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Summary

Granular materials are the second most manipulated material in industry after
water and their properties are of great importance for the pharmaceutical,
food, mechanosynthesis and semiconductor industries. Up to 60% of the
capacity of some industrial plants is used to process them.

This thesis describes computer simulations that aim to evaluate the num-
ber of distinct packings of a granular material or, more generally, the so-
called ‘granular entropy’. Monte Carlo simulations are used to probe the en-
ergy landscape of jammed systems of disks interacting via a repulsive, finite-
range potential. In these simulations we make use of a soft-sphere model
with a hard core that approaches the hard-sphere model as the width of the
soft shell is decreased.

To compute the packing entropy, we use and develop Monte Carlo tech-
niques to determine the volumes of the basins of attraction of the potential en-
ergy minima at different system sizes. Such Monte Carlo simulations require
energy minimisation after every trial move to make sure that all accepted
moves keep the system within the same basin of attraction. Hence efficient
energy minimisation is a point of paramount significance in this work. A first
objective was to find a suitable minimisation algorithm.

We report a study of the basins of attraction for potential energy minima
defined by different minimisation algorithms for an atomic system. The find-
ings indicate that whereas some minimisation algorithms produce compact
basins, others produce basins with complex boundaries or basins consisting
of disconnected parts. For the remainder of our work, the FIRE algorithm
was chosen because it produces compact basins at a reasonable computa-
tional cost.

Once the minimisation algorithm is chosen a numerical approach is used
to compute the number of ways in which N particles can pack into a given
volume V . This technique extends the existing methods in such a way that
it can be applied to much larger systems than before (over 100 particles in-
stead of 16). Many of the caveats of previous methods are addressed. Using
this novel approach, the system size dependence of the number of distinct
packings of a system of poly-disperse soft disks is studied. Our simulations
enable us to validate a more than 20 years old conjecture due to Edwards.

The distribution of jamming densities produced by different protocols has
been studied. We found that the distribution of jamming volumes that are gen-
erated by starting from different initial densities cannot be characterised by an
Edwards’-style compactivity although it is possible to construct an ensemble
where compactivity is well defined.
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Chapter 1

Introduction and motivation

In this work the configurational entropy of random jammed systems is calcu-
lated using Monte Carlo (MC) exploration of the Potential Energy Landscape
(PEL). This study sheds light on the nature of this entropy and reveals some
important characteristics of jamming phenomena in systems of soft repulsive
particles. These model systems can be used to explore many of the physi-
cal properties of dispersed materials. Some examples of such material are
emulsions, gels, foams, powders and colloids. Many of these systems can
become “jammed” in an amorphous state at some point and lose the capabil-
ity to respond to external forces due to changes in temperature, pressure and
load. Roughly speaking, glasses are liquids that are cooled rapidly to form
an amorphous solid; foams are jammed bubbles in a rigid structure; granu-
lar materials are non-thermal systems that can behave like solids, liquids or
gases depending on the external conditions; colloids are mixtures where a
substance is dispersed in another and may be solid, liquid or gaseous.

Granular materials are of particular interest as they are the second most
manipulated material in industry after water and can be found in the form of
powders in pharmaceutical, food, mechanosynthesis and semiconductor in-
dustries [76]. In fact, some industrial plants spend as much as 60% of their
energy budget on handling and processing these materials[38]. Although the
jamming transition may appear to be similar to a liquid-solid phase transition,
it is in fact very different as the molecular structure of the material and the
density do not change abruptly as they would in a first order phase transition.
There is some speculation regarding the glass and jamming transitions and
how they relate to each other and if they are merely the same physical phe-
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Figure 1.1: Universal gripper from [11]. (A) shows the gripper attached
to a robotic arm. (B) shows the gripper lifting a shock-absorber coil. (C)
shows the view from the underside. (D) shows a schematic of how the grip-
per works. (E) is a plot of the holding force for different objects. Figure from
arXiv:1009.4444 [cond-mat.soft].

nomenon. Much work has been done and a general consensus has not been
reached, although it has been shown, within a mean-field model, that they are
different [57]. In the case of granular media, an inherently athermal system,
the glass transition has no place.

In recent years researchers have used the jamming transition – the fact
that grains become immobilised when their number density is increased – to
their advantage and have created a universal robotic gripper [11]. The design
of this gripper is not based on a fingered hand like most other models. Instead
it uses granular media (in this case ground coffee) inside a flexible container
(balloon) such that the air inside can be evacuated thus reducing the volume
and making the system jammed. The way that it works is by starting in an
unjammed state where the grains are free to move around inside the balloon.
Then the gripper approaches the object that it wants to hold such that the
object is surrounded by the balloon which deforms around the object, as in
Figure 1.1. Then the air is evacuated, the grains become jammed and the
object can be manipulated. The key feature of this gripper is that it is able
to grip objects that may differ considerably in shape, size and weight without
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Introduction and motivation

Figure 1.2: Regular close packing diagrams from Kepler’s 1611 book De nive
sexangula (“On the six-sided snowflake”). Images from [16].

prior knowledge of the kind of object that is to be manipulated without need-
ing sensory feedback. As can be seen in Figure 1.1, panel E, the resulting
force applied to different objects is different.

The packing density, or volume fraction, φ of a jammed system is de-
fined as the fraction of space occupied by the particles. In the year 1611,
after being asked how to stack cannon balls efficiently, German mathemati-
cian Johannes Kepler proposed that the densest 3D packing of equally sized
spheres occupies φ = π/

√
18 ≈ 74% of the total volume (see Figure 1.2). In

this case the spheres form a Face-Centred Cubic (FCC) or Hexagonal Close
Packed (HCP) lattice (see Figure 1.3). The hypothesis that a regular stack-
ing of close-packed triangular layers forms the densest possible packing of
spheres is known as the Kepler conjecture and proving it has been far from
trivial. In 1831 Gauss was able to prove that the conjecture is true for spheres
on a regular lattice and in 1953 Hungarian mathematician Tóth proposed that
the problem could be solved by doing a finite but very large number of calcu-
lations [27, 88]. This proposition was pursued by Thomas Hales who started
his work in 1992. By 1998 he had finished his proof [35] which is almost
certainly correct but very complex as it took a dozen referees of Annals of

Mathematics about four years to be “99% certain that the proof was sound”
[88]. Despite the lack of a simple 100%-certain proof, Kepler’s conjecture is
widely accepted as being true.

What about the case of random packing? Is there an equivalent to Ke-
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pler’s conjecture? The interest in Random Close Packing (RCP) started with
Stephen Hales (1677-1761) who studied the random packing of green peas in
his book Vegetable Staticks. Bernal and Mason’s experiments on ball bearings
in 1960 [8], designed to study liquid configurations, resulted in a quantitative
description of RCP. They suggested that the maximum packing density for a
RCP state is φ = 0.64 and that this value must have a mathematical explana-
tion:

The figure for the occupied volume of random close packing–
0.64–must be mathematically determinable, although so far as
we know undetermined. [8]

Bernal and Mason define RCP as the densest possible disordered state. The
idea is that to achieve higher densities, regions of ordered structures must
be present in the system. Scott [78], on the other hand, finds that the same
RCP density corresponds to the densest possible state obtainable via shak-
ing ball bearings. These results have been extensively tested by others both
experimentally [8, 45, 72] and using simulations [67, 2, 55, 70] where the
consensus is that the RCP packing fraction is φ ≈ 0.64. Despite this, RCP
remains mathematically undetermined.

Now some interesting questions arise: What happens if we pour spheres
into a container? How do they pack? What kind of structure do they form?
What is their packing density? How many distinct packings exist? These are
the type of questions that must be answered to understand RCP.

If spheres are poured into a container and pressed down they will most
certainly not be in a regular packed FCC or HCP state. This was already
known quite a while ago and probably the first mention of the concept of
RCP is in the Bible:

Give, and it will be given to you. A good measure, pressed
down, shaken together and running over, will be poured into
your lap. For with the measure you use, it will be measured to
you. (Luke 6:38)

This means that grains that have been pressed down and shaken until they
cannot be compressed anymore have a unique packing fraction. Or at least
this is what is suggested and needs to be investigated.

4



Introduction and motivation

Figure 1.3: Regular close packing. FCC (left) and HCP (right) lattices. Image
from [106].

The statistical mechanics of powders was introduced by Edwards and
Oakeshott in 1989 [24] and states that the volume of a granular system plays
a role equivalent to the energy of a thermal system and that the “compactiv-
ity” is equivalent to the temperature. Their hypothesis is that all states (or
jammed configurations) are equally probable and that there is a well-defined
entropy which “corresponds to the logarithm of number of ways the grains
can be assembled to fill a volume V ” [25]. This is sometimes known as the
Edwards conjecture. This hypothesis has never been tested directly for a re-
alistic model of granular materials.

An experimental system of friction-less, attractive emulsion droplets has
recently been studied by Jorjadze and coworkers [41]. This system is of par-
ticular relevance because it is a real system that is surprisingly similar to the
systems studied in this work using simulations. Joriadze et al. were able to
measure the decrease in compactivity with global density. This is an example
where Edwards’ statistical theory can successfully be applied to experimental
jammed systems.

It has been suggested that the concept of RCP cannot be properly (math-
ematically) defined. Torquato et al. [89] state that the packing fraction de-
pends on the compression rate and that a denser state can always be found
by waiting longer. This happens because the lower the compression rate the
more time the system has to adjust itself, which produces regions with local
order.
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In their 2003 paper [67], O’Hern et al. studied jamming of two and three
dimensional particles that interact via a repulsive, finite range potential (soft
spheres) at zero temperature and applied stress. They found that as the num-
ber of particles increases, the jamming transition becomes sharper. This oc-
curs at a well-defined density that happens to be the RCP packing fraction
discovered by Bernal and Mason, φ ≈ 0.64 (see Figure 2.6). This means that
RCP can be well defined. It is the point where, in the thermodynamic limit,
the distribution of jamming densities has a discontinuous jump. That is to say
that the RCP packing fraction is a property of three dimensional space.

The main results of this thesis are presented in Chapter 6 which describes
a novel approach to measure the distribution of volumes of basins of attrac-
tion and ultimately the configurational entropy based on the techniques de-
scribed in Chapter 4. The improvements to this method are discussed. The
rest of this work is organised as follows: In Chapter 2 a review of the state of
the art of RCP and jamming is presented including where this work fits into
the current framework. Chapter 3 contains a description of the computational
methods used to develop this work. Chapter 4 describes the method used to
measure the volumes of the basins of attraction and some important caveats.
In Chapter 5 the definition of basins of attraction with different minimisa-
tion algorithms is studied. In Chapter 7 the distribution of densities at which
our system becomes jammed is studied. The general conclusions and final
remarks of this work are presented in Chapter 8 along with a brief outlook.
Finally in Appendix A an in-depth description of minimisation algorithms is
given and in Appendix B the details regarding the centre of mass constraint
in our simulations is discussed.
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Chapter 2

The state of the art: literature
review

This Chapter provides the context for subsequent chapters by summarising
some of the relevant findings of experimental, numerical and theoretical stud-
ies of Random Close Packing (RCP) and the jamming transition. We will then
discuss some of the open questions in the field and this allows us to explain
how the work presented in the present thesis fits into the broader context of
understanding the physical properties of granular materials.

First, a brief account of one of the earliest packing experiments will
be given followed by a description of the pioneering work of Bernal and
Mason. Computer simulation results will also be discussed, including the
seminal work by Stillinger and Weber, who introduced the concept of in-

herent structure and the Lubachevsky-Stillinger algorithm to find jammed
states. Edwards’ statistical mechanics for granular media and the so-called
Edwards’ hypothesis are introduced. The latter hypothesis has been hotly
debated within the community and its predictions have been tested for many
different systems in experiments, simulations and theory. The results of these
tests are inconclusive and it appears that the validity of the Edwards hypoth-
esis is at the very least protocol dependent.

2.1 Experimental work

One of the earliest experiments on soft spheres was performed by the Rev-
erend Stephen Hales and accounted for in his 1727 book Vegetable Staticks:
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2.1. Experimental work

Figure 2.1: Experimental setup used by Stephen Hales, Vegetable Staticks, to
study jammed green peas. Image from [103].

Or An Account of Some Statistical Experiments on the Sap Vegetables. Hales
studied a system of green peas under pressure, Figure 2.1. He added water
to dilate the peas and obtain a jammed state. The conclusion to this experi-
ment was that the peas did not raise the weights holding them down, instead
they filled the interstices and deformed into dodecahedrons [103]. Hales was
wrong about the dodecahedrons as closely packed soft objects form irregular
polyhedra [103].

It was not until 1960, and the experiments of Bernal and Mason [8] on the
structure of liquids, that a quantitative study of RCP was performed. Bernal
and Mason investigated the structures formed by spheres in a balloon (see
Figure 2.2) using steel ball bearings. Ink was subsequently poured into the
balloon and left to dry. This made it possible to perform an analysis of the
contacts of each particle. The RCP volume fraction, 0.64, was defined as the
densest possible random packing. Bernal was sure that it must be “mathe-
matically determinable” [8] as seen in the quote in Chapter 1. This remark
turned out to be somewhat of an understatement as it is still an unsettled issue
today.

Another experimental investigation of RCP was published in the same
issue of Nature as Bernal and Mason’s work. Scott et al. [78] study an exper-
imental system of steel ball bearings in different containers that were found
to become jammed between the densities 0.63, dense random packing and
0.59, loose random packing. The dense random packing limit was obtained

8



The state of the art: literature review

Figure 2.2: Bernal and Mason’s experiments [8]. Image from [103]. The right
hand image shows the partial crystallisation of the system near the borders in
a cubic container.

by shaking the system. The loose packing limit is the result of pouring the
particles into the container. At both limits the system was rigid, it could
withstand pressure.

Knight et al. [45] studied a system of mono-disperse spherical glass par-
ticles (∼ 2 [mm] diameter) jammed in a long thin cylinder (∼ 1.88 [cm]
diameter). The system started at a low packing density and was vibrated until
the steady state density was found. The final packing fraction depends on the
intensity of the vibrations, i.e. it is protocol dependent. Density relaxation
was also studied and was found to be complex even for this simple system
and depends on the size of the particles and the diameter of the cylinder.

The experiments of Philippe and Bideau [72] on vertically vibrated glass
beads show that the evolution of the mean packing fraction and mean poten-
tial energy exhibit a stretched exponential law and that the compaction time
follows an Arrhenius relation with the tapping intensity. The observed be-
haviour is in many ways reminiscent of the relaxation of glassy systems. The
experiments reported in [72] studied glass spheres of 1 [mm] diameter in a
cylinder of diameter 10 [cm] filled about 10 [cm] high. Stable packings were
observed with volume fractions between 0.583 and 0.632 corresponding to
the loose and dense packed limits found by Scott [78], mentioned above. The
compaction or relaxation time of tapped granular matter has been discussed at
length in [76] as there is some controversy whether the long-time relaxation

9



2.2. Computer simulations

is exponential or logarithmic.

2.2 Computer simulations

In 1972 one of the first simulations of jammed systems was performed by
Adams and Matheson [2]. Closely packed configurations of up to 5402 hard
spheres were produced and a packing density of φ ≈ 0.628 was found. Their
method consisted of starting with a core of spheres already randomly packed
and then adding spheres at specifically chosen sites. The result of this method
is a spherical system of randomly packed hard spheres. The pair distribution
function was computed using these results and compared with the ball bearing
experiments. The computer simulated model was seen as a useful alternative
to experiments because it is much easier to determine the positions of the
particles and analyse the structure of the jammed state.

The concept of inherent structure was introduced by Stillinger and Weber
in 1983 [84]. In their paper these authors define an inherent structure as a
stable particle packing or potential energy minimum that can be reached by
steepest descent. The dynamics of the transition between different minima
was studied using Molecular Dynamics (MD). The fluid system evolves and
at a given moment is quenched to the corresponding local energy minimum.
Thereby the distribution of stable packings is determined with respect to their
potential energy. A representation of an energy landscape showing some of
its features including inherent structures and basins of attraction can be seen
in Figure 2.3 from [85].

The simulations of Lubachevsky et al. [55] consider systems of up to
2000 disks and up to 8000 spheres. Their algorithm for obtaining jammed
states starts with random initial positions and random velocities uniformly
distributed between −1 and +1. As the system evolves via event-driven MD
the particles grow monotonically until the system becomes jammed. The fi-
nal state depends on the growth rate of the particles. This technique for gen-
erating jammed packings is often referred to as the Lubachevsky-Stillinger

protocol. For jammed states found using this algorithm, it is possible to
conclude that mono-disperse two dimensional systems, even for high growth
rates, present short to intermediate-range order. This is not present in three
dimensional systems. It is suggested that the number of jammed states has
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The state of the art: literature review

Figure 2.3: Representation of an energy landscape from [85] showing some
of its features, basins of attraction of inherent structures are of particular im-
portance for this work.

the asymptotically exponential form

S = ln Ω(N, d) = α(d)N N →∞ (2.1)

were Ω is the number of distinct packings that depends on the number of
particlesN and dimension d. The fact that no order is present in three dimen-
sional systems suggests that α(1) < α(2) < α(3) · · · . For three dimensional
systems the packing fraction was found to be 0.63 ≤ φ ≤ 0.65 and for two
dimensions 0.85 ≤ φ ≤ 0.90. The distribution of contacts between parti-
cles was studied and the mean contact number in three dimensions found to
be 5.8295 for a mono-disperse system of 8000 particles, close to the isostatic
condition discussed later in this Chapter. The exponential growth of the num-
ber of inherent structures with system size was further discussed by Stillinger
[83] and is related to a key result of this work presented in Chapter 6.

2.3 Edwards’ theory

In their ground-breaking paper Theory of Powders published in 1989, Ed-
wards and Oakeshott [24] propose a “thermodynamics” for granular media.
Specifically, the authors apply the concepts of statistical mechanics to granu-
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2.3. Edwards’ theory

lar materials. The volume of a powder plays the role of the energy in conven-
tional statistical mechanics while the “compactivity”, X replaces the tem-
perature. The fundamental postulate of statistical mechanics says that an
isolated system in equilibrium is equally likely to be in any of its accessible
microstates. In Edwards’ theory this is replaced by the assumption that all
packings are equally likely when the system is at a fixed volume. For jammed
structures prepared by energy minimisation, the validity of this assumption
would imply that the distribution of volumes of the basins of attraction should
be very sharply peaked meaning that most basins have similar volume.

In Edwards’ statistical-mechanics approach, described above, all blocked
configurations of grains in a given volume are considered to be equally likely,
i.e. flat ensemble averages are considered. What has come to be known
as Edwards’ hypothesis is the fact that “all the metastable states in which a
system can be trapped are equivalent for the dynamics” [15]. It is important
to note that this approach is not justified from first principles and must be
tested. Edwards’ ideas can be applied to other systems with large numbers of
metastable states [15] and it makes sense to consider glassy systems where
the underlying energy landscape seems similar to that of granular systems.
In the context of mean-field models and the study of ageing dynamics of
glassy systems, it has been shown that the basins of attraction are explored
with a flat measure [30] thus satisfying Edwards’ hypothesis. The relevance
of Edwards’ measure has also been studied for zero-temperature spin-flip
dynamics of ferromagnetic Ising models with blocked configurations [15].
In this thesis we will show that the energy-minimisation protocol does not
lead to a uniform distribution over blocked configurations i.e. states are not
sampled with Edwards’ measure.

