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Abstract

Intra-tumour genetic heterogeneity is the result of ongoing evolutionary change within each cancer. The expansion of
genetically distinct sub-clonal populations may explain the emergence of drug resistance, and if so, would have prognostic
and predictive utility. However, methods for objectively quantifying tumour heterogeneity have been missing and are
particularly difficult to establish in cancers where predominant copy number variation prevents accurate phylogenetic
reconstruction owing to horizontal dependencies caused by long and cascading genomic rearrangements. To address these
challenges, we present MEDICC, a method for phylogenetic reconstruction and heterogeneity quantification based on a
Minimum Event Distance for Intra-tumour Copy-number Comparisons. Using a transducer-based pairwise comparison
function, we determine optimal phasing of major and minor alleles, as well as evolutionary distances between samples, and
are able to reconstruct ancestral genomes. Rigorous simulations and an extensive clinical study show the power of our
method, which outperforms state-of-the-art competitors in reconstruction accuracy, and additionally allows unbiased
numerical quantification of tumour heterogeneity. Accurate quantification and evolutionary inference are essential to
understand the functional consequences of tumour heterogeneity. The MEDICC algorithms are independent of the
experimental techniques used and are applicable to both next-generation sequencing and array CGH data.

Citation: Schwarz RF, Trinh A, Sipos B, Brenton JD, Goldman N, et al. (2014) Phylogenetic Quantification of Intra-tumour Heterogeneity. PLoS Comput Biol 10(4):
e1003535. doi:10.1371/journal.pcbi.1003535

Editor: Niko Beerenwinkel, ETH Zurich, Switzerland

Received July 17, 2013; Accepted February 5, 2014; Published April 17, 2014

Copyright: � 2014 Schwarz et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: We acknowledge the support of Cancer Research UK (http://www.cancerresearchuk.org/), the University of Cambridge (http://www.cam.ac.uk/),
National Institute for Health Research Cambridge Biomedical Research Centre (http://www.cambridge-brc.org.uk/), Cambridge Experimental Cancer Medicine
Centre (http://www.ecmcnetwork.org.uk/) and Hutchison Whampoa Limited (http://www.hutchison-whampoa.com/). RFS and BS were supported by EMBL
Interdisciplinary Postdoc (EIPOD) fellowships with Cofunding from Marie Curie Actions COFUND. The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: rfs32@cam.ac.uk (RFS); florian.markowetz@cruk.cam.ac.uk (FM)

This is a PLOS Computational Biology Methods article.

Introduction

The study of intra-tumour genetic heterogeneity (for short:

heterogeneity) is now a major focus of cancer genomics research

[1–12] due to its potential to provide prognostic information [13–15]

and to explain mechanisms of drug resistance [16–19]. Quantifying

tumour heterogeneity and understanding its aetiology crucially

depends on our ability to accurately reconstruct the evolutionary

history of cancer cells within each patient. In many cancers, such as

high-grade serous ovarian cancer (HGSOC), most of this heteroge-

neity is not reflected in point mutations but in genomic rearrange-

ments and endoreduplications that lead to aberrant copy-number

profiles [20,21]. In these cases tree inference is hindered by unknown

phasing of parental alleles and horizontal dependencies between

adjacent genomic loci. Therefore heterogeneity and evolutionary

divergence are typically quantified using ad-hoc thresholds [19] and

tree inference is often done subjectively [11]. Approaches developed

to address this problem include a graph theoretical approach on

signed reversals to order rearrangement events [22], but this requires

detailed annotation of rearrangements in the data that may not be

available, and the algorithm does not generally infer global trees

representing cancer evolution within a patient. The TuMult

algorithm [23] deals with underlying computational complexity by

considering only breakpoints — locations on the genome where the

copy-number changes — and by using total copy-number without

phasing of parental alleles. While simplifying the computational

problem, this approach discards potentially informative data.

Our aim is to establish numerical quantification of tumour

heterogeneity per patient from copy-number profiles that can

routinely be acquired from clinical samples. To this end, we have

developed MEDICC (Minimum Event Distance for Intra-tumour

Copy-number Comparisons), a method for accurate inference of

phylogenetic trees from unsigned integer copy-number profiles.

MEDICC specifically addresses the following challenges associated

with copy-number-based phylogeny estimation:

1. It makes use of the full copy-number information across both

parental alleles by phasing copy-number variants, i.e. assigning

them to one of the two physical alleles such that the overall

evolutionary distance is minimal.

2. It estimates evolutionary distances, thereby dealing with horizontal

dependencies between adjacent genomic loci and with multiple

overlapping events by using efficient heuristics. It therefore works
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on complete copy-number profiles instead of breakpoints which

allows the reconstruction of ancestral genomes.

3. It implements statistical tests for molecular clock (homogeneous

branch lengths), star topology (phylogenetic structure) and tests

for the relationship between clonal subpopulations to provide

informative summary statistics for the reconstructed evolutionary

histories and tumour heterogeneity.

MEDICC was designed to work on integer copy-number pro-

files that can routinely be obtained from single nucleotide poly-

morphism (SNP) arrays [24] or paired-end sequencing [25,26]. In

both cases DNA content is quantified relative to a diploid normal

in windows along the genome. SNPs distinguish the two parental

alleles via the B-allelic frequency, i.e. the amount of DNA assigned

to the B allele relative to the total DNA amount at that specific

genomic locus. The resulting profile comprises two vectors of

integer copy-numbers, representing the absolute number of copies

of that particular genomic segment in the two alleles. However,

without any external linkage information these vectors contain no

information about which copy-numbers belong together on the

same allele [11]. By convention (and for each genomic segment

independently), the larger of the two copy-numbers is termed the

major and the other the minor copy-number (Figure 1 left). The

process of finding the correct assignment of major and minor

copy-number to the two parental alleles is called phasing. In con-

trast to nucleotide substitution models where sites in a sequence

are modelled as independent and identically distributed [27],

copy-number events often overlap and range across many adjacent

genomic regions. Therefore, finding the correct phasing is essential

to accurately estimate evolutionary distances (Figure 2A), which

additionally requires a model capable of dealing with these hori-

zontal dependencies.

