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This paper is concerned with a particular source of both broadband and tonal aeroengine
noise, termed Unsteady Distortion Noise (UDN). UDN arises from the interaction be-
tween turbulent eddies, which occur naturally in the atmosphere or are shed from the
fuselage, and the rotor. This interaction produces broadband noise across a broad fre-
quency spectrum. In cases in which there is strong streamtube contraction, which is
especially true for open rotors at low-speed conditions (such as at take-off or for static
testing), tonal noise at frequencies equal to multiples of the blade passing frequency are
also produced, due to the enhanced axial coherence caused by eddy stretching. In a pre-
vious paper (S.J. Majumadar & N. Peake 1998 J. Fluid Mech. 359, 181-216), a model
for UDN was developed in axisymmetric flow. However, asymmetric situations are also
of much interest, and in this paper we consider two cases of asymmetric distortion, firstly
that induced by the proximity of a second rotor, and secondly that caused by non-zero
inclination to the flight direction, as found at take-off. This requires significant extension
of the previous axisymmetric analysis. We find that the introduction of asymmetric flow
features can have a significant decibel effect on the radiated sound power. For instance, in
low-speed conditions we find that the tonal level is reduced significantly by the proximity
of a second rotor, compared to the axisymmetric case, while the effect on the broadband
levels is rather modest.

1. Introduction

There is currently considerable interest in the future of the open rotor aeroengine (also
known as the Counter-Rotating Open Rotor (CROR), the Advanced Open Rotor (AOR),
the advanced turboprop, the Counter-Rotating Propfan (CRP), or simply the propfan),
which is predicted to deliver fuel savings of at least 30% compared to current turbofans
Smith (1985), and 10-20% savings compared to next-generation turbofans. Open rotor
driven aircraft can operate efficiently at cruise speeds of up to Mach 0.8, and are therefore
suitable candidates for commercial medium- and short-haul flights. However, the level
and type of noise generated by the open rotor was a significant factor in commercial
development being abandoned a decade after the technology first emerged in the 1980s.
Research into many areas of open rotor aeroacoustics has now been resumed, with the
aim of meeting current and future noise certification criteria.
Several different noise sources must be considered for the open rotor (see a recent

review by Peake & Parry (2012)), but in this paper we are concerned with just one
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Figure 1: Representation of the Unsteady Distortion Noise mechanism, whereby turbulent
eddies are stretched and then ‘chopped’ by the rotating engine blades. The various mean
and turbulent velocities used throughout this paper (see §2.1) are also illustrated.

source, so-called Unsteady Distortion Noise (UDN). UDN arises from the interaction
between atmospheric turbulence (or turbulence from some part of the aircraft fuselage
upstream) and the rotor blades (see Figure 1), and is of particular relevance to the
large, unducted, open rotor. The basic mechanism for UDN generation was determined in
pioneering experimental work by Hanson (1974) and Cumpsty & Lowrie (1974): turbulent
eddies are stretched axially by the streamtube contraction into the rotor, and are then
chopped many times by adjacent blades at the same location to provide coherent forcing,
leading to both tonal and broadband noise. Models for noise generation by turbulence-
blade interaction are well-known and long-standing, e.g. Sharland (1964), Mani (1971),
Homicz & George (1974), and we mention in particular here Amiet (1975) and Paterson
& Amiet (1982), who developed a foundational model for the far-field noise due to a
single flat-plate airfoil in terms of the turbulent energy spectrum and the airfoil response
function. In these models the turbulence is not distorted by the (uniform) mean flow as it
convects towards the airfoil. However, we stress here that it is the distortion induced by
the rotor flow which is the defining feature of the generation of UDN, and several models
for this have been developed. Hanson himself used a statistical distribution of discrete
eddies, and assumed each eddy acted as a point force on the blade in the radial direction.
In his framework the lift pulse due to an eddy and the joint probability density functions
for the turbulent eddy characteristics must be specified as inputs. Hanson (2001) has
also developed a method whereby random offset times within turbulent velocities can be
used to represent inhomogeneity.
In a pair of papers (Simonich et al. (1990), Amiet et al. (1990)) a full UDN prediction

method was set out in the context of a helicopter rotor. This involved the solution of a
series of model problems, to calculate:
(a) the distortion of the incident turbulence by the non-uniform flow, crucially allow-

ing for the differential drift between particles on neighbouring streamlines, using Rapid
Distortion Theory (RDT), see Hunt (1973), Goldstein (1978b);
(b) the interaction of the distorted turbulence with the blades to generate unsteady

lift, in their case neglecting cascade interactions between adjacent blades;
(c) the sound radiated to the far field by the unsteady blade lift forces.

Cargill (1993) suggested this same approach in the open rotor context, and his framework
was developed in detail in Majumdar & Peake (1998) for a rotor in axisymmetric mean
flow. The aim of the present paper is to extend Majumdar & Peake’s analysis to the case
of UDN generated by an open rotor in asymmetric mean flow. Although the assumption
of axisymmetry is often a reasonable one, there are a number of practical cases in which
an open rotor may operate in strongly asymmetric flow, and in this paper we consider two
specific asymmetric configurations. The first considers two adjacent rotors, or equivalently
a single rotor mounted next to a wall as an approximate model for the presence of
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the fuselage. Indeed, the effect of the fuselage on the flow ingested into an open rotor
may be significant when the open rotor is mounted in the ‘pusher’ configuration at the
rear of the aircraft. Our second form of asymmetric mean flow model is that of a rotor
whose axis is at a non-zero angle to the flight direction, i.e. at incidence. In reality,
most aeroengines operate at incidence for some periods during flight, incidence typically
being highest during take-off. Incidence is greater when the open rotor is mounted in
the ‘puller’ configuration due to the proximity of the wing, and furthermore open-rotor
powered aircraft can climb and descend more steeply than equivalent turbofan-powered
aircraft (high blade stresses being a limiting factor for the latter), which also increases
incidence.
We wish to draw attention here to a recent important UDN experiment, Alexander

et al. (2013), and associated theoretical model, Glegg et al. (2013), which is related to
our work. The situation these authors consider is of a rotor operating close to a wall
and partially submerged in the thick wall boundary layer. Inhomogeneous turbulence in
the boundary layer interacts with the rotor, to generate UDN. The theoretical model,
Glegg et al. (2013), differs from our approach in two key respects; first, to account for
the boundary layer they allow for the presence of mean shear upstream; and second,
their blade interaction and noise calculations are based in the time, as opposed to the
frequency, domain. Turning first to the issue of mean shear, we note that the RDT of
Hunt and Goldstein, as applied in Majumdar & Peake (1998), in the current paper, and
in Glegg et al. (2013), is only valid for potential base flows. Here, and in Majumdar &
Peake (1998), we consider mean flows generated by actuator disks, in which the mean
vorticity is either bound to the disks or confined within their wakes, with the effect that
the distortion of turbulence from upstream occurs in potential mean flow, to which RDT
is applicable. In contrast, in Glegg et al. (2013) the presence of the mean boundary
layer strictly invalidates the use of potential-theory RDT (although the key qualitative
feature of strong streamtube contraction into the rotor is no doubt captured). Another
feature of the model problems we consider is that far upstream the mean flow is uniform,
allowing the far-upstream turbulence to be treated as a superposition of simply-convected
harmonic gusts; in contrast, Goldstein (1978a) has shown that in the presence of mean
shear the allowed convected gusts take a much more complicated form. This issue has
recently been studied by Ayton & Peake (2014), who consider the gust distortion and
noise generation by a thick aerofoil located in mean shear.
The second difference between the Glegg et al. (2013) approach and our own lies in

their use of the time domain for the turbulence-blade interaction and noise calculations
(see Glegg et al. (2014) for further details), whereas we work in the frequency domain
throughout. It seems to us that both approaches have their merits. The time domain
calculation certainly avoids the sort of time-consuming Bessel function summation which
is a feature of the frequency domain analysis. On the other hand, in the problems we con-
sider in this paper the frequency domain approach has the advantage of directly relating
the energy spectrum of isotropic turbulence, which is very well known, to the frequency
spectrum of the far-field noise, which is of course an object of much engineering interest.
Equally, if one did not have a known spectrum far upstream, but instead had measure-
ments of correlation functions near the rotor face, as in the experiments of Alexander
et al. (2013), then the time domain approach could well be more natural. Another point
of comparison between time-domain and frequency-domain approaches comes from the
issue of source compactness and retarded-time variations. In compact, typically low and
medium speed, cases the retarded-time variations over the source are small, and can be
handled conveniently within the time-domain Ffowcs Williams and Hawkings equation
(Ffowcs Williams & Hawkings 1969). However, for non-compact sources the retarded-
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Figure 2: Schematic of the inputs to and outputs from our model. Computational steps
are shown in boxes with thicker borders.

