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Alzheimer’s disease (AD) is a global epidemic. Unfortunately, we are still without effective
treatments or a cure for this disease, which is having devastating consequences for
patients, their families, and societies around the world. Until effective treatments are
developed, promoting overall health may hold potential for delaying the onset or preventing
neurodegenerative diseases such as AD. In particular, chronobiological concepts may
provide a useful framework for identifying the earliest signs of age-related disease as
well as inexpensive and noninvasive methods for promoting health. It is well reported
that AD is associated with disrupted circadian functioning to a greater extent than normal
aging. However, it is unclear if the central circadian clock (i.e., the suprachiasmatic nucleus)
is dysfunctioning, or whether the synchrony between the central and peripheral clocks
that control behavior and metabolic processes are becoming uncoupled. Desynchrony of
rhythms can negatively affect health, increasing morbidity and mortality in both animal
models and humans. If the uncoupling of rhythms is contributing to AD progression
or exacerbating symptoms, then it may be possible to draw from the food-entrainment
literature to identify mechanisms for re-synchronizing rhythms to improve overall health and
reduce the severity of symptoms. The following review will briefly summarize the circadian
system, its potential role in AD, and propose using a feeding-related neuropeptide,
such as ghrelin, to synchronize uncoupled rhythms. Synchronizing rhythms may be an
inexpensive way to promote healthy aging and delay the onset of neurodegenerative
disease such as AD.
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ALZHEIMER’S DISEASE
Alzheimer’s disease (AD) is a progressive neurodegenerative dis-
order associated with severe amnesia and a variety of other
cognitive and behavioral impairments. AD is the most com-
mon form of dementia, which is estimated to be affecting more
than 44.4 million people worldwide, making dementia a global
epidemic and one of the greatest public health challenges of
the 21st century (Prince et al., 2013). There is an urgent need
to develop effective interventions to prevent, delay the onset,
and slow the progression of AD. Unfortunately, we are cur-
rently without beneficial treatments or a cure for this devastating
disease.

The majority of research efforts are focused on identifying
specific mechanisms of disease and developing compounds to
target the underlying disease pathology. However, finding ways
to promote overall health is arguably, just as important. For 60
to 70 years our body’s natural defenses are able to ward off
disease progression. Once we reach an unknown threshold, our
repair and clearance mechanisms- which slow with age- are no
longer able to counteract the damage to our cells (Martinez-
Vicente et al., 2005; Martinez-Vicente and Cuervo, 2007; Rattan,
2010). This slowing then results in intracellular accumulation of
misfolded proteins that form toxic multimetric complexes. The

progressive accumulation of toxic structures inside cells is one
of the main molecular characteristics of aging and is associated
with most neurodegenerative diseases, including AD (Martinez-
Vicente and Cuervo, 2007; Rattan, 2010).

We need to find ways to shift this delicately poised boundary
to slow the aging process, and postpone when age-related diseases
become problematic. Even relatively small changes, that delay the
onset and spread of AD and other age-related conditions, have the
potential to make a big impact on the quality of life of patients and
reduce the costs to society.

The slow progression of AD emphasizes the need to focus on
health promotion and prevention (Gandy and DeKosky, 2013).
In autosomal dominant AD, a longitudinal study showed that
patients had pathophysiological changes in cerebrospinal fluid
biochemical markers up to 25 years prior to symptom onset
(Bateman et al., 2012). It is unclear whether the same timeline
applies to patients who develop sporadic AD, but it is hypothe-
sized that sporadic AD also takes over a decade to develop before
the onset of symptoms (Gandy and DeKosky, 2013; Jack et al.,
2013).

AD pathology does not disrupt memory functioning in isola-
tion, there are wide-spread effects throughout the body affecting
physiological processes such appetite, sleep patterns, emotional
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regulation, and sense of smell (Witting et al., 1990; Mok et al.,
2004; Tabert et al., 2005; Cai et al., 2012). There is evidence to sug-
gest that some of these symptoms, such as circadian dysfunction
and weight loss, may preface the clinical onset of memory and
executive functioning deficits (Buchman et al., 2005; Knopman
et al., 2007; Coogan et al., 2013).

Chronobiological concepts may provide a useful framework
for understanding the link between the early changes in feeding
behavior and sleep patterns, and the development of age-related
disease such as AD. Disturbances of daily sleep-wake behaviors are
common in AD, and are a leading cause for institutional care of
patients (Bianchetti et al., 1995), thus there is great potential for
identifying inexpensive and effective interventions by studying the
circadian system in AD.

Understanding the physiological changes that contribute to
AD and finding ways to promote overall health requires a sys-
tems level approach. The following review will provide a brief
introduction to the circadian system, its potential role in AD,
and propose adopting what we know from the food-entrainment
literature to evaluate the potential for using a feeding-related neu-
ropeptide, such as ghrelin, to synchronize uncoupled rhythms.
Synchronizing rhythms may be an inexpensive way to promote
healthy aging and delay the onset of neurodegenerative disease
such as AD.

CIRCADIAN RHYTHMS
Circadian rhythms refer to a complex and distributed system
imposing a temporal architecture on physiology and behavior.
These rhythms are generated by hierarchically organized central
and peripheral oscillators entrained (i.e., synchronized) by peri-
odic stimuli in the external environment or within the body.