We developed MEDICC and successfully applied it to the

analysis of a novel dataset of 170 copy-number profiles of patients

undergoing neo-adjuvant chemotherapy for HGSOC as described

in our accompanying clinical study [28]. In the following we give a

more detailed description of the data and problems that MEDICC

addresses. We then introduce the MEDICC modelling framework

that guides all steps of the algorithm and which is then explained

in detail. We finish with a demonstration of MEDICC on a real-world

example of a case of endometrioid cancer and give simulation results

that compare it to competing methods.

Author Summary

Cancer is a disease of random mutation and selection
within the cellular genomes of an organism. As a result,
when advanced disease is diagnosed, the cells comprising
the tumour show a great amount of variability on the
genomic level, a phenomenon termed intra-tumour
genetic heterogeneity. Heterogeneity is thought to be
one of the main reasons why tumors become resistant to
therapy, and thus hinders personalised medicine ap-
proaches. If we want to understand tumour heterogeneity
and its connection to resistance development we need to
quantify it, which implies reconstructing the evolutionary
history of cancer within the patient. Unfortunately, so far,
methods for accurate reconstructions of these particular
evolutionary trees and for quantification of heterogeneity
have been missing. We here present MEDICC, a method
that uses a minimum evolution criterion to compare
cancer genomes based on genomic profiles of DNA
content (copy-number profiles). It enables accurate recon-
struction of the history of the disease and quantifies
heterogeneity. It is specifically designed to deal with
diploid human genomes, in that it disentangles genomic
events on both parental alleles and includes a variety of
accompanying algorithms to test for shapes of the
evolutionary trees as well as the rate at which the cancer
evolves.

Figure 1. Evolutionary copy-number trees are reconstructed in three steps. 1) After segmentation and compression, major and minor
alleles are phased using the minimum event criterion. 2) The tree topology is reconstructed from the pairwise distances between genomes. 3)
Reconstruction of ancestral genomes yields the final branch lengths of the tree, which correspond to the number of events between genomes.
doi:10.1371/journal.pcbi.1003535.g001
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Results
Given multiple such evolutionarily-related copy-number profiles, for

example from distinct primary and metastatic sites of the same patient,

phylogenetic inference in MEDICC then involves three steps: (i) allele-

specific assignment of major and minor copy-numbers, (ii) estimation of

evolutionary distances between samples followed by tree inference and

(iii) reconstruction of ancestral genomes (Figure 1). All three steps are

guided by a minimum evolution criterion. Similar to edit-distances for

sequence analysis [29], MEDICC counts the number of genomic

events needed to transform one copy-number profile into another and

searches for the tree that minimises this criterion.

MEDICC reconstructs evolutionary histories via a
minimum evolution criterion

We model the evolution of copy-number profiles through a series

of simple operations that increase or decrease copy-numbers by one

(Figure 3A). They map to real genomic rearrangements that have an

observable effect on copy-number profiles in the following way:

terminal and interstitial deletions, as well as unbalanced transloca-

tions, are single deletion events; tandem and inverted duplications

are single amplification events; and breakage fusion bridges are dual

events involving a duplication and a deletion (copy number decrease

on one locus and increase on the second) [22]. We use a finite-state

automaton (FSA) representation of genomic profiles and finite-state

transducers (FST) [30] for modelling and efficient computing of the

minimum-event distance based on these genomic events (Figure 3B).

Transducers have earlier been proposed as an efficient way of

modeling indels on trees [31–33], a problem closely related to the

one discussed here. Before going through the three steps of the

reconstruction process in detail it is necessary to introduce some

terminology; for a more thorough introduction into transducer

theory see [30,34,35] and references therein.

The MEDICC modelling framework. MEDICC models

diploid genomic copy-number profiles as sequences over the

Figure 2. Parental alleles are phased using context-free grammars. A) Allelic phasing is achieved by choosing consecutive segments from
either the major or minor allele which minimise the pairwise distance between profiles. B) The set of all possible phasing choices is modelled by a
context-free grammar. In this representation, the order of the regions’ copy-number values on the second allele is reversed, in order to match the
inside-out parsing scheme of CFGs. That way every possible parse tree of the grammar describes one possible phasing.
doi:10.1371/journal.pcbi.1003535.g002

Figure 3. Efficient distance calculation is enabled via a transducer architecture. A) Overlapping genomic rearrangements modify the
associated copy-number profiles in different ways. Amplifications are indicated in green, deletions in red. The blue rectangles indicate the previous
event. B) The one-step minimum event transducer describes all possible edit operations achievable in one event. This FST is composed n times with
itself to create the the full minimum event FST T . Edge labels consist of an input symbol, a colon and the corresponding output symbol, followed by
a slash and the weight associated with taking that transition. C) The minimum event FST T is asymmetric and describes the evolution of a genomic
profile from its ancestor. Composed with its inverse this yields the symmetric minimum event distance D.
doi:10.1371/journal.pcbi.1003535.g003
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alphabet S~f0, . . . ,K ,Xg, where f0, . . . ,Kg represent integer

copy-numbers (K is the maximum haploid copy-number) and X is

a special character that separates the two alleles on which events

can happen independently. For example, the profile

1123002X0122002 represents a chromosome with 7 regions

distinguished, with the first region present in one copy on one

allele and absent in the other allele; the second region present in

one copy on each allele; and so on up to the seventh region present

in two copies on each allele. This means that MEDICC deals with

a maximum total copy-number of 2K in a diploid genome. By

default 2K~8 which is the upper end of the dynamic range of

SNP arrays, but the alphabet can be extended easily without

changing the implementation. In this manuscript the terms

‘‘sequence’’ and ‘‘(copy-number) profile’’ are used interchangeably.

