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A conventional Mendelian randomization analysis assesses the causal effect of a risk factor on an outcome by

using genetic variants that are solely associatedwith the risk factor of interest as instrumental variables. However, in

some cases, such as the case of triglyceride level as a risk factor for cardiovascular disease, it may be difficult to find

a relevant genetic variant that is not also associated with related risk factors, such as other lipid fractions. Such a

variant is known as pleiotropic. In this paper, we propose an extension of Mendelian randomization that uses mul-

tiple genetic variants associated with several measured risk factors to simultaneously estimate the causal effect of

each of the risk factors on the outcome. This “multivariable Mendelian randomization” approach is similar to the

simultaneous assessment of several treatments in a factorial randomized trial. In this paper, methods for estimating

the causal effects are presented and compared using real and simulated data, and the assumptions necessary for a

valid multivariable Mendelian randomization analysis are discussed. Subject to these assumptions, we demon-

strate that triglyceride-related pathways have a causal effect on the risk of coronary heart disease independent

of the effects of low-density lipoprotein cholesterol and high-density lipoprotein cholesterol.

causal inference; epidemiologic methods; instrumental variables; lipid fractions; Mendelian randomization;

pleiotropy

Abbreviations: CHD, coronary heart disease; CrI, credible interval; HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density

lipoprotein cholesterol; 2SLS, 2-stage least squares.

Mendelian randomization employs genetic variants as in-
strumental variables to estimate the causal effect of a risk fac-
tor on an outcome using observational data, even in the
presence of unmeasured confounding (1, 2). A genetic vari-
able is a valid instrumental variable if

• the variant is associated with the risk factor of interest,
• the variant is not associated with any confounder of the risk
factor–outcome association, and

• the variant is conditionally independent of the outcome
given the risk factor and confounders (3, 4).

These assumptions can be illustrated using a causal directed
acyclic graph, displaying a causal effect of one variable on
another byan arrowand the absence of a direct causal effect by
the lack of an arrow (Figure 1) (5). Although a genetic variant

need not be causally associated with the risk factor to be a
valid instrumental variable, we assume that there exists a
causal variant for which the measured variant is a proxy (6).

In order to avoid violations of the second and third
instrumental-variable assumptions, Mendelian randomiza-
tion experiments have generally relied on genetic variants
which are associated with a single risk factor. In practice,
however, many variants are pleiotropic—that is, associated
with multiple risk factors. Indeed, in some cases, there may
be no variants which are solely associated with the risk factor
of interest, and a Mendelian randomization analysis cannot
be performed without considering pleiotropic variants. In
any case, it may desirable to include information on pleio-
tropic variants in order to provide a more powerful analysis,
provided that this does not prejudice its validity. It may also
be that multiple quantitative traits relating to the same risk
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factor are of interest; for example, in cardiovascular disease,
the concentration of lipoprotein(a) and the size of lipopro-
tein(a) particles (7). In this case, the relative proportions
of risk reduction associated with interventions separately
targeting lipoprotein(a) concentrations and the size of lipo-
protein(a) particles may be of interest, and the traits may be
regarded as independent risk factors, even if the same genetic
variants influence both traits. The possibility of including
multiple risk factors in an instrumental-variable analysis is
discussed in many econometric textbooks (8), and applied
instrumental-variable analyses involvingmultiple risk factors
have been performed (9, 10), but we are unaware of any ap-
plication of the approach in genetic epidemiology.
The context of this paper is that there are measurements on

multiple genetic variants and several associated risk factors,
the causal effect of at least 1 of which on the outcome is of
interest. We assume that the genetic variants do not influence
the outcome via any pathway except those fully mediated by
one of the measured risk factors or by some combination of
the measured risk factors. Questions about variants with po-
tentially unmeasured or unknown pleiotropic associations are
reserved for the Discussion section. We initially discuss how
pleiotropic associations may arise and the methods and as-
sumptions necessary for estimating causal effects with sev-
eral risk factors. We demonstrate the use of these methods
in an applied example and then construct a simulation study
with parameters chosen to be similar to those in the example
to investigate how the methods perform. Finally, we discuss
the application of the methods in epidemiologic practice and
the interpretation of the applied example.

METHODS

Mechanisms for association with multiple risk factors

There are several causal mechanisms by which a genetic
variant may be associated with multiple risk factors (11).