time calculations become more involved, especially at transonic and supersonic speeds
when the retarded time may become multi-valued and the Doppler factors appearing in
the denominator of the integrand in the Ffowcs Williams and Hawkings equation require
special care. In the frequency domain these features are encoded within the coefficients
of the Bessel expansions, and it is our opinion that this is a more convenient approach
for high-speed flow. Finally, we wish to make the point that existing theories for predict-
ing the distortion of the incident turbulence by the mean flow (RDT in potential flow,
and the approach of Goldstein (1978a) and Ayton & Peake (2014) for shear flow) are
set in the frequency-domain, but it may well be that time-domain analogues could be
developed, and this would be an interesting area of further work.
Our basic methodology follows the steps set out at the start of the previous paragraph,

see Figure 2. In §2 we describe the use of RDT to calculate the distortion of upstream
isotropic turbulence as it propagates through our model asymmetric base flows (§3). The
unsteady pressure distributions across the rotor blades are then calculated (§4), and used
as the forcing term in the far-field wave equation to produce the final noise spectrum
predictions (§5). Throughout our aim is to assess the effects of flow asymmetry on the
radiated noise.

2. Distortion of turbulence

2.1. Rapid Distortion Theory, basic result

Rapid Distortion Theory (RDT) (see (Goldstein 1978b), (Hunt 1973)) is concerned with
calculating the change in a small velocity perturbation u as it is convected downstream
by a dominant, distortive, potential mean base flow, U (in our case, the streamtube
contraction induced by the rotor) as shown in Figure 1. In what follows we choose the x
axis to be aligned with the steady flow far upstream (so that U → U∞êx as x → −∞,
and U∞ is the flight speed of the aircraft). The turbulent component of the velocity is
denoted by u and u → u∞ as x → −∞.
We consider the incident turbulence at upstream infinity to be composed of a distri-

bution of individual unsteady harmonic gusts, which can be combined to give the full
spectrum. Taking just a single such gust, the velocity of this gust at upstream infinity
takes the form

u∞

i (x) = ai exp {ik · (x− U∞têx)} , (2.1)

with a a constant vector. Here, k is the phase vector associated with this single gust;
the full turbulence spectrum is obtained by integrating over all possible k. We emphasise
that in this subsection we consider a single incident gust component (2.1), but in the
rest of the paper u(x, t) will refer to the total unsteady velocity, which is obtained by
integrating over a spectrum of such gusts.
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Following Goldstein (1978b), Majumdar & Peake (1998) were able to calculate the
approximate distorted velocity perturbation resulting from this single gust condition
upstream. Full details are given in Majumdar & Peake (1998), and we need only state
their result here: the distorted gust is given approximately by

ui (x, t) = Aijaj exp {ik · (X− U∞têx)} , (2.2)

where

Aij =

(

δim − lilm

|l|2

)

∂Xj

∂xm
, (2.3)

and

li = km
∂Xm

∂xi
, (2.4)

is the distorted wave-vector. The vector X = X êx + Y êy + Zêz is defined by Goldstein
to have the properties

D0

Dt
(X− U∞têx) = 0 and X → x as x → −∞, (2.5)

where D0/Dt is the convective derivative for the steady base flow U. Condition (2.5) is a
statement that the three quantitiesX−U∞t, Y and Z remain constant when moving with
the mean flow. By labelling each steady streamline uniquely by its y and z coordinates far
upstream and then, for every point along that streamline, defining Y and Z to be these
upstream values, we can always satisfy this condition for Y and Z. The third quantity,
X , is defined by X = U∞∆, where ∆ is the drift function, Lighthill (1956),

∆(x) ≡ x

U∞

+

∫ x

−∞

[

1

(U∞ + Ux)
− 1

U∞

]

dx′, (2.6)

where Ux = U · êx and the path of integration is taken along the mean flow streamline.
In (2.2) we see that the nonuniform mean flow has the effect of modifying both the

phase and the velocity of the gust. The distorted phase is k.X, to be compared to the
phase at upstream infinity, k.x. The vector X expresses the location from which a given
fluid particle originated far upstream, through the components Y, Z, and the time taken
for that fluid particle to reach its current location, through the component X . Note that
X is different from the position vector x, except in uniform mean flow when X = x.
The gust velocity is distorted through the action of the tensor Aij defined in (2.3). The
first term in (2.3), ∂Xj/∂xi, corresponds to the tilting of the gust velocity due to the
changing orientation of material surfaces in the fluid as they propagate downstream (see
Goldstein (1978b) for full details). The second term in (2.3) arises from the hydrodynamic
potential field which accompanies the propagating vortical gust in order to conserve mass;
this potential field depends on the vector l, which is to be interpreted as the effective
local wave vector, i.e. l is the x derivative of the local phase k.X.
The approximation used by Majumdar (1996) in deriving equation (2.2) involves ne-

glecting terms of order ∂2Xj/∂xi∂xi in favour of terms of order kl(∂Xj/∂xi)(∂Xl/∂xj)
This is a reasonable approximation since, in cases of low distortion, ∂2Xj/∂xi∂xi is close
to zero, while in cases of high distortion ∂Xj/∂xi is large (note also that although the
approximation might fail in cases in which the kl are all close to zero, such cases do not
contribute significantly to the sound generated at frequencies of interest). The details of
the argument for neglecting the above terms are given at the end of section 2.3 on pages
190-191 and at the end of section 2.5 on page 195 of Majumdar & Peake (1998). This ar-
gument is based on the large blade number, B, approximation of Parry & Crighton (1989)
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and Crighton & Parry (1991); these references show that the blade numbers envisaged
for the CROR certainly fall within the range of validity of the large B approximation.

2.2. Distorted turbulence spectrum

We are now in a position to calculate the distorted turbulence spectrum, given the tur-
bulence spectrum at upstream infinity. We will be concerned with the frequency domain
velocity correlation

Sij (x, ω) =

∫ ∞

−∞

Rij (x, τ) exp (iωτ) dτ, (2.7)

where

Rij (x, τ) = 〈ui (x, t) , uj (x, t+ τ)〉, (2.8)

and 〈, 〉 denotes an ensemble average. In particular we will be interested in the relationship
between Sij (x, ω) and the far-upstream turbulence spectrum S∞

ij (k). Several analytic
models exist for this latter quantity.

The distorted unsteady velocity, integrated over all wavenumbers, from equations (2.1)
and (2.2), is given by

ui (x, t) =
1

(2π)3

∫

ℜ3

Aik (x,k) û
∞

k (k) exp {i [kx (X (x)− U∞t) + kyY (x) + kzZ (x)]} d3k

(2.9)
real part understood. The Fourier coefficient type integral û∞

k (k) =
∫

ℜ3 u
∞

k (y, t)e−ik·yd3y
provides us with the amplitudes previously represented by the quantity a. Note that the
frequency of the distorted velocity for a particular wavenumber k is ω = kxU∞. Substi-
tuting (2.9) into (2.8) we have

Rij (x, τ) =
1

(2π)
6

∫

ℜ3

∫

ℜ3

∫

ℜ3

Aik (x,k)Ajl (x,k
′) exp (−ik′xU∞τ)

exp
{

−i
[

(kx − k′x) (X (x)− U∞t) +
(

ky − k′y
)

Y (x) + (kz − k′z)Z (x)
]}

[
∫

ℜ3

〈u∞

k (y) , u∞

l (y′)〉 exp (ik · y) exp (−ik′ · y′) d3y

]

d3k′d3y′d3k,

(2.10)
as the ensemble average, after introducing a complex conjugation of ui, acts upon the
u∞ terms only. We make the substitution y′ = y + η, and for simplicity will consider
homogeneous isotropic turbulence far upstream, which implies the ensemble average is
independent of y, allowing us to complete the y, k′ and η integrals. Finally, substituting
back into (2.7) gives

Sij (x, ω) =
2π

U∞

∫

ℜ2

Aik (x,k)Ajl (x,k)S
∞

kl (k) dkydkz , (2.11)

where now kx = ω/U∞ and S∞

kl is the frequency domain velocity correlation at upstream
infinity.