Copy-number profiles are implemented as acceptors, unweight-

ed finite-state automata that can contain a single or multiple such

profiles. The minimum-event distance is computed using a

weighted finite-state transducer [30]. FSTs are an extension of

FSAs with input and output symbols — like pair-HMMs, they

emit or accept two sequences simultaneously, meaning they model

the events transforming on sequence into another. Both FSAs and

FSTs can be equipped with weights from a semiring, enabling

calculations to be weighted according to some importance crite-

rion. One of the most common semirings is the real semiring (e.g.

the weights represent probabilities), where weights are multiplied

along a path in the automaton and the total weight of a sequence

(or pair of sequences) is the sum (total probability) over all possible

paths generating that sequence. Equally popular is the tropical

semiring, also known as the Viterbi path, where weights are

summed along a path and the total weight is the minimum across

all those paths. In this case weights are often ‘‘penalties’’ or neg-

ative log-probabilities for taking a certain path, similar to classical

pairwise sequence alignment in which mismatches and indels are

penalised with additive fixed scores.

MEDICC uses the tropical semiring for computing the mini-

mum event distance, but the modularity of the framework allows

us to smoothly transition to probabilities at a later stage by switch-

ing semirings without changing the algorithm. In this tropical

semiring a FST T1 then assigns a score to two sequences (rep-

resented as acceptors) x and z via

T1½x,z�~ min
p[P

X
i

w(p,i):

where P is the set of all possible paths through the FST in which

the input and output symbols match with the sequences x and z
and w(p,i) is the weight of that path at position i in the sequence.

No score is returned for a pair of sequences for which no valid

path in T1 exists. This leads to the definition of the minimum-

event distance, which governs all three steps of the reconstruction

process.

Constructing the minimum-event distance for copy-

number profiles. Figure 3B shows the one-step transducer

T1 that we use to model single amplifications and deletions of

arbitrary length and that counts one event each time the

amplification or deletion state is entered. This is analogous to an

affine gap cost model in classical sequence alignment [36]. T1½x,z�
therefore assigns to each pair of sequences (x,z) the minimum

number of events necessary to transform one sequence into another.

At this point, however, not all possible copy-number scenarios have

a valid path (e.g. one event can amplify ‘‘1’’ to ‘‘2’’ but not ‘‘1’’ to

‘‘3’’). To include all possible changes across multiple events, T1 is

composed K times with itself Mohri2004. In essence, composition

describes the chaining of FSTs, where the total weight of the

composed transducer is the total minimum score from the input

sequence x via intermediate sequences yi to the target sequence z:

T ½x,z�~(T10:::0T1)½x,z�

~ min
y1,...,yK{1

T1½x,y1�zT1½y1,y2�z . . .ð

zT1½yK{2,yK{1�zT1½yK{1,z�Þ

For example, to amplify a copy-number from 1 to 4 the shortest

path goes via two intermediate sequences (2 and 3) totalling three

events (1?2,2?3 and 3?4).

This composition gives rise to the FST T that strictly adheres

the modelled biological constraints such as no amplification from

zero. We call T the tree transducer: these biological constraints give

it a direction, and it is not guaranteed to return a distance for any

pair of copy-number profiles. For example, input profile 11111
can be transformed into 10001 via a single deletion, but not vice

versa as once an allele has been lost it cannot be regained.

As we are interested in the minimum evolutionary distance

between any two sequences x and z via their last common ancestor

(LCA) y, the final distance FST D is formed by composing T with

its inverse (Figure 3C, Schwarz2010), such that D computes the

distance from a leaf node to the LCA (T{1) and back (T ) to the

other leaf node:

D½x,z�~(T{10T)½x,z�

~ min
y

T{1½x,y�zT ½y,z�
� �

In the real semiring, and equipped with probabilities, this would

be analogous to classical phylogenetic reconstructions where a

reversible model of sequence evolution is used to compute the

likelihood of the subtree containing sequences x and z as the

products of the individual likelihoods of seeing x and z given their

ancestor y and summing over all y [37]. In our case, D
equivalently computes the minimum number of events from x to

z via their LCA. This distance is symmetric and is guaranteed to

yield a valid distance for any pair of sequences. In the rest of the

paper, ‘‘distance’’ refers to this minimum-event distance, unless

stated otherwise.

MEDICC therefore computes an evolutionary distance between

two genomes based on a minimum evolution criterion via their

closest possible LCA. Due to composition of the tree transducer T
with its inverse, the resulting distance D is a dissimilarity score that

at the same time is also (the logarithm of) the shortest-path

approximation to a positive-semidefinite kernel score [38,33].