We divide the possible mechanisms into 2 cases (Figure 2):
1) vertical pleiotropy, where a variant is associated with mul-
tiple risk factors due to the causal effect of the primary risk
factor on a secondary trait, and 2) functional pleiotropy,
where the genetic variant is associated with multiple path-
ways. These 2 cases are not mutually exclusive; it is possible
for both of them to exist for the same variant.
In the case of vertical pleiotropy, genetic variants associ-

ated with the primary risk factor would be expected to
show consistent associations with the secondary trait. For ex-
ample, genetic variants associated with higher body mass
index (weight (kg)/height (m)2) would be expected to show
a consistent association with higher blood pressure. In this
case, the causal effect of body mass index on the outcome
would include an indirect effect, mediated through blood
pressure, as well as a direct effect comprising all other path-
ways from body mass index to the outcome that are not oper-
ating via blood pressure. If it is assumed that the only
pathway by which the genetic variants are associated with
the secondary trait is via the primary risk factor, then a simple
Mendelian randomization analysis would consistently esti-
mate the causal effect of the primary risk factor on the out-
come in spite of the apparent pleiotropic association.
In the case of functional pleiotropy, we suppose there are

multiple genetic variants (at least as many variants as there
are risk factors) which have different magnitudes of effect
on the risk factors. These genetic variants can be used to es-
timate the causal effects of each risk factor even if none of the
variants are specifically associated with any 1 particular risk
factor. Since Mendelian randomization is analogous to a
randomized trial (12), the use of genetic variants to assess
the causal effects of multiple risk factors in a single study
is analogous to a factorial randomized trial (seeWeb Figure 1,
available at http://aje.oxfordjournals.org/), where multiple
randomized interventions are simultaneously assessed (13).
We refer to such an analysis as “multivariable Mendelian
randomization.”

Assumptions

For a multivariable Mendelian randomization analysis to
be valid, the genetic variants must satisfy a similar set of as-
sumptions as a conventional instrumental variable, but in this
case the variants must be exclusively associated not with
a single risk factor but with a set of measured risk factors.
It is not necessary for each variant to be associated with
every risk factor in the set, but a variant cannot have associ-
ations with the outcome except via the risk factors of interest.
Specifically, for each variant, we assume that

• the variant is associated with 1 or more of the risk factors,
• the variant is not associated with a confounder of any of the
risk factor–outcome associations, and

• the variant is conditionally independent of the outcome
given the risk factors and confounders.

In order to define and interpret causal effect estimates, we ini-
tially assume that the effect of each of the risk factors on the
outcome is not mediated by another of the risk factors: We
could intervene on each risk factor independently of all the

X1
G Y

G X1 X2 Y

B)

A)

X2

Figure 2. Causal directed acyclic graph illustrating vertical (A) and
functional (B) pleiotropy in associations between variantG, risk factors
X1 and X2, and outcome Y.

G X

U

Y

Figure 1. Mendelian randomization assumptions for variant G with
risk factor X in a confounded association with outcome Y. Confound-
ers represented by U are assumed to be unknown.
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other risk factors, and an intervention on one risk factor will not influence any other risk factor. We refer to such risk factors as
“causally independent.” A causal directed acyclic graph corresponding to these assumptions with 3 genetic variants and 2 risk
factors is presented in Figure 3A. We later relax the assumption of causal independence and allow causal effects between the risk
factors, as in Figure 3B. In this paper, we assume that all associations are linear.

Individual-level data: 2-stage least squares method

If individual-level data are available on the genetic variants, the risk factors, and the outcome, causal effects of the risk factors
on the outcome can be estimated using a 2-stage least squares (2SLS) approach (14). The risk factors are regressed on the genetic
variants in a multivariate linear regression (first stage; a multivariate multiple regression, since there are multiple dependent vari-
ables and multiple independent variables), and then the outcome is regressed linearly on the fitted values of each of the risk factors
(second stage; a univariate multiple regression, since there is 1 dependent variable and multiple independent variables). An alter-
native model for the genetic association with the risk factor could be proposed (such as one including interaction terms), but a model
which is additive and linear in the variants is used here for comparability with the summarized data methods considered in the next
section. Although a sequential regression approach gives the correct point estimates, the use of 2SLS software (such as the ivreg2
command in Stata (StataCorp LP, College Station, Texas) (15)) is recommended for estimation in practice to derive correct standard
errors (16). Estimates from the method are valid even if the genetic variants are in linkage disequilibrium.