Equation (2.11) is the key result relating the turbulence at the rotor face to the tur-
bulence far upstream. In order to produce specific noise predictions, we require a model
for the form of the upstream turbulence. Wilson et al. (1999) summarised many of the
assumptions commonly used by acousticians about the form of atmospheric turbulence,
and compared these to findings of atmospheric scientists. Wilson indicates that the von
Kármán spectrum fits measured atmospheric spectrum well, see Figure 3 in Wilson et al.

(1999), and thus the assumptions of homogeneity and isotropy are reasonable ones. In
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what follows we therefore substitute the isotropic spectrum

S∞

ij (k) =
E(k)

4πk4
(k2δij − kikj) , (2.12)

where the well-known von Kármán energy spectrum is

E (k) =
55g1u2

∞,1L
5k4

9 (g2 + k2L2)
17

6

, (2.13)

with g1 ≈ 0.1957 and g2 ≈ 0.5578. Here u2
∞,1 is the mean square speed of the axial

component of turbulent velocity, and L is the integral lengthscale. This is one of the most
commonly used spectra (e.g. Lloyd (2009), Blandeau (2011)), and its use here allows ready
comparison with other models. The integral lengthscale, L, is often taken by acousticians
to be around 1 metre, but this is quite different to many observed measurements in the
atmosphere, which often find L to vary proportionally to height off the ground Wilson
et al. (1999); Wilson & Thomson (1994). In the current paper we will present results for
a range of different L values.

3. Asymmetric mean flow models

In order to calculate a fully asymmetric turbulence spectrum (2.11) we next require
appropriate asymmetric models for the mean flow U, which determines the quantities
X. In this paper we consider two flows which model (i) the effect of an adjacent rotor
or fuselage and (ii) flight incidence. For simplicity we use the well-known actuator disk
(Hough & Ordway 1965), which captures the prominent features of streamtube contrac-
tion, to represent the rotor. Results for the turbulence spectrum at the rotor face are
given in both cases. Further developments to account for other aspects of modern open
rotor design, such as more general spanwise blade lift distributions and the effects of the
nose bullet in static tests, will be given in a further publication (see also Robison (2011)).

3.1. Asymmetric flow 1: adjacent rotors

The first asymmetric system we consider is shown in Figure 3(b), and consists of two
actuator disks of radius rd which lie in the y − z plane, separated by a distance d in
the direction perpendicular to their axes. The mean flow is therefore given by the sum
of two actuator disk flows, centred at (0, 0, 0) and (0, d, 0). The strength of an actuator
disk is defined to be Ud = T/πr2dρ0U∞, where T is the total propeller thrust and ρ0 is
the mean fluid density - note that only the direction of thrust, and not the direction of
rotation, appears in the actuator disk model. The axial and radial components of the
mean flow generated by a single actuator disk are given in Appendix A of Majumdar &
Peake (1998). The disk strength Ud determines the axial velocity at the fan face, Uf , and
Hough & Ordway (1965) show that for a single disk in isolation Uf = U∞ + Ud/2.
If the properties of both actuator disks are the same (strength Ud, and radius rd),

then by symmetry we have zero normal velocity on the plane y = d/2, and the flow is
equivalent to that of a single actuator disk at the origin next to an infinite rigid plane
wall at y = d/2. This flow can therefore be used to approximately represent the effects
of the presence of the fuselage on the distortion into a single open rotor. Note, however,
that we will not be considering the subsequent scattering of the UDN by the fuselage;
this issue has been considered by Kingan & McAlpine (2010), who calculated the acoustic
Green’s function in the presence of an infinite cylinder.
Sample results for the steady flow are given in Figure 3(a) in a high distortion case
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Figure 3: Illustration of asymmetric flow 1 which consists of two identical actuator disks
side by side. (a) Streamlines for the two-disk system, for the high distortion case where
Uf/U∞ = 100 for each rotor in isolation, with rotor separation d = 2.5rd. The disk
positions and line of symmetry are indicated by solid and dashed lines respectively. (b)
Coordinate system used.

reminiscent of a static ground test. A crucial point to note here is that the streamlines
arriving at a given radius on one actuator disk are strongly asymmetric, and the distortion
experienced by the turbulence arriving at a given rotor radius will vary around the
rotor. This becomes clear in Figure 4, where we have plotted the axial component of the
distorted turbulence spectrum, Sxx, at a range of azimuthal positions around the disk.
The overall spectral level increases as we move round from φ = 0, the point nearest the
second rotor, to φ = π, the point furthest from the second rotor. As is clear in Figure 3
(a), the largest streamtube contraction occurs on the outboard section of the rotor, while
the steady flow reaching the inboard section is closer to being axial (and uniform). This
agrees with the notion that the flow contraction increases the level of axial coherence by
stretching the inbound turbulent eddies.
We have also verified (not shown here) that when the value of separation d is increased

the azimuthal variation of Sxx becomes much less pronounced, and the axisymmetric
result is recovered. We have also observed (again not shown here) that the spectral level
is greater at the blade tip than at the hub in all circumstances, due to the sharp velocity
gradients at the edge of an actuator disk.

3.2. Asymmetric flow 2: rotor at incidence

Our second asymmetric mean flow models an open rotor at non-zero incidence angle, α,
to the flight direction, see Figure 5. In order to do this we follow Hanson (1995) and
introduce tilted coordinates (denoted by primes), aligned with the actuator disk and
related to the flight-direction coordinates via

x′ = x cosα− z sinα, y′ = y, z′ = x sinα+ z cosα, (3.1)

with corresponding titled polar coordinates r′ and φ′. (Note that the directions of both
the positive x and x′ axes have been reversed compared to Hanson’s coordinates.)
We construct the new flow by superposing an actuator disk flow in the x′ coordinate

system on top of the flight mean flow U∞êx. As x′ → −∞ the êx′ component of the
mean flow tends to U∞ cosα, and we neglect the cross-wind component of the flight speed,
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Figure 4: (a) Here we have calculated Sxx in a high distortion case (Uf/U∞ = 100) near
the rotor tip (r = 0.9rd), at a range of azimuthal positions. For values of φ between π/3
and π the spectra become very close together. (b) This subfigure shows the azimuthal
positions at which Sxx has been calculated. The open circles correspond to positions
r = 0.9rd. The value L = 0.5rd has been used.
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y’ = y 

r r’

φ φ’

Figure 5: Coordinate system for rotor at incidence, both side on and head on views.
The angle between the flight direction and the vector between the rotor origin and the
observer is denoted by θ. We denote the angle between the rotor axis and the vector
between the rotor origin and the observer by θ′. Note that θ′ 6= θ+α in general, equality
is only satisfied when φ = π/2 or 3π/2.

U∞ sinαêz′ , in constructing the actuator disk flow. This approximation will be valid when
α is sufficiently small, or when the strength of the actuator disk is sufficiently large. For
an open rotor in the pusher configuration, |α| is typically less than 3◦ (π/60 rad), and
negative values of α can occur during approach, whereas in the puller configuration |α|
is of the order of at most 15◦ (π/12 rad). We therefore believe that the small-angle
approximation is a reasonable one. The mean flow can now easily be calculated using
the standard actuator disk velocities in the tilted coordinate system, with the ‘effective’
actuator disk strength at incidence being given by

U ′

d =
T

πr2dρ0 (U∞ cosα)
. (3.2)
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x, axial direction

z

Figure 6: The streamlines induced by the actuator disk at incidence (solid), with the
equivalent axisymmetric streamlines (dashed). The position of the disk in each case is
also shown. Here α = π/12 rad and the total thrust, T , is kept constant between the two
cases, with Uf/U∞ = 100 in the zero incidence case.

Figure 6 shows some representative plots of the streamlines for this tilted actuator disk
set-up.
In Figure 7 we plot Sxx as the incidence angle α is increased, at φ′ = π/2 and φ′ = 3π/2

which correspond to the points at the top and bottom of the actuator disk relative to the
flight stream respectively. As α increases the difference between the spectra at these two
values of φ′ increases at first, but after a certain point decreases. This is explained by
noting that if the tilted radial position of interest r′ is kept constant, and α is increased,
then the non-tilted radial coordinate r at the two points (φ′ = π/2 and 3π/2) gets closer
to zero. That is, because

r = r′ cosα for φ′ =
π

2
and φ′ =

3π

2
, (3.3)

(see Figure 5) then as α increases from zero, r decreases. Beyond a certain value of α
the fact that the streamlines arriving close to the centre of the disk experience a similar
distortion in the journey from far upstream begins to counteract the difference introduced
by the increased asymmetry.