Barrat et al. [7] have shown that Edwards’ hypothesis holds within the
Kob-Andersen [46] model which is able to reproduce many aspects of glassy
and granular systems and that it can be used to compute the thermodynamics.
In this study all blocked configurations are treated as equivalent and Edwards’
measure is generated explicitly using an “auxiliary model” in which particles
have energy one if they would be allowed to move in the original model and
zero otherwise. A method to count the blocked configurations is presented.
The fact that Edwards’ hypothesis only holds for certain protocols (or dy-
namics) is also discussed. The paper ends with a final remark that is worth
including here:
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. . . in the simplest cases the correspondence between Edwards’
distribution and long-time dynamics is at best checked but does
not follow from any principle. The situation is thus as if one
would have checked that the microcanonical distribution gives
good results for gases, without knowing Liouville’s theorem that
proves that such a distribution is indeed left invariant by equa-
tions of motion.

The work of Song et al. from 2005 [81] describes an experimental method
to measure an effective temperature for jammed granular materials. The dif-
fusion of tracer particles is measured in a slowly sheared granular system
near the jamming point. The effective temperature is determined using the
Einstein relation. This temperature is the variable that controls the way that
the system explores different jammed configurations. The particles diffuse
over distances “a few times” their diameter implying that they rearrange out-
side their cages [81]. Systems of different particles were found to equilibrate
at the same temperature, given by their volume fraction.

In 2007, Brujić and co-workers measured the coordination number and
entropy of a three dimensional jammed emulsion using confocal microscopy
[13]. The contact network of the system was identified and the average con-
tact number agrees with the isostatic condition described later in this Chap-
ter (for frictionless, spherical particles on average six contacts in three di-
mensional space). Instead of calculating the entropy using the statistics of
volumes, microscopic variables were used. The contact network and graph
theory representations were used to calculate the Shannon entropy using the
probability of observing a graph of a certain class i. This entropy is based on
the probability to observe a jammed state with a certain topology and is an
extensive property within the scope of their results.

Paillusson and Frenkel studied ergodicity in tapped granular systems us-
ing event-driven MD simulations of hard friction-less spheres under gravity
[68]. Ergodicity is defined as the equivalence between “time” and ensemble
averages. When comparing histograms generated by sampling long “time”
trajectories to volume ensemble histograms non-ergodicity is observed. The
overlapping histogram method is used to test Edwards’ hypothesis within the
scope of their system and found to hold over a limited range of packing den-
sities.
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Makse and Kurchan reported a simulation of sheared granular matter us-
ing a range of particle sizes [56] and were able to measure an effective tem-
perature –via the Einstein relation– using the particles diffusivity and mobil-
ity showing that it coincides with Edwards’ configurational temperature. In
contrast, Ising model simulations show that the limiting distributions do not
coincide with a Edwards’ prediction of a uniform distribution over blocked
configurations [15].

The experimental work of Lechenault and coworkers [48] describes the
volume and free volume distributions of Voronoi cells for a system of vi-
brated, bi-disperse, jammed particles in two dimensions. Sub-extensive scal-
ing of the free volume is found, suggesting the existence of correlations be-
tween the free volumes of the particles. Although this claim goes against
Edwards’ theory, an intensive compactivity can still be defined in a consis-
tent way.

A recent experimental study on two-dimensional jammed configurations
of photo-elastic disks was carried out by Pucket and Daniels [75]. The use of
photo-elastic disks allows the forces to be measured at each contact and the
angoricity to be calculated. The angoricity tensor –conjugate to the stress– is
another analogue to temperature, defined by Blumenfeld and Edwards’ [10].
Pucket and Daniels find that when putting two systems in contact with each
other the compactivity does not equilibrate while the angoricity does.

2.4 Defining random close packing

Although the RCP problem has been studied for a long time, the lack of
mathematical definition has stimulated the formulation of new theories and
concepts. Torquato et al. [89] suggest that the concept of RCP is not well
defined as it depends on the protocol used to obtain the packing. The idea is
that the packing fraction can always be increased by introducing local order
into the system and the new concept of Maximally Random Jammed (MRJ)
states is proposed. Some results of these studies are shown in Figure 2.4
where we can see the reciprocal compression rate Γ−1 versus the packing
fraction φ and a plot of the T -Q plane for hard spheres. T and Q are the
translational and orientational order parameters respectively. It is clear that
the packing fraction depends on the compression rate, i.e. the system shows
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Figure 2.4: Results of Torquato et al. [89]. Figure (a) shows the recipro-
cal compression rate Γ−1 versus the packing fraction φ. (b) shows the T -Q
plane for hard spheres. T and Q are the translational and orientational order
parameters respectively.

protocol dependence. For a slower rate a denser packing is achieved.

Kamien and Liu [42] also propose that RCP can be defined in their study
of the relation between the pressure and packing fraction of hard spheres.
The rate at which states become forbidden is proportional to the pressure for
increasing volume fraction. The pressure is found to diverge at a packing
fraction φmax = 0.640± 0.006 in good agreement with the RCP density.

The results of O’Hern and coworkers, presented in the next section, also
suggest that the concept of RCP is well defined. At least within a certain
protocol.

2.5 The jamming transition and phase dia-

gram

Figure 2.5 is the speculative jamming phase diagram proposed by Liu and
Nagel [52]. This schematic diagram suggests that different jamming phe-
nomena are related and that a minimum density is necessary for a system to
be jammed. It captures the observation that a system can become or cease to
be jammed by changing one of the parameters, for example applying stress,
raising the temperature or changing the density. Point J on the 1/density axis
at zero temperature and load is the volume fraction were athermal systems
become jammed under these conditions. At jamming, the system is expected
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Figure 2.5: Jamming phase diagram proposed by Liu and Nagel from [52].
The J-point is shown and represents a system becoming jammed as its density
is increased at zero temperature and load.

to be isostatic, as described in the next paragraph. Our research will probe
systems near this point along the 1/density axis.

In [3] Alexander describes the concept of isostaticity which occurs when
a system has the same number of total contacts as force balance equations.
This means that the system is at mechanical equilibrium. For a system of N
frictionless soft spheres in dimension d, like the ones studied in this work,
the number of degrees of freedom is Nd so the isostatic condition is Z = 2d

where Z is the average number of contacts per particle. The results of [67]
state that the jamming transition coincides with the onset of isostaticity for
all of the systems that they studied. The extension of these results to fric-
tional spheres was performed by Henkes et al. [36]. Frictional spheres were
found to not be isostatic at jamming unless a general form of isostaticity is
introduced where fully mobilised contacts at the Coulomb friction threshold
are treated as slipping contacts. In these systems with friction, the packing
fraction and contact number at jamming are not unique and depend on the
friction coefficient µ. The average contact number can vary between d + 1

and 2d and it appears that the former is true only when µ → ∞ [92] and
the packings are equilibrated very slowly. In most cases the number of con-
tacts is larger than those needed for force balance and rigidity. This is called
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hyperstaticity.

O’Hern et al. [67] propose a method to simulate jammed states by quench-
ing random initial states (T = ∞) to their corresponding potential energy
minima (T = 0) using the conjugate gradient method. By starting with ran-
dom initial states all phase space is sampled uniformly. A similar procedure
had earlier been used by Stillinger and Weber in a different context [84] to
find inherent structures. O’Hern et al. studied jamming of disks and spheres.
The interaction between the particles is a repulsive, finite range potential (soft
spheres, see Equation (4.19)). Systems near point J in the jamming phase
diagram (Figure 2.5) that is to say at zero temperature and stress were inves-
tigated. At a given packing fraction (density), the energy minimisation can
have two different outcomes: a minimum with no overlaps and zero energy
or a minimum with one or more overlaps and positive energy. The latter is
a forbidden configuration for a hard sphere system. O’Hern and coworkers
calculated the distribution of the jamming density Pj(φc) for different sys-
tem sizes in two and three dimensions (see Figure 2.6). As the system size
increases, the jamming transition becomes sharper. The peak approaches a
well defined density, namely φRCP = 0.64 where the potential energy minima
of most initial ideal gas states become forbidden (energy 6= 0). It is also in-
teresting to note that these results do not depend strongly on the form of the
continuous potential used to find the inherent structures. These results also
suggest that RCP is a well-defined concept which is related to the discussion
presented in Section 2.4.

Xu et al. [109] used a similar method to study small two dimensional
systems. Instead of letting the system evolve via MD time steps, they succes-
sively compressed or expanded the soft particles and minimised the potential
energy until a jammed state was found. The advantage of studying small
systems is that it is possible to find and count all of the distinct packings.
This method is often referred to as direct enumeration. The probability dis-
tribution of finding a RCP state at a certain packing fraction was decomposed
into two parts: the density of jammed states and their frequency distribution.
The latter depends on the protocol used to obtain the jammed state while the
density does not. The number of distinct jammed states was found to grow
exponentially with system size.

In 2011, Xu et al. proposed a method, used in this work, to directly deter-
mine sizes of basins of attraction on the Potential Energy Landscape (PEL)
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Figure 2.6: Figure illustrating the distribution of the jamming density Pj(φc)
for different system sizes in two and three dimensions from [67]. From left
to right: Top row: two dimensional bi-disperse system of 64 particles using
different repulsive potentials (α = 2, 3/2, 5/2 see Equation (4.19)), two di-
mensional bi-disperse particles (α = 2, 5/2). Bottom row: three dimensional
bi-disperse systems (α = 2, 5/2) and three dimensional mono-disperse sys-
tems (α = 2, 5/2).
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via Monte Carlo (MC) sampling and thermodynamic integration [110]. The
validation of the method comes from comparing the results with those found
in previous studies using the direct enumeration method [109], described in
the previous paragraph, where all basins of attraction (or inherent structures)
must be found. This is only possible for small systems of up to ∼ 10 parti-
cles. The entropy, defined as the logarithm of the number of distinct jammed
states, can also be computed if the assumption of a Gaussian distribution for
the logarithm of the basin volumes is made. This method is described in
Chapter 4 as it is the foundation of this work.

A different study of basins of attraction has been presented by Ashwin and
coworkers [5]. Here the focus of the study is on the density landscape instead
of the PEL described above. The volume of the system is fixed so that a
point in configuration space corresponds to a certain density, much like in the
case of a PEL, were a point in configuration space has a certain energy. The
basins of attraction on this landscape consist of all of the zero-density points
in configuration space that end up at a certain mechanically stable packing
(minima on the 1/density landscape) via a certain protocol. The basins have
a highly complex structure consisting of a spherical core surrounded by long
thin tentacle-like structures, as shown in Figure 2.7. Most of the volume of
a basin is contained in these outer structures, not in the core, which means
that the volume of the core is not strongly correlated to the probability of the
packing.

Zhang et al. also studied the jamming transition of emulsions and granu-
lar materials using MD [112]. The model for emulsions consists of friction-
less spheres interacting via potentials using experimental parameters. The
grains are modelled as deformable spheres with friction. The results sug-
gest that the jamming transition is characterised by power-law scaling of the
pressure and number of excess contacts as the critical jamming density is ap-
proached from above. The critical jamming density is found to be protocol
dependent, as noted in other studies.

In 2008, another jamming phase diagram was presented by Song, Wang
and Makse [82]. Here the equation of state is calculated in terms of the
average number of contacts Z assuming that all states are equally likely. In
the limit where the compactivity goes to zero, X → 0, the “ground state of
jammed matter” the packing fraction is φRCP ≈ 0.634, random close packing.
In the X → ∞ limit the system approaches random loose packing φRLP ≈
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Figure 2.7: Schematic drawing of the shape of a basin of attraction on the
density landscape [5]. The spherical core is the region contained by the black
circle and the black point is the location of the corresponding mechanically
stable packing. Figure modified by the author from: arXiv:1112.4234 [cond-
mat.soft].

Figure 2.8: Jamming phase diagram from [82]. All disordered packing are
within the triangle. The coloured lines represent iso-compactivity lines.
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Z/(Z + 2
√

3). The complete phase diagram is shown in Figure 2.8. Here the
average contact number Z goes between the isostatic limit of no friction or
J-point, described above, Z = 6 and the infinite friction limit where Z = 4.

The work of Chaudhuri, Berthier and Sastry, published in 2010 [17],
shows that “jamming transitions in amorphous packings of frictionless spheres
occur over a continuous range of volume fractions”. The concept of “J-line”
is introduced and represents the infinitely many J-points for different proto-
cols (it has already been shown in this Chapter that for different compression
rates different jamming densities are obtained). Although the findings show
that the J-point is not unique, its critical properties remain so. In this sense
it is not surprising that different experiments yield different results for the
jamming density.

2.6 Mean-field theory and glasses

Many advances have been made in terms of mean-field theory of glasses in
recent years and some of these results can be related to the jamming transi-
tion and the J-point introduced above. The glass transition is said to be related
to “the appearance of many metastable glassy states in addition to the ideal
glass one” [69]. These metastable states only appear above a certain density
φd. For an overview of this topic refer to the review by Parisi and Zamponi
[69]. Here the authors base their results on the assumption that “amorphous
jammed packings of hard spheres can be identified with the infinite pres-
sure limit of glassy states”. Their results suggest that amorphous jammed
packings exist in an interval of densities that depends on the protocol used
to generate the packings, as previously observed by Krzakala and Kurchan
where they position the so called J-point, described above, in the context of
glass theory [47]. The random models (SAT and colouring) that were studied
allowed them to ignore crystallisation and focus on the glassy characteristics.
In the Lubachevsky-Stillinger type protocol, described above, the compres-
sion rate γ is fixed beforehand and the system equilibrates at a density φg
where the relaxation time is of the order of γ. At this density the system re-
sponds to the compression by reducing the cages up to the jamming density
φJ(γ). φth is the value of the jamming density of the states that first appears
at φd [69]. In mean-field theory it is possible to obtain jammed configurations
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in a whole range of densities φth ≤ φ ≤ φJ [47, 111].

2.7 Final remarks

This Chapter has given a brief overview of recent studies (experiments, sim-
ulations and theories) of RCP and the jamming transition. In summary it
seems that, in the context of an energy-landscape approach, RCP can be well
defined: it is the point where, in the thermodynamic limit, there is a discon-
tinuous jump in the number of allowed inherent structures. The location of
this jamming transition does not seem to depend on the form of the contin-
uous potential used to find these inherent structures as long as the protocol
remains the same. The jamming transition is also related to the average con-
tact number of the system.

The present thesis aims to shed light on the properties of jammed systems
by extending the work of Xu et al. [110] described in Section 2.5. We show
that it is possible to extend the approach of ref [110] to much larger systems
of over 100 particles. Using this novel approach, it is possible to study the
system-size dependence of the number of distinct packings of a system of
poly-disperse soft disks. The simulations presented here provide strong ev-
idence that it is possible to define a packing entropy that is extensive. This
extensivity has often been assumed but, thus far, direct evidence was lacking.
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Chapter 3

Computer simulations and
methods

Molecular simulations can be separated into two broad classes: Molecular
Dynamics (MD) and Monte Carlo (MC). MD uses a numerical method to
integrate the equations of motion of a system. The result is a trajectory in
time of the whole system. MC uses computer generated random numbers to
sample configurations in phase space which are generally used to compute
averages of observables.

In this section we will review those aspects of the simulation techniques
that are of particular relevance for the research reported in this thesis. We
use MC simulations to estimate the volume of the basins of attraction of the
minima on the Potential Energy Landscape (PEL). These simulations require
the determination of a free energy, a quantity that cannot be sampled directly
in either MC or MD simulations due to the fact that the free energy of a sys-
tem depends one the phase space volume accessible to it. Below we explain
the MC technique that we use, including a scheme for improving sampling
called Parallel Tempering (PT). We will also discuss the choice of the bound-
ary conditions.

3.1 Basins of attraction

In this work, jammed states are studied by taking random initial conditions
and minimising their interaction energy. Each distinct jammed state corre-
sponds to a different minimum on the PEL (or “inherent structure” if we use
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Figure 3.1: Example of a basin of attraction. This figure shows a three-
dimensional plot of a function E with a minimum shown by the blue point on
the xy plane. The contour plot on the xy plane is of the same function where
the darker blue regions represent lower values of the function. The basin of
attraction is the region delimited by the saddle points and maxima and ridges
between them.

the language introduced by Stillinger and Weber [84]) and each minimum
has its own basin of attraction. A basin of attraction is the “...volume of con-
figuration space surrounding a local minimum from which steepest-descent
paths converge to that minimum” [99]. This concept was introduced by James
Clerk Maxwell around the year 1870 [99]. Examples of basins of attraction
can be seen in Figures 3.1 and 2.3.

3.2 Monte Carlo

A MC simulation calculates averages of observables by sampling configura-
tion space at random points. One of the simplest examples is a method for
calculating π: Consider a circle of diameter d centred in a square of length
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l ≥ d. If the space is sampled randomly and the fraction of points that fall in
the circle is measured, π can be calculated: π = 4p (assuming l = d = 1 and
p is the fraction of points that fell in the circle). Obviously the more points
sampled the more accurate the result will be. If an infinite number of points
could be sampled the result would be exact. This procedure is known as ran-

dom sampling or direct sampling: probing configuration space by generating
independent random configurations from a certain probability distribution. In
the case of measuring π, discussed above, configurations are sampled from a
uniform probability distribution. This however is not a good way to sample
configuration space for most inter-molecular potentials because the Boltz-
mann factor varies sharply and in most cases is extremely small [32]. In fact
for a system of 100 hard spheres at the freezing point the Boltzmann factor is
nonzero for only 1/10260 configurations [32]. It is clear that it would be con-
venient to concentrate the sampling on states with a large Boltzmann factor,
provided that we can correct for the bias in the sampling. A way to achieve
this is described below and is known as importance sampling.

The MC importance sampling technique, introduced after the Second
World War by Metropolis et al. [61] is known as Metropolis MC (in the rest
of this text, we refer to this technique simply as MC). This method was de-
veloped at Los Alamos National Laboratory as computers became available
for unclassified research.

As stated before, the main idea behind the Metropolis MC method is to
sample the most probable states more than the least probable ones. If we can
sample states with a probability that is proportional to their Boltzmann fac-
tor exp[−βU(rN)] where β = 1/kBT and kB is the Boltzmann constant, T
the temperature of the system and U(rN) the potential energy as a function
of particle positions, then an unweighted average over sampled points corre-
sponds to a Boltzmann weighted average over configuration space. There are
many ways to achieve this type of importance, the most common method was
devised by Metropolis et al. and is described below [32].

1. Randomly select a particle and calculate the potential energy U(rN) of
the system.

2. Move the chosen particle by giving it a random displacement ∆: r′ =

r + ∆.
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3. Calculate the new potential energy of the system U(r′N).

4. Accept the move with probability

acc(o→ n) = min
(

1, e−β[U(r′N )−U(rN )]
)
. (3.1)

5. If the new move is accepted rN = r′N .

6. Go to step 1.

This procedure is repeated a large number of times (exactly how many
depends on the system and the observables of interest) and at regular intervals
all relevant quantities (for example positions, pressure, displacement, energy)
are stored for future averaging.

3.3 Periodic boundary conditions

As the simulated systems are far from macroscopic, the choice of boundary
conditions can significantly affect the measured properties. To illustrate this,
imagine a three dimensional system of N particles. The fraction of all par-
ticles at the surface is proportional to N−1/3 so for N = 1000, 49% are at
the surface. Periodic Boundary Conditions (PBC) are used to repeat the sim-
ulation cell periodically. Interactions could in principle involve any periodic
image of a particle. For short-ranged potentials is is convenient to use the
so-called nearest-image convention: Each particle interacts with the nearest
periodic image of the others in the simulation cell.

3.4 Parallel tempering

PT is a technique used to sample phase space more efficiently when perform-
ing MC simulations. It is useful for energy landscapes that have many local
minima in which the system may be trapped. PT is implemented by doing
MC runs of the same system at different values of a given parameter (most
commonly temperature T ). The system at the lowest temperature, T1 will
be the one most likely to get trapped in a deep basin, sampling only a small
region of phase space [23]. The highest-temperature system, at TM , will sam-
ple many regions of phase space. So the idea, introduced by Swendsen and
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Figure 3.2: 2D representation of phase space from [23]. Low temperature
systems are trapped near the energy minima (shaded areas) while high tem-
perature systems sample many regions of phase space.