Summarized data: likelihood-based method

If individual-level data are not available but rather we have summarized (aggregated) data on the beta coefficients and standard
errors for the associations between the genetic variants and the risk factors and outcome from separate univariate regressions, then
the causal effects of the risk factors on the outcome can be estimated using a likelihood-based method (17). For example, if there
are 2 risk factors X1 and X2, each of which has no causal effect on the other, a multivariate normal distribution can be assumed for
the beta coefficients representing the genetic associations with each of the risk factors X1 and X2 and the outcome Y from uni-
variate linear regressions. Specifically, we assume that the estimate of association of genetic variant j, j = 1, ..., J, with X1 is X1j

with standard error σX1j, and similarly with X2 (X2j, standard error σX2j) and with Y (Yj, standard error σYj):

X1j

X2j

Yj

0
B@

1
CA ∼ N 3

ξ1j
ξ2j

β1ξ1j þ β2ξ2j

0
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Estimates of the causal effects of X1 and X2 on Y (β1 and β2)
can be obtained by numerical maximization of this likelihood
function or by Bayesian methods (18). If there are K risk fac-
tors, data on K + 1 beta coefficients and corresponding stan-
dard errors are required for each genetic variant (X1j, ..., XKj,
Yj); there are K(J + 1) parameters in the model, and equation
1 shows a (K + 1)-variate normal distribution. If the outcome
is binary and the beta coefficients for the genetic association
with the outcome represent log relative risks or log odds ratios,
then the causal effect estimates will represent log relative risks
or log odds ratios, respectively. The model for the genetic as-
sociations with the outcome is linear in contributions from the
genetic associations with the risk factors.

The parameters ρ12, ρ1Y, and ρ2Y represent the correlations
between the beta coefficients. These will be nonzero if the
beta coefficients are derived from the same data. Although
these correlations can only be estimated from individual-level
data, they should be approximately equal to the observational
correlations between the variables X1, X2, and Y. It is advisable
to conduct a sensitivity analysis to assess the impact of these
parameter values on the causal estimates. If data on the asso-
ciations with the risk factors and outcome are obtained from
separate data sources, the relevant correlations will be zero.

Because the likelihood function comprises contributions
from each variant, it is necessary that the information on

the causal parameters provided by each variant be indepen-
dent. Therefore, the genetic variants used in a summarized
data analysis must be uncorrelated (not in linkage disequi-
librium); otherwise confidence intervals estimated by the
method will be too narrow (17). If the genetic variants are
in linkage disequilibrium and the correlations between the
variants are known, then these correlations can be used in a
modified likelihood-based model: The correlations between
the genetic variants are the same as the correlations between the
beta coefficients corresponding to the genetic variants. If all of
the variants are correlated, then instead of a separate (K +1)-
variate normal distribution for each of the J genetic variants,
we can employ a J(K + 1)-variate normal distribution in equa-
tion 1 for all of the variants together.

Summarized data: regression-based method

A further method which has been proposed for the analysis
of summarized data is a linear regression-based approach,
which gives estimates for each of the risk factors separately
(19). This is performed in 2 stages. First, the beta coefficients
for the genetic association with the outcome are regressed on
the beta coefficients for the competing risk factors. Then the
residuals from the first regression are regressed on the beta
coefficients for the risk factor of interest.
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For example, if there are 2 risk factors X1 and X2 and we
want to estimate the effect of X1 on Y, the 2 stages are:

1. Regress the beta coefficients Y1, Y2, ..., YJ on the beta coef-
ficients X21, X22, ..., X2J to obtain residuals �Y ¼ Y � β̂2X2.

2. Regress the residuals �Y1; �Y2; :::; �YJ on the beta coeffi-
cients X11, X12, ..., X1J. The regression-based estimate is
the regression coefficient for X1.

The intuitive rationale is that these residuals represent any
causal effects that are not explained by the alternative risk
factors but are potentially explained by the risk factor of in-
terest. However, it is an ad hoc approach which has no clear
theoretical basis and which ignores the uncertainty in the beta
coefficients (20).

EXAMPLE: CAUSAL EFFECTS OF LDL-C, HDL-C, AND

TRIGLYCERIDES ON CHD RISK

The causal nature of the associations of various lipid frac-
tions, including low-density lipoprotein cholesterol (LDL-C),
high-density lipoprotein cholesterol (HDL-C), and triglycer-
ides, with the risk of coronary heart disease (CHD) is an issue
with important consequences for disease prevention and drug
development strategies. Observational studies have shown

G1

X1

U1

Y
X2

G2

G3 U2

G1

X1

U1

Y
X2

G2

G3 U2

A) B)