4. Blade unsteady pressure distribution

We next calculate the unsteady blade pressures induced when the distorted turbulence
hits the rotor blades in the two cases. Specifically, we will decompose the incident tur-
bulence into individual sinusoidal disturbances, and use a well-known cascade model to
find the resulting blade response. The response from all the rotor blades, summed over
all the individual incident disturbances, will then be used in §5 as the forcing term in
the wave equation in order to obtain the far-field noise.

4.1. Blade response theory

Smith (1973) analysed the response of a rectilinear cascade of idealised flat plate blades
to an incident velocity perturbation, and Whitehead (1987) created the LINearized SUB-
subsonic (LINSUB) code to implement Smith’s theory. Within this framework, certain
modelling assumptions apply. First, radial gradients are neglected, by ‘unwrapping’ the
blade row and considering two-dimensional radial stations separately. This approxima-
tion allows the so-called cascade effects, the aerodynamic interaction between adjacent
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Figure 7: Plot of the axial component of the distorted turbulence spectrum as the angle
of rotor incidence is varied. Here the distortion ratio is Uf/U∞ = 10, and the spectrum
is calculated at radial position r′ = 0.4rd, and axial position x′ = −0.005rd. The value
of L = 0.5rd has been used.

blades, to be taken into account. For an open rotor with perhaps 8 blades, cascade effects
will not be as strong as for a conventional turbofan with perhaps 25 blades, but may
become important near the rotor hub where the blades are more closely spaced. Second,
the mean flow through the blade row itself is assumed to be uniform and aligned parallel
to the blade chords. At each radial station the blades are then modelled as a chordwise
distribution of spanwise line vortices whose strength is calculated so as to enforce the
required condition of zero unsteady normal velocity on the blade surfaces.

Our unsteady input velocity into LINSUB takes the form of a convected sinusoidal
gust, with the normal velocity at a particular blade leading edge having a given complex
amplitude, and with the so-called inter-blade phase angle giving the phase difference
between the velocities on adjacent leading edges. As shown in (2.9), the incident distorted
turbulence may be described by an integration over wave vector k of individual distorted
gust components, weighted by the appropriate amplitude present in the turbulence far
upstream. The blade normal velocity of these distorted components at a given blade
leading edge for each upstream velocity component û∞

j (k) is of the form

û∞

j (k)Ni (x)Aij (x;k) exp {i [kxX + kyY + kzZ]} e−ikxU∞t, (4.1)

where N(r, φ) = sinβ(r)êx + cosβ(r)êφ is the blade normal vector and β is the angle of
the blade to the axial direction. As described above, the blades are assumed to be aligned
parallel to the local absolute mean flow velocity. For a rotor perpendicular to the flight
direction (as in asymmetric flow 1) we therefore have tanβ(r) = Ωr/ (U∞ + Ud/2), and
for a rotor at incidence (asymmetric flow 2) we have tanβ (r′) = Ωr′/ (U∞ cosα+ U ′

d/2).

In order to calculate the blade response using LINSUB, we require the blade normal
velocity (4.1) in a reference frame which rotates with the blades, decomposed into az-
imuthal harmonics. The method for doing this is described in the next two paragraphs,
and we first use the formula (equation 8.511.4 on page 973 of Gradshteyn & Ryzhik
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(1980))

exp {i [ky cosΦ + kz sinΦ]R} =

∞
∑

n=−∞

Jn

(√

k2y + k2zR
)

exp
{

in
(

Φ− φk +
π

2

)}

(4.2)

to write

NiAij exp {i [kxX + kyY + kzZ]} = exp (ikxX) [sinβAxj + cosβAφj ]

×
∞
∑

n=−∞

Jn (rkR) exp
{

in
(

Φ− φk +
π

2

)}

,

(4.3)
recalling that Y = R cosΦ and Z = R sinΦ. Now, to bring out the φ dependence in
equation (4.3) explicitly in exponential form, we define a new Fourier coefficient quantity
Cm,n

ij via

eikxXAij (x, r;k) Jn(rkR)einΦ =

∞
∑

m=−∞

Cm,n
ij (x, r;k) eimφ, (4.4)

so that

Cm,n
ij (x, r;k) =

1

2π

∫ 2π

0

eikxXAij (x, r;k) Jn(rkR)einΦe−imφdφ. (4.5)

Finally, we define quantities Dm,n
j ≡ NiC

m,n
ij . Crucially, we require the quantities Dm,n

j

in cartesian form, (i.e. for j = x, y, z) in order to contract with û∞
j , whereas Ni is most

straightforwardly given in polar coordinates. Thus we convert from polar expressions for
Cm,n

ij to ‘mixed suffices’ expressions, such as Cm,n
φy . Full details for the expressions for

Dm,n
j are given in Appendix C.

For each wavevector k the leading edge velocity in the direction normal to the blade
can now be written in the form

∞
∑

m=−∞

wm
W (x, r) eiωΓt+imφ̂, (4.6)

where φ̂ = φ − Ωt is the azimuthal coordinate in the rotating frame, ωΓ = mΩ− kxU∞

are the harmonics of the gust frequency in the rotating frame, and the modal coefficients
wm

W are given by

wm
W eiωΓt+imφ̂ =

∞
∑

n=−∞

Dm,n
j (x0(r), r; kx, rk, 0) exp [−i(m+ n)φk] e

−
inπ
2

û∞

j (k) exp [i (mΩ− kxU∞) t] exp
[

imφ̂
]

. (4.7)

The exp (−imφk) factor here has arisen from the expression for Dm,n
j when the argument

φk is set to zero (see equation (C 3)). For each term in (4.6) it follows straight away that
the interblade phase angle (which gives the phase difference occurring between adjacent
blades) is− 2πm

B , whereB is the number of rotor blades. The minus sign occurs because we
are using the direct reference frame, where φ runs anticlockwise when the axial direction
is out of the page, see Figure 5.

The pressure jump can now be calculated using LINSUB, and the pressure jump across
a blade which passes through the position (x, r, φ) at time t, due to an upstream gust of
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the form û∞(k)ei(k·[x−U∞têx]) is finally given by

∆p (x, r, φ, t) = ρ0W

∞
∑

m=−∞

γm

{

∞
∑

n=−∞

Dm,n
j (x0(r), r; kx, rk, 0) e

−i(m+n)φke−
inπ
2

}

û∞

j (k) e−ikxU∞teimφ. (4.8)

The various terms in (4.8) are explained as follows: the factor ρ0W is included to give the
dimensional pressure jump, where ρ0 is the mean density and W is the absolute mean
flow velocity in the rotating frame at each radius; γm is the bound vorticity ditribution
on the blade resulting from the gust interaction, and is an output from LINSUB (see
Whitehead (1987) for the full details); and the remaining terms in (4.8) come from the
individual gust amplitudes. The arguments of the bound vorticity are γm = γm(x, r, ωΓ),
with x, r being the position of a given point on the blade and where we recall that ωΓ

is the gust frequency in the rotating frame. In the non-zero incidence case, asymmetric
flow 2 in the present paper, the quantities x, r (and φ in earlier equatuions) are replaced
by their primed equivalents.

4.2. Limits on the radial wavenumber

As we have already noted, Smith’s two-dimensional blade response model neglects radial
gradients, i.e. for an input gust of the form eiksr+imφ the eiksr factor is taken as part of
the amplitude of the incident gust at each r station. Formally, there is therefore no limit
to the value of ks which could be used in the blade response. However, the sound waves
which we will ultimately obtain from solving the wave equation with these blade forces
will satisfy the Helmholtz equation, and this will necessarily limit the range of values of
ks which can eventually contribute to the radiated sound. We expect that, while all radial
wavenumbers in the blade forcing generate near-field pressure perturbations, it will only
be values of ks in a finite range which lead to propagating acoustic waves and therefore
contribute to the far-field sound. However, the expression for the incident velocity field,
as given in equation (4.7), does not have r dependence written explicitly in the form eiksr,
and we therefore need to determine an expression for the ‘effective’ radial wavenumber
(equivalent to ks) when we have a general r dependence within the velocity input, e.g.
denoted by f(r).
The situation is not completely straightforward, as we wish to translate between the

full cylindrical geometry in which the incident turbulence is distorted and the sound is
radiated and the rectilinear geometry in which the blade response is computed. This is
a well-known difficulty in turbomachinery noise studies, and Posson et al. (2010) and
Glegg & Jochault (1998) have looked at the problem of translating between these two
coordinate systems in a similar context. Posson et al. (2010) noted that, in addition to
the wave equation being satisfied in each of the two geometries, there are (at least) two
conditions which one would ideally like to satisfy when moving between the cylindrical
and rectilinear geometries: first, keeping the magnitude and direction of the wavevector
components in a plane of constant radius the same between the two geometries; and
second, matching the spanwise and radial structures, for instance by decomposing the
cylindrical Bessel functions into exponentials, from which the ks can easily be read off.
However, they showed it was not possible to satisfy both of these conditions at once, and
in what follows we choose to satisfy the first of these conditions only.
We identify r in the cylindrical geometry with the spanwise rectilinear coordinate in the

cascade geometry and −rφ with the transverse coordinate (again, the minus sign being
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due to use of the direct reference frame). Given a disturbance of the form f(r)eiωt+imφ,
as was obtained by rewriting u in the form of equation (4.6), we wish to equate this to a
wave in the rectilinear geometry. Identifying the wavevector in a plane of constant radius
in the two geometries, we can straightforwardly identify the transverse wavevector kt
with −m/r. In order for the disturbance to satisfy the wave equation in both geometries,
given that the time dependence is fixed, we also equate the result of applying the ∇2

operator, to find

k2s + k2t = −
1
r

∂
∂r

(

r ∂f
∂r

)

f(r)
+

m2

r2
(4.9)

which implies that

k2s = −
1
r

∂
∂r

(

r ∂f
∂r

)

f(r)
. (4.10)