Wang [87], is to exchange configuration information between systems at T1

and TM so that the system at T1 can sample a series of states near the minima
(see Figure 3.2 for a schematic representation). A significant reduction in
equilibration time is reported for low temperature systems meaning that less
computer time is required.

The configurational swap move is performed with a probability similar
to the probability of accepting a MC move (see Section 3.2, Equation (3.1)),
ensuring that detailed balance is satisfied. Balance is satisfied if the swap is
performed every fixed number of moves [23]. The probability of accepting a
swap between systems i and j is:

acc(i↔ j) = min
(

1, e(βi−βj)[U(rNj )−U(rNi )]
)
. (3.2)

This means that if the temperature difference between systems i and j is
large, the probability of accepting a trial swap of two configurations will be
small. One solution for this problem is simulating intermediate temperatures
such that in order of ascending temperature we have T1, T2, . . . , TM where
the system of interest is normally T1. The choice of M and the values of
the temperatures depend on the system to be studied. The distributions of
energy must overlap so that the swaps have a good chance of being accepted.
Normally only swaps between neighbouring systems are considered (j =

i+ 1) but this is not necessary.
Some important characteristics of PT are:

• PT generates correct Boltzmann sampling of configuration space for
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each system i (i = 1, . . . ,M ). [23, 32].

• It is easily parallelised: the energy of each system is known already
from the MC calculations and communication only occurs if swaps are
accepted. Even when swaps occur the communication is minimal as
only the temperature is swapped rather than the entire configuration.

• Each system i at Ti is simultaneously undergoing a MC simulation and
every certain number of MC moves a swap move is performed with the
probability given by Equation (3.2). The systems are totally separate
and do not interact energetically.

• Not only temperature can be used as the tempering parameter. In fact
the calculations reported in this thesis did not use temperature, instead
the spring force constant k was swapped. (this will be explained in
Section 4.3).

3.5 Thermodynamic integration

One technique that can be used to calculate the free energy of a system is to
find a reversible path that links a state of known free energy to the state in
question. The change in F along this path is evaluated by thermodynamic
integration, for example, by integrating the following equations:

(
∂F

∂V

)

NT

= −P (3.3)
(
∂F/T

∂1/T

)

V N

= E. (3.4)

There are a limited number of convenient states of known free energy that
can be used as a starting point. Two such states are the ideal gas and the
low-temperature harmonic crystal. The system changes gradually from the
initial (known free energy) to the final state by means of Kirkwood’s coupling
parameter λ [44]. In a system with potential energy U it is assumed that U
depends linearly on λ such that λ = 0 corresponds to the reference system
(I) and λ = 1 corresponds to the potential energy of the system being studied
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(II). This can be written as:

U(λ) = (1− λ)UI + λUII (3.5)

= UI + λ(UII − UI) (3.6)

Here the potential energy of the reference system is recovered when λ = 0:
U(λ = 0) = UI and the potential of the system of interest is recovered when
λ = 1: U(λ = 1) = UII. The partition function is given by:

Q(N, V, T, λ) =
1

Λ3NN !

∫
drN exp[−βU(λ)] (3.7)

and the derivative of the Helmholtz free energy (F = −kBT lnQ) with re-
spect to λ is:

(
∂F

∂λ

)

N,V,T

= −kBT
∂

∂λ
lnQ(N, V, T, λ) = −kBT

1

Q

∂Q

∂λ
(3.8)

=

∫
drN (∂U(λ)/∂λ) exp[−βU(λ)]∫

drN exp[−βU(λ)]
(3.9)

=

〈
∂U(λ)

∂λ

〉

λ

. (3.10)

The free energy difference can be obtained by integrating Equation (3.10)
over λ from 0 to 1:

F (λ = 1)− F (λ = 0) =

∫ λ=1

λ=0

dλ

〈
∂U(λ)

∂λ

〉

λ

. (3.11)

So the free energy difference can now be calculated using an ensemble aver-
age that can be measured using simulations.

The Helmholtz free energy of a solid can be calculated via thermody-
namic integration along a reversible path that transforms the solid into an
Einstein crystal, where the particles are bound to their lattice sites by har-
monic springs. When the spring constant is large, the solid resembles an
Einstein crystal of known free energy [32].

The study of athermal jammed systems relies on calculating the free en-
ergy of solids that interact via discontinuous potentials, as described in Chap-
ter 10 of [32], using a thermodynamic integration technique developed by
Frenkel and Ladd [31] and later by Polson and Frenkel [73]. When study-
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ing hard-core interactions, defined by the potential U0, it is not possible to
construct a reversible path that transforms the system into a non-interacting
Einstein crystal via a linear coupling scheme as was shown previously. A
solution to this problem is to use a scheme where the the spring constants can
be switched on while leaving the hard-core interactions unchanged [32]:

U(λ) = U0 + λU = U0 + λ

N∑

i=1

(ri − r0, i)
2 (3.12)

for a system of N particles where r0, i is the position of particle i at its lattice
or reference site. The free energy difference is then

FHS = F (λmax)−
∫ λmax

0

dλ 〈U(rN , λ)〉λ. (3.13)

For high enough values of λ the system behaves like a non-interacting Ein-
stein crystal. This is ensured by the choice of λmax. When the particles are
tethered to their lattice sites their is no translation of the system as a whole.
On the other hand, when λ → 0, the whole system is free to drift and the
integrand in Equation (3.13) becomes sharply peaked at λ = 0. This presents
a problem for numerical integration schemes as many values of λ close to
zero would be needed to calculate the integral precisely. This problem can be
avoided if the centre of mass is kept fixed. In MC simulations, where a parti-
cle is moved randomly, this can be done by moving the rest of the particles in
the opposite direction so that the centre of mass is kept fixed. Another tech-
nical detail that is important to keep in mind is that when keeping the centre
of mass fixed, with periodic boundary conditions, the particles should never
be put back into the “original” box because this would cause a discontinuous
jump in the centre of mass position [32]. For a brief description of the centre
of mass constraint, see Appendix B

In Section 4.2, a modified version of these techniques is employed to de-
scribe the method used in this work: MC sampling of a random configuration
tethered to its corresponding potential energy minimum (“lattice sites”) via
springs (“Einstein crystal”). This method ultimately uses this free energy
calculation to determine the volumes of basins of attraction on a PEL.
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Chapter 4

The basin volume method

The direct enumeration method [109], described in Chapter 2, determines
the probability of each jammed state by minimising random initial condi-
tions until all states are sampled many times. It is clear that this technique
only works for systems where the total number of potential energy minima,
or mechanically stable jammed states, can be sampled within a reasonable
amount of time. It turns out that this method is currently feasible for systems
of up to N ∼ 12 particles due to the huge number of minima. The approach
presented in this Chapter, first developed by Xu et al. [110], does not rely
on direct enumeration, which is why it is possible to estimate the number of
potential energy minima while only sampling a small subset of them.

4.1 Introduction

A method to calculate the configurational packing entropy by studying the
volumes of basins of attraction on the Potential Energy Landscape (PEL) is
used. Each minimum (or inherent structure to use the language of Stillinger
and Weber [84]) of the interaction potential corresponds to a jammed state
and can be related to a physical system such as gels, emulsions, foams and
granular materials as has been previously mentioned in this work. Once the
distribution of volumes is calculated the packing entropy can be determined.

In this Chapter the techniques and methods used to calculate volumes of
basins of attraction are accounted for. First the details of the simulations are
explained. In the next section the parameters, inter-particle potential used and
the Gauss-Lobatto (GL) integration algorithm are presented. The following
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section is an outline of the complete procedure used to calculate the volumes
of the basins of attraction, followed by the results and conclusions of this
Chapter.

4.2 The volume calculation

In this section, the method for calculating the configurational entropy by mea-
suring the volumes of basins of attraction proposed in [110] is explained.
Measuring the volume of a basin of attraction of a minimum on the PEL is
equivalent to determining the free energy associated with that high-dimensional
volume. To determine this free energy, we will use thermodynamic integra-
tion described in Section 3.5. Once a sufficient number of volumes have thus
been measured i.e. the distribution of free energies has been sampled, an
estimate of the packing entropy of the system can be made.

The volume of a basin of attraction for a given minimum can be defined
as:

V =

∫

basin
drN (4.1)

where rN = (~r1, . . . , ~rN) is the d×N dimensional vector of the coordinates
of all particles and rN0 is the coordinate of the minimum in phase space. The
integral is over the coordinates in the basin.

To calculate this integral we perform a thermodynamic integration that
links the free energy associated with this volume to that of a harmonic os-
cillator centred at the minimum. The harmonic potential can be defined as
follows:

U(rN) =
1

2
k(rN − rN0 )2. (4.2)

A spring of force constant k is attached to the minimum (or “lattice sites”
to use the language introduced in Section 3.5), the partition function can be
defined as:

Z(k) =

∫

basin
drN exp

[
−1

2
k(rN − rN0 )2

]
(4.3)

Note that the volume of the basin is V = Z(k = 0) and the free energy is
F (k) = − lnZ(k) so determining the volume of a basin of attraction is now
a free energy calculation and can be calculated using thermodynamic inte-
gration. If u = |rN − rN0 | is the displacement of the system in configuration
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space then:

dF (k)

dk
= − 1

Z(k)

dZ(k)

dk
(4.4)

=
1

Z(k)

∫

basin
drN

1

2
u2 exp

[
−1

2
ku2

]
(4.5)

=
1

2
〈u2〉k (4.6)

Where k corresponds to the coupling constant λ introduced in Section 3.5.
This ensemble average is calculated by performing Monte Carlo (MC) simu-
lations (see Section 3.2).

The volume of the basin is V = exp[−F (0)] so calculating the free en-
ergy at k = 0 is equivalent to calculating the volume. This can be done by
integrating Equation (4.6) from 0 to kmax:

F (0) = F (kmax)−
∫ kmax

0

dk
1

2
〈u2〉k. (4.7)

which is equivalent to Equation (3.13), used to calculate the free energy of a
system of hard spheres. Each part of the free energy at k = 0, F (0), the right
hand side of Equation (4.7), is calculated separately. As stated above, 〈u2〉k is
obtained via MC sampling, the integral is calculated using GL quadrature (see
Section 4.3.2) and F (kmax) is determined using direct sampling considering
the probability density

f(rN − rN0 ) = exp

[
−kmax

2
(rN − rN0 )2

]
(4.8)

for the randomly generated displacements in dN -dimensional space. The
fraction of points that fall in the basin of attraction is

p =

∫
basin exp

[
−kmax

2
(rN − rN0 )2

]
drN∫

all space exp
[
−kmax

2
(rN − rN0 )2

]
drN

=
Nin

Ntotal
. (4.9)

The denominator can be calculated analytically

∫

all space
exp

[
−kmax

2
(rN − rN0 )2

]
drN =

(
2π

kmax

)dN/2
(4.10)
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so the partition function at kmax is

Z(kmax) =

∫

basin
exp

[
−kmax

2
(rN − rN0 )2

]
drN (4.11)

= p

∫

all space
exp

[
−kmax

2
(rN − rN0 )2

]
drN (4.12)

= p

(
2π

kmax

)dN/2
(4.13)

and the free energy is

F (kmax) = − lnZ(kmax) = − ln p− dN

2
ln(2π/kmax) (4.14)

which are the first two terms of the right hand side of Equation (4.18).

To calculate the integral in Equation (4.7) with the GL method (explained
in Section 4.3.2) a variable substitution must be performed such that the in-
tegral goes between −1 and 1 and the integrand must be a slowly varying
function in the desired interval (see Figure 6.7).

We achieve this by using a coordinate transformation in Equation (4.7),
such that that the product of 〈u2〉k and the Jacobian of the coordinate trans-
formation is roughly constant. For large enough k, we have 〈u2〉k = dN/k,
because the integrand is only appreciable inside the basin. In contrast, for
small k, 〈u2〉k is independent of k but determined by the basin boundaries.
We can use the value of 〈u2〉k=0 to define an “effective spring constant” κ:
[110] such that

〈u2〉k=0 ≡
dN

κ
⇒ κ =

dN

〈u2〉k=0

(4.15)

It is clear that the product

〈u2〉k
k + κ

dN
≈ constant. (4.16)

(see Figure 6.7). The variable substitution that yields the appropriate Jaco-
bian is

t =
2 ln(1 + k/κ)

ln(1 + kmax/κ)
− 1 (4.17)
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And Equation (4.7) can be written as

F (0) = FHO − ln p−
∫ ln(1+kmax/κ)

0

1

2
〈u2〉(k + κ) d[ln(1 + k/κ)]

= FHO − ln p−
∫ 1

−1

1

2
ln(1 + kmax/κ)

1

2
〈u2〉(k + κ) dt (4.18)

where FHO = −(dN/2) ln(2π/kmax) is the free energy of a dN -dimensional
harmonic oscillator and p is the fraction of brute force MC moves that fall
into the basin of attraction for kmax, see Equation (4.9).

A 6-point GL quadrature has been used. An n-point GL quadrature is
exact for polynomials up to degree 2n − 1 which is why it is important that
the integrand is a smooth, slowly varying function (for an example see Figure
6.7).

It is important to note that direct sampling (non-Markovian) MC, de-
scribed in Section 3.2, cannot be used to efficiently sample the volumes of the
basins of attraction. This technique only works for large enough k where a
significant fraction of Gaussian-generated random points fall inside the basin.
For systems with low k, most Gaussian-generated points would fall outside
the basin and would therefore be rejected, resulting in poor statistics. At
k = 0 this effect is most notorious because the random numbers are gener-
ated uniformly and the fraction of points that fall inside the basin is extremely
small. Our method overcomes this by sampling points along a random walk
within the basin and using the Metropolis acceptance criteria that gives a cer-
tain probability to accept a move according to the energy difference involved.
We stress once again that the energy that enters the Metropolis acceptance
rule is not the inter-molecular interaction between the soft spheres but the
harmonic potential energy of a spring attached to the minimum and the cur-
rent point in configuration space. In addition, a trial move is also rejected if it
would move the system outside the original basin of attraction. During every
trial move, we have to test whether this move would keep the system within
the original basin. This is tested by minimising the potential energy for every
trial move.
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4.3. Details of the model

Parameter Symbol Values
Dimension of space d 2
Number of particles N 8→ 128
Volume/packing fraction φ 0.86→ 0.9
Size of square box (volume1/d) L 1
Diameter ratio Dratio 1.4
Total number of steps (MC and PT) nstep 105 → 106

Number of equilibration steps (MC and PT) neq 104 → 105

Number of steps (Direct sampling) nDS 104 → 105

Gradient tolerance (minimisation) EPS 10−7

Position tolerance (comparing minima) rtol 10−5/
√
N

Table 4.1: Parameters used in the simulations of soft harmonic spheres de-
scribed in this Chapter.

4.3 Details of the model

In this section the interaction between the particles, their size distribution
and the initial conditions are described. Most of these parameters were taken
from [110] in order to compare, at least at a preliminary stage, the current
calculations to their results.

4.3.1 Soft spheres

To model a jammed system configurations are created consisting of N bi-
disperse circular particles in two dimensions with Periodic Boundary Condi-
tions (PBC). The bi-disperse systems have a diameter ratio of 1.4. These sys-
tems have been chosen because a two-dimensional mixture of disks with this
size ratio is hard to crystallise1 [67, 55]. Uniformly random initial positions
were used i.e. ideal gas configurations. Starting with completely random po-
sitions ensures that phase space is sampled uniformly [67]. Table 4.1 shows
the parameters used for the simulations carried out for this work. The val-
ues of particle diameters are determined by the size of the box L, the volume
fraction φ and the diameter ratioDratio. The volume fraction is set higher than
the RCP limit which means that there will always be overlaps. This ensures
that the soft-sphere system is jammed.

1A mixture of an equal number of large and small disks were used. The sizes are deter-
mined by the diameter ratio.
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Figure 4.1: Interaction between particles for soft potential. Left: Diagram
showing the distances that determine the value of the potential energy be-
tween two overlapping particles. Right: Plot of the finite-range repulsive
interaction between particles (Equation (4.19)) for α = 2 (harmonic) and
α = 5/2 (Hertzian).

The interaction between particles i and j is given by Equation (4.19)
where di and dj are the diameters of particles i and j and rij is the distance
between their centres (see Figure 4.1).

Vα(rij) =





ε

α

(
1− rij

dij

)α
rij < dij

0 rij ≥ dij

dij =
di + dj

2
(4.19)

where ε determines the energy scale and α determines the strength of the
repulsion between particles. α = 2 is Harmonic and α = 5/2 Hertzian, see
Figure 4.1 for examples. In this work α = 2 has been used as it is more
efficient to compute. In Chapter 2 we learnt that the shape of the potential
does not affect the jamming transition, [67].

Jammed states are found by taking uniformly random particle positions
and minimising the potential energy. Each distinct jammed state corresponds
to a different minimum and each minimum has its own basin of attraction.

4.3.2 Gauss-Lobatto integration

The method chosen to perform the integration of 〈u2〉k (Equation (4.7)) is GL
quadrature. Gaussian quadratures give us the ability to choose not only the
weighting coefficients, as in a Newton-Cotes quadrature, but also the abscis-
sas where the function is evaluated [74]. Examples of Newton-Cotes quadra-
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ture methods are the trapezoid rule and Simpson’s rule. The GL method can
be expressed as

∫ 1

−1

f(x) dx =
2

n(n− 1)
[f(1) + f(−1)] +

n−1∑

i=1

w(xi)f(xi) +Rn (4.20)

where w(xi) is the weighting function

w(xi) =
2

n(n− 1)[Pn−1(xi)]2
(4.21)

and Pn(x) are the Legendre polynomials. The remainder or error of the GL
integration is

Rn =
−n(n− 1)322n−1[(n− 2)!]4

(2n− 1)[(2n− 2)!]3
f (2n−2)(ξ) − 1 < ξ < 1.

(4.22)
For a table of values of xi and w(xi) see [1].

4.3.3 Volume calculation: the procedure

In this section the procedure used to calculate the volumes of the basins of
attraction is presented as a list of steps. This is done so that the reader is
aware of the details of the simulations and the order in which the different
parts are carried out.

1. Initialise particle positions in a box.

2. Minimise to find the corresponding potential energy minimum (jammed
configuration). This minimum will be used throughout the procedure
and the volume of its basin of attraction will be measured.

3. Perform direct (Gaussian, brute force) MC sampling to determine kmax,
〈u2〉kmax and p:

(a) Choose an arbitrary kmax.

(b) Start at the minimum and move the system by choosing a random
Gaussian displacement.

(c) Minimise.
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(d) If the minimisation returns to the same minimum, accept. If not,
reject. If accepted measure the distance u to the minimum.

(e) If not the last step, nDS, return to (b).

(f) If p is too large, reduce k, if p is to small, increase k. Now return
to (b) if k was changed. If not, p is in the correct range (which
is predefined and somewhat arbitrary) and the MC sampling for
kmax is finished, move on to step 4..

4. Run Markov chain MC routine to determine 〈u2〉k=0.

(a) Start at the minimum.

(b) Choose a random particle and give it a random displacement (with
a maximum step size).

(c) Minimise.

(d) Check if the minimum reached is the same as the initial one (This
is done by comparing particle positions. If it is, the move is ac-
cepted, if not it is rejected. Measure the distance u to the mini-
mum.

(e) Go back to (b) and repeat until step nstep.