That means that the pointwise exponential of the estimated

distance matrix D̂D, S~exp({D̂D), is a positive-semidefinite

similarity matrix (with all eigenvalues §0). The entries of this

matrix are the values of the pairwise dot products of the sample

genomes in a high-dimensional feature space. This feature space

can be thought of as a space where every possible copy-number

profile defines one dimension and sample genome i is represented

by a numerical feature vector fi that contains an evolutionary

similarity score between the sample genome itself and each of

these reference profiles. The entries of the kernel matrix S are then

simply the dot products Si,j~vfi,fjw of the feature vectors fi and

fj . We term this space the mutational landscape in which spatial

distances correspond to evolutionary distances and on which we

can directly apply explorative analyses like PCA, classification with

support-vector machines and other machine learning techniques

[39]. We use OpenFST, an efficient implementation of transducer

Quantification of Tumour Heterogeneity
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algorithms [40] to achieve exact distance computation in qua-

dratic time.

Following the minimum evolution principle, the overall objec-

tive is to find a tree topology including ancestral states that mini-

mises the total tree length, i.e. the total number of genomic events

along the tree. In the following we will describe how MEDICC

achieves this in its three step process.

Step 1: Evolutionary phasing of major and minor copy-

numbers. As copy-number-changing events can independently

occur on either or both of the parental alleles the phasing of major

and minor copy-numbers heavily influences the minimum tree

length objective. We use the evolutionary information between

samples to solve these ambiguities. Using our distance measure we

can choose a phasing between a pair of diploid profiles that

minimises the pairwise distance between them (Figure 2A). This

respects the distinct evolutionary histories of both alleles and finds

a phasing scenario in which the evolutionary trajectories between

both haploid pairs are minimal. From each pair of major and

minor input sequences we can generate up to 2L possible phasing

choices, where L is the length of the input profile (both alleles have

the same length). This is too many to evaluate exhaustively, so in

order to achieve a compact representation of diploid profiles we

make use of a context-free grammar (CFG). Our implementation

is related to the use of CFGs to model RNA structures, where

paired residues in stem regions are not independent [36].

In our copy-number scenario a CFG represents different allele

phasing choices (see Figure 2B right). At every position in the

diploid profile we have a choice of using the major as the first allele

and the minor as the second or (‘‘D’’) vice versa (Figure 2B left).

Each possible parse tree of the CFG then corresponds to one

phasing scenario out of the 2L possibilities. When the distance FST

reads the separator it is forced to return to the match state (initial

state), thus guaranteeing that the total distance to another profile

equals the sum of the distances of the two alleles with no events

spanning different alleles. We represent CFGs algorithmically by

pushdown-automata in the FST library [41].

While this approach works well for finding phasing scenarios

that minimise the distance between one pair of profiles, we aim to

find phasing scenarios that jointly minimise the distances between

all profiles in the dataset. To reduce the computational complexity

of this task we have found it necessary to employ a heuristic.

MEDICC searches for the single profile that has minimum sum of

distances to all sample profiles, that is, the geometric median,

through an iterative search. This profile is then compared again to

each individual profile and the shortest path algorithm yields the

choice of phasing that minimises the distance between each profile

and the centre. This approach is not guaranteed to return a

globally optimal phasing scenario, but has proven to perform very

well in simulations (93:3% correctly phased genomic loci; see

simulation section).

Step 2: Distances and tree reconstruction. Once the

alleles have been phased, pairwise evolutionary distances between

samples can be computed as the sum of the pairwise distances

between both alleles. MEDICC then uses the Fitch-Margoliash

algorithm [42] for tree inference from a distance matrix with or

without clock assumption. A test of clock-like events, available

using functionality in the accompanying R package MEDICCquant,

allows us to determine which tree reconstruction algorithm is most

appropriate (see the section on quantification of heterogeneity).

Step 3: Ancestral reconstruction and branch lengths. From

this point on we keep the topology of the tree fixed, and traverse

from its leaves to the root to infer ancestral copy-number profiles

and branch lengths. Ancestral reconstruction is possible because

cancer trees are naturally rooted by the diploid normal from which

the disease evolved. Reconstructing ancestral genomes allows us to

investigate e.g. the genomic makeup of the cancer precursor, the

LCA of all cancer samples in the patient. Events that across patients

frequently occur between the root of the tree and the precursor are

likely driver events of cancer progression. Ancestral reconstruction

also determines the final branch lengths of the tree. MEDICC

infers ancestral genomes for each allele independently using a

variant of Felsenstein’s Pruning algorithm [27].

In Felsenstein’s original algorithm the total score (likelihood/

parsimony score) of the tree is computed in a downward pass

towards the root and ancestral states are then fixed in a second

upward pass, successively choosing the most likely/most parsimo-

nious states. In our scenario, the algorithm begins by composing

each of the n terminal nodes with the tree transducer T , which

yields n acceptors holding all sequences reachable from that

terminal node and their respective distances. When moving up the

tree to the LCA of the first two terminal nodes the corresponding

acceptors are intersected. The resulting acceptor contains only

those profiles that were contained in both input acceptors and

their corresponding weights are set equal to the sum of the weights

of the profiles in the input acceptors. In a probabilistic framework

the resulting acceptor is equivalent to the conditional probability

distribution P(subtree(x,z) D LCA y)~P(xDy)P(zDy) for each pos-

sible LCA, where the sum of distances again is replaced by the

product of the conditional probabilities of seeing a leaf node given

its ancestor. This intersection will still contain the vast majority of

all possible profiles, but each with a different total distance, and

without those that are prohibited by biological constraints. For

example, the ancestor cannot have a copy-number of zero at a

position where any of its leaf nodes has copy-number w0, as

amplifications from zero are not allowed. Because after phasing

each leaf node is represented by an acceptor containing exactly

one diploid sequence, computing this set of possible ancestors is

computationally feasible. However, because during tree traversal

we need to compose these sets of possible profiles repeatedly with

the tree transducer T , the result would increase in size

exponentially because it has to account for all possible events of

arbitrary length at each position in all sequences. Therefore during

tree traversal, when two internal nodes have to be joined in their

LCA, MEDICC reduces each of them to a single sequence by

choosing those two sequences with smallest distance to each other.