This gives a general formula for picking out the effective radial wavenumber from an
expression with general r dependence. In our case the primary r dependence within our
velocity expression (4.3) takes the form Jn (rkR), (as Cargill (1993) did, we neglect the
r dependence within eikxX and einΦ in determining ks) and thus we find

k2s = r2k

(

∂R

∂r

)2(

1− n2

r2kR
2

)

−
(

rk
r

∂R

∂r
+

rk
r

∂2R

∂r2
− rk

R

(

∂R

∂r

)2
)

J′n(rkR)

Jn(rkR)
. (4.11)

It turns out that R is very close to being a linear function of r for the actuator disk
model of distortion we employ, except near the blade tip, so that in practice the second
set of terms in (4.11) are negligible (they would be identically zero for an exactly linear
R). This leads to the relation

r2k =
k2s

(

∂R
∂r

)2 +
n2

R2
. (4.12)

It is certainly the case that 0 6 k2s 6 ω2/c20 (with the upper limit coming from the
frequency term in the Helmholtz equation, c0 being the speed of sound), and we can
use this to impose finite limits in the rk integrals found when solving for the far-field
pressure. We therefore impose

√

n2

R2
6 rk 6

√

(

∂R

∂r

)−2
ω2

c20
+

n2

R2
. (4.13)

Since n and rkR are respectively the order and argument of the Bessel function which
governs the radiation, the lower limit here is a statement that it is only when the argument
of the Bessel function is greater than its order that the source radiates, as previously
noted by Parry (1988). Within the upper limit, the quantity ∂R/∂r expresses the effect
of the streamtube contraction; ∂R/∂r increases from a value of unity far upstream as we
move towards the rotor. In analogy to sound propagating in a contracting duct, we can
therefore interpret the quantity

(

∂R

∂r

)−1
ω

c0
(4.14)

as being proportional to an effective Helmholtz number, which controls which parts of
the acoustic field can propagate to the far field. Having now introduced finite limits on
the radial wavenumber, we are in a position to compute the far-field radiation.
As a final point in this section, we wish to emphasise that unwrapping the rotor in
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cylindrical geometry into a cascade in cartesian geometry is obviously an approximation,
but one which is necessary given that a computational solution to our problem with a full
incident turbulence spectrum and full annular geometry is some way off. The accuracy
of the cascade approximation has recently been investigated by Posson et al. (2013),
who compared cascade responses with a fully numerical annular solution in the case of a
single incident sound wave and a ducted rotor. They found that the cascade model can
give reasonable results, but that significant errors can occur in individual cases, typically
at combinations of frequencies and wavenumbers when duct modes are close to cut-off.
Posson et al. (2013) are able to produce better results in such cases by matching the
wavenumbers between annular and planar geometries, which is precisely how we limited
the integration over radial wavenumbers in this subsection. The accuracy of the cascade
approximation remains an open question, but it seems reasonable to expect that the
combination of averaging over a broadband input forcing and correction of the limits of
integration over radial wavenumbers serves to reduce the errors in our particular problem.

5. Far-field noise

The unsteady blade lift distribution generated by the interaction of the rotor with the
distorted turbulence was calculated in the previous section, and we now compute the
far-field sound generated by this unsteady force distribution. The sound generation is
described by the convected wave equation (Dowling & Ffowcs Williams 1983)

∇2p− 1

c20

(

∂

∂t
+ U∞

∂

∂x

)2

p = ∇ · f (x, t) ≡ −
∫

ω

Qω (x, y, z) e−iωtdω, (5.1)

where p is the fluid pressure and f is the force per unit volume applied to the fluid (in
this case by the rotor blades), which can be described as an integral of sources Qω over
a continuous frequency spectrum for broadband noise (or a sum of discrete frequencies
for purely tonal noise). In this section we will first describe the expression found for f in
our asymmetric set-up, and then the Green’s function solution to the above equation.

5.1. Forcing term

To obtain f we multiply each blade pressure jump as given in equation (4.8) by a delta
function corresponding to the location of blade b at time t

δ

[

r

(

φ− Ωt− φ0 (r) −
2bπ

B

)

− (x− x0 (r)) tanβ(r)

]

, (5.2)

where x0, φ0 give the leading edge of the blade at time t = 0. We then sum over all
blades, b running from 1 to B, and re-express that delta function series as a sum (over
the new index l) of complex exponential terms. We find

fi (x, r, φ, t) = ρ0WNi(r)
B

2πr

∞
∑

m=−∞

1

(2π)
3

∫

ℜ3

γm (x, r; kx) exp (−ikxU∞t)

∞
∑

n=−∞

Dm,n
j (r; kx, rk) e

−i(m+n)φk

[
∫

ℜ3

u∞

j (x′) e−ik·x′

d3x′

]

d3k

∞
∑

l=−∞

exp

(

i (m+ lB)

[

(x− x0(r)) tanβ(r)

r

])

exp (−ilBφ0(r))

exp (−ilBΩt) exp (i [m+ lB]φ) .
∑

(5.3)
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Here we see that azimuthal dependence has been explicitly separated out. For each kx
we can define components Fm,n,l so that

f ≡ N
∑

m,n,l

Fm,n,l(x, r; kx)e
−i(kxU∞+lBΩ)tei[m+lB]φ. (5.4)

Defining ω = kxU∞ + lBΩ we then find

Qω (x, y, z) = −
∑

m,n,l

[

sinβ(r)
∂Fm,n,l

∂x
+

cosβ(r)

r
i(m+ lB)Fm,n,l

]

ei[m+lB]φ, (5.5)

where the integration variable in equation (5.1) will now be kx. In the non-zero incidence
case the quantities x, r and φ in (5.5) are replaced by their primed equivalents.

5.2. Green’s function for rotor at incidence

The solution to equation (5.1) can be written in the form

p (x, y, z, t) =

∫

ω

Pω (x, y, z) e−iωtdω. (5.6)

The Green’s function for a rotor travelling at some non-zero angle of attack to its axis was
calculated by Hanson (1995), noting that the opposite sign convention for the positive x
axis was used in that paper. In the tilted system, Hanson finds the solution of equation
(5.1) to be

Pω (σ0, θ
′, φ′) =

e
iωσ0

c0

4πσ0 (1−M cos θ)

∫ rd

r′s=0

∫ ∞

x′

s=−∞

∫ π

φ′

s=−π

Qω (x′

s, r
′

s, φ
′

s)

exp

[ −iω

c0 (1−M cos θ)
(x′

s cos θ
′ + r′s sin θ

′ cos (φ′ − φ′

s))

]

r′sdφ
′

sdx
′

sdr
′

s,

(5.7)
where we integrate over the source coordinates (x′

s, r
′
s, φ

′
s). We can express cos θ, which

appears in two places, in terms of primed coordinates as

cos θ = cos θ′ cosα− sin θ′ sinφ′ sinα. (5.8)

The changes from the standard (non-tilted) Green’s function are only in the phase term;
in the far-field, the amplitude terms are the same to leading order. The solution in the
non-tilted case (used for our asymmetric flow 1) is therefore identical to (5.7) except θ′

and φ′ are replaced by θ and φ everywhere.
For sources with azimuthal dependence of the form eiqφ, as we have, the φ′

s integral in
(5.7) can be done explicitly, yielding a Bessel function, and a final manipulation involves
integrating the first term from equation (5.5) by parts.
We take the auto-correlation of p and then take the Fourier Transform to find the

Power Spectral Density (PSD), P̂ (x, ω), as follows

P̂ (x, ω) =

∫ ∞

−∞

〈(p (σ0, θ, φ, t)) , p (σ0, θ, φ, t+ τ)〉 eiωτdτ

=

∫ ∞

−∞

P (σ0, θ, φ, τ) e
iωτdτ.