Figure 3. Causal directed acyclic graph illustrating multivariable
Mendelian randomization in associations between variants G1, G2,
and G3, risk factors X1 and X2, and outcome Y. Confounders U1 and
U2 are assumed to be unknown. A) Risk factors are causally indepen-
dent (no causal effects between X1 and X2); B) risk factors are caus-
ally dependent (X1 has a causal effect on X2).
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Figure 4. Associations of coronary heart disease (CHD) risk-increasing alleles of 28 genetic variants with all possible pairings of low-density li-
poprotein cholesterol (LDL-C), high-density lipoprotein cholesterol (HDL-C), and triglycerides. Darker points correspond to stronger associations
with CHD risk; larger points correspond to more precise estimates. Note that some points are overlapping.
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associations of LDL-Cwith increased CHD risk, associations
of HDL-C with decreased CHD risk, and a null association of
triglycerides with CHD risk upon adjustment for a number of
risk factors, including HDL-C and non-HDL-C concentra-
tions, systolic blood pressure, and body mass index (21).
However, a causal interpretation of these results may be mis-
leading due to unmeasured confounding and the possibility
that some of the covariates adjusted for lie on causal path-
ways, making their inclusion in a regression model inappro-
priate. Efforts to elucidate causal relationships using genetic
variants in a Mendelian randomization approach have indi-
cated that LDL-C plays a causal role in increasing the risk
of CHD (22) and have suggested a null causal effect of
HDL-C on CHD risk (23). However, the latter estimate had
wide confidence intervals, because only a few variants—
those not associated with other lipid fractions—were in-
cluded in the analysis. The inability to find variants associated
with triglycerides and not associated with LDL-C or HDL-C
has precluded reliable Mendelian randomization investiga-
tions for triglycerides.

Herewe address the question of the causal effects of LDL-C,
HDL-C, and triglycerides on CHD risk by multivariable
Mendelian randomization using published data. Waterworth
et al. (24) reported genetic associations from univariate re-
gression analyses of 28 genetic variants with log-transformed
LDL-C, HDL-C, and triglyceride concentrations and with the
log odds of CHD. Details on the variants and the β coeffi-
cients for the associations are given inWeb Table 1. Figures 4
and 5 depict the associations of each of the variants with the
lipid fractions and CHD risk.

We combine these beta coefficients in a multivariable
Mendelian randomization analysis using the likelihood-
based and regression-based methods. Estimates using the
likelihood-based method were obtained in a Bayesian frame-
work using WinBUGS (http://www.mrc-bsu.cam.ac.uk/bugs).
Technical details on the analysis and the software code used
are provided in Web Appendix 1. A sensitivity analysis for
the values of the correlation parameters (ρ1Y, ρ2Y, ...) is given
in Web Table 2. Initially, we do not account for linkage dis-
equilibrium between the genetic variants so that the analysis
methods can be more directly compared.

Using the likelihood-based method, the multivariable
Mendelian randomization analysis gives causal odds ratios
and 95% credible intervals for CHD of 0.50 (95% credible
interval (CrI): 0.40, 0.62) per 30% reduction in LDL-C,
1.22 (95% CrI: 0.91, 1.63) per 30% reduction in HDL-C,
and 0.77 (95% CrI: 0.68, 0.87) per 30% reduction in triglyc-
erides. This suggests that reductions in LDL-C and in triglyc-
erides are causally protective against CHD. The causal effect
for HDL-C is compatible with the null. The regression-based
method produces rather different results: The corresponding
odds ratios and 95% confidence intervals are 0.69 (95%
confidence interval: 0.51, 0.92) for LDL-C, 1.25 (95% con-
fidence interval: 0.90, 1.74) for HDL-C, and 0.92 (95% con-
fidence interval: 0.82, 1.04) for triglycerides. In particular,
the causal odds ratio for triglycerides from the regression-
based method does not reach the conventional threshold of
statistical significance.When linkage disequilibrium between
the genetic variants is accounted for, the likelihood-based
method gives odds ratios and 95% credible intervals of

0.52 (95% CrI: 0.42, 0.65) for LDL-C, 1.28 (95% CrI:
0.96, 1.71) for HDL-C, and 0.78 (95% CrI: 0.70, 0.86) for
triglycerides.

SIMULATION STUDY

In order to assess the statistical properties of the analysis
methods used, we perform a simulation study. The setup cor-
responds to the example above.