This fixes the profiles for those two internal nodes. This procedure

is continued until all internal nodes are resolved. Once all

ancestral copy-number profiles have been reconstructed the final

branch lengths are simply the distances between the nodes

defining that branch in the tree.

MEDICC improves phylogenetic reconstruction accuracy
We assessed reconstruction accuracy using simulated data

generated by the SimCopy R package [43] (see Methods). Random

coalescent trees were generated with APE [44]. To create an

unbiased simulation scenario, genome evolution was simulated

using increasing evolutionary rates on the sequence level using

five basic genomic rearrangement events: deletion, duplication,

inverted duplication, inversion and translocation (for details see

Methods). Once the simulations were complete, copy-numbers

were counted for each genomic segment and these copy-number

profiles were used for tree inference using the following three

methods: i) BioNJ [45] tree reconstruction on a matrix of Euclidean

distances computed directly on the copy-numbers, ii) breakpoint-

based tree-inference using the TuMult software [23] and iii)

MEDICC. TuMult additionally requires array log-intensities as

input. In order to keep the comparisons unbiased, noiseless log

ratios simulating CGH array intensities for TuMult were directly

Quantification of Tumour Heterogeneity
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computed from the copy-number profiles. To assess the relative

abilities of the methods to correctly recover the evolutionary

relationships of the simulated copy-number profiles, reconstruction

accuracy was measured in quartet distance [46] between the true

and the reconstructed tree. Quartet distance was chosen as it only

considers topological differences; branch lengths have widely differ-

ent meanings in the methods tested and as such are not comparable.

This simulation strategy is based on basic biological principles,

independent of the methods compared and a priori does not favour

any of them. All simulations were repeated to cover a wide para-

meter range, yielding qualitatively similar results.

The simulation results clearly show the improvement in recon-

struction accuracy of MEDICC over naive approaches (BioNJ on

Euclidean distances) and competing methods (TuMult) (Figure 4A).

In general, reconstruction accuracies increase with increasing evolu-

tionary rates. Especially when the amount of phylogenetic informa-

tion is limited, MEDICC outperforms other methods by a significant

margin. This may be because of two reasons: firstly, in contrast to

other methods MEDICC is capable of phasing the parental alleles,

thereby making much more effective use of the phylogenetic

information compared to methods that work on total copy-number

alone. Secondly, due to efficient and accurate heuristics, MEDICC

can deal with the horizontal dependencies imposed by overlapping

genomic events of arbitrary size and accurately computes distances

between them.

To assess the accuracy of the implemented CFG-based phasing

method, for each reconstructed tree phased alleles were

compared to the original simulated alleles. MEDICC correctly

phased 92:9% of all genomic loci across all simulations

(Figure 4C). We additionally evaluated the runtime of the

complete algorithm on our simulation scenario which consisted of

100 genomic segments after compression and found it to take on

average 5 minutes for a full reconstruction on a UNIX based

Intel(R) Xeon(R) CPU E5-2670 at 2.60 GHz.

Evolutionary comparisons with MEDICC allow
quantification of tumour heterogeneity

Intra-tumour heterogeneity is a loose concept that describes

the amount of genomic difference between multiple cells or

samples of the same tumour. Two types of heterogeneity often of

interest are spatial and temporal heterogeneity. For example, spatial

differences might be observed from separate biopsies of a primary

cancer and a distant metastasis. Other changes may occur

between different time points, for example before and after

chemotherapy. Average distances between subsets of samples

might be computed by any method that returns dissimilarities

between samples by simple averaging. However, clinical datasets

are often noisy due to normal contamination and immune

response such as leukocyte infiltration. As for example a sample

with exceptionally low cellularity can lead to errors during

segmentation, more robust measures of distances between

aggregated subsets of samples are desirable that are not easily

skewed by outliers.

As described earlier, the matrix of pairwise minimum-event

distances inferred by MEDICC can directly be transformed into a

kernel matrix [38,33] which maps samples to a high-dimensional

mutational landscape. We reduce the dimensionality of this

landscape through kernel principal components analysis [47]

where we can use spatial statistics to derive numerical measures of

heterogeneity for each patient.

Temporal heterogeneity. We define temporal heterogeneity

as the evolutionary distance between the average genomic profiles

between any two time points (e.g. at biopsy before chemotherapy

and at surgery after chemotherapy in the case of neo-adjuvant

treatment). In the mutational landscape (see above) we are able to

directly compute the centre of mass of a set of genomic profiles

(which would not be possible by working with distances alone) (X
in Figure 5D). The center of mass WS of a set of points S in feature

space is defined as

WS~
1

l

Xl

i~1

W(xi)

where W(xi) is the feature space mapping of point xi and l is the

number of points. We can then define temporal heterogeneity as the

distance between the centres of mass of the samples from two time

points. Consider the blue and orange sets in Figure 5D, named B
and O with b and o elements respectively. Without loss of generality

we can assume our genomic profiles xi to be partitioned into the two

Figure 4. MEDICC improves reconstruction accuracy over competing methods. A) Simulations results show the improvement of
reconstruction accuracy for MEDICC over naive methods (BioNJ clustering on Euclidean distances between copy-number profiles, red) and competing
algorithms (TuMult, green). B) Allele phasing accuracy across the simulated trees. On average 92.9% of all genomic loci were correctly assigned to the
individual parental alleles. C) Density estimates of clonal expansion indices for neutrally evolving trees (red) and trees with induced long branches as
created by clonal expansion processes (blue) show the ability of MEDICC to detect clonal expansion.
doi:10.1371/journal.pcbi.1003535.g004
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sets such that B~fx1, . . . ,xbg and O~