(5.9)

Majumdar (1996) then integrated P̂ over a shell of radius σ0 in the far-field, removing φ
and σ0 dependence, to find

P (ω) =

∫ 2π

φ=0

∫ π

θ=0

P̂ (x, ω) σ2
0 sin θdθdφ, (5.10)
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In this paper we therefore plot the spectral power quantity

Σ(ω) ≡ 10 log10

(

P (ω)

10−12

)

dB, (5.11)

which gives the correct trends of location and relative heights of tones. These are the key
results of this work, since the absolute levels are ultimately controlled by the magnitude
of the upstream turbulence intensity, u2

∞,1.
The full expression obtained is rather cumbersome, and is given in full in Appendix

D. Within the triple summation found in equation (D 1), the n index arose from the
Bessel function and upstream azimuthal angle dependence within the incident velocity,
Jn (rkR) einΦ, and the m index corresponds to the total azimuthal order of the incident
turbulence field upon the blades - see equation (4.4). The l index arose from the 2π/B
periodicity of the blades.

6. Radiated noise results

6.1. Asymmetric flow 1: adjacent rotors

In Figure 8 we plot the radiated sound Σ(ω) from a single rotor of an adjacent rotor
pair, with the asymmetrical inflow described in section 3.1, in cases of low, medium and
high distortion. As expected, and as discussed in the introduction, strong narrow tones
are generated at multiples of blade passing frequency in the high distortion (static) case,
due to the stretching of eddies by the significant streamtube contraction. In contrast,
in the low distortion (flight) case tones are not generated, because the weak streamtube
contraction now has only a small effect on the axial coherence of the (broadband) inci-
dent turbulence, and a broadband noise spectrum is produced. Of course, the mid-level
distortion case lies between these two extremes, but note that even here tones can be
generated which protrude more than 20dB above the minimum broadband level. The
absolute level of all three plots depends on the value assigned to u2

∞,1, which provides
only a vertical shift to the spectra, and in each case here this has been set to the same
value. In reality, the turbulence intensity will vary significantly between different aircraft
operating conditions (with presumably very much lower levels at higher altitude in flight
than at take-off). When comparing spectra for different distortion levels we therefore
seek to compare only the spectral shapes, rather than the absolute levels.
In order to further investigate the effect of the streamtube contraction on the different

parts of the spectrum, we plot in figure 9 the change in Σ(ω) as the integral lengthscale
is varied, here in the mid-level distortion case. For a typical broadband frequency, we
see that the power level varies linearly on this logarithmic plot, with P (ω) decreasing
like L−2/3 across the whole range of integral length scales considered. This behaviour
can be seen precisely in the energy spectrum of the undistorted turbulence far upstream;
by keeping k fixed (equivalent to fixing ω and taking k ∼ ω/U) we see from (2.13)
that E(k) ∼ L−2/3 for L large. For the broadband component the behaviour of the
acoustic energy therefore simply mirrors the behaviour of the turbulent energy spectrum
far upstream. In contrast, at the tonal frequency the L−2/3 fall-off is modified, with a
maximum power level observed for an integral lengthscale L comparable to the propeller
radius. For large values of L the decay again matches the L−2/3 behaviour found for
the broadband component. From this we can conclude that the effects of the distortion,
at least in terms of modifying the energy distribution between the input turbulence
upstream and the output far-field noise, are more significant for the tones than for the
broadband.
In Figure 10 we compare spectra for three different values of the rotor spacing d,
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Figure 8: Plots of spectral power quantity Σ(ω) from a single rotor in asymmetric inflow
(as given by asymmetric flow 1, with d = 2.5rd) at three different distortion levels. The
Flight condition corresponds to Uf/U∞ = 1.18, Mid-level distortion to Uf/U∞ = 10,
and Static to Uf/U∞ = 100. The integral lengthscale was taken to be L = 0.5rd. In this
figure, and throughout the rest of the paper, we take B = 12 and Ω = 100rads−1.
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Figure 9: Effect of varying integral lengthscale L on Σ(ω) at tonal (ω = 1BPF) and
representative broadband (ω = 1.5BPF) frequencies, relative to the level for L = rd.
Here we have the mid-level distortion case.
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Figure 10: Plots of Σ(ω) from a single rotor in asymmetric inflow (asymmetric flow 1) for
varying the rotor spacing d, in the case of Mid-level distortion Uf/U∞ = 10 and other
conditions as in figure 8.

in order to assess the effects of asymmetry. A very strong effect on the tonal levels is
observed, with a significant increase at both one and two BPF, as d increases from the
highly asymmetric case d = 2.5rd (corresponding to a tip separation of just half of one
radius) to axisymmetric case in which d is effectively infinite (in fact, for cases of d > 25rd,
the spectra produced are visually indistinguishable from the axisymmetric case). The
reason for this behaviour, we believe, is that the close proximity of the second rotor
forces the oncoming flow to remain more parallel in the region between the rotors, thereby
reducing the effective streamtube contraction into the rotor compared to the (symmetric)
isolated-rotor case. The effect of varying asymmetry on the broadband component is
smaller, and less systematic, than in the tonal case, in agreement with the conclusion of
the previous paragraph.
Note that in Figures 8 and 10 a smaller intermediate peak occurs in the mid-level

distortion case, and is evident in the static case in Figure 8. We note that tones at non-
multiples of BPF arise when the nth azimuthal order of a steady incident disturbance
interacts with the rotor to generate sound of frequency (mB ± n)Ω; the intermediate
peak seen here occurs at ω = (2B − 2)Ω. Of course, the incident turbulence contains
components at all frequencies and all azimuthal orders, and we hypothesise that one of
these azimuthal-order interactions leads to the intermediate peak. However, the precise
reason why this particular intermediate peak should be selected is not clear to us.

6.2. Asymmetric flow 2: rotor at incidence

The qualitative effects of increased levels of distortion on the character of the spectra
are the same as shown in figure 8 for asymmetric flow 1, i.e. high distortion leads to
the generation of strong peaks at multiples of BPF. In order to consider the quantita-
tive effects of asymmetry, we plot in figure 11 the change in power level for increasing
α relative to the axisymmetric (α = 0) case. This is again for mid-level distortion, for
the first two BPF tones and for the representative broadband frequency ω = 1.5BPF.
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Figure 11: Effect of varying incidence angle α (in radians) on Σ(ω) at tonal (ω = 1, 2BPF)
and representative broadband (ω = 1.5BPF) frequencies, relative to the level for α = 0.
Here we have the mid-level distortion case, and L = 1.

For all three frequencies the spectral power increases with α, but only significantly for
the broadband and the 2BPF frequencies, while the 1BPF tonal is relatively insensitive.
No clear difference between the behaviour of the tonal and broadband levels therefore
emerges, in the way that it did for the variation of integral length in figure 9 for asym-
metric flow 1. However, this is perhaps not surprising for two reasons; first, there is no
simple connection between the incidence angle and the level of distortion, as became
clear in figure 7; and second, as α changes the radiated power is affected not only by the
flow distortion but also by the Hanson (1995) geometrical effect of tilting the plane of
rotation of the acoustic sources. In this sense, the noise behaviour of asymmetric flow 2
is more complicated than that of asymmetric flow 1.
In order to assess the effects of incidence angle on the sound directivity, in figure 12

we consider the quantity

10 log10

(

σ2
0 |P̂ (x, ω)|

)

, (6.1)

with P̂ (x, ω) given in (D 1). At the tonal frequency ω = 1BPF we see that the directivity
is very similar for observers directly above (φ′ = π/2) and directly below (φ′ = 3π/2)
the rotor and for the two incidence angles considered, indicating that the asymmetry
of the mean flow is having only a small effect. This agrees with figure 11, in which the
integrated power level is seen to be rather insensitive to the incidence angle. In contrast,
at the broadband frequency ω = 1.5BPF the effect of incidence angle on the directivity
as a function of θ is much more significant (as it was in figure 11 for the integrated power
level). Interestingly, however, the asymmetry of the directivity as φ′ varies is still very
weak; in figure 12b, the directivities for φ′ = π/2, 3π/2 are very similar indeed (and at
the lower incidence angles are indistinguishable). The asymmetries in φ′ in the incident
turbulence spectra which we observed in figure 7 have therefore not been translated into
φ′ variations in the radiated field. It appears that the azimuthal variation in the radiation
field which would presumably result from the interaction of the rotor with a single gust
are averaged out when integrating over a full turbulence spectrum.
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Figure 12: (a) Directivity patterns for a rotor at three different angles of incidence,
α = π/12, π/24 and π/48, at the tonal frequency ω = 1 BPF. In the case of α = π/12
two different azimuthal positions are shown (for α = π/12, π/24 the directivities at
different φ′ are indistinguishable) (b) Similarly, for broadband frequency ω = 1.5 BPF.