5. Determine the ks for GL integration (see Section 4.3.2).

6. Run MC for remaining values of k (determined in the previous step by
the GL algorithm) using Parallel Tempering (PT) moves.

(a) Separately for each k, start at the minimum.

(b) For each k, choose a random particle and give it a random dis-
placement (with a maximum step size).

(c) For each k, accept the move with the probability given in Equation
(3.1). If the move is rejected go to (b).

(d) Minimise.

(e) Check if the minimum reached is the same as the initial one (this
is done by comparing particle positions). If it is, the move is
accepted, if not, it is rejected.

(f) Every 100 steps try to swap adjacent (in k) configurations with
the probability given in Equation (3.2).
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(g) Go back to (b) and repeat until step nstep.

7. Perform GL integration (Equation (4.18)) to determine the free energy.

This procedure is repeated to calculate the volumes of basins of attraction
of different minima. Once a certain number of basins have been sampled and
their volumes measured, a histogram of their free energies can be calculated
and analysed. This process is described in Chapter 6.

4.3.4 Other technical details

When using energy minimisation on a PEL to find minima that correspond
to jammed states, it is possible that a certain number of particles, known
as “rattlers” or “floaters” are left unjammed surrounded by cages of stable,
jammed particles. This is possible as long as the structure remains mechan-
ically stable to external forces. These particles are free to move without any
energy cost and are normally removed from simulations [67, 20]. In the study
presented in this Chapter, floaters have been identified by particles with two
contacts or less. This criterion seems fair as the system is composed of sim-
ilarly sized particles and almost certainly a particle with three contacts will
be stable whereas two contacts is almost always a floater and one and zero
contacts is automatically a floater. These particles are not considered when
comparing two minima to test whether a certain point in configuration space
belongs to a basin of attraction.

Energy minimisation is another important aspect of the method described
in this Chapter. It must be performed at every MC step of the simulation
(see section 4.3.3) and needs to be as efficient and accurate as possible. This
means that the algorithm must be able to find the correct minimum within
a very narrow tolerance using the least amount of time. The chosen meth-
ods are Steepest Descent (SD) and Limited memory BFGS (L-BFGS) [53]
which is based on the approach by Broyden, Fletcher, Goldfarb and Shanno
optimised for limited memory so suited for high dimensional problems.

4.4 Results and discussion

In this Section the results of this Chapter are presented. A histogram of basin
free energies, calculated using 1000 minima for 64 particles is shown (Figure
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Figure 4.2: Histogram showing extremely small volumes possibly created by
L-BFGS.

4.2) to highlight the fact that basins with very high free energy, corresponding
to extremely small volumes, are very likely. This is because there is an inher-
ent bias in the probability to fall into a basin given that bigger basins, having
a bigger catchment area, are more likely. Thus the pure fact that these basins
appear at all suggest that there must be many of them. The minimisation al-
gorithm L-BFGS was used for these simulations given its efficiency versus
more traditional methods like SD. As these apparent tiny basins present on
this PEL are really many orders of magnitude smaller than average, a test
was devised to figure out if this was merely an artefact of the minimisation
scheme.

The difference between a projection of a basin of attraction defined by two
different minimisation schemes, L-BFGS and SD is studied in the following
way: A 2N -dimensional basin of attraction of a minimum of the potential
energy of a system of jammed disks interacting via a repulsive, harmonic
potential (described in Section 4.3.1) has been projected onto the Cartesian
coordinates of different particles. In Figure 4.3 a basin of attraction has been
projected onto the two dimensional Cartesian coordinates of two small parti-
cles in a N = 8 particle bi-disperse (50 : 50 small and large particles) system
with diameter ratio Dratio = 1.4 in two dimensions. The left hand column
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Figure 4.3: Difference between basins of attraction of the same minimum
probed with different minimisation algorithms (projected onto two coordi-
nates).

shows the results using SD and the right hand column shows the results ob-
tained with L-BFGS minimisation. Figure 4.4 show the same minimum but
now the basin has been projected onto the coordinates of one of the large
particles.

The differences between basins of attraction found with L-BFGS and SD
can be observed in Figures 4.3 and 4.4. The importance of sampling the
minima “properly” when measuring the volumes of their basins of attraction
becomes apparent. If a random walk is performed and one of the small, dis-
connected regions seen in Figure 4.4 happens to be sampled, this region will
be defined as the entire basin and therefore the conclusion is that the volume
of the basin is merely the volume of this small region. This leads to spurious
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Figure 4.4: Difference between basins of attraction of the same minimum
probed with different minimisation algorithms (projected onto two coordi-
nates).

results that do not correctly represent the physics of the system. This finding
prompted a rigorous study of how different minimisation algorithms define
basins of attraction, the topic of Chapter 5. Another important difference
between the two energy minimisation methods is the number of energy and
force calculations needed to reach a minimum, which determines the time it
takes. This issue is also addressed in Chapter 5.

Another result that has been uncovered during this study is that the con-
vergence of the mean square displacement, u2 is very slow for k = 0, when
the system is free to move away from the minimum (“lattice sites”), with no
penalty. This can be seen in Figure 4.5. Here a steady value is not reached,
even after 105 steps. This is made even worse by the fact that starting two
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Figure 4.5: Mean square displacement as a function of MC steps for k = 0.
Note how different MC runs starting from the same point do not converge to
the same value even after 105 steps.

different MC runs from the same point gives totally different values for 〈u2〉
at k = 0 for the same basin, even after 105 steps. This is illustrated in Figure
4.5 by the blue and green curves. This suggests that long equilibration times
are needed for the sampling at k = 0, adding to the total simulation time to
calculate the basin volumes.

4.5 Conclusions

Basins of attraction defined using L-BFGS are clearly very different from
those defined with SD. This is evident in Figure 4.3 and 4.4 where the same
basin is mapped with both minimisation methods. L-BFGS works near the
centre of the map but produces strange effects at the borders.

The difference between the basins produced with different minimisation
methods led us to use SD as it will always find the “correct” (by definition,
as seen in Chapter 1) basin, at least for infinite precision (infinitely small step
size). The main problem with SD is that a typical MC run takes 25 times
longer than a run using L-BFGS. This is due to the fact that L-BFGS is able
to find a more efficient direction (see Appendix A for a detailed description)
on the potential energy surface and therefore reaches the minimum in fewer
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steps, as discussed in Chapter 5.
In conclusion, L-BFGS affects the morphology of the basins of attraction

and therefore their volumes. The equilibration of the MC sampling is also
affected by L-BFGS because the system becomes trapped in regions of small
volume “created” by L-BFGS (not present when using SD). The volume is
not sampled properly as the system cannot explore the basins uniformly. This
is a possible explanation for the presence of basins with extremely small vol-
umes (∼ 50 orders of magnitude smaller than the average volume) as shown
in the free energy histogram presented in Figure 4.2.

With respect to the problem of an extremely erratic mean square displace-
ment at k = 0, shown in Figure 4.5, a novel method will be described in
Chapter 6 that reduces (to some extent) the equilibration time needed to con-
verge to a steady value of 〈u2〉k=0.

The failure of the L-BFGS method to generate compact basins of attrac-
tion makes the method less attractive for the present project. The difference
found between the basins of attraction defined by the two minimisation al-
gorithms tested in this Chapter motivated us to perform a more systematic,
quantitative study of the differences between basins defined by various min-
imisers. This is the topic of the next Chapter where we test some state-of-the-
art algorithms against SD to see how they perform both in terms of efficiency
and in terms of the definition of the basins.
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Chapter 5

Defining basins with different
minimisers

Energy minimisation is an important aspect of this work as it must be per-
formed at every Monte Carlo (MC) step of the simulation to check if a certain
point in configuration space belongs to a particular basin of attraction (the de-
tails of the algorithm are described in Section 4.3.3). Therefore it needs to
be as efficient and accurate as possible. This means that the algorithm must
be able to find the correct minimum within a very narrow tolerance using the
least amount of time.

The motivation for looking at the way different minimisation algorithms
define basins of attraction of minima comes from the first preliminary results
of this project. As has been seen in Section 4.4, the method used to determine
the configurational entropy relies on measuring volumes of basins of attrac-
tion on the Potential Energy Landscape (PEL). When these volumes were
first measured there were some extremely small volumes, orders of mag-
nitude smaller than the next smallest ones observed. This finding seemed
paradoxical: volumes that are extremely small (often by more than 20 orders
of magnitude than the most common volumes) are extremely unlikely to be
sampled, unless there are huge numbers of them (and there is certainly no a

priori reason to suspect that). The alternative explanation is that the observa-
tion of small basin volumes is an artefact of the minimisation algorithm used.
This question led to the visual examination of the boundaries of a basin of at-
traction when a particle is displaced from its position at the potential energy
minimum.
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A study of the basins of attraction for potential energy minima defined
by different minimisation algorithms for an atomic system is reported in this
chapter. The findings indicate that whereas some minimisation algorithms
produce connected basins, others produce basins with complex boundaries or
basins consisting of disconnected parts. Such basins deviate from the “cor-
rect” basin of attraction defined by Steepest Descent (SD) pathways, and the
differences can be controlled to some extent by adjustment of the maximum
step size. The choice of the most convenient minimisation algorithm depends
on the problem at hand. It has been shown that while Limited memory BFGS
(L-BFGS) is the fastest minimiser, the Fast Inertial Relaxation Engine (FIRE)
algorithm is also quite fast, and can lead to less fragmented basins of attrac-
tion.

5.1 Introduction

Optimisation problems are ubiquitous in the physical sciences and beyond. In
the simplest case optimisation refers to the search for the minimum or maxi-
mum values of an objective function. Global optimisation involves searching
for the highest maximum or lowest minimum in a certain domain. In con-
trast, local optimisation procedures identify the first minimum or maximum
that is found by a given algorithm when starting from an arbitrary point in
parameter space.

In the study of energy landscapes, the properties of stationary points and
the connections between them are of central importance [99]. These station-
ary points represent key features of the landscape. In chemical reactions,
saddle points are geometric transition states [65] along the reaction coordi-
nate. Glassy systems are trapped in meta-stable local minima [43, 19, 18]
and, similarly, jammed states can also be viewed as local potential energy
minima. The study of these minima and the pathways connecting them can
be carried out using geometry optimisation techniques [99, 100], and local
minimisation is the focus of the current Chapter.

When faced with the task of numerically optimising a smooth function
there are many algorithms from which to choose. Which algorithm is best
suited for the purpose depends on factors such as speed, memory usage and
ease of implementation. All algorithms follow a general procedure starting
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with the user supplying an initial point, which can be an informed guess or
an arbitrary point in parameter space. The algorithm generates a sequence of
iterates that terminates when a solution is found within a predefined accuracy,
such as when the gradient is near zero, or when the value of the function
stops changing. Recent work has shown how convergence criteria can be
chosen according to a certification procedure [60]. Different algorithms have
different ways of proceeding from one iteration to the next. The formulations
considered here involve the value of the function that is being optimised, its
derivatives, and the results of previous iterations.

In general, two different algorithms can converge to different minima
starting from the same initial conditions. In this work, the interest lies in
identifying the configuration space that leads to a particular minimum as a
function of the optimisation algorithm. This connection is important for ap-
plications such as calculation of thermodynamic properties using the super-
position approach, where the global partition function is written as a sum over
contributions of local minima [97, 22, 86] and the method used in Chapter 4
of this work. In this context, the SD algorithm occupies a unique position,
since it defines basins of attraction [62] for local minima that must be com-
pact, in the sense that any point in the basin (e.g. the minimum) must be
connected to any other point in that basin (e.g. the starting position) through
a path that is completely inside the basin. This result follows because SD
paths are defined using a linear first-order differential equation, for which the
uniqueness theorem applies [71]. Importantly, when the SD is started from
any point on a pre-existing trajectory that was generated by SD, then the new
SD path will follow the pre-existing path. This means that any point on a tra-
jectory between an arbitrary origin inside the basin and the minimum of that
basin necessarily belongs to the basin. In other words, SD generates com-
pact basins. However, SD minimisation is very inefficient compared to more
sophisticated algorithms, which are normally preferable. The latter methods
generally employ non-linear equations to determine the steps, and the corre-
sponding basins of attraction can exhibit complex boundaries [96, 98] and,
more to the point, need not be compact. In contrast, the basins for other algo-
rithms can exhibit re-entrant, interpenetrating boundaries [96, 98]. For appli-
cations such as basin-hopping global optimisation [101, 51] this structure is
probably unimportant. However, the simplicity of the boundaries associated
with SD paths is relevant if we are interested in partitioning the configuration
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space, for example, when measuring the size of basins of attraction using
the technique described in Chapter 4. In the present work, the basins of at-
traction defined by SD are regarded as a reference to which other methods
will be compared. The purpose of this Chapter is to make these compar-
isons rigorously and to provide criteria for choosing the most appropriate and
convenient minimisation algorithm for a given problem.

5.2 Methods

The minimisation algorithms considered here are SD, L-BFGS, FIRE, Con-
jugate Gradient (CG), and Broyden, Fletcher, Goldfarb and Shanno (BFGS)
(for a detailed description of different minimisation techniques see [66]). The
L-BFGS algorithm is tested using two different methods to determine the
length of the steps. In the first approach, a line search routine is used to
choose the step size. In the second approach, the step size guess of the L-
BFGS algorithm is accepted subject to a maximum step size and the condition
that the energy does not rise. This is the default procedure in the global opti-
misation program GMIN [102] and the OPTIM program for locating transition
states and analysing pathways [94]. We have only compared gradient-based
minimisers in the present work, because they represent the most efficient class
of algorithms.

SD, sometimes referred to as gradient descent, uses the gradient as the
search direction (this is the steepest direction). The step size can be chosen
using a line search routine. In this Chapter, a fixed step size (∆ = 0.005 in
reduced units) is used for all of the SD calculations. It is worth noting that the
definition of basins of attraction in Section 5.1 applies to SD minimisation in
the limit of infinitesimal step size.

BFGS, named after its creators Broyden [12], Fletcher [28], Goldfarb
[33], and Shanno [79] is a quasi-Newtonian optimisation method, which uses
an approximate Hessian to determine the search direction. The approximate
Hessian is built up iteratively from the history of steps and gradient evalua-
tions. The implementation used in this Chapter is from SciPy [40] and uses
a line search to determine a step size. The line search used is the Minpack2
method DCSRCH [64], which attempts to find a step size that satisfies the
Wolfe conditions (discussed briefly in Appendix A), ensuring a certain de-
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crease in the objective function. The maximum step size is fixed to be 50

times the initial guess returned by the BFGS algorithm.

L-BFGS is a limited memory version of the BFGS algorithm described
above and was designed for large-scale problems, where storing the Hessian
would be impractical. Rather than saving the full approximate Hessian in
memory it only stores a history of M previous values of the function and
its gradient with which it computes an approximation to the inverse diagonal
components of the Hessian [53]. For a system with N variables, O(N2)

memory and operations are needed when using BFGS, while L-BFGS scales
as O(MN), which is significantly smaller if M � N , and is linear in N .
Two versions of L-BFGS were used in this Chapter. The first is from the
SciPy [40] optimisation library ”L-BFGS-B” [113, 14, 63]. This routine
uses the same DCSRCH line search as the BFGS implementation, but with
slightly different input parameters. For example, the maximum step size is
adaptively updated. The second L-BFGS implementation is included in the
GMIN [102] and OPTIM [94] software packages and adapted from Liu and
Nocedal [53]. In this version there is no line search. The step size returned by
the L-BFGS algorithm is accepted subject to a maximum step size constraint
and the condition that the energy does not rise. In both of these versions, the
diagonal components of the inverse Hessian are initially set to unity.

The fast inertial relaxation engine, known as FIRE, is a minimisation al-
gorithm based on ideas from molecular dynamics, with an extra velocity term
and adaptive time step [9]. Stated simply, the system slides down the poten-
tial energy surface gathering “momentum” until the direction of the gradient
changes, at which point it stops, resets, and resumes sliding.

The CG method uses information about previous values of the gradient to
determine a conjugate search direction [37]. It only stores the previous search
direction. The implementation considered here is from SciPy [40], and the
step size is determined using the same line search as the BFGS routine.

A detailed description of the optimisation algorithms mentioned above is
given in Appendix A along with a modification to the FIRE algorithm that is
able to minimise an inter-molecular potential with hard cores.

In order to test the accuracy of the minimisers, a three-particle system
in which the inter-particle interactions are given by a Lennard-Jones (LJ)
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potential plus a three-body Axilrod–Teller term [49, 6] is used:

V = 4ε
∑

i<j

[(
σ

rij

)12

−
(
σ

rij

)6
]

+

Z
∑

i<j<k

[
1 + 3 cos θ1 cos θ2 cos θ3

(rijrikrjk)3

]
(5.1)

Here θ1, θ2 and θ3 are the internal angles of the triangle formed by particles
i, j, k; rij is the distance between particles i and j; and Z is the strength of
the three-body term. This three-particle system is chosen because, for Z > 0,
it has four local minima. It is practical to choose a small system with only
a few degrees of freedom in order to visualise the basins of attraction in two
dimensions. In one of the minima, the atoms are arranged in an equilateral
triangle and the other three linear minima are related by permutations of the
atoms. Reduced units with one parameter are used, as in [95, 21, 96, 98]:

Z∗ =
Zσ9

ε
. (5.2)

Without loss of generality, we can define axes such that the three parti-
cles are in the xy plane with one particle at the origin, another along the x
axis, and the third in the upper half plane. Now only the three internal co-
ordinates rij are needed to describe the system. A projection onto the page
was chosen to visualise the basins of attraction in such a way that the basins
of the four minima are present in the plane [96, 98]. In internal coordinates,
the projection plane is chosen to be perpendicular to the vector ~n = (1, 1, 1)

at a distance
√

3α from the origin. Points in the plane have the property
r12+r23+r13 = 3α. An arbitrary vector can be defined such that ~v = (0, 0, 1)

and the plane is spanned by the unit vectors

x̂2 =
~n× ~v
|~n× ~v| , x̂1 =

~n× ~x2

|~n× ~x2|
. (5.3)

The projection of an arbitrary vector ~a = (r12, r23, r13) onto the plane is
~ap = (~a · x̂1,~a · x̂2). The equilateral triangle minimum is at the origin in terms
of the projected coordinates x1 and x2, as shown in Figure 5.1. For more
details regarding the projection see [96, 98].

The following results were produced using the projection described above
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Figure 5.1: Projected plane in its own coordinate system. Points on this
plane were used as the initial configurations for the minimisations. Examples
of starting configurations are shown for several points marked by “×”. The
plot is coloured by the energy of the starting configuration.

with α =
√

3Re, where Re = 21/6σ is the LJ equilibrium separation, and
Z∗ = 2. For this choice there is a linear minimum with energy −2.219 ε

in addition to the equilateral triangle with energy −2.185 ε. There are three
distinct permutations of the linear minimum, since any of the three atoms can
reside in the central position. A 700 × 700 grid of initial points was taken
with x1 and x2 between −α and α. All of the minimisations were terminated
when the root mean square (RMS) gradient was smaller than 10−3 reduced
units. Under some conditions, such geometry optimisations could appear
to converge to a saddle point [91], so the geometries were also checked, as
well as the RMS gradient. As in [96, 98], each pixel in the resulting plots
corresponds to a different initial configuration and is coloured according to
the minimum that is found after optimisation.