fxbz1, . . . ,xbzog. The squared distance between the centers of

mass WB and WO of the two sets of genomic profiles in our feature

space, is then defined as:

jjWB{WOjj2~vWB,WBw{2vWB,WOwzvWO,WOw

~
1

b2

Xb

i,j~1

vW(xi),W(xj)w{
2

bo

Xb

i~1

Xbzo

j~bz1

vW(xi),W(xj)w

z
1

o2

Xbzo

i,j~bz1

vW(xi),W(xj)w~
1

b2

Xb

i,j~1

Sij{
2

bo

Xb

i~1

Xbzo

j~bz1

Sij

z
1

o2

Xbzo

i,j~bz1

Sij

where S again is the kernel or similarity matrix. An advantage of

this approach is that it is possible to replace WS with other robust

measures of the centre of mass (e.g. ignoring the single most distant

point). It should be noted that this general approach can be used for

determining distances between any partitions of the samples in the

dataset, for example between groups of samples taken from different

organs as a measure of spatial heterogeneity.

The clonal expansion index. Other complex aspects of

heterogeneity that cannot be easily derived from distances alone

include the ability of a tumour to undergo clonal expansions [16].

The model here is that if the majority of cancer cells are subject to

strong selection pressure, such as from chemotherapy, minor

subclones with a distinctive selective advantage may repopulate.

This subpopulation would be expected to coalesce early and will

show a greater than expected divergence (relative to neutral

evolution) from other remaining clones. This model is similar to

analyses of clonality in bacterial populations [48]. Traditional tests

for deviation from a neutral coalescent are typically based on

single polymorphic sites and often require information about the

number of generations [49]. As such information is not available

for clinical cancer studies, we therefore make a spatial argument

about clonal expansions. We assume that due to the large

population sizes of cancer cells, genetic drift is not significant. In a

setting of neutral evolution where all sequences have essentially the

same fitness, sequences randomly move across the mutational

landscape leading to a uniform distribution of sequences in that

space (Figure 5A) with no selective sweeps or clonal expansions. If

strong selective pressure favours specific mutations (Figure 5B),

sequences are more likely to survive and be sampled from the

favoured regions leading to local clustering of sequences on the

mutational landscape (Figure 5C).

Besag’s L(r) [50], a variance-stabilised transformation of

Ripley’s K(r) [51], is a function used in spatial statistics to test

Figure 5. MEDICC quantifies heterogeneity from the locations of genomes on the mutational landscape. A) If no or a homogeneous
selection pressure is applied, cells proliferate and die randomly across the mutational landscape, leaving the surviving cells spatially unclustered. B) If
the fitness landscape favours specific mutations (blue shaded areas), genomes inside those areas are more likely to survive, those outside more likely
to die. The ability of a tumour for a clonal expansion into distant fitness pockets depends on its mutation potential per generation (long orange
arrow). This leads to C) a situation where distinct subpopulations/clonal expansions are present in a tumour, indicating a generally high potential for
a tumour to adapt to changing environments. D) The mutational landscape additionally allows estimates of average distance between two
subgroups of samples, here before (blue) and after (orange) chemotherapy. The distance between the two subgroups is defined as the distance of
the robust centres of mass (blue and orange X). This robust centre of mass is computed omitting the single most distant point of each subgroup
(blue and orange samples in the orange and blue subgroups respectively), making the statistic more resistant towards outliers.
doi:10.1371/journal.pcbi.1003535.g005
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for non-homogeneity, i.e. spatial clustering, of points in a plane.

lK(r) describes the expected number of additional random points

within a distance r of a typical random point of an underlying

Poisson point process with intensity l. The empirical estimate of

Ripley’s K for n points with pairwise distances dij and average

density bll is defined as

K̂K(r)~
1blln

X
i=j

I(dijvr),

where I is the indicator function. In case of complete spatial

randomness (CSR), the expectation of K(r) is pr2. Besag’s L is

defined as L(r)~
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K(r)=p

p
and under CSR has expectation linear

in r. Therefore plotting r{L̂L(r) can be used as a graphical

indication of deviation from CSR. We use a simulation approach

to estimate significance bands for L(r) [52].

The clonal expansion index CE for a dataset (typically samples

taken from a single patient) is then defined as the maximum ratio

between the distance of the observed L-value (Lo(r)) and the

theoretical L-value under CSR (Lt(r)) and one-half the width of

the two-sided simulated significance band C(r)u (u for upper

significance band):

CE~ max
r

DLo(r){Lt(r)D
Cu(r){Lt(r)

� �
ð1Þ

A value of CE v1 therefore suggests CSR in the point set,

whereas a CE value w1 indicates local spatial clustering. We

conducted coalescence simulations to confirm that the clonal

expansion index distinguishes between trees with normal and

elongated branch lengths between populations (black and red

distributions, Figure 4B).

Testing for star topology and molecular clock. Tree

reconstruction methods may or may not include assumption of a

molecular clock, and this may significantly influence the

reconstruction accuracy. It is of particular interest in cancer

biology whether evolution is governed by constant or changing

rates of evolutionary change. Furthermore, it is still debated

whether disease progression follows a (structured) tree-like

pattern of evolution or if subpopulations are emitted in radial

(star-like) fashion from a small population of stem-like progen-

itors (see [53]).