We note that the θ directivity seen in figure 12 is characteristic of unsteady distortion
noise, with higher amplitudes upstream and lower amplitudes in the plane of the rotor
(directivity plots for asymmetric flow 1 are very similar). This is due to the predominance
of Bessel functions of order zero in the expression for the acoustic pressure (see the
discussion in Appendix D).

7. Concluding remarks

In this paper we have set out a method for predicting the generation of unsteady
distortion noise by the ingestion of turbulence into a rotor, in situations in which the
inflow is asymmetric, thereby extending the previous analysis of Majumdar & Peake
(1998) who considered axisymmetric flow. We have specifically considered two cases of
practical interest; adjacent twin rotors, and a single rotor at incidence. A key part of
our work here has been the inclusion of the polar forms of the distorted wavenumber
vector l and distortion tensor A; in computing the results we found that inclusion of
all the azimuthal terms described in this paper was required. Another key feature of
the analysis is that it is essential to limit the integral over transverse wavenumber, rk,
in order to achieve convergence. This is due to our use, as is standard, of strip-theory
models of the blade response, but this difficultly can be eliminated in the future, when
computational resources allow, by the use of of fully three-dimensional response models
for annular blading.
We saw different types of behaviour in the two asymmetric flows. For adjacent rotors,

we concluded that the level of mean-flow asymmetry, as measured by the proximity of
the two rotors, significantly reduces the tonal levels compared to the axisymmetric case.
In contrast, the effect of the distortion on the broadband noise seems less significant. For
a rotor at incidence the picture is more complicated, due to the fact that changing the
incidence angle not only changes the level of distortion but also changes the radiation
properties of the rotor. However, what is certainly clear is that incidence can have a
significant effect, with for instance a more than 3dB increase in the radiated power at
the 2BPF tone when the incidence is increased from 0◦ to 15◦.
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A number of extensions of this work have been considered, including investigating the
effect of using a Guassian expression for the energy spectrum E(k) within the context
of isotropic tubulence, more complicated models of the propeller lift distribution (as
opposed to the simple uniform actuator disk theory used here), and the influence of
the propeller mounting used in wind tunnel tests. These issues are discussed in Robison
(2011). Directions for further work, suggested by an anonymous referee, are as follows.
One would be to investigate differences that might be experienced between rotors in
pusher and puller configurations. For instance, in the pusher configuration, when the
rotor is mounted at the rear, the effect of the proximity of the fuselage might be better
modelled by a semi-infinite plane, rather than the infinite plane used in our asymmetric
flow case 1 here. A second suggested direction would be consideration of non-isotropic,
inhomogeneous turbulence incident from upstream infinity. This is certainly possible
within the RDT framework, but would obviously require the input turbulence to be
specified in detail - one possibility might be to use experiementally-measured spectra,
as is done by Alexander et al. (2013). A third possibility would be to investigate near-
field noise levels, with a view to establishing how the near axisymmetry observed in the
far-field directivity breaks down close to the rotor.

RAVR acknowledges funding from an EPSRC Rolls Royce CASE award which made
this work possible. The authors are most grateful to Dr AB Parry for many helpful
discussions.

Appendix A. Polar representation of the wave vector k

We require expressions for the component of the incident turbulent velocity in the
direction of the blade surface normal, N. Since N has components in the axial and
azimuthal directions - see equation (4.1) - it will be most convenient to translate various
quantities into coordinates aligned with the vector x, see Figure 13 where the different
coordinate representations of x and k are illustrated. In physical space we write

X (x) = X êx +R cos (Φ− φ) êr +R sin (Φ− φ) êφ , (A 1)

where R =
√
Y 2 + Z2 is the far-upstream value of r for the streamline running through

the point x, and Φ = tan−1 (Z/Y ) is the far upstream azimuthal angle (recall that the
mean flow is aligned with the polar axis far upstream). After some algebra, expressions
for the three polar components of l (e.g. the radial component lr = l · êr) and the nine
polar components of A (e.g. Arr = êr ·A · êr) can be derived, and are given in Appendix
B.
From Figure 13 we see that kr and kφ give k in a cartesian base which has been rotated

to align with the vector x. For subsequent numerical calculations it will also be helpful
to re-express the wave vector k in a polar form, which allows us to convert certain of the
integration end points from infinite to finite values. We define

rk =
√

k2y + k2z and φk = tan−1

(

kz
ky

)

, (A 2)

so that

kr = k · êr = rk cos (φk − φ) and kφ = k · êφ = rk sin (φk − φ) , (A 3)

while kx is the same in all these coordinate systems. We see that the quantities kr and
kφ depend upon which x position we are considering via the quantity φ. The angle φk

appears in our subsequent expression for the blade normal velocity, see equation (4.2).
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φ
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k − kxêx = krêr + kφêφ

x − xêx = rêr
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z

rk

êφ
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Figure 13: Re-expressing k in polar form: kyêy + kz êz → krêr + kφêφ, where polar
coordinates are taken with respect to position x.

We note that within the analysis of Majumdar & Peake (1998), φk was set equal to φ
within the definition of A. This meant that, for a particular, constant, k = (kx, ky, kz),
the φ dependence within A (x;k), as x was varied, was neglected. This form of averaging
means that Majumdar & Peake’s original analysis cannot be immediately extended to the
asymmetric case, as inclusion of the differences in the distortion amplitude A as φ varies
is precisely what we are aiming to do in the asymmetric case. Hence our approach in
the present paper, as described in detail in §4, involves introducing new quantities Cm,n

ij

and Dm,n
j , in order to explicitly separate out the φ dependence within A in exponential

form.

Our approach also differs from that of some authors, for example Blandeau (2011), who
decompose the turbulent velocity into components with constant kr, kφ components, as
opposed to constant ky, kz components. Within Blandeau’s framework, kr is defined to
be the component of k in the êr direction on a particular blade (at φ = 0 say), and the
phase is written using the strip theory approximation

ei(krr+kφφr+kxx), (A 4)

which is valid on neighbouring blades, for which φ is small. For our purposes, as we
specifically wish to account for the new φ dependence within the velocity field due to the
asymmetry of the mean flow, we need to obtain general expressions which are valid for
all φ between 0 and 2π, hence our current approach.

Appendix B. Polar representation of the distorted wavevector and

distortion amplitude

As given in equation (2.4) the distorted wavevector l is given by (summation convention
assumed)

l = ki∇Xi =

{

êx
∂

∂x
+ êy

∂

∂y
+ êz

∂

∂z

}

[kxX + kyY + kzZ] , (B 1)

where k is the (constant) wavevector at upstream infinity. We note that Y and Z are given
by R cosΦ and R sinΦ in terms of polar quantities. The most general, fully asymmetric,
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forms for lr and lφ are then as follows:

lr = l · êr = kx
∂X

∂r
+ kφ

(

− sinφ
∂(R cosΦ)

∂r
+ cosφ

∂(R sinΦ)

∂r

)

+

kr

(

cosφ
∂(R cosΦ)

∂r
+ sinφ

∂(R sinΦ)

∂r

)

,

lφ = l · êφ = kx
1

r

∂X

∂φ
+ kφ

1

r

(

− sinφ
∂(R cosΦ)

∂φ
+ cosφ

∂(R sinΦ)

∂φ

)

+

kr
1

r

(

cosφ
∂(R cosΦ)

∂φ
+ sinφ

∂(R sinΦ)

∂φ

)

.

(B 2)

The axial component lx of course taking the same value as in the cartesian case.