The efficiency of each algorithm was also tested. Here there is no need
to be constrained to small systems by the need for visualisation, so a more
interesting system size was chosen, namely 38 LJ atoms. The average number
of function calls needed to get to the nearest local minimum from 1, 000

random starting configurations was measured. The number of function calls
is a fairer test than wall clock time because for most real word calculations
computing the energy and gradient will be the time bottleneck and it avoids
measuring differences in implementation efficiency. The results are reported
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Steepest descent, ∆ = 0.005
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Figure 5.2: The panel on the right shows the same (x1, x2) plane as Figure
5.1, which defines the starting configuration of the three particles that inter-
act via the LJ potential plus a three-body Axilrod-Teller term, as described
in Section 5.2. The plane is coloured according to the final configuration af-
ter a SD minimisation. The colour coding is displayed in the panel on the
left. Black corresponds to the atoms in the triangle configuration, while blue,
orange, and yellow correspond to the three possible linear configurations. A
failed quench means that the final coordinates are not close enough (accord-
ing to a certain tolerance) to the equilateral triangle or linear configurations.
∆ is the maximum step size. This figure, corresponding to the SD results,
will serve as our reference for comparing the other minimisers.

in Table 5.2.

5.3 Results and Discussion

Figure 5.2 shows the colour scheme used to identify the results of local min-
imisation in the subsequent figures. The white region of the Figure corre-
sponds to forbidden geometry and refers to the points in the plane that corre-
spond to initial geometries that do not satisfy the triangle inequality or have
excessively high energy. Failed quench means that the quenched coordinates
are not close enough (according to a certain tolerance) to the equilateral trian-
gle or linear configurations, that is, the algorithm failed to reach a minimum
[91].

The figures that follow show the basins of attraction of the four minima
described above determined using the different minimisation techniques and
parameters, as described in Section 5.2. As expected, SD is the slowest (see
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Table 5.1), most robust minimiser, and it produces well-defined basin bound-
aries (Figure 5.2). This result holds as long as the step size is kept relatively
small. Smaller step sizes are always more robust when using SD. The usual
definition for the basin of attraction in the context of energy landscapes is the
set of points in configuration space that converge to a certain minimum for a
SD quench [62, 99]. Hence this approach produces a useful reference against
which to compare the other algorithms.

L-BFGS is the fastest algorithm tested here (see Table 5.2), although the
basin boundaries are not always well defined (see Figure 5.3 and Figure 5.6).
In the case of L-BFGS without line search it is clear that reducing the step
size does not necessarily improve the definition of the basin boundaries. In
this case, the resolution of the basin boundaries improves with increasing
maximum step size until it reaches an optimum length, beyond which the
resolution decreases. This effect is clearly visible in Table 5.1 and Figure 5.3.
Removing the line search does not improve the resolution of the boundaries,
but it does reduce the number of failed quenches. The effect of changing the
parameterM , the number of previous values of the function and gradient used
to build the approximate Hessian was tested. Increasing M between 1 and 10
makes the resolution of the basins worse (see Figure 5.3) but produces faster
convergence (see Table 5.1). This result arises due to the fact that increasing
M increases the degree of non-linearity of the algorithm.

Several values of the maximum step size for FIRE were tested. For a
small value of the step size the boundaries of the basins of attraction are well
defined and similar to the results for SD. The method only ends up in the
wrong basin when starting from points that lie very close to the boundaries
between two basins (Figure 5.4, top left). Using a larger value of the step size
leads to many artefacts and failed quenches, which are evident in the bottom
half of Figure 5.4.

Some other popular algorithms were also tested, namely, CG (Figure 5.5)
and BFGS (Figure 5.6). The SciPy implementation of these methods uses
the same line search routine to determine the step size at each iteration, and
both of them produce similar ill-defined basin boundaries. In both cases, the
boundary artefacts are caused by the line search returning a step size that is
large enough to move into a different basin. Furthermore, the failed quenches
at the edges are due to step sizes sufficiently large that particles end up so far
apart that the gradient is small enough to satisfy the termination condition.

55



5.3. Results and Discussion

M = 1, ∆ = 0.05 M = 1, ∆ = 0.1 M = 1, ∆ = 0.2

M = 4, ∆ = 0.05 M = 4, ∆ = 0.1 M = 4, ∆ = 0.2

M = 10, ∆ = 0.05 M = 10, ∆ = 0.1 M = 10, ∆ = 0.2

Figure 5.3: Results for the L-BFGS algorithm for different values of M (the
number of previous steps used to construct the next step) and the maximum
step size ∆. See Figure 5.2 for a detailed explanation of the figure.
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FIRE, ∆ = 0.1 FIRE, ∆ = 0.25

FIRE, ∆ = 0.5

Figure 5.4: Results for the FIRE algorithm for several values of the maximum
step size ∆. The bottom right panel is a magnification of a portion of the
bottom left image. See Figure 5.2 for a detailed explanation of the figure.
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Conjugate gradient, with line search (SciPy)

Figure 5.5: Results for the CG algorithm with line search (SciPy implemen-
tation) are shown in the left panel. The right panel shows a magnification of
the left panel. See Figure 5.2 for a detailed explanation of the figure.

The line search algorithm is not entirely responsible for the imprecise basin
boundaries. The initial guess for the step size passed to the line search by
the CG and BFGS algorithms is often large enough to step to the next basin
by itself. To check this effect, this line search routine was also tested with
the L-BFGS algorithm. The results (not shown for brevity) produce quite
reasonable basin boundaries with most of the above artefacts absent. An
interesting question is why the L-BFGS algorithm produces an accurate guess
for the step size while BFGS tends to overestimate the step size. The answer,
most likely, is that the initial Hessian in L-BFGS is scaled [53], while in
BFGS it is fixed to unity.

The effect of maximum step size on the conjugate gradient and BFGS
algorithms was tested; however the SciPy routines do not accept parame-
ters for adjusting the maximum step size. This adjustment was introduced by
modifying the source code of the line search routine used in each case. With
these modifications and a maximum step size of ∆ = 0.1, the CG routine pro-
duced reasonably accurate basin boundaries. The penalty for this improved
precision was roughly 50% more function evaluations. No significant im-
provements for the BFGS routine were obtained.

The basins of attraction determined by some of the methods mentioned
above (in particular FIRE with a large step size, CG and BFGS) display com-
plex structures, as shown in Figure 5.4 (bottom right) and Figure 5.5 (right).
Here it is clear that the basin boundaries still have structure, even as the length
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L-BFGS, with line search (SciPy) BFGS, with line search (SciPy)

Figure 5.6: Results for L-BFGS and BFGS with line search (SciPy imple-
mentations). See Figure 5.2 for a detailed explanation of the figure.

scale is reduced. As noted in previous work, the structure may be fractal
[34, 96, 98], although this possibility was not investigated in detail.

The difference between the outcomes of the basin mapping for different
minimisers has been quantified by counting the number of starting structures
for which a basin different from the one obtained using SD is found, as shown
in Table 5.1. This difference corresponds to the number of different structures
(from a total of 170, 607 valid starting structures) when comparing the mini-
mum produced by the corresponding algorithm with the minimum produced
by SD (Figure 5.2).

Table 5.2 reports the performance of the algorithms tested here in terms
of the average number of times that the energy and the force were evaluated
〈FCs〉. The average is taken over a sample of 1, 000 random initial states for
a 38-particle LJ cluster. The number of evaluations ultimately determines the
time it takes to find a minimum, as this is generally the most time consuming
part of any minimisation algorithm. The results show that that L-BFGS is the
fastest and FIRE is about three to four times slower, while SD is orders of
magnitude slower, as expected.

5.4 Conclusions

In this Chapter, the basins of attraction of a simple system have been mapped
onto a plane to compare a number of minimisation algorithms. We are able
to compare the different approaches both visually and quantitatively, building
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Algorithm Parameters Err (%)
L-BFGS M = 1, ∆ = 0.05 6.41
(without LS) M = 1, ∆ = 0.1 6.46

M = 1, ∆ = 0.2 7.16
M = 4, ∆ = 0.05 14.75
M = 4, ∆ = 0.1 10.84
M = 4, ∆ = 0.2 10.13
M = 10, ∆ = 0.05 16.78
M = 10, ∆ = 0.1 12.72
M = 10, ∆ = 0.2 14.81

L-BFGS
(SciPy, with LS) M = 10 12.79
FIRE ∆ = 0.1 3.68

∆ = 0.25 4.53
∆ = 0.5 11.23

BFGS
(SciPy, with LS) 23.45
CG
(SciPy, with LS) 22.93
SD ∆ = 0.001 0.00

Table 5.1: Table showing the quantitative analysis of the basins of attraction
defined by different minimisers for the three-body system. The third column,
Err, is the percentage of starting configurations that minimised to a different
minimum compared to the SD method. ∆ is the maximum step size and M
is the length of the history used by L-BFGS, as defined in Section 5.2.
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Algorithm Parameters 〈FCs〉
L-BFGS M = 1, ∆ = 0.1 273
(without LS) M = 4, ∆ = 0.05 369

M = 4, ∆ = 0.1 241
M = 4, ∆ = 0.2 225
M = 10, ∆ = 0.1 228
M = 20, ∆ = 0.1 216

L-BFGS
(SciPy, with LS) M = 10 215
FIRE ∆ = 0.1 822

∆ = 0.5 3,185
BFGS
(SciPy, with LS) 1,233
CG
(SciPy, with LS) 837
SD ∆ = 0.001 31,672

Table 5.2: Benchmarks for the algorithms tested in this Chapter in terms of
the average number of function calls 〈FCs〉 needed to minimise a 38-particle
LJ system from a random configuration. The stopping condition is that the
maximum force on any atom is less than 0.01 in reduced units.

upon previous work, where the focus was mainly on transition state searches
[96, 98]. Some of the more complex algorithms (CG, BFGS, L-BFGS and
FIRE) depending on the choice of parameters produce basins that consist of
disconnected parts. Such basins deviate from the “correct” basin of attraction
defined by SD pathways, especially at the basin boundaries, where complex
interpenetrating patterns can appear. These patterns generally do not disap-
pear as the length scale is reduced, as can be seen in Figure 5.4 and Figure
5.5, making the basins ill-defined. In particular, overestimates for the step
size are primarily responsible for the complex basin boundaries. Imposing a
maximum step size can mitigate this problem for some algorithms, at the cost
of slightly higher computational effort and an additional, system dependent,
parameter. An appropriate value for the maximum step size can be chosen
based on length scales in the system: for atomic systems, a good choice is
about one tenth of the inter-atomic pair equilibrium distance.

In conclusion, if assignment of a starting configuration to the basin of at-
traction defined by SD is important, then FIRE may be the most convenient
algorithm, due to its speed and precision, provided that an acceptable max-
imum step size is chosen. If finding a minimum quickly is more important,
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then L-BFGS is clearly the best choice.
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Chapter 6

Calculating the entropy

In this Chapter, a numerical approach is used to compute the number of ways
in which N particles can pack into a given volume V . This technique ex-
tends the method of Xu et al. [110] in such a way that it can be applied to
much larger systems than before (over 100 particles). Many of the caveats
of this method, discovered in Section 4.5, are addressed. Using this novel
approach, the system size dependence of the number of distinct packings of
a system of poly-disperse soft disks is studied in a regime where direct enu-
meration would fail completely. We show that, even though granular particles
are distinguishable, we have to deal with the Gibbs paradox. The simulations
presented here provide strong evidence that the packing entropy, when prop-
erly defined, is extensive. This extensivity has often been assumed but, thus
far, direct evidence was lacking. We argue that, as different packings are cre-
ated with unequal probabilities, the packing entropy should not be expressed
as the logarithm of the number of packings but as S = −∑i pi ln pi. We
show that we can compute this quantity reliably and that, it too, is extensive.

We focus on the question of is it possible to define and compute a mean-
ingful ‘granular entropy’ that is extensive? We note that the concept of a
granular entropy was introduced over 20 years ago by Edwards [24] as the
basic concept in the ‘thermodynamic’ theory of powders. Edwards suggested
that all jammed states at a given packing fraction are equally likely and that
the logarithm of the number of packings provides a definition of the granular
entropy. We note that Edwards hypothesis includes several ingredients: 1)
the assumption that all packings occur with equal frequency and 2) the as-
sumption that the granular entropy is extensive. Over the years, the validity
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of Edwards’ hypothesis has been hotly debated (this has been discussed in
Chapter 2), but one thing has, to our knowledge, never been done: computing
it explicitly for an off-lattice model, and for a number of particles that is large
enough to study the system-size dependence of the granular entropy.

As previously mentioned, for relatively simple systems, the number of
jammed configurations has been estimated. This was done for the Kob-
Andersen lattice model [7]. For off-lattice models, the calculation is more
challenging: estimates of the number of distinct minima in the energy land-
scape of very small systems of soft particles have been obtained by direct
enumeration [109, 110] as seen in previous Chapters. However, such a direct
enumeration becomes intractable for larger systems and, in addition, it suf-
fers from an inherent sampling bias that privileges minima with large basins
of attraction. If the number of packings can be counted, a second question
can be addressed: is the granular entropy (i.e. the logarithm of the number of
packings) extensive (i.e. if ln Ω(N, φ) ∼ N )?

In this Chapter, an estimate of the entropy of quasi-rigid disks over a range
of system sizes is presented. To do so, the method introduced in Chapter 4
has been extended and modified in order to get an estimate of both Σ(φ) and
the probability to be in the basin of any given minimum for a wide range
of system sizes. In the thermodynamic limit, this method allows us to get an
estimate of both ln Ω(N, φ) and the probability to be in the basin of any given
minimum. Our main conclusions are: 1) the probability to observe different
packings is not a constant 2) we can nevertheless define a granular entropy
that is extensive, but it is not simply −∑i pi ln pi.

6.1 Details of the model

In order to compute the number of distinct minima Ω(N, φ) on the energy
landscape of a system of N particles at packing fraction φ, the techniques
described in Chapter 4 are used with modifications put in place to improve
the issues mentioned in Section 4.5.

The mean volume 〈v〉(N, φ) of basins of attraction of minima on this
energy landscape can be defined via:

〈v〉(N, φ) ≡ 1

Ω(N, φ)

Ω(N,φ)∑

i=1

vi =
Vacc(N, φ)

Ω(N, φ)
, (6.1)
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where vi is the volume of basin i ∈ [1,Ω(N, φ)]. The basins tile the ac-
cessible configuration space of the hard-core parent system. This accessible
phase-space volume Vacc(N, φ) is, except for constant factors, equal to the
partition function of the hard-core fluid. This volume can be computed if the
free energy of the hard-core fluid can be determined. By inverting Equation
(6.1), we obtain Ω(N, φ) = Vacc(N, φ)/〈v〉(N, φ). Hence Ω(N, φ) can be es-
timated if we know 〈v〉(N, φ). The important point is that the latter average
can be obtained by sampling a small subset of all possible jammed config-
urations. In practice, we first generate Nf well-equilibrated configurations
of the hard-core fluid and perform a Stillinger quench on each of them. As
explained in [110], the volume vi(N, φ) of a basin i can be calculated using
thermodynamic integration from a harmonic reference state

The modifications made to the algorithm described in Chapter 4 include:

• The use of the Fast Inertial Relaxation Engine (FIRE) minimisation
algorithm, based on the results of Chapter 5.

• A new criterion to correctly find floater particles in the system, pre-
sented in Section 6.1.2.

• Polydispersity to further reduce the symmetries of minima.

• New interaction potential with Hard Sphere (HS) cores. This improves
the sampling of the mean square displacement u2 for k = 0, described
in Section 6.1.1.

• Initial conditions now given by an equilibrated HS fluid. More “physi-
cal” configurations. Closer to granular media.

The parameters used in the simulations performed in this Chapter are
shown in Table 6.1.

6.1.1 Hard cores with strongly repulsive shell

In this section we describe the interaction potential devised to improve the
equilibration times for sampling the mean square displacement within the
basins of attraction.

The Weeks-Chandler-Andersen (WCA) potential [104] is a short-range
repulsive potential that results from truncating the Lennard-Jones (LJ) poten-
tial at the minimum (21/6σ) and shifting by the depth of the well, ε.
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Parameter Symbol Values
Dimension of space d 2
Number of particles N 8→ 128
Volume/packing fraction φ 0.86→ 0.9
Size of square box (volume1/d) L 1
Polydispersity (disk area) δ 0.2
Total number of steps (MC and PT) nstep 105 → 105

Number of equilibration steps (MC and PT) neq 104 → 105

Number of steps (Direct sampling) nDS 104 → 105

Gradient tolerance (minimisation) EPS 10−7

Position tolerance (comparing minima) rtol 10−5/
√
N

Shell thickness (HS+WCA potential) dSij/d
HD
ij 1.12, 1.4

Table 6.1: Parameters used in simulations.

A modified version of the WCA potential is used here. A HS core is
included and therefore the WCA potential is shifted so that it diverges at the
distance between the HS cores:

VHS+WCA(rij) =





∞ rij ≤ dHSij

4ε

[(
σij

rij−dHD
ij

)12

−
(

σij
rij−dHD

ij

)6
]

+ ε dHD
ij < rij < dSij

0 rij ≥ dSij
(6.2)

where dSij = dHD
ij + 21/6σij and σij = (25/6/5)dHD

ij . The distances are shown
in Figure 6.1 (left). For poly-disperse systems the width of the potential is
different for each pair of particles. The shape of this potential is shown in
Figure 6.1 (right).

We call this potential Hard Sphere core plus Weeks-Chandler-Andersen
(HS+WCA). The initial conditions correspond to a configuration taken from
an equilibrated (to ensure uniform sampling of configuration space) hard
sphere fluid at the density of the hard sphere cores of the particles.

The volumes (areas) of the particles in the poly-disperse systems were
taken from a Gaussian distribution with standard deviation 0.2 and mean 1.0

and then re-scaled in order to obtain the correct volume fraction φ. The use
of poly-disperse particles not only makes crystallisation less likely it also
removes some of the symmetry present in the system meaning that no two
basins have exactly the same structure and energy as any permutation of two
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Figure 6.1: Interaction between particles for HS+WCA potential. Left: Di-
agram showing the distances that determine the value of the potential en-
ergy between two overlapping particles. Right: Plot of the potential energy
VHS+WCA(rij) as a function of the distance between particles i and j, rij in
Equation (6.2).

Figure 6.2: 2D Poly-disperse 64 particle system with φHD = 0.45 and
φHS+WCA = 0.88. Left: Initial HS fluid. Middle: Initial HS fluid plus WCA
shell. Right: Potential energy minimum.

or more particles will lead to a different structure.

It is important to note that the system is only allowed to sample configu-
rations that belong to the HS fluid defined by the hard cores. This means that
there can never be a move that would make the hard cores overlap. This is
true during all of the Monte Carlo (MC) sampling and the minimisation algo-
rithm. The FIRE algorithm has been modified to accommodate this situation
because the original method takes steps that cause an increase in potential
energy and ultimately an overlap of the HS cores (for implementation details
see Section A.5.2). The initial conditions and a snapshot corresponding to a
potential-energy minimum can be seen in Figure 6.2.
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6.1. Details of the model

6.1.2 Floaters or rattlers

Once a jammed configuration is found, it is possible that some of the parti-
cles do not form part of the rigid structure and are free to move within a cage
defined by neighbouring particles. These free particles are called floaters

or rattlers: they can move (over short distances) without energy cost. In a
perfectly minimised system, this definition is equivalent to having no over-
lapping contact particles. As the minimisations performed are not perfect
in the sense that there are always some overlaps left even though they are
very small, a more relevant definition for floaters has been devised that is
an improvement over the method that relies only on counting the number of
contacts, described in Section 4.3.4.

Counting the number of contacts or overlaps a particle has is not good
enough if the system is not mono-disperse because all of the contacts could
be on a single hemisphere of the particle. this means that the particle is free
to move in the direction opposing that hemisphere.

An algorithm has been developed that is based on the sum of the angles
between successive contacts and is able to correctly identify floaters in 2-
dimensional systems.