We implemented tests for tree-likeness and molecular clock in

the MEDICCquant package to help answer these questions. We

model genomic events x as generated from a Poisson process X
with rate r. The expected number of events is then linear in time:

E½X �~rt. Assuming r~1, where the process is not time-

calibrated, the observed distance X̂X is the maximum likelihood

estimate (MLE) for the time of divergence. Under asymptotic

normality of the MLE we have that X̂X*N(t,t). Given a star

topology we find optimal branch lengths that minimise the

residual sum of squares between the optimised pairwise

distances x
opt
i and the measured pairwise distances X̂Xi for branch

i. Under the null hypothesis of star-like evolution this sum of

squares

RSSstar~
Xn(n{1)=2

i~1

x
opt
i {X̂X iffiffiffiffiffiffi

X̂X i

p !2

is then x2-distributed with n(n{1)=2{n degrees of freedom,

where n is the number of samples studied, i.e. the number of

leaves in the tree. The degrees of freedom is derived from the

difference between the numbers of freely estimated distances

under the alternative hypothesis (n(n{1)=2 pairwise distances

among the n samples) and the null hypothesis (one for each of the

n branches in the star topology).

An analogous procedure can be used for testing whether a tree

follows a molecular clock hypothesis, in which it exhibits constant

evolutionary rates along all branches. In this case the distances D̂Di

of all leaf nodes from the diploid should be the same. We measure

the deviation of the D̂Di from their mean (m(D̂D)) by

RSSclock~
Xn

i~1

m(D̂D){D̂Diffiffiffiffiffi
D̂Di

p !2

Because branch lengths do not need to be optimised to a specific

topology, and we are only considering distances to the diploid, the

distribution in this case has n{1 degrees of freedom (the

difference between n such distances free to vary with no clock,

and one distance when there is a molecular clock).

Progression and heterogeneity in a case of metastatic
endometrioid adenocarcinoma

In the following section we demonstrate MEDICC on a case

from the CTCR-OV03 clinical study [54]. This case had

advanced endometrioid ovarian carcinoma and was treated with

platinum-based neoadjuvant chemotherapy. After three cycles of

chemotherapy the patient had stable disease based on RECIST

assessment, pre- and post-chemotherapy CT imaging and a 92%
reduction of the tumour response marker CA125. She then

underwent interval debulking surgery but had residual tumour of

w1 cm at completion. After six moths she progressed with

platinum-resistant disease and died one month later.

Out of 20 biopsy samples 18 satisfied quality control for w50
tumour cellularity and array quality. The dataset included 14

omentum samples, two samples from the vaginal vault (VV) and

two samples from the external surface of the bladder (BL). The BL

and VV samples were taken prior to chemotherapy and the

omental samples were collected at interval-debulking surgery after

three cycles of chemotherapy.

All samples were copy-number profiled with Affymetrix SNP

6.0 arrays and segmented and compressed using PICNIC [24] and

CGHregions [55]. Pairwise evolutionary distances between all

samples were estimated with MEDICC. The distance distribution

was tested for the molecular clock hypothesis using MEDICC-

quant and showed strong non-clock like behaviour (pv10{10,

Figure 6A). Tree reconstruction was performed by MEDICC

using the Fitch-Margoliash algorithm Fitch1967. MEDICCquant

detected a high degree of clonal expansion (CE~1:24) as can be

seen in the strong spatial clustering of samples on the mutational

landscape (Figure 6B). MEDICC counted a median of 204

genomic events relative to the diploid and a median of 146

between all pairwise comparisons. Tree reconstruction showed

good support values for the omental and BL/VV subclades,

suggesting strong spatial heterogeneity. The patient also showed

strong temporal heterogeneity, as there were large evolutionary

distances between samples before and after neoadjuvant chemo-

therapy (temporal heterogeneity index 3.78, Figure 6B). However,

temporal and spatial heterogeneity in this case are indistinguishable

because the BL/VV samples coincide with the biopsy samples,

whereas all omentum samples were taken at surgery.

Ancestral reconstructions using MEDICC showed loss-of-

heterozygosity (LOH) events on chromosome 17q (see internal

node profiles in Figure 6A) that often coincide with deleterious
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mutations in BRCA1 and TP53 [56]. The most prominent

contributors to the clonal expansions of the subgroup surrounding

sample S01 seemed to be chromosomal amplifications on chro-

mosomes 6, 8, 11 and 14; as well as LOH on chromosome 15. We

also detected large LOH events on chromosomes 4, 5, 9, 10, 13,

14, 16 and 17 (Figure 6C).

Discussion

While significant progress has been made recently to understand

tumour heterogeneity through extensive multiple sampling studies

and experimental efforts, few algorithms have been developed to

target the specific questions raised by such datasets. MEDICC is

our contribution to better reconstruct the evolutionary histories of

cancer within a patient and propose unbiased quantification of

heterogeneity and the degree of clonal expansion.

We have shown the success of these efforts in simulations and

their utility in the example discussed in this article. More detailed

analyses of clinical cases that also elaborate on the connection

between clonal expansions and patient outcome can be found in

our clinical study [28].

It is important to note that both the clonal expansion index and

the proposed measure for average evolutionary distance between

subsets of samples are based solely on pairwise distances and the

implicit feature space projection and not on the reconstructed

trees. This is advantageous as e.g. for the temporal heterogeneity

index the subsets of samples that are compared are not necessarily

monophyletic clades in the tree.

As discussed above we attribute the increase in reconstruction

accuracy mainly to two factors. First, MEDICC makes efficient

use of the available phylogenetic information by phasing parental

alleles using the minimum evolution criterion, which has to our

knowledge not been attempted before. Second, MEDICC models

actual genomic events that change copy-number and incorporates

biological constraints such as loss-of heterozygosity, which is not

the case in breakpoint-based approaches.