We generate data for 30,000 individuals indexed by i on 3
risk factors (X1, X2, X3) and an outcome (Y) from the follow-
ing data-generating model:

x1i ¼
X28
j¼1

αG1jgijþαU2u2iþαU3u3iþ ϵX1i:

x2i ¼
X28
j¼1

αG2jgijþαU1u1iþαU3u3iþ ϵX2i:

x3i ¼
X28
j¼1

αG3jgijþαU1u1iþαU2u2iþ ϵX3i:

yi ¼ βU1u1iþ βU2u2iþ βU3u3iþ β1x1i
þ β2x2iþ β3x3iþ ϵYi:

gij ∼Binomialð2,0:3Þ independently for each
j¼ 1; :::;28:

u1i;u2i;u3i ∼N ð0;1Þ independently:
ϵX1i;ϵX2i;ϵX3i;ϵYi ∼N ð0;1Þ independently: ð2Þ

We set the genetic association parameters αG1j, αG2j, and αG3j
for j = 1, ..., 28 to take the values shown in Web Table 1 for
log-transformed LDL-C, HDL-C, and triglycerides, respec-
tively, to be similar to the applied example. The instrumental
variables gij are drawn from binomial distributions, represent-
ing independent single-nucleotide polymorphisms with minor
allele frequencies of 0.3. The causal effects β1, β2, and β3 are
set to 0.3, 0, and −0.1, respectively. The variables U1,U2,U3

represent confounders, leading to correlations between X1,
X2, X3 and Y. The parameters βU1, βU2, βU3 are each fixed
at 0.3 throughout, and the parameters αU1, αU2, αU3 are var-
ied to take the value 0.3 or −0.3, leading to 8 different sce-
narios. The mean R2 values, representing the proportion of
variation in each risk factor explained by the 28 instrumental
variables together, for X1, X2, and X3 are 0.6%, 0.5%, and
3.2%, respectively, corresponding to mean F statistics of
6.6, 5.2, and 35.4.

Estimates for 1,000 data sets generated in each of the 8 sce-
narios considered were derived using the 2SLS, likelihood-
based, and regression-based methods. The Monte Carlo
standard errors for the mean estimates were approximately
0.003, and for the power they were approximately 1%. The
likelihood-based method was applied in a Bayesian frame-
work using WinBUGS; technical details on the analyses
are provided in Web Appendix 2.

Table 1 shows, for each scenario, the mean estimate, the
mean standard error, the standard deviation of the estimates,
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and the statistical power to detect a nonzero effect at a nom-
inal 5% significance level. For β2 = 0, the expected power is
5%. We see that the mean estimates from the 2SLS and
likelihood-based methods are close to the true values, with
some deviation depending on the direction of confounding.
This may represent the effect of weak instrument bias, corre-
sponding to the low F statistics above for X1 and X2 (25). The
efficiencies of the 2SLS and likelihood-based methods are
similar, despite the reliance of the likelihood-based method
on only summarized data.
In contrast, estimates from the regression-based method

are biased, although they appear to give approximately valid
inferences for the presence of a causal effect under the null.
However, the power, especially the power to estimate β3, is
much lower than that from the other methods. We therefore
recommend the likelihood-based method for use in practice
when summarized data are available.

Causal relationships between risk factors

In order to investigate the performance of the methods
when there are causal relationships between the risk factors,
we repeated the simulation but replaced the first line with

x1i ¼
X28
j¼1

αG1jgijþαU2u2iþαU3u3iþαX2x2iþαX3x3iþϵX1i:

The additional terms αX2x2i and αX3x3i represent causal ef-
fects of X2 and X3 (which were evaluated first) on X1. We
set αU1, αU2, and αU3 equal to 0.3 (the first scenario consid-
ered above) and took 9 values of the parameters αX2 and αX3
(Table 2). All other parameters were taken as in the original
simulation study.
Table 2 shows the mean estimates of the causal para-

meters derived from each of the methods. Aside from the
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Figure 5. Associations of coronary heart disease (CHD) risk-increasing alleles of 28 genetic variants with odds of CHD and with low-density
lipoprotein cholesterol (LDL-C) (A), high-density lipoprotein cholesterol (HDL-C) (B), and triglycerides (C). Darker points correspond to stronger
associations with CHD risk; larger points correspond to more precise estimates. Note that some points are overlapping.
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Table 1. Results From a Simulation Study of the Use of Multivariable Mendelian Randomization to Estimate 3 Causal Effects in ScenariosWithout Causal Relationships BetweenRisk Factorsa

