported as associated with T1D
previously and were suggested by Carbonetto and Stephens
[2013] as potential candidate causal genes for T1D. The three
genes were also highlighted by our approach as all of them
are members of the enriched Reactome pathway “Immune
system.” FYN is a key molecule in T cells and consequently
a key signaling functional candidate in the T cell mediated
autoimmune process of T1D.

We extended this approach by searching SNPs assigned to
genes within all enriched pathways and selected the genes
with relatively small P -values that have not been associated
with T1D previously. Equally importantly, we also genotyped
the selected SNPs in additional case-control and families for
finding potential new T1D associations. Through the anal-
yses of the additional datasets we identified nine novel T1D
associated genes and variants, SNP rs1111107 of ITGB7, SNP
rs722988 of NRP1, SNP rs694739 of BAD, SNP rs1296023 of
CTSB, SNP rs11964650 of FYN, SNP rs9906760 of UBE2G1,
SNP rs17759555 of MAP3K14, SNP rs1557150 of ITGB1, and
SNP rs1445898 of IL7R.

Both ITGB7 and ITGB1 encode proteins that function di-
rectly with each other in receptor–ligand interactions in the
homing of T cells from blood to tissues such as the intes-
tine and pancreas. Although we cannot be confident of the
MADCAM1 T1D association, MADCAM1 encodes the pan-
creas expressed receptor for the α4β7 homing receptor on
CD4+ T cells, encoded by genes ITGA4 and ITGB7, and hence
is a highly plausible biological candidate. Interestingly, there
is a peak of SNP association, with P -value ∼ 10–4, ∼300 kb
5′ of ITGA4 in the ImmunoChip results (T1DBase, Supple-
mentary Table S1), and the ITGB1 protein competes with
ITGB7 in the α4β7 receptor [DeNucci et al., 2010]. Mono-
clonal antibodies against MADCAM1 and α4β7 are showing
clinical benefits in inflammatory bowel disease [Sheridan,
2014], and hence based on our genetic results presented here,
investigation of the effects of these drugs in T1D is worth
considering.

Furthermore, CTSB, encoding the lysosomal protease,
cathepsin B, is included in the broadly defined Reactome
pathways “Immune system” and “Adaptive immune system”
and could participate in many processes such as apoptosis, au-

tophagy and the NALP3 inflammsome. Nevertheless, it is not
an obvious candidate gene. rs1296023 associates with CTSB
expression in monocytes (with P = 7.53 × 10–15, Zeller et al.
[2010]), with the T1D risk allele associating with increased
expression. This adds support to the possibility that CTSB is a
T1D causal gene. This SNP or region has not been associated
with any other disease (http://www.genome.gov/) or with any
immune disease (ImmunoBase), which makes it interesting
in that it could be unique to T1D.

BAD is an obvious candidate gene, encoding a key proapop-
topic protein, BCL2-associated agonist of cell death, as-
sociated previously with Crohn’s disease, ulcerative colitis,
IBD, alopecia and multiple sclerosis, and, for example, re-
cently shown to function in TNF-a induced apoptosis [Yan
et al., 2013]. The BAD SNP rs694739 is the same SNP as re-
ported for Crohn’s disease, multiple sclerosis and alopecia,
but only r2 =0.16 with the reported SNP for ulcerative colitis
and IBD (ImmunoBase). This gene has also been associated
with platelet count, via rs477895 [Qayyum et al., 2012], with
very little LD between this and the T1D SNP (r2 = 0.1, Im-
munoBase). It appears that there may be multiple causal vari-
ants affecting BAD expression and/or function across a range
of cell types. IL7R and NRP1 are obvious functional candidate
genes, being key molecules in the adaptive immune response
[Delgoffe et al., 2013; Jäger et al., 2013]. Note that the IL7R
signal that we report, which peaks at rs1445898 is distinct
from the exonic multiple sclerosis associated SNP rs6897932
which alters splicing (r2 =0.42) [Gregory et al., 2007].

The skewing of the replication P -values toward smaller val-
ues for the SNPs of Table 6 suggests that more of these SNPs
are expected to replicate with larger cohorts, and emphasize
the potential utility of applying our proposed pathway anal-
ysis method to GWAS for which only summary statistics are
available. This is also supported by the fact that some of the
genes that just miss reaching our statistical threshold do show
intriguing and probably meaningful links to the mechanisms
of T1D. A combination of increased sample size in T1D and
further GWAS coupled to the pathway analysis described here
will further increase our understanding of disease mecha-
nisms, allowing the targeting of specific genes, molecules, and
cells for functional studies. The greater the number of genes
and pathways accurately identified, the greater the chance of
selecting pathways that might be amenable to specific ther-
apeutic modulation. The identification of the α4β7 T cell
adhesion pathway in T1D genetic etiology does provide a
new target for potential therapeutic intervention in T1D.

Web Resources
� Reactome pathways: http://www.reactome.org/cgi-bin/

mart
� BioCarta pathways: http://cgap.nci.nih.gov/pathways/

BioCarta_pathways
� Ensembl: http://www.ensembl.org/index.html
� T1DBase: http://www.t1dbase.org
� ImmunoBase: http://www.immunobase.org
� R package for pathway analysis: PAGWAS http://cran.r-

project.org/web/packages/PAGWAS/index.html
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� Blood eQTL browser http://genenetwork.nl/bloodeqtl
browser/
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