For each particle in the system the first step is to identify its contacts and
create a list of the particle numbers of these contacts. Starting from the first
contact in this list, which is called contact A, the nearest contact is found and
named B. This chooses a direction that is defined by the sign of

−→
OA × −−→OB,

see Figure 6.3. All of the angles between successive contacts are measured
and added together:

∑
θ = arccos

( −→
OA · −−→OB
|−→OA||−−→OB|

)
+ · · ·+ arccos

( −−→
OX · −→OA
|−−→OX||−→OA|

)
(6.3)

where X is the last contact. If all of the contacts are on the same hemisphere
then one of the angles will be larger than π but the dot product will always
measure the interior angle between two vectors such that

∑
θ < 2π when the

particle is a floater and
∑
θ = 2π when the particle is not a floater. These

situations can be seen in Figure 6.3, on the left a floater with all contacts
on the same hemisphere. Clearly the particle is free to move in the direc-
tion of the arrow and its overlaps are determined by the stopping criteria of
the energy minimisation algorithm. On the right side of Figure 6.3 we can
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Figure 6.3: How to detect floaters. Left: Floater with all contacts on the same
hemisphere, free to move on the direction of the arrow. Right: Stable, trapped
particle with contacts on both hemispheres.

see a non-floater particle that is trapped by its contacts which are on both
hemispheres.

6.2 Results

In this section the results of this Chapter are presented. The behaviour of the
square displacement and its mean value are used to implement the thermo-
dynamic integration method using the Gauss-Lobatto (GL) quadrature. Later
the basin volume distributions are discussed and the resulting entropy is re-
vealed.

6.2.1 Behaviour of the mean square displacement

The instantaneous square displacement as a function of steps is presented in
Figure 6.4. The curves, from top to bottom correspond to k = 0, 1154.08,
6070.63, 22842.44, 62103.68 (for N = 32, φ = 0.9, δ = 0.2, d = 2,
HS+WCA potential with dSij/d

HD
ij = 1.12). This is a log-log plot. As we

can see the higher the value of k, the lower the displacement.

The problem of slow convergence of the mean square displacement for
k = 0, seen in Figure 4.5 and discussed in Section 4.4, has improved drasti-
cally by using the new HS+WCA potential described in Section 6.1.1. This
can be seen by looking at the square displacement u2 as a function of steps for
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Figure 6.4: Log-log plot of u2 vs steps for different values of k for the same
minimum. From top to bottom, k = 0, 1154.08, 6070.63, 22842.44, 62103.68
(N = 32, φ = 0.9, δ = 0.2, d = 2, HS+WCA potential with dSij/d

HD
ij = 1.12).

different MC runs starting from the same initial point, in this case the mini-
mum. If the value of u2 equilibrates then each different run should converge
to the same average value. We have studied the equilibration of u2 at k = 0

for 10 independent MC runs all sampling the basin of attraction of the same
minimum. This procedure was carried out for both of the potentials in ques-
tion, namely the soft harmonic interactions described in Section 4.3.1 and the
HS+WCA potential described in Section 6.1.1. Table 6.2 shows the average
〈u2〉k=0 for both systems and the respective deviation from the mean taken
over all 10 runs. Figure 6.5 shows the evolution of u2

k=0 as a function of MC
steps. Although on average the relative deviation from the mean is similar for
both potentials, we can see that, in the case of the soft potential, some of the
runs get trapped in particular branches of the basin and never leave (at least
not during the simulation time, for example the two green curves and the yel-
low curve in the top plot in Figure 6.5). This means that for different runs,
even long ones, we could find drastically different values of the mean square
displacement. In the case of the HS+WCA potential the square displacement
fluctuates around a universal average value and even if these fluctuations are
large, the average tends towards the same value.
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Figure 6.5: Square displacement u2 as a function of MC steps for k = 0 for
10 different runs starting from the same minimum. The average values are
shown in Table 6.2. The upper panel shows the results for the soft harmonic
potential and the lower panel shows results for the HS+WCA potential.
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HS+WCA Deviation Soft Deviation
0.0535 0.00123 0.419 0.07144
0.0406 0.01168 0.518 0.02748
0.0455 0.00671 0.458 0.03244
0.0598 0.00754 0.539 0.04918
0.0609 0.00864 0.593 0.10320
0.0648 0.01252 0.327 0.16326
0.0419 0.01029 0.524 0.03423
0.0556 0.00332 0.546 0.05596
0.0419 0.01032 0.570 0.08025
0.0580 0.00575 0.407 0.08315

Table 6.2: Comparison of the mean square displacement for k = 0, 〈u2〉k=0,
for 10 different runs starting from the same minimum for the HS+WCA sys-
tem and the soft harmonic system for N = 64, φ = 0.88, δ = 0.2, and
dSij/d

HD
ij = 1.12 for the HS+WCA potential. The deviation from the mean

value is also shown.

6.2.2 Behaviour of 〈u2〉 vs k

In this section the results for the mean square displacement are presented,
〈u2〉, calculated from the MC simulations. In Figure 6.6 we can see the points
calculated from simulations (red points), the harmonic approximation (blue
curve) and the approximation using κ, the effective spring constant at k = 0

(Equation (4.16)) (green curve).

In Figure 6.7 we can see the GL integrand, Equation (4.18), as a function
of the integration variable t from Equation (4.17). This should be a smooth
and slowly varying function so that the GL integration is accurate, as the sys-
tematic quadrature error is proportional to the tenth derivative of the function
being integrated. A rough estimate of the statistical error in the integral is√∑

w2
i σ

2
i where wi are the weights given by the GL method and σ2

i corre-
spond to the variance of the MC sampling of the integrand shown in Figure
6.7. For the example case shown in Figure 6.6 and Figure 6.7, the value of
the integral is 252.057 with an associated error of ±15.072.

6.2.3 Free energy distributions

In this section the results of the study of the free energy distributions of
the HS+WCA system described in Section 6.1.1 for two shell thicknesses
dSij/d

HD
ij are presented. In what follows, thick shell refers to dSij/d

HD
ij = 1.4
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Figure 6.6: Mean square displacement 〈u2〉k as a function of k, N = 64,
φ = 0.88, δ = 0.2, d = 2, HS+WCA potential with dSij/d

HD
ij = 1.12. The

red points are the data from the MC calculations. The blue curve is the har-
monic approximation, 〈u2〉k = dN/k. The green curve is the approximation
〈u2〉k = dN/(k + κ) from Equation (4.16).
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Figure 6.7: GL integrand (Equation (4.18)) as a function of t (Equation
(4.17)) showing that it is a smooth function (N = 64, φ = 0.88, δ = 0.2,
d = 2, HS+WCA potential with dSij/d

HD
ij = 1.12).
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and thin shell refers to dSij/d
HD
ij = 1.12.

The results for dSij/d
HD
ij = 1.4 and dSij/d

HD
ij = 1.12 are presented in Figure

6.8 and Figure 6.9 respectively. The free energy histograms have been plotted
using the volume calculation results of ∼ 1000 minima.

6.2.4 The bias problem

Our first objective is to compute the number of distinct packings. After that,
we turn to the granular entropy. We have to discuss granular entropy sepa-
rately because the very fact that different basins have different volumes al-
ready implies that, as the probability with which we sample basins is propor-
tional to their volume, all basins will not be equally populated. If this is the
case, it is not meaningful to use Edwards’ definition of the granular entropy:
S = ln Ω. Rather, a more appropriate definition of entropy would be analo-
gous to the information entropy: S∗ = −∑i pi ln pi. In fact, as we shall see,
even this expression will have to be modified to obtain an extensive entropy
(but this is no different in the canonical ensemble of statistical mechanics).

We now first focus on the computation of the number of distinct packings
of a granular medium of N particles at a prescribed density. As previously
mentioned in this Chapter, and in Section 4.4, we can compute this number if
we know the unbiased distribution of basin volumes. Hence, we need to get
rid of the bias from the ‘as-sampled’ volume distribution.

Such unbiasing was not relevant in earlier studies [109] where the small
system sizes allowed direct enumeration of all minima. However, the bias
becomes crucial for system sizes larger than N = O(10) where we can only
sample a tiny fraction of all basins. In what follows, we will denote the biased
and unbiased distributions of free energies by B(F |N, φ) and U(F |N, φ) re-
spectively. Examples of such distributions are shown in Figure 6.10. The bi-
ased distribution of theNf sampled volumes allows us to compute B(F |N, φ)

that, in principle, can be related to U(F |N, φ) via:

U(F |N, φ) = C(N, φ)B(F |N, φ)eF , (6.4)

where C is a normalising constant. It is easy to see that:

〈v〉(N, φ) = C(N, φ) =

[∫ +∞

Fmin

dF B(F |N, φ)eF
]−1

, (6.5)
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dSij/d
HD
ij = 1.4
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Figure 6.8: Histogram of free energies for ∼ 1000 basins in two dimensions
for different system sizes N . φ = 0.88, δ = 0.2, d = 2, HS+WCA potential
with dSij/d

HD
ij = 1.4.
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Figure 6.9: Histogram of free energies for ∼ 1000 basins in two dimensions
for different system sizes N . φ = 0.88, δ = 0.2, d = 2, HS+WCA potential
with dSij/d

HD
ij = 1.12.
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which is the expression used below.

Following the approach described in Chapter 4, with the modifications
presented in Section 6.1, the basin-volume weighted distribution B(F |N, φ)

of free energies as a function ofN can be obtained for the thick and thin shell
systems (see Figure 6.8 and Figure 6.9).

Because small basin volumes are inadequately sampled, Equation (6.4)
cannot be applied directly to obtain an unbiased distribution. In fact, from
Figure 6.8 and Figure 6.9, it is clear that there is a typical spread in free
energies ∆F of at least 20 in the sampled basins. Since only Nf ∼ 1000

minima are sampled in the histogram, it is implied that the most probable –
biased– basins are aboutO(103) more probable than the smallest ones. Upon
unbiasing, this ratio is multiplied by a factor e−20 and thus the smallest basins
(with high free energies) observed in Figure 6.8 and Figure 6.9 are in fact
overwhelmingly more numerous than the large ones. As a consequence, a
large fraction of the unbiased distribution is obscured by noise and cannot
therefore be normalised.

The seriousness of this problem can be seen in Figure 6.10. The left hand
side shows the histogram calculated directly from the simulation data, namely
B(F |N, φ). The right hand side (blue points and curve) shows the unbiased
distribution calculated only from the simulation data via Equation (6.4). The
green curve shows what an unbiased distribution would look like if the full
distribution of basins would have been sampled in simulations. This curve
was obtained by fitting the simulation data using the procedure described
below in Section 6.2.5.

To arrive at an estimate of the unbiased distribution U(F |N, φ), we make
use if the fact that the number of basins, even if very large, is finite. Hence,
both the biased and unbiased distributions must be normalisable. As we show
below, we find that our simulation data is compatible with the assumption
that, for large enough F , B(F |N, φ) decays as e−cF ν where ν > 1 and
a, c > 0. Furthermore, we assume that the unbiased distribution U is uni-
modal. This assumption is supported by the direct enumeration results for
small systems [110]. The observed distributions B are therefore fitted with a
3-parameter Generalised Normal Distributions, described in the next section.
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Figure 6.10: Histogram of free energies for 1000 basins in two dimensions
for N = 128, φ = 0.88, δ = 0.2, d = 2, HS+WCA potential with dSij/d

HD
ij =

1.12. Left: biased distribution as sampled in simulations. Right: unbiased
distribution. The green curve shows what an unbiased distribution would look
like if the full distribution of basins were sampled in simulations. This curve
was obtained by fitting the simulation data using the procedure described in
Section 6.2.5.

6.2.5 Fitting the free energy distribution

We have fitted the distributions to a functional form and calculated the error
bars using the bootstrapping technique outlined in Section 6.2.6. Figure 6.10
shows that, using a Generalised Normal Distribution, we can fit the unbiased
distribution and subsequently unbias it by dividing the probability density by
the volume V = exp(−F ). Without a functional fit, unbiasing is not possi-
ble. In ‘thermal’ Monte Carlo simulations, unbiasing is often possible using
a technique such as umbrella sampling (see e.g. [32]). The reason for this
difference is that in normal Metropolis sampling, points that are close in con-
figuration space tend to have similar order parameters that can be used in the
biasing. In contrast, adjacent basin volumes are not spatially correlated in
such a way that the sampling in configuration space can easily be biased to-
wards, say, smaller volumes. It is important to note that, because we do not
sample the complete distribution in our simulations, we must fit the distribu-
tion in order to normalise it. To illustrate this point, we show in Figure 6.10
a free energy distribution that has been unbiased by dividing the probability
density by the volume V = exp(−F ).

The free energy distributions obtained using the method described above
are fitted to a Generalized Gaussian Distribution (GGD). The probability den-
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Figure 6.11: Generalised Gaussian Distribution for different values of β with
α = 1 and F = 0. Left: probability density function, Equation (6.6). Right:
cumulative density function, Equation (6.7).

sity function is given by:

p(F |F , α, β) ≡ β

2αΓ(1/β)
e
−
(
|F−F |
α

)β
(6.6)

and the cumulative density function is:

I(F |F , α, β) ≡ 1

2
+ sgn(F − F )

γ

[
1/β,

(
|F−F |
α

)β]

2Γ(1/β)
(6.7)

where Γ is the Euler Gamma Function defined by

Γ(z) =

∫ ∞

0

tz−1e−t dt,

γ is the Incomplete Gamma Function, defined by

γ(z, x) =

∫ x

0

tz−1e−t dt,

F is the mean, α2 is a measure for the variance and β is a parameter that
determines the shape of the distribution, as can be seen in Figure 6.11. When
β = 2 we get a Gaussian (Normal) distribution with variance α2/2 and if
β = 1 we recover the Laplace distribution. For more information see [105]
and references therein.

It is important to stress the fact that the fitted distribution must decay
faster than the bias imposed by sampling each basin with a probability pro-
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portional to its volume. This means that the fitted β must be larger than one.
The scipy.optmize.curve_fit routine from [40] is used to fit the

cumulative distribution (Equation (6.7)). This routine fits using the Levenberg-
Marquardt algorithm [50, 58].

The results for dSij/d
HD
ij = 1.4 and dSij/d

HD
ij = 1.12 are presented in Figure

6.12 and Figure 6.13 respectively. The free-energy histograms have been
plotted using the volume calculation results of ∼ 1000 minima.

In Figure 6.14 the system-size dependence of the best fit parameters α2

and β is shown. We note that α2 appears to become extensive with N while
β tends to be 2 in the large-N limit. We also note that it is far from obvious
that the variance of the free energy distribution should be extensive.

In the thermodynamic limit, B(F |N, φ) apparently tends to a Gaussian, an
observation that is compatible with the findings of [110] for a much smaller
system. Using the fitted functional form for the volume distribution, we can
now proceed to estimate the unbiased distribution of volumes and use Equa-
tion (6.5) to obtain an estimate for the average basin volume and, from that,
of the number of distinct packings.

6.2.6 Bootstrapping

The bootstrapping technique is used to calculate the errors of the parame-
ters F , α, β from Equation (6.6) and Equation (6.7) fitted to the free energy
distributions of jammed states (see Section 4.4) obtained from the MC simu-
lations.

Bootstrapping is a re-sampling technique that consists of constructing a
new data set by randomly sampling with replacement from the original data
[26]. If this process is repeated many times, we will have a distribution for
each parameter. The mean value of these distributions is assigned to the pa-
rameter and the standard deviation is the error.

6.2.7 Configurational entropy

To obtain an estimate of the number of packings, we combine our informa-
tion about 〈v〉φ,N with our knowledge of the accessible volume of the parent
system (i.e. the poly-disperse hard-disk fluid):

− lnVacc(N, φHD) = − lnV N +Nfex(φHD) (6.8)
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Figure 6.12: Fitted cumulative histogram of free energies for ∼ 1000 basins
for different system sizes N . φ = 0.88, δ = 0.2, d = 2, HS+WCA potential
with dSij/d

HD
ij = 1.4.
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Figure 6.13: Fitted cumulative histogram of free energies for ∼ 1000 basins
for different system sizes N . φ = 0.88, δ = 0.2, d = 2, HS+WCA potential
with dSij/d

HD
ij = 1.12.
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Figure 6.14: Fitted generalised Gaussian distribution parameters for a
HS+WCA system with dSij/d

HD
ij = 1.4 (Left) and dSij/d

HD
ij = 1.12 (Right)

for φ = 0.88, δ = 0.2, d = 2. 2 − β plotted as a function of the inverse
system size 1/N (points) and compared to a linear function. The inset shows
the best fitting parameter α2 as a function of N .

where the first term on the right hand side is the contribution from an ideal
gas of distinguishable particles where V is the volume of the box (which,
in our units is equal to one). fex(φHD) is the excess free energy term of the
hard-disk fluid at volume fraction φHD.

Our estimate for Ω(N, φ) is then obtained by combining Equation (6.1),
Equation (6.5) and Equation (6.8). Coming back to Equation (6.8), since we
work with a unit box, only fex needs to be computed. We can get it directly
via thermodynamic integration:

fex(φHD) =

∫ φHD

0

dφ
(Z(φ)− 1)

φ
(6.9)

where Z(φ) ≡ P/ρkBT is the compressibility factor of the poly-disperse
hard-disk fluid. For poly-disperse hard disks, Z is well approximated by

Z(φ) = pZm(φ) + φ(1− p)/(1− φ) (6.10)

from [77], where p ≡
√
〈d2

HD〉/〈dHD〉 and [54]:

Zm(φ) ≈
[
1− 2φ− φ2(1− 2φmax)

φ2
max

]−1

(6.11)

where φmax = π/
√

12.
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Figure 6.15: Configurational “Edwards” entropy for φ = 0.88 and two dif-
ferent dSij/d

HD
ij . S(N) = ln Ω(N) (open circles and crosses for dSij/d

HD
ij = 1.4

and 1.12 respectively) calculated using the fitted free energy distributions. As
the straight-line fit shows, S(N) is not extensive while S(N) − lnN ! (open
squares and stars for dSij/d

HD
ij = 1.4 and 1.12 respectively) appears to be ex-

tensive. We also note that the results for systems prepared with dSij/d
HD
ij = 1.4

and 1.12 are virtually indistinguishable.

Figure 6.15 shows the direct numerical calculations of S(N) from Equa-
tion (6.1), Equation (6.5) and Equation (6.9). It is perhaps redundant to stress
that the number of granular packings that we find for larger systems is very
large. For instance, for 128 particles, we find 10250 distinct packings. It
should be clear that direct enumeration would be utterly useless to compute
such a large number.

The dashed lines show the limiting behaviour that we should expect if S
is asymptotically linear in N . As can be seen from the upper curves of Figure
6.15, we observe large deviations from such a linear relation for systems
containing fewer than O(30) particles. We will find a similar problem if we
define S = −∑i pi ln pi. Below, we shall argue that the analogy with the
statistical mechanics of classical particles suggests that extensivity can only
be achieved if we divide Ω by N !.