αU1 αU2 αU3

2-Stage Least Squares Method Likelihood-Based Method Regression-Based Method

Mean
Estimate

Mean
SE

SD of
Estimates

Power,
%b

Mean
Estimate

Mean
SE

SD of
Estimates

Power,
%b

Mean
Estimate

Mean
SE

SD of
Estimates

Power,
%b

Estimate of β1 = 0.3

0.3 0.3 0.3 0.318 0.090 0.091 93.0 0.317 0.092 0.091 91.2 0.224 0.078 0.070 85.1

0.3 0.3 −0.3 0.290 0.090 0.091 88.8 0.290 0.092 0.092 86.9 0.208 0.078 0.070 77.7

0.3 −0.3 0.3 0.296 0.090 0.089 90.2 0.296 0.092 0.090 89.3 0.211 0.078 0.069 81.7

0.3 −0.3 −0.3 0.271 0.090 0.089 86.7 0.272 0.092 0.090 85.3 0.193 0.077 0.067 74.9

−0.3 0.3 0.3 0.329 0.091 0.092 93.1 0.328 0.092 0.093 91.7 0.234 0.079 0.073 85.9

−0.3 0.3 −0.3 0.305 0.090 0.090 92.1 0.304 0.092 0.091 91.0 0.220 0.078 0.069 85.0

−0.3 −0.3 0.3 0.309 0.090 0.086 93.6 0.309 0.092 0.086 92.1 0.221 0.079 0.068 84.4

−0.3 −0.3 −0.3 0.283 0.090 0.088 88.1 0.283 0.092 0.089 86.7 0.204 0.078 0.068 77.9

Estimate of β2 = 0

0.3 0.3 0.3 0.055 0.110 0.111 7.7 0.054 0.113 0.111 7.8 0.035 0.085 0.069 4.2

0.3 0.3 −0.3 0.010 0.111 0.113 5.9 0.010 0.114 0.114 6.1 0.007 0.085 0.069 2.2

0.3 −0.3 0.3 0.040 0.111 0.112 6.2 0.040 0.113 0.113 6.4 0.027 0.085 0.070 2.8

0.3 −0.3 −0.3 0.001 0.111 0.111 4.1 0.001 0.114 0.112 4.8 0.002 0.085 0.069 2.2

−0.3 0.3 0.3 0.001 0.111 0.112 3.9 0.001 0.114 0.113 4.7 −0.001 0.085 0.069 1.7

−0.3 0.3 −0.3 −0.050 0.111 0.107 6.6 −0.049 0.113 0.108 6.8 −0.033 0.085 0.067 2.8

−0.3 −0.3 0.3 −0.008 0.111 0.113 5.6 −0.007 0.114 0.115 6.0 −0.006 0.086 0.071 2.6

−0.3 −0.3 −0.3 −0.045 0.110 0.111 7.6 −0.045 0.112 0.112 7.1 −0.031 0.085 0.070 2.9

Estimate of β3 =−0.1

0.3 0.3 0.3 −0.087 0.047 0.045 47.4 −0.087 0.047 0.045 46.4 −0.039 0.033 0.023 13.0

0.3 0.3 −0.3 −0.090 0.047 0.049 49.3 −0.090 0.048 0.049 49.8 −0.041 0.033 0.024 16.7

0.3 −0.3 0.3 −0.090 0.047 0.045 49.2 −0.090 0.047 0.046 47.8 −0.041 0.033 0.023 14.3

0.3 −0.3 −0.3 −0.094 0.047 0.047 52.0 −0.094 0.048 0.047 49.7 −0.043 0.033 0.023 16.9

−0.3 0.3 0.3 −0.106 0.047 0.048 61.2 −0.106 0.048 0.048 58.6 −0.049 0.033 0.025 25.8

−0.3 0.3 −0.3 −0.111 0.047 0.046 66.2 −0.110 0.048 0.047 62.6 −0.052 0.033 0.024 28.2

−0.3 −0.3 0.3 −0.105 0.047 0.044 63.5 −0.105 0.048 0.045 59.7 −0.049 0.034 0.023 24.8

−0.3 −0.3 −0.3 −0.111 0.047 0.046 66.4 −0.110 0.047 0.047 63.1 −0.052 0.033 0.024 28.9