The loss of reconstruction accuracy of TuMult relative even to

naive approaches using Euclidean distances is most likely due to

the fact that TuMult was designed for fewer leaf nodes (typically

around 4; Letouze, personal communication). It is worth stressing that,

unlike its competitors, MEDICC is not linked to a specific data

Figure 6. Application to a case of endometrioid cancer. A) Evolutionary tree of the OV03-04 case reconstructed from whole genome copy-
number profiles. Approximate support values indicate how often each split was observed in trees reconstructed after resampling of the distance
matrix with added truncated Gaussian noise. MEDICC performs reconstruction of ancestral copy-number profiles. Here, the (compressed) ancestral
profiles for chromosome 17 are given as an example and MEDICC depicts unresolved ambiguities in the form of sequence logos. A star indicates no
change compared to its ancestor. B) Ordination of the samples using kPCA shows four clear clonal expansions, comprising three separate Omentum
groups and the Bl/VV group. C) Circos plot of selected genomic profiles (marked in bold in the tree) shows the extent of chromosomal aberrations
across the genome. The two phased parental alleles are indicated in red and blue.
doi:10.1371/journal.pcbi.1003535.g006
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collection platform. Data from SNP arrays can be used, as well as

sequencing-based datasets or any other method that returns

absolute copy numbers. It is further worth noting that an increase

in K , the maximum allelic copy-number, first of all increases the

alphabet size but not the complexity of the algorithms. However,

increasing K also increase the number of states in the tree FST

T and hence the memory demands on the elementary FST

operations determinisation and minimisation [34] that are used when

constructing T . This effectively caps K at a value of 6 for the time

being.

Future work will focus on reductions of algorithmic complexity

as well as the integration of SNV data into the reconstruction

process. Another important aspect is subclonality within a physical

sample which may not easily lead to integer-based copy number

inference. Instead of fully clonal integer CN profiles we are

working on an extension that allows for mixtures of cells to be

represented effectively, allowing for the computation of expected

sequence similarities between mixtures of cancer genomes.

Additionally, it would certainly be desirable to move from the

current minimum-evolution approach to a full probabilistic model

with specific probabilities for amplification and deletion events.

Event probabilities could then be trained by expectation-max-

imisation. However, this significantly increases the computational

complexity of the algorithm, which demands the development of

new heuristics that constrain the size of intermediate results of the

reconstruction process.

Another consequence of this minimum-evolution approach is

that all events are weighted equally, independent of their size,

while computing evolutionary distances. During ancestral recon-

struction, however, if two possible ancestors would yield the same

total number of events in the tree, the algorithm prefers shorter

events over longer ones to reduce the ambiguity when determining

ancestral genomes. Preferring shorter events is a direct conse-

quence of our minimum evolution approach. However, if two

genomes differ by a focal deletion in a key gene that confers a

substantial fitness advantage, this fitness-increasing mutation will

most likely not be visible when determining the clonal expansion

index due to its relative small evolutionary distance to the other

genomes. Future work might explore the possibility of weighting

individual events based on their genomic position and the

potential oncogenes and tumour suppressors contained therein.

Lastly, MEDICC is subject to the same limitations as classical

algorithms for phylogenetic reconstructions. Strong convergent

evolution, i.e. two genomes becoming similar due to selection even

though they diverged early, can in theory mislead the reconstruc-

tion process. However, this problem is typically more pronounced

for point mutations than for copy-number changes. Two

convergent copy-number events that occurred independently must

by chance have the same start and end locus on the genome to be

considered identical, which is much less likely than two point

mutations occurring by chance at the same genomic position, due

to the far greater number of possible outcomes of each event.

Methods

SNP array data for the example from the OV03/04 study can

be accessed at the NCBI Gene Expression Omnibus under

accession number GSE40546.

Simulation of tumour evolution
Coalescent trees were simulated using the APE R package [44].

Simulation of genome evolution on these trees was performed by

custom code, released as the SimCopy R package [43]. SimCopy relies

on the PhyloSim package [57] in order to perform the simulations on

the level of abstract ‘‘genomic regions’’. The genomic regions are

encoded in a sequence of integers, with the sign representing their

orientation. The package then uses modified PhyloSim processes in

order to simulate deletion, duplication, inversion, inverted duplica-

tion and translocation events happening with rates specified by the

user. The number of genomic regions affected by each of these events

is modelled by truncated Geometric+1 distributions. After simulating

genome evolution, copy-number profiles are reported for leaf and

internal nodes. Genomes were simulated using 15 leaf nodes, a root

size of 100 segments and an average event length of 12 segments to

allow for overlapping events. Event rates covered the following set:

0:02,0:03,0:04,0:05,0:07,0:1,0:13,0:15,0:18,0:2: Individual event

rates were modified with the following factors: deletions: 0:3,

duplications: 1:0, inverted duplications: 0:1, inversions: 0:2, translo-

cations: 0:2. All parameters were chosen such that the leaf node copy-

number distributions are similar in shape to copy-number distribu-

tions from experimental data in the clinical study [28].

Implementation of MEDICC
All FST and FSA algorithms were implemented using

OpenFST [40]. MEDICC was written in Python, while imple-

mentation of time-critical parts used C. For the Fitch-Margoliash

implementations we used the Phylip package [58]. MEDICC is

available at https://bitbucket.org/rfs/medicc and has been tested

on Windows and UNIX-based systems.

The quantitative analysis of MEDICC results was done in R

and all necessary functions are implemented in the MEDICCquant

package included in the MEDICC distribution. Spatial statistics

were computed using the spatstat package [52], and for kernel

manipulations the kernlab package was used [59].
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