Before we discuss the extensivity of the granular entropy, we first focus
on the second issue raised at the beginning of Section 6.2.4, namely that it is
inconsistent to use ln Ω as a measure of the entropy if the different packings of
the system are not equally populated. In that case it is advisable to replace the
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Figure 6.16: Redefined configurational entropy for φ = 0.88 and two
different dSij/d

HD
ij . S∗(N) = −∑i pi ln pi (open circles and crosses for

dSij/d
HD
ij = 1.4 and 1.12 respectively) calculated using the fitted free energy

distributions. As the straight-line fit shows, S∗(N) is not extensive while
S∗(N) − lnN ! (open squares and stars for dSij/d

HD
ij = 1.4 and 1.12 respec-

tively) appears to be extensive. We also note that the results for systems
prepared with dSij/d

HD
ij = 1.4 and 1.12 are virtually indistinguishable.

micro-canonical expression for the entropy (S = ln Ω) with the ‘canonical’
form

S∗ ≡ −
Ω∑

i=1

pi ln pi (6.12)

where pi denotes the probability to generate packing number i. Of course,
if all packings are equally likely, Equation (6.12) reduces to the ‘micro-
canonical’ form S = ln Ω(N, φ). However, in general, it is different. For
the present procedure to generate packings, it is known that pi = vi/Vacc.
Hence,

S∗ = −〈ln v/Vacc〉 = 〈F 〉B −Nfex(φHD) (6.13)

where the subscript B denotes an average over the volume-weighted, biased
distribution. The important point to note is that this expression depends only
on the basin volumes as sampled and hence requires no additional assump-
tions to achieve unbiasing. Hence, we can obtain reliable estimates for S∗.

When we plot S∗ as a function of N (Figure 6.16), we note (again) that
its N -dependence is not very linear, in other words, this form of S∗ is also
not extensive. This should come as no surprise because also in equilibrium
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statistical mechanics, the partition function of a system of N distinct objects
is not extensive. We must follow Gibbs’ original argument about the equilib-
rium between macroscopically identical phases of classical particles and this
implies that we should subtract lnN ! from S∗. We note that there is much
confusion in the literature on this topic, although papers by van Kampen [93]
and by Jaynes [39] clarify the issue. Indeed, if we plot S∗ − lnN ! versus N
we obtain an almost embarrassingly straight line that, moreover, goes through
the origin. Previous studies on the entropy of jammed systems, such as the
simulations of Lubachevsky et al. [55] presented in Chapter 2, ignored the
N ! term. We note that the assumption that all packings are equally likely was
an unnecessarily strong condition to construct a granular entropy and, from
that, granular thermodynamics. Edwards’ hypothesis of the existence of a
meaningful granular entropy therefore survives even when the condition that
all granular packings are equally likely is dropped.

Our finding that Edwards’ entropy, once properly defined, is indeed ex-
tensive is highly significant. Extensivity of the granular entropy is absolutely
crucial if this quantity is to be used to define quantities such as the com-
pactivity and angoricity [59] that play a central role in Edwards’ theory of
granular transport. Now that we can compute the entropy, we can start to test
these theories. Of course, it would be interesting to test if other protocols to
generate jammed structures also find an extensive granular entropy.

One interesting observation is the following: we find that the plots for the
entropy of jammed packings at φ = 0.88 that were generated from two very
different parent systems (one with a short-ranged the other with a long-ranged
WCA potential, thick and thin shells defined above) are almost on top of one
another (see Figure 6.15 and Figure 6.16). Again, this finding is not obvious
a priori. It seems to apply that effectively all minima that are generated in
the thick-shell system with a low initial density are also permissible for the
thin-shell, high-density parent system. We do not expect that such protocol
independence of jammed structures at a given density will hold in general.
However, it suggests that the results that are reported in this section may also
apply to hard, rather than soft disks.
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6.3 Conclusions

In this Chapter we reported a numerical study of the packing entropy of soft
repulsive, poly-disperse disks. Using a novel technique to sample the vol-
umes of the basins of attraction of potential-energy minima, it was possible
to study the basin-volume distribution for much larger systems sizes than was
hitherto possible (up to N = 128). We find that the distribution of basin vol-
umes becomes log-normal in the large N limit.

Using our approach we can estimate the number of distinct packings of
a system of poly-disperse hard disks up to system sizes of 128 particles. We
find that the number increases approximately (but not exactly) exponentially
with system size. ForN = 128, we estimate that the number of distinct states
is of order 10250, a number well outside the reach of any direct enumeration
scheme.

If, in our definition of the granular entropy, we take into account that
different packings are not a priori equally likely, we should use the ‘informa-
tion’ form for the entropy (S∗ ≡∑i pi ln pi). This entropy can be computed
accurately and without fitting to a particular form. We find that the behaviour
of S∗ is very similar to that of ln Ω and even the numerical value differs but
little.

We note that N -dependences of ln Ω and S∗ are not very linear. How-
ever, the same would be true of the logarithm of the partition function of a
system of N distinct particles in classical statistical mechanics. In classical
statistical mechanics, we must divide Ω by N ! to ensure that two systems in
identical macroscopic states can be in equilibrium under the exchange of par-
ticles, even though these particles are not indistinguishable in the quantum-
mechanical sense.

We use the same 1/N ! correction to define a granular entropy that is ex-
tensive. We note that our modifications of Edwards’ recipe for the granular
entropy have resulted in a quantity that has exactly the extensivity proper-
ties assumed by Edwards’. We have thus established that the key quantity in
Edwards’ theory of granular media is physically meaningful. The observed
robustness of the extensivity of the Edwards’ entropy for our system of soft,
repulsive particles may explain why experiments on soft jammed granular
matter [41] find good agreement with Edwards’ theory, even though in that
case there is also no reason to assume that all packings are equally likely.
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Chapter 7

Jamming density distribution
and compactivity

In this chapter a study of the distribution of jamming densities is presented.
The distribution of densities at which a system becomes jammed depends on
the protocol used to generate the jammed states and on the phase space of
the initial conditions. It is possible to define a compactivity that relates the
distribution of packing densities to the phase-space volumes of the states of
the parent system that jam at a given density.

7.1 Introduction

The density and structure of a jammed packing of N particles depends on its
preparation protocol Π and on the phase-space coordinates Γ of the original
phase space. Therefore a unique, universal jamming density does not exist.
This protocol can be considered as a procedure that projects a part of the
original phase space of the N -particle system onto a particular packing. We
can separate protocols into two broad classes: deterministic and stochastic.
Deterministic protocols, like our energy minimisation quenches, always map
a point in phase space to a particular packing. All of the points that end up
at a packing i form the volume vi. Stochastic protocols are different because
there is a certain probability ρi(Γ) that a coordinate in phase space will map
on to packing i. The volume vi is nothing but

vi =

∫
dΓ ρi(Γ). (7.1)
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For deterministic protocols, ρi(Γ) = 1 inside the basin vi and ρi(Γ) = 0

outside. If the original distribution in phase space is uniform vi determines
the probability of mapping onto packing i

Pi =
vi
V . (7.2)

where V is the total phase space volume of accessible initial coordinates. If
the original distribution is not uniform then the probability of mapping onto
i is given by

Pi =

∫
dΓw(Γ)ρi(Γ) (7.3)

where w(Γ) is a normalised weight function. We shall focus on determinis-
tic packings as the protocols described in this thesis fall into this category.
In the case of our protocols to generate packings, by means of energy min-
imisation quenches, the original phase space distribution is uniform and the
packings are generated with a probability proportional to vi. In general dif-
ferent jammed configurations will have different packing fractions. The sum
of all volumes vi(φ) that map onto a packing with volume fraction φ defines
the total phase space volume of the original system that ends up in a packing
with volume fraction φ:

V(φ) =
∑

i

vi(φ). (7.4)

φ is a continuous variable so V is really a phase space density

V(φ) dφ

V = P(φ) dφ. (7.5)

The entropy is defined as

SJ(φ) ≡ lnV(φ) (7.6)

where J denotes the jammed phase. If the original phase space is not uniform
a partition function can be defined as

QJ =

∫

φ

dΓw(Γ) (7.7)

where the integration is over the region of phase space that maps onto pack-
ings with volume fraction φ and w(Γ) is a normalised weighting function.
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Here we will focus on the relation between the “parent system” (the set of ini-
tial conditions), the jamming protocol Π and the density of the final jammed
structure, φJ = N/VJ(N,Π). It is well known that the volume VJ is self av-
eraging [67, 17] so for finite systems, φJ fluctuates but in the thermodynamic
limit the relative magnitude of these fluctuations vanishes at a rate ∼ 1/

√
N .

Hence there is a one-to-one relation between φJ and the initial configuration.
To our knowledge this relation has not yet been predicted.

The question is whether there is a simple relation that expresses how a
protocol affects the resulting jamming density? We can assume that the com-
pactivity X plays the same role as the ratio T/P in the NPT ensemble, large
pressures result in higher densities and for jammed systems low compactivity
protocols produce denser jammed packings. In the NPT ensemble we have

P(V ) =
Q(N, V, T )e−βPV∫
dV Q(N, V, T )e−βPV

=
Q(N, V, T )e−βPV

Z(N,P, T )
, (7.8)

which defines the integral Z(N,P, T ). The imposed “NPT ” pressure P can
be related to the “canonical” virial pressure P ′:

P ′(N, V, T ) ≡ kBT
∂ lnQ(N, V, T )

∂V
(7.9)

and in equilibrium P = 〈P ′〉:

〈P ′〉 =

∫
dV Q(N, V, T )e−βPV kBT

∂ lnQ(N,V,T )
∂V

Z(N,P, T )
(7.10)

=
kBT

∫
dV e−βPV ∂Q(N,V,T )

∂V

Z(N,P, T )
(7.11)

=
−kBT

∫
dV Q(N, V, T )∂e

−βPV

∂V

Z(N,P, T )
(7.12)

= P

∫
dV Q(N, V, T )e−βPV

Z(N,P, T )
(7.13)

= P. (7.14)

The equivalent identity in the discussion of the compactivity is the only way
to determine the compactivity of a system. Following from Equation (7.8)
the free energy per particle f(ρ, T ) is defined by

F (N, V, T ) = Nf(ρ, T ) = −kBT lnQ(N, V, T ). (7.15)
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the volume per particle is defined as v ≡ V/N and the distribution is

P(v) =
Ne−Nβ(f+Pv)

Z(N,P, T )
. (7.16)

We have obtained the well-known result that the most likely value of v does
not depend on N and that the variance in v vanishes as 1/

√
N . For this result

to hold, we need to assume that the volume of the composite system can
be written as the sum of its sub-volumes. In the case of granular media the
conserved quantity is the volume VJ(N ; Π) of the jammed system which is
equal to the sum of the volumes of any sub-systems. This assumption alone
is not enough to get Equation (7.16) as the extensivity of the granular entropy
SJ is also needed and will be taken as a hypothesis as it has been shown to
hold in Chapter 6.

SJ(N, VJ ; Π) = NsJ(VJ/N ; Π). (7.17)

If a jammed system is in contact with a reservoir the distribution of volume
per particle vj is:

P(vJ ;X) ∼ exp[N(sJ(VJ/N ; Π)− vJ/X)]. (7.18)

which defines the compactivity X for a particular protocol and reservoir. The
imposed compactivity is equal to the average compactivity of the system and
in general (

∂SJ(N, VJ ,Π)

∂VJ

)
≡ 1

X(Π; vJ)
, (7.19)

is not equal to the imposed value 1/X . If a protocol can impose a compactiv-
ity, mimicking the action of a reservoir, then the distribution of jamming
volumes should obey an “overlapping distributions” relation:

lnP(vJ ;X) = lnP(vJ ;X ′)−NvJ
(

1

X ′
− 1

X

)
+ constant. (7.20)

The difference with the NPT ensemble is that it is not obvious that a pro-
tocol can impose a compactivity and some studies suggest that this property
does not hold [68]. The existence of an overlapping-distribution relation is a
necessary but not sufficient condition for Edwards’ ergodic hypothesis to be
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valid. It means that P(vJ ;X) can be expressed as the product of a distribu-
tion Z(VJ) that does not depend on X and a factor e−VJ/X . The definition of
compactivity is not unique as we can always write:

Z(VJ)e−VJ/X = Z(VJ)e−VJ/X0e−VJ (1/X−1/X0) = Z ′(VJ)e−VJ/X
′
. (7.21)

where 1/X ′ = 1/X − 1/X0, for any X0. Edwards noticed that there is a
lower bound of the jamming density for a given protocol at which Z(VJ)

vanishes much like the entropy vanishes at T = 0. This knowledge is not
enough to fix X0 because for any finite value of X0, 1/X =∞ is equivalent
to 1/X ′ =∞. If Edwards’ hypothesis is valid, Z(V ) = Ω(V ) is the number
of packings with volume V , which is independent of the protocol used to find
the packings and

P(VJ ;X) ∼ Ω(VJ) exp(−VJ/X). (7.22)

From Equation (7.20) it would follow that the logarithm of the ratio of
the distribution functions that result from two different protocols should be
of the form

ln

[ P(vJ ;X)

P(vJ ;X ′)

]
= aVJ + b. (7.23)

In the following section the protocols used in this work to find the jamming
density are described. Once the jamming density distributions are calculated
for different protocols, the relation in Equation (7.23) can be tested.

7.2 Finding the jamming density

The goal of the simulations described in this Chapter is to find the volume
(or density) at which a particular initial configuration becomes jammed (or
unjammed), VJ . This corresponds to finding the so called J-point, introduced
in Chapter 2. If this is done for a number of protocols it may be possible to
determine the relative compactivity, described above in Section 7.1.

The first protocol (ΠI) used to find the jamming density, consists in start-
ing from a known jammed configuration (found by a potential energy minimi-
sation) at a packing fraction φmax = 0.88 which is higher than the jamming
threshold and deflating the particles by a fixed amount to reach a density φmin.
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If the system becomes unjammed – this is tested by minimising the potential
energy and checking for particle overlaps – then the particles are inflated
to the midpoint between these densities. If at this density, φi the system is
jammed then φmax = φi and the midpoint between this density and φmin is
tested. If instead at φi the system is not jammed then φmin = φi and the
midpoint between φi and φmax is tested. This procedure is repeated until the
interval [φmin, φmax] is small enough and φJ ∈ [φmin, φmax] is determined with
sufficient accuracy.

The second protocol (ΠII) used to find the jamming density, similar to
the one described in [67], consists in instantaneously inflating a Hard Sphere
(HS) fluid as in Figure 6.2 and finding the minimum of the Hard Sphere
core plus Weeks-Chandler-Andersen (HS+WCA) potential energy given by
Equation (6.2) (shown in Figure 6.1) with dSij/d

HD
ij = 1.12. The packing frac-

tion of the final inflated state is φ = 0.88 which is higher than the jamming
threshold. The next step is to decrease the density by decreasing the shell
that surrounds the HS core by multiplying dSij/d

HD
ij by a factor ∆D. Then the

potential is minimised again and if the resulting configuration has positive
energy, which means that V < VJ , this step is repeated until the particles are
just unjammed, the energy is zero and V ≈ VJ . The factor ∆D is reduced as
the jamming density is approached. This is to ensure that no energy barriers
are crossed on the way to the jamming threshold [67] and so that VJ can be
found with sufficient accuracy. The Fast Inertial Relaxation Engine (FIRE)
algorithm was used for all of the energy minimisations, for reasons discussed
in Chapter 5 and Appendix A.

The previous paragraphs describe the methods used to find the jamming
volume, VJ , associated to a given initial state (in this case a HS fluid) and
protocol. If this experiment is repeated many times for different protocols,
or variations of the same class of protocols, the distribution of VJ and pos-
sibly a relative compactivity can be measured. To be able to measure the
compactivity X the distribution of jamming volumes must be measured for
different protocols. This is achieved by varying the density of the HS cores
of the particles defined by the diameter dHD

ij .The results of these simulations
are presented in the following section.
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Figure 7.1: Distribution of jamming volumes VJ for a system of 16 parti-
cles with initial volume fraction φHD = 0.71 interacting via the HS+WCA
potential with dSij/d

HD
ij = 1.12. Protocol ΠI.

7.3 Results and discussion

In this Section the results of the simulations described in Section 7.2 are
presented and the validity of the compactivity described in Section 7.1, in
particular the overlapping-distribution relation described in Equation (7.23),
is tested for the protocols that were used in this work.

Figure 7.1 shows a characteristic jamming density distribution found us-
ing protocol ΠI. Figure 7.2 shows jamming density distributions for variants
of protocol ΠII starting from different initial hard-disk volume fractions.

The ratio Equation (7.23) has been plotted for protocol ΠI in Figure 7.3
and for protocol ΠII in Figure 7.4.

As can be seen from these Figures, the ratio is not well represented by a
straight line. Even if we take into account the ratios between many different
variants of protocol ΠII, as shown in Figure 7.4, we cannot even imagine
a straight line describing such data. It is important to stress the fact that
in Figure 7.4 the ratio between all of the possible combinations of different
initial states such that if the ratio is P (V

(i)
J )/P (V

(j)
J ) then V (j)

J > V
(i)
J have

been accounted for so if there were a linear trend it should be visible in the
Figure. Hence for the protocols tested here Equation (7.22) does not hold.
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Figure 7.2: Distribution of jamming volumes VJ for a system of 64 parti-
cles with different initial volume fractions φHD interacting via the HS+WCA
potential with dSij/d

HD
ij = 1.12. Protocol ΠII.
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Figure 7.3: Ratio of the jamming distributions, Equation (7.23), for a system
of 16 particles with initial volume fraction φHD = 0.71 and φHD = 0.62
interacting via the HS+WCA potential with dSij/d

HD
ij = 1.12. The reference

state was prepared at φ = 0.448. Protocol ΠI.
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Figure 7.4: Ratio of the jamming distributions, Equation (7.23) for a system
of 64 particles with different initial volume fractions φHD interacting via the
HS+WCA potential with dSij/d

HD
ij = 1.12. All of the combinations of jam-

ming distributions found using Protocol ΠII are shown.

The tapping protocols described in [68] are another example where Equation
(7.22) does not hold.

An ensemble can be constructed such that the compactivity is a meaning-
ful quantity related to the volume of the parent system. In this ensemble, the
volume at which a system of N particles becomes jammed due to a certain
protocol, VJ = N/φJ , acts as an order parameter that is related to the coordi-
nates of the original system at volume V . We can introduce a field Y ≡ 1/X

that is conjugate to VJ and a constantNV Y (equivalent toNV TX) ensemble
can be introduced:

P(VJ ;Y,Π) =
eSJ (N,VJ ;Π)e−Y VJ (rN )

∫
dVJ eSJ (N,VJ ;Π)e−Y VJ (rN )

. (7.24)

This ensemble is unphysical because VJ can only be controlled in simulation,
where particle overlap can easily be adjusted. For the most likely value of VJ
the inverse compactivity of the parent system is equal to the imposed value
of Y : (

∂SJ(N, VJ ; Π)

∂VJ

)

max
= Y. (7.25)

We can imagine that for large N , VJ is a sharply peaked function of V and
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that there is effectively a one-to-one relation between V and VJ . We can then
apply the chain rule and for N →∞ write:

(
∂SJ(N, V ; Π)

∂V

)(
∂V

∂VJ

)
= Y. (7.26)

The first term is−P/T and the second term relates V , the volume (or density)
of a certain initial configuration (hard sphere fluid in the case of protocol ΠII

defined in Section 7.2) to VJ , the volume (or density) at which this initial
configuration becomes jammed. VJ is protocol dependent. We now make the
conjecture that we can use the same expression to compute the compactivity
as a function of VJ for a small system:

(
∂SJ(N, VJ ; Π)

∂VJ

)
= −P (N, V )

T

(
∂V

∂VJ

)

N→∞
. (7.27)

If this equation can be applied to small systems it will allow us to predict the
shape of the distribution of jamming densities. Both terms on the right hand
side are functions of N . The first term is only weakly N -dependent. The
work of O’Hern et al. [67] suggest that the second term has a 1/Ndγ correc-
tion where d is the dimensionality and γ is a scaling exponent (they found
γ ≈ 0.71). The relation between V and VJ is given by the protocol Π and
in general is unknown, although a preliminary study of one of the protocols
used in this work is presented below. We know from [90] that very slow com-
pression leads to high jamming densities. As the compression becomes very
slow, the jamming density no longer depends on the initial density and in this
case Equation (7.27) is not valid. It is worth noting that slow compression is
fundamentally different from the instantaneous minimisation protocols used
by [67, 17]. Slow compression ensures a certain memory loss where the ini-
tial state is forgotten. Instantaneous minimisation, or fast protocols, retain
some information about the parent structure.