Abbreviations: SD, standard deviation; SE, standard error.
a Three analytical methods (2-stage least squares, likelihood-based, and regression-based) were used to estimate the causal effects ofX1 onY (β1 = 0.3),X2 onY (β2 = 0), andX3 onY (β3 = –0.1).
b Empirical power to detect a causal effect at a nominal 5% significance level.
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regression-based method, which produces widely varying re-
sults, we see that the estimates do not change substantially as
the parameters vary. This indicates that the 2SLS and
likelihood-based methods estimate the direct causal effect of
each risk factor on the outcome, not including paths operating
via the other risk factors. This can lead to misleading conclu-
sions about the total effects of the variables. For example,
when αX2 = 0 and αX3 = 0.5, the total causal effect of X3 on
Y is β3 þ αX1β1 ¼ �0:1þ 0:5 × 0:3 ¼ 0:05 (including the
path operating via X1). The mean estimates from the 2SLS
and likelihood-based methods are in the opposite direction
of the true total effect.
The differences between the estimated values of β1, β2, and

β3 in Table 2 and their true values can be attributed to weak
instrument bias. Weak instrument scenarios will be common
in multivariable Mendelian randomization, as it is necessary
to use multiple instrumental variables to estimate the different
causal effects. If the genetic associations with the risk factors
and with the outcome are measured in the same data set, this
will lead to bias in the direction of the observational associ-
ation (25), whereas if the genetic associations with the risk
factors and with the outcome come from different sources
(known as a 2-sample instrumental-variable analysis), the
bias will be in the direction of the null (26). To demonstrate
this, we repeat the simulation study outlined in Web Appen-
dix 3 with fewer nonweak instrumental variables. The mean
estimates of the causal effect parameters are very close to
their true values (Web Table 3). In this simulation context,
we also explore the impact of interactions between genetic
variants in their effects on the risk factors. The likelihood-
based method is robust to these misspecifications of the anal-
ysis model (Web Table 4). We also investigate a modification
of the 2SLS method referred to as “sequential adjustment” by
Holmes et al. (27), in which the causal effects of each of the
risk factors are estimated in turn, and alternative risk factors
are adjusted for as if they are confounders. Web Tables 5 and
6 indicate that substantial bias in the sequential adjustment
method is evident even under the null, and its direction de-
pends on the unknown confounders.

A nonzero causal estimate from a multivariable Mendelian
randomization approach when there are causal relationships
between the risk factors implies that the variable is an inde-
pendent causal risk factor, in the sense that an intervention on
the variable keeping the other risk factors constant (the con-
trolled direct effect) would affect the outcome. However, the
magnitude of the causal estimate may not represent the total
causal effect of the variable on the outcome.

DISCUSSION

In this paper, we have introduced multivariable Mendelian
randomization, an important and practically relevant exten-
sion of the Mendelian randomization paradigm for estimation
of causal effects using genetic variants associated with more
than 1 risk factor. For a valid analysis, the variants must sat-
isfy a set of assumptions that are similar to those for an instru-
mental variable in conventional Mendelian randomization
but are modified to take account of the multiple risk factors.
A multivariable Mendelian randomization analysis may be
beneficial where genetic variants are associated with several
related risk factors, such as in the example with lipid frac-
tions. It permits causal evaluation of a risk factor even if no
variants are uniquely associated with it, as for triglycerides.
There are several limitations to this approach, many of

which are shared with conventional Mendelian randomiza-
tion (28, 29). The specific association of a genetic variant
with a single risk factor may be a reasonable assumption if
the function of the genetic region where the variant is located
is well-characterized. The assumption of an exclusive associ-
ation between genetic variants and a set of risk factors is
unlikely unless the risk factors have strong biological associ-
ations. However, if they are strongly associated, an assump-
tion that the risk factors are causally independent is less
plausible. Weak instrument bias, a phenomenon by which
instrumental-variable estimates using variants not strongly as-
sociated with the risk factor of interest are biased, may be sub-
stantial if large numbers of genetic variants are used (30), as
may be necessary in a multivariable Mendelian randomization

Table 2. Results From a Simulation Study of the Use of Multivariable Mendelian Randomization to Estimate 3 Causal Effects in Scenarios With

Causal Relationships Between Risk Factorsa

αX2 αX3
2-Stage Least Squares Method Likelihood-Based Method Regression-Based Method

β1 β2 β3 β1 β2 β3 β1 β2 β3

0 0 0.318 0.055 −0.087 0.317 0.054 −0.087 0.224 0.035 −0.039

0.5 0 0.322 0.038 −0.090 0.321 0.038 −0.090 0.229 0.020 −0.041

−0.5 0 0.318 0.059 −0.089 0.318 0.058 −0.089 0.164 0.034 −0.041

0 0.5 0.317 0.046 −0.097 0.316 0.045 −0.097 0.064 0.030 −0.016

0 −0.5 0.321 0.048 −0.079 0.320 0.048 −0.079 0.192 0.030 −0.037

0.5 0.5 0.316 0.041 −0.097 0.315 0.041 −0.097 0.077 0.021 −0.016

−0.5 0.5 0.318 0.060 −0.098 0.318 0.060 −0.098 0.049 0.036 −0.016

0.5 −0.5 0.318 0.042 −0.080 0.317 0.042 −0.081 0.125 0.022 −0.038

−0.5 −0.5 0.317 0.057 −0.079 0.316 0.056 −0.080 0.240 0.034 −0.037

a Three analytical methods (2-stage least squares, likelihood-based, and regression-based) were used to estimate direct causal effects of X1 on