Turning now to the distortion amplitude tensor Aij , we define polar components by
contracting the tensor with corresponding polar unit vectors, so that for instance Arφ ≡
êr ·A · êφ, et cetera. After some algebra we find

Aαx =

(

δαx − lαlx
|l|2

)

∂X

∂x
+

(

δαr −
lαlr
|l|2

)

∂X

∂r
+

(

δαφ − lαlφ
|l|2

)

1

r

∂X

∂φ
,

Aαr =

(

δαx − lαlx
|l|2

)

∂Xr

∂x
+

(

δαr −
lαlr
|l|2

)

∂Xr

∂r

+

(

δαφ − lαlφ
|l|2

)[

cosφ

r

∂ (R cosΦ)

∂φ
+

sinφ

r

∂ (R sinΦ)

∂φ

]

,

Aαφ =

(

δαx − lαlx
|l|2

)

∂Xφ

∂x
+

(

δαr −
lαlr
|l|2

)

∂Xφ

∂r

+

(

δαφ − lαlφ
|l|2

)[

− sinφ

r

∂ (R cosΦ)

∂φ
+

cosφ

r

∂ (R sinΦ)

∂φ

]

,

(B 3)

where Xr = R cos(Φ− φ), and Xφ = R sin(Φ− φ). In these expressions the suffix α runs
over x, r, φ, and δxx = δrr = δφφ = 1, with all other values of δαβ being zero.

Appendix C. Definition of Dm,n
j

As outlined in §4.1, it is helpful in the analysis to define the cartesian vector Dm,n
j ≡

NiC
m,n
ij . To compute Dm,n

j we substitute the ‘mixed suffices’ quantities Axj , Arj , Aφj

(for j = x, y, z) in terms of the polar A components given in Appendix B above, into the
left hand side of equation (4.4). For example

[êx ·A · êy] eikxXJn(rkR)einΦ = {[êx ·A · êr] cosφ− [êx ·A · êφ] sinφ} eikxXJn(rkR)einΦ

=
∞
∑

m=−∞

[

Cm,n
xr cosφ− Cm,n

xφ sinφ
]

eimφ

=
1

2

∞
∑

m=−∞

{(

Cm−1,n
xr + iCm−1,n

xφ

)

+
(

Cm+1,n
xr − iCm+1,n

xφ

)}

eimφ.

(C 1)
Here we see that m± 1 suffices have arisen due to the extra cosφ, sinφ factors.

Contracting N with the relevant components of Cm,n
ij thus gives rise to the following
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full definitions

Dm,n
x (x, r; kx, rk, φk) ≡

[

sinβCm,n
xx + cosβCm,n

φx

]

,

Dm,n
y (x, r; kx, rk, φk) ≡ 1

2

[

sinβ
{(

Cm−1,n
xr + iCm−1,n

xφ

)

+
(

Cm+1,n
xr − iCm+1,n

xφ

)}

+

cosβ
{(

Cm−1,n
φr + iCm−1,n

φφ

)

+
(

Cm+1,n
φr − iCm+1,n

φφ

)}]

,

Dm,n
z (x, r; kx, rk, φk) ≡ 1

2

[

sinβ
{(

−iCm−1,n
xr + Cm−1,n

xφ

)

+
(

iCm+1,n
xr + Cm+1,n

xφ

)}

+

cosβ
{(

−iCm−1,n
φr + Cm−1,n

φφ

)

+
(

iCm+1,n
φr + Cm+1,n

φφ

)}]

.

(C 2)
where the Cm,n

ij terms on the right hand sides have the same arguments as the Dm,n
j

terms on the left hand sides. When substituting back to obtain equation (4.7) we rewrite
the expression for Dm,n

j with a general argument in terms of its value with φk set to zero,
as follows

Dm,n
j (x, r; kx, rk, φk) = e−imφkDm,n

j (x, r; kx, rk, 0) + E. (C 3)

The extra terms within E include additional e±iφk factors. However, when the full integral
over all k is taken these terms are found to integrate to zero, and thus E does not appear
within the expressions in this paper.

Appendix D. Full expression for radiated sound

P̂ (σ0, θ
′, φ′, ω) = ρ20

B2

4π2U∞

1

4σ2
0 (1−M cos θ)

2

∑

l,m,m′

∫

r′s,x
′

s

[Jm+lB (γ′

0r
′

s)]
∗
[W (r′s)γ

m (x′

s, r
′

s;ω)]
∗

[

iω cos θ′ sinβ(r′s)

c0 (1−M cos θ)
− i(m+ lB) cosβ(r′s)

r′s

]

exp

{ −iω cos θ′x′
s

c0 (1−M cos θ)
+ i(m+ lB)

[x′
s − x0(r

′
s)] tanβ(r

′
s)

r′s
+ ilBφ0(r

′

s)

}

∫

r′t,x
′

t

Jm′+lB (γ′

0r
′

t)W (r′t)γ
m′

(x′

t, r
′

t;ω)
[

− iω cos θ′ sinβ(r′t)

c0 (1−M cos θ)
+

i(m′ + lB) cosβ(r′t)

r′t

]

exp

{

iω cos θ′x′
t

c0 (1−M cos θ)
− i(m′ + lB)

[x′
t − x0(r

′
t)] tanβ(r

′
t)

r′t
− ilBφ0(r

′

t)

}

∑

n,n′

∫

ℜ

[

Dm,n
j (x0(r

′

s), r
′

s; kx, rk, 0)
]∗

Dm′,n′

k (x0(r
′

t), r
′

t; kx, rk, 0)

[
∫ 2π

0

ei(m+n−m′
−n′)φkS∞

kl (k) dφk

]

rkdrkdr
′

tdx
′

tdr
′

sdx
′

se
i(m′

−m)(φ′
−

π
2 ).

(D 1)
For the case of asymmetric flow 1, θ′ and φ′ are replaced by θ and φ everywhere.
When calculating the radiated sound level numerically for a given frequency ω it is

necessary to restrict the infinite sums over the l,m, n indices to the dominant terms only
in order to reduce the computational intensity of calculations.
Considering first the summation over the l index we find that the most significant

terms arise from those l values which result in kx = ω − lBΩ/U∞ being as close to zero
as possible, due to the sharp decay of S∞

kl as | k | increases. For values of ω in the ranges
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of interest to us (0 - 2 BPF) we therefore take values of l centred on 0, 1 or 2. The
difference between using a total of 3 or 5 l values is found to be negligible and so we take
the total number of l values included in the sum, nl, to be 3 in all our calculations.
Next, we include an odd number of m values centred on −lB, due to the decay of the

Jm+lB term (within the Green’s function) as the order increases. This sum is slightly
more sensitive to the total number of m values, nm, as the decay of the Bessel functions
is not as rapid as that of S∞

kl . We find that setting nm = 7 in our calculations for the
present paper gives sufficiently accurate results.
Finally, we choose values of n centred on zero, again due to the decay of a Bessel

function, in this case the Jn term within Cm,n
ij . We find that in all cases nine or fewer

values of n are significant contributors to the total sum. Including n = −4, ...4 is sufficient
for the parameters under consideration here. We also find that setting n = n′ gives
sufficiently accurate results which are very close to the n 6= n′ case, as well as significantly
speeding up the numerics.A final point to note is that in the high distortion case fewer
terms are typically needed for convergence than in the low distortion case.
When calculating the radiated sound integrated over a shell in the twin disk (asym-

metric flow 1) case, the expression is simplified as the integral over φ leads to a δmm′

term, and so we can set m = m′. This cannot be done in the incidence (asymmetric
flow 2) case as φ′ appears within the expressions for θ′. The time average acting upon
exp (ilBt) and exp (−il′Bt) leads to a δll′ term, hence the summation over l only.
When calculating the spectral power numerically we choose a discrete set of r′s, r

′
t

values (typically around 6 values) and the integrand is then evaluated for all pairs of
r′s, r

′
t and summed using the trapezium rule, first over r′s then over r′t. For a particular

pair of r′s, r
′
t, the integral over rk does not converge with an infinite upper limit for rk

and we are able to achieve convergence by using the limited range for this integral given
earlier in (4.13). Since R and ∂R/∂r also differ for r′s and r′t we have a choice as to
whether to take the inner or outer of each limit. We use the outer limits, thus using the
larger value of R and the smaller value of ∂R/∂r, although in fact there is little difference
if the inner limits are used. A final approximation is that the Cm,n

ij terms are calculated
via a fast Fourier Transform, using Aij values calculated at a discrete set of φ values
(typically 8 values).
One final point is to note that a series of partial validation tests were carried out at

each stage of the computation of (D 1). First, the rapid distortion theory calculation was
validated, at least in the axisymmetric case, by comparing our distorted spectra with
results obtained by Majumdar & Peake (1998). Second, the implementation of LINSUB
for the blade response was checked by comparing with standard results published in
Smith (1973) and elsewhere. Third, the noise radiation results were checked in the limit
of weak asymmetry for consistency with the axisymmetric noise results of Majumdar &
Peake (1998).
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