The difference between slow and fast protocols can be seen by defining
scaled particle coordinates si = ri/L. The coordinates of jammed structures
obtained by a fast protocol or instantaneous minimisation are close to the
starting coordinates:

1

N

N∑

i=1

(si − sjammed
i )2 → 0 as N →∞ (7.28)

98



Jamming density distribution and compactivity

On the other hand, for a slow compression or tapping protocol the initial and
final coordinates are uncorrelated:

1

N

N∑

i=1

(si − sjammed
i )2 → O(1) as N →∞. (7.29)

We do not expect Equation (7.27) to be valid for slow protocols beause there
is no relation between the initial and jammed configurations. We show some
preliminary results of how they are related for a fast protocol in what follows.

We have studied the relation between the volume fraction of the parent
hard disk fluid, φHD = φU = N/V and the volume fraction of the jammed
phase φJ = N/VJ , namely the second term on the right hand side of Equation
(7.27), by applying protocol ΠII described in Section 7.2 to 400 different
parent structures for each φU for a system of N = 64 particles interacting via
the HS+WCA potential described in Section 6.1.1 with dSij/d

HD
ij = 1.12. The

resulting curves are presented in Figure 7.5 for two values of the compression
rate, ∆D = 0.99 and ∆D = 0.999. The green curve corresponds to slower
compression which is why it reaches higher density states. We expect to see
an increase in φJ as φU is increased as the system starts from a higher density
and although for values of φU lower than about 0.7 we see decreasing values
of φJ the curve shows the expected tendency for higher values of φU .

7.4 Conclusions

The distribution of jamming densities produced by different protocols and
their relation with the density of the initial configurations, or parent system
has been studied in this Chapter. We have shown that the distribution of
jamming volumes that are generated by similar jamming protocols that start
from different initial densities cannot be characterised by an Edwards’-style
compactivity. This has also been found for other protocols [68].

It is possible to construct an ensemble where compactivity is well defined
and for fast compression there is a one-to-one relation between the volume of
the parent system and that of the jammed system in the thermodynamic limit.
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Figure 7.5: Jamming density φJ as a function of the parent fluid density φU .
Protocol ΠII. Each point is an average over 400 distinct parent configura-
tions for a system of 64 particles interacting via the HS+WCA potential with
dSij/d

HD
ij = 1.12. Two different compression rates are shown: ∆D = 0.99

(blue) and ∆D = 0.999 (green). The error bars are the standard deviation of
the 400 points.

100



Chapter 8

General conclusions and
outlook

In this thesis we have described computer simulations that allow us to evalu-
ate the number of distinct packings of a granular material or, more generally,
the so-called ‘granular entropy’ for system sizes going well beyond what was
previously possible. Monte Carlo simulations were used to probe the en-
ergy landscape of jammed systems of disks interacting via a repulsive, finite-
range potential. In these simulations we make use of a soft-sphere model
with a hard core that approaches the hard-sphere model as the width of the
soft shell is decreased. We have shown that the distribution of jamming den-
sities produced by the protocols tested here cannot be characterised by an
Edwards’-style compactivity although it is possible to construct an ensemble
where compactivity is well defined.

To compute the packing entropy, we used and developed Monte Carlo
techniques to determine the volumes of the basins of attraction of the poten-
tial energy minima at different system sizes.

Such Monte Carlo simulations require energy minimisation after every
trial move to make sure that all accepted moves keep the system within the
same basin of attraction. Hence efficient energy minimisation is a point of
paramount significance in this work. A first objective was to find a suit-
able minimisation algorithm. We found that whereas some minimisation al-
gorithms produce well-defined basins, others produce basins with complex
boundaries or basins consisting of disconnected parts. The Fast Inertial Re-
laxation Engine (FIRE) algorithm was chosen because it produces compact
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basins at a reasonable computational cost compared to more efficient algo-
rithms like Limited memory BFGS (L-BFGS) and Conjugate Gradient (CG)
used in previous studies.

Once the minimisation algorithm was chosen a numerical approach was
used to compute the number of ways in which N particles can pack into a
given volume V . This technique extends the existing methods in such a way
that it can be applied to much larger systems than before (over 100 particles
instead of 16). Many of the caveats of previous methods were addressed. Us-
ing this novel approach, the system size dependence of the number of distinct
packings of a system of poly-disperse soft disks was studied. Our simulations
enable us to validate a more than 20 years old conjecture due to Edwards. We
show that, even though granular particles are distinguishable, we have to deal
with the Gibbs paradox. The simulations presented here provide strong ev-
idence that the packing entropy, when properly defined, is extensive. This
extensivity has often been assumed but, thus far, direct evidence was lacking.
We found that, as different packings are created with unequal probabilities,
the packing entropy should not be expressed as the logarithm of the number
of packings but as S = −∑i pi ln pi. We have shown that we can compute
this quantity reliably and that, it too, is extensive. Our finding that Edwards’
entropy, once properly defined, is indeed extensive is highly significant. Ex-
tensivity of the granular entropy is absolutely crucial if this quantity is to be
used to define quantities such as the compactivity and angoricity [59] that
play a central role in Edwards’ theory of granular transport. Now that we
can compute the entropy, we can start to test these theories. Of course, we
also should test if other protocols to generate jammed structures also find an
extensive granular entropy.

The distribution of jamming densities produced by different protocols and
their relation with the density of the initial configurations, or parent system
has been studied. We found that the distribution of jamming volumes that are
generated by starting from different initial densities cannot be characterised
by an Edwards’-style compactivity. It is possible to construct an ensemble
where compactivity is well defined and for fast compression there is a one-to-
one relation between the volume of the parent system and that of the jammed
system in the thermodynamic limit. This allows us to hypothesise a relation
between the thermodynamic pressure and compactivity.

Future directions of this work include the implementation of different,
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General conclusions and outlook

possibly more efficient, ways of sampling the basins of attraction such as the
so-called Nested Sampling technique developed by Skilling [80]. It would
also be interesting to explore even bigger systems and go to higher dimen-
sions. To this end real experimental configurations could be used as starting,
parent, systems. We should note that experimental colloidal systems are in-
herently poly-disperse but as we have shown, Gibbs paradox still applies.
Another interesting aspect that has not been treated here is the dependence of
the entropy on the volume fraction of the jammed states and how it behaves
as the jamming transition is approached. For the study of jamming density
distributions it would be advantageous to test if different protocols can be
described by an Edwards’-style compactivity and to study the system size
dependence of the jamming density.
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Appendix A

Minimisation algorithms

In this Chapter various minimisation algorithms are described in detail. All
of these methods are tested in Chapter 5 to see how they define basins of
attraction on an energy landscape.

There are many iterative schemes for minimising functions that, starting
from the initial point x0, are of the general form:

xi+1 = xi + σiwi. (A.1)

Iterating over i until convergence is reached. Different methods have different
ways of determining the search direction wi and the step size σi. The search
direction is usually calculated using values of the function and its gradient.
The step size is determined either by scaling the search direction wi by a
constant value σi = σ in Equation A.1 or determining σi for each iteration
using a Line Search (LS) algorithm described in the next Section.

In this Chapter some of the most popular minimisation algorithms will be
described along with some modifications made to the Fast Inertial Relaxation
Engine (FIRE) algorithm to improve its behaviour for the systems considered
in this work. In particular the modifications are made to be able to minimise
a potential that involves hard-core interactions, like the one used in this work,
described in Section 6.1.1.
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A.1. Line search

A.1 Line search

In the previous Section a general form was given for the iterations of a min-
imisation method (Equation A.1). The methods described in the following
Sections of this Chapter will give us the search direction wi but we will need
to determine how far we move along this direction, σi. The methods used
to determine this length are called LS. Most of these methods rely on the
fact that wi is a descent direction [66] and choose a step size such that the
function decreases by a certain amount.

When implementing a LS routine it is important to take into account that
there is a trade-off between its efficiency at reducing the function and its
computational cost. In most cases the best choice is an inexact LS where
various different values for σi are considered in a certain interval which is
determined by bracketing. The routine stops as soon as certain conditions are
satisfied [66].

The Wolfe conditions [107, 108] are commonly used to determine whether
a step size is accepted when performing inexact LS. These conditions are a
set of inequalities that specify a certain decrease of the objective function f
and also a condition involving its curvature. For a detailed description see
[66].

A.2 Steepest descent

Steepest Descent (SD), or gradient descent, is a first-order optimisation algo-
rithm used to find a local minimum of a function. It is also the slowest. If
we want to find the minimum of a function f(x) first a step scaling factor σ
is chosen (can be varied during the minimisation in order to reach the min-
imum in fewer steps). Steps are taken downhill in the opposite direction of
the gradient:

xi+1 = xi − σ∇f(xi) (A.2)

until the convergence criteria are satisfied.
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A.3 Conjugate gradient

Conjugate Gradient (CG), created by Hestenes and Stiefel in 1952 [37], refers
to direct and iterative methods that are used to solve large systems of linear
equations and can be adapted to solve optimisation problems. The former are
known as linear CG and the latter nonlinear CG. They rely on the properties
of a conjugate set of vectors. The set of nonzero vectors {p0,p1, . . . ,pn} is
conjugate if pTi Apj = 0 for all i 6= j whereA is a symmetric positive definite
n× n matrix. These vectors are also linearly independent.

Linear CG is used to solve Ax = b which is equivalent to solving the
problem

minϕ(x) ≡ 1

2
xTAx− b (A.3)

and the gradient of ϕ is the residual of the linear system

∇ϕ(x) = Ax− b ≡ r(x) (A.4)

and ri = Axi − b when x = xi. The idea is that it is possible to minimise
ϕ(x) in n steps by minimising along the directions defined by vectors in a
conjugate set. The algorithm is capable of generating a new search direction
pi that is conjugate to the previous directions without explicitly knowing all
of them. In fact only the last value is needed and pi is a linear combination of
the previous search direction pi−1 and the residual ri. The first step is taken
in the SD direction as no previous direction exists. Only a few vectors are
stored at the same time keeping memory usage to a minimum. The details of
this algorithm are not presented, for details consult [66].

Linear CG has been shown to minimise the quadratic function ϕ (Equa-
tion A.3). The method can be generalised in order to minimise any general
nonlinear function f . This is called nonlinear CG and one of the most popu-
lar implementations was created by Fletcher and Reeves in 1964 [29]. Given
the initial coordinates x0, f0 = f(x0), ∇f0 = ∇f(x0) and the initial search
direction (SD) p0 = −∇f0, each iteration of the algorithm consists of the
following steps [66]:

1. Check for convergence.

2. Compute σi, the length of the step, via LS (see Section A.1).

3. Set xi+1 = xi + σipi and evaluate∇fi+1.
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4. Calculate

βi+1 =
∇fTi+1∇fi+1

∇fTi ∇fi
(A.5)

pi+1 = −∇fi+1 + βi+1pi. (A.6)

As can be seen from these equations, no matrix operations are required and
only the function and its gradient are evaluated. The choice of a LS routine
can have a significant impact on the resulting minimum as can be seen in
Chapter 5.

A.4 BFGS and L-BFGS

Broyden, Fletcher, Goldfarb and Shanno (BFGS), a quasi-Newtonian method
named after its developers [12, 28, 33, 79], uses an approximate Hessian to
determine the search direction to minimise functions. Quasi-Newton meth-
ods are based on Newton’s method for finding zeros of functions. Newton’s
method uses the first and second derivatives of the function and assumes
that the function can be approximated by a quadratic near the zero. Quasi-
Newtonian methods do not compute the Hessian directly, instead it is con-
structed from the values of the gradient. A quasi-Newtonian method looks
like

xi+1 = xi − σiB−1[f(xi)]∇f(xi) (A.7)

where B is the approximate Hessian and σi is the step size. Different quasi-
Newtonian methods use different approximations of the Hessian ( wi =

−B−1[f(xi)]∇f(xi) in Equation (A.1) ).

The “L” in Limited memory BFGS (L-BFGS) (developed by Nocedal
and Liu [53]) comes from “limited memory” and it means that the algorithm
was made more efficient by using the values of the coordinates and gradient
from previous iterations to construct the Hessian, which is never explicitly
calculated or stored. This is well suited for high dimensional problems where
calculating the Hessian at every iteration would be very expensive. For a
deeper view of this method please refer to [53, 66].
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A.5 FIRE

The name FIRE comes from fast inertial relaxation engine as this method
relies on inertia to reach the minimum on a landscape defined by an objective
function. The method is based on molecular dynamics with modifications to
the velocity and adaptive time steps [9]. In the following Sections the original
FIRE algorithm is described along with a modified FIRE algorithm designed
to improve the definition of the boundaries of the basins of attraction and to
ensure that the energy always decreases during the minimisation.

A.5.1 Original FIRE

Given the initial values for the time step ∆t, α = αstart, the velocity v = 0

and x the initial positions, each iteration follows consists of the following
steps:

1. Calculate x, F = −∇E(x).

2. Check for convergence.

3. Calculate P = F · v.

4. Set v = (1− α)v + αF̂|v|.

5. If P > 0 and this has been the case for at least Nmin steps then increase
the time step to ∆t = min(∆tfinc,∆tmax) and decrease α so that α =

αfα.

6. If P ≤ 0, the energy has increased since the previous step so the ve-
locity is set to zero v = 0, the time step is decreased ∆t = ∆tfdec and
α = αstart.

7. Calculate v using an integrator of your choice1.

8. Update positions.

where E is the function to be minimised. This process is repeated until con-
vergence is reached and the minimum is found. The parameters used here

1The Euler method was used in this work. Velocity Verlet was tried but did not signifi-
cantly improve the general performance of the algorithm.
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are: αstart = 0.1, Nmin = 5, finc = 1.1, fdec = 0.5, fα = 0.99. These pa-
rameters have been tested and produce reliable and fast results [9]. The only
remaining parameter to fix is ∆tmax. We show in Chapter 5 and [4] how this
choice can greatly affect the topology of the basins of attraction found using
this algorithm. In the next Section a modification to FIRE that prevents uphill
motion on the energy landscape is introduced.

A.5.2 Modified FIRE

Looking closely at the algorithm described in the previous Section, it is clear
from step 5 that one uphill step is taken (P > 0) before the parameters are
reset. This can cause problems when combined with a large maximum step
size because large energies produced by particles being too close together can
cause the system to jump into another basin of attraction. This effect can be
seen in Chapter 5 and Figure 5.4.

To address this issue a modification to FIRE has been implemented that
assures that all steps taken always go downhill on the energy landscape. It
is essentially the same algorithm except that the step is not taken if an uphill
step is proposed. The steps taken at each iteration are the same as before
except that steps 7. and 8. are only performed if P > 0 in step 5..

Figure A.1 shows a comparison of the basins of attraction described by
the original FIRE algorithm (Section A.5.1) and the modified version de-
scribed in this Section using the framework described in Chapter 5. The top
row corresponds to the original FIRE algorithm and the bottom row to the
modified FIRE algorithm for different maximum step sizes ∆ = 0.5 and
∆ = 1.0. It is clear that the modified FIRE algorithm proposed here is more
stable than the original algorithm in the sense that the basins of attraction
that it produces are consistent with those produced by SD (Figure 5.2). It
is also worth mentioning that when using the Hard Sphere core plus Weeks-
Chandler-Andersen (HS+WCA) potential (described in Section 6.1.1) where
the particles have a hard core that cannot overlap, the original FIRE cannot
be used due to the fact that an uphill move could produce overlapping cores.
Overlaps of the hard cores are tested at the same time as the P > 0 condition
is tested and both conditions must return false for the step to be taken.
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FIRE, ∆ = 0.5 FIRE, ∆ = 1.0

modified FIRE, ∆ = 0.5 modified FIRE, ∆ = 1.0

Figure A.1: Comparison between defining basins of attraction with FIRE
(top row, described in Section A.5.1) and with modified FIRE (bottom row,
Section A.5.2) using the methods described in Chapter 5. This Figure shows
results for two different values of the maximum step size ∆.
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Appendix B

Centre of mass constraint in
free energy calculation.

For a given spring constant k, we numerically measure the probability pk to
be in a basin:

pk = Ck

∫ ∞

−∞
exp

[−ku2

2

]
χi du (B.1)

where

χi =





1 inside basin i

0 outside basin i

restricts the integral to a certain basin i. FinallyCk is a normalisation constant
associated with the Gaussian “umbrella” and reads

Ck =

(
k

2π

)dN/2
.

For our volume calculation, presented in Chapter 4, we are interested in the
biased volume of the reference state:

vk =

∫ ∞

−∞
exp

[−ku2

2

]
χi du (B.2)

that we can easily estimate thanks to the probability pk that has already been
measured:

− ln vk = − ln pk −
dN

2
ln

2π

k
(B.3)

This is the quantity that we compute for the reference state. The only problem
here is that, for efficiency reasons, described in Chapter 3, we perform sim-
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ulations at fixed centre of mass and therefore Equation (B.3) does not quite
hold and a correction must be applied.

Since we work at fixed centre of mass, what we measure is the conditional
probability for the configuration vector sampled with a Gaussian probability,
to be in a certain basin i knowing that the centre of mass is fixed at the centre
of the box (assumed to be the origin of the coordinate system). This reads

pk(basin i|~RCM = ~0) =
pk(basin i ∩ ~RCM = ~0)

pk(~RCM = ~0)
(B.4)

Now by definition we can write

pk(basin i ∩ ~RCM = ~0) = Ck

∫ ∞

−∞
exp

[−ku2

2

]
χiδ(~RCM) du

= Ckv
CM
k . (B.5)

Hence the reference biased volume that we can measure is vCM
k . The proba-

bility for the centre of mass to be at the origin can easily be estimated if we
remember that

~RCM =
1

N

N∑

i=1

~xi

and because the Gaussian probability is unrelated to the basin i –and the parti-
cle interactions– the random variables ~xi are all independent. The distribution
of ~RCM, which can easily be shown to be Gaussian, is given by:

pk(~RCM) =

(
Nk

2π

)d/2
exp

[
−1

2
NkR2

CM

]
. (B.6)

Putting all of these results together gives us:

− ln vCM
k = − ln pk(basin i|~RCM = ~0)− dN

2
ln

2π

k
+
d

2
ln

2π

kN
(B.7)

= − ln vk +
d

2
ln

2π

kN
(B.8)

where the last term on the right hand side is the correction needed when
considering a system at fixed centre of mass.

The idea of thermodynamic integration, described in Chapter 3 and fur-
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ther explored in Chapter 4, consists in writing:

ln vCM − ln vCM
k =

∫ k

0

dx
∂ ln vCM

x

∂x
≡ 1

2

∫ k

0

dx 〈u2〉x, ~RCM=~0 (B.9)

Once we have calculated the reference volume at fixed centre of mass, we
can then calculate the volume of the basin without any Gaussian bias for a
fixed centre of mass at the origin. The actual volume of basin i can then be
obtained by integrating over all possible positions of the centre of mass:

v =

∫

basin i
d~R v(~RCM = ~R). (B.10)

We then use the fact that in our model, the box does not contain any hard
walls but rather has Periodic Boundary Conditions (PBC) so we must enforce
invariance by translation (or equivalently conservation of momentum). This
implies that v(~RCM = ~R) = v(~RCM = ~0) and the volume of the basin is
v = v(~RCM = ~0)Vbox. Since we work in a unit box, it gives finally:

− ln v = − ln pk(~RCM = ~0)− dN

2
ln

2π

k
+
d

2
ln

2π

Nk
− 1

2

∫ k

0

dx 〈u2〉x, ~RCM=~0

(B.11)
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