Y (β1 = 0.3), X2 on Y (β2 = 0), and X3 on Y (β3 = –0.1).
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experiment. The effects of the risk factors on the outcome are
assumed to be linear. While some researchers do not view
this as a crucial assumption, citing the interpretation of an
instrumental-variable estimate as an average causal effect
(6, 31), others have shown that departures from linearity
can affect the findings of an instrumental-variable analysis
(32). Our preference is to take a less literal view of causal
estimates and to emphasize the outcome of a Mendelian ran-
domization analysis as reflecting testing of a causal effect,
rather than necessarily estimation of a causal parameter.
From this perspective, while the linearity assumption is
important, it is less important than the other instrumental-
variable assumptions.

Although multivariable Mendelian randomization is able
to allow for genetic variants with “measured” pleiotropic as-
sociations, under the assumptions discussed in this paper, it is
unable to deal with unmeasured or unknown pleiotropy. If an
apparent causal finding is dependent on the association of a
small number of variants with the outcome, then the result
may plausibly be due to pleiotropic variants rather than being
a true causal effect. However, if several variants in different
genetic regions all demonstrate consistent associations with
the outcome, then it is perhaps unlikely that all of these asso-
ciations reflect pleiotropic mechanisms (33). In the case of
our applied example, we constructed a lipid risk score for
each variant by multiplying the genetic associations with
each lipid fraction by the estimate of the lipid fraction’s causal
effect on CHD risk; details are given in Web Appendix 4.
Web Figure 2 displays the lipid risk score plotted against
the log odds ratio of CHD risk for each variant. Aside from
variant rs2304130, it seems that the estimated causal effect of
the lipid fractions on CHD risk is consistent across variants,
and so unmeasured pleiotropy is unlikely to explain the causal
effects.

We performed the applied analysis for the causal effects of
lipid fractions on CHD risk in this paper at face value, assum-
ing that the instrumental-variable assumptions were satisfied.
In reality, the assumptions that there were only 3 lipid cate-
gories and that the effects of the genetic variants were
restricted to these lipid fractions are oversimplifications.
Some lipid fractions (e.g., intermediate-density lipoprotein
cholesterol) were omitted from the analysis, and the variabil-
ity of particle size within the categories was ignored (34). An
assumption that the causal effect of triglycerides on CHD risk
is independent of the effects of LDL-C and HDL-C may not
be satisfied, particularly as evidenced by the attenuation of
the observational association of triglycerides with CHD
risk upon adjustment for HDL-C and non-HDL-C (21) and
studies of the apolipoprotein A5 gene (APOA5) (35). Our
simulations above have shown that in the case of causal ef-
fects between risk factors, estimates represent the direct
causal effect of each risk factor on the outcome by a pathway
that is not operating via the other risk factors. This may not
equal the total causal effect of the risk factor, but it provides
important evidence on the independent causal effect of the
risk factor. Finally, our estimated causal odds ratio for a
30% decrease in LDL-C was surprisingly large in compari-
son with not only estimates of the effect of statin usage,
which also reduces LDL-C levels by approximately 30%
(22), but also a Mendelian randomization analysis that

included variants solely associated with LDL-C (17). A nu-
anced interpretation of Mendelian randomization estimates,
and of multivariable Mendelian randomization estimates in
particular, is required in the light of the uncertainty of the un-
derlying assumptions in any applied analysis. These aspects
are considered in more detail elsewhere (20).

In conclusion, these findings provide some evidence of
a causal effect of triglyceride-related pathways on CHD
risk independent of the effects of LDL-C and HDL-C, but
the weight of evidence attributed to the findings is a matter of
interpretation depending on the degree of validity attributed
to the instrumental-variable assumptions.

Note added in proof:While our manuscript was in press, we
discovered a simple modification of the discussed regression-
based method that uses available statistical software to pro-
duce estimates with much better theoretical and statistical
properties. See Burgess et al. (36) for further information.
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