Biological clocks maintain synchrony between cycles in the
environment and our physiological processes and behavior, to
ensure that daily peaks in energy metabolism, gastrointestinal
tract motility, cardiovascular activity, endocrine secretion, body
temperature, and cognitive processes occur at optimal times of the
day (Panda et al., 2002; Reppert and Weaver, 2002; Kalsbeek et al.,
2006; Schmidt et al., 2007; Gerstner and Yin, 2010; Waterhouse,
2010; Huang et al., 2011; Konturek et al., 2011). Coordinat-
ing internal processes with the external environment optimizes
energy expenditure and may also provide an evolutionary or
survival advantage by ensuring activities are performed at appro-
priate times of the day to find food and mating partners, and avoid
predators (Panda et al., 2002; Schibler et al., 2003; Woelfle et al.,
2004). Further selective advantage of the circadian clocks may
also come from temporally separating incompatible intracellular
processes, ensuring that specific proteins are expressed at ideal
time points (Rey and Reddy, 2013).

The core clock machinery is self-sustaining and has an endoge-
nous period that approximates 24 h. A zeitgeber (i.e., entraining
cue) is required to synchronize rhythms to match the 24 h day and
keep internal processes aligned with the external environment.
Although several parameters change in the daily environment,
such as light, temperature, and humidity, the daily light-dark cycle
is considered the dominant zeitgeber.

In mammals, the master circadian pacemaker is the suprachi-
asmatic nucleus (SCN) of the hypothalamus, which is located

dorsal to the optic chiasm (Weaver, 1998; Reppert and Weaver,
2002; Karatsoreos and Silver, 2007; Welsh et al., 2010). The
SCN is directly entrained by light-dark cycles in the environ-
ment through intrinsically photoreceptive retinal ganglion cells
(Figure 1; Berson et al., 2002).

Outside the SCN there are circadian oscillators in periph-
eral organs and tissues, regulating local cycles of gene expres-
sion, physiology, and metabolic rhythms (Yamazaki et al., 2000;
Guilding and Piggins, 2007; Kornmann et al., 2007; Dibner
et al., 2010). Rhythmic expression of clock-controlled genes (e.g.,
PER1,2, CRY1,2, CLOCK, BMAL1), which are produced by a
series of interlocking transcriptional feedback/feedforward loops,
drive physiological and behavioral rhythms (Reppert and Weaver,
2002). Through neural, hormonal, and behavioral outputs the
SCN directly and indirectly coordinates this multioscillatory sys-
tem, synchronizing rhythms throughout the central and periph-
eral nervous systems (Dibner et al., 2010). By having a master
pacemaker (i.e., SCN) to align circadian gene oscillations within
peripheral tissues, oscillators throughout the body remain cou-
pled together, synchronizing cellular and physiological processes
with daily cycles in the external environment.

When the SCN is unable to entrain to light-dark cycles, such
as when the SCN is experimentally ablated or an animal is in con-
ditions of constant darkness, daylight no longer acts as a zeitgeber
and circadian organization gradually becomes out of sync with the
environment (i.e., free running rhythms persist). However, under
certain conditions, another powerful zeitgeber- food- can restore,
synchronize, and propagate circadian rhythmicity (Boulos and
Terman, 1980; Stephan, 2002).

FOOD-ENTRAINMENT
The process whereby food/mealtime acts as the stimulus for
synchronizing the circadian system is referred to as “food entrain-
ment”. There is strong evidence that an SCN-independent “food-
entrainable” oscillator exists, possessing the canonical properties
of a circadian clock, although its location has not yet been identi-
fied (Boulos and Terman, 1980; Mistlberger, 1994, 2009; Stephan,
2002; Patton and Mistlberger, 2013).

If food is restricted to one or two daily mealtimes, then
within a few days rodents begin to show food anticipatory activity
(FAA), which is a higher level of activity (e.g., wheel running or
exploration of their home cage) during the few hours leading
up to the daily meal (Boulos and Terman, 1980; Mistlberger,
1994; Stephan, 2002). FAA is thought to represent food seek-
ing behavior. Scheduled feeding can entrain the entire circadian
system under conditions of constant darkness, or can dissociate
peripheral rhythms from the central SCN-driven rhythms under
normal conditions with a dominate light-dark cycle (Damiola
et al., 2000).

It is not yet known what the specific mechanism is by which
mealtime exerts its entraining effect on the circadian system.
There may be multiple food-related stimuli that are capable as
functioning as zeitgebers, entraining both central and peripheral
oscillators. For example, metabolic hormones (e.g., ghrelin, cor-
ticosterone, leptin, insulin, and glucagon) exhibit daily rhythms
of synthesis and secretion that are synchronized by meal time
(Patton and Mistlberger, 2013). These hormones may act as
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FIGURE 1 | A simplified model of the mammalian circadian system
under normal conditions. The light-entrainable oscillator (LEO) is
located in the suprachiasmatic nucleus (SCN) of the hypothalamus. The
LEO is directly entrained by light-dark cycles in the environment through
intrinsically photoreceptive retinal ganglion cells, and generates circadian
rest-activity rhythms as well as other rhythms that entrain to the
environmental light-dark cycles. The LEO-driven activity rhythms then

influence the timing of feeding behavior, which entrains the food-
entrainable oscillator (FEO). FEO then drives several neuroendocrine,
autonomic, and physiological rhythms throughout the brain and
peripheral nervous system. The FEO also sends feedback to the LEO to
remain coupled. Under certain conditions when the LEO is
dysfunctional, or under conditions of constant darkness, the FEO can
drive rest-activity rhythms and other rhythms normally entrained by light.

signals by which oscillators in peripheral organs are coupled to
daily mealtime (Dibner et al., 2010).

Importantly, because particular feeding schedules can shift
the timing of clock genes and rhythms in peripheral organs,
dissociating peripheral oscillators from the SCN, it suggests that
feeding behavior could be the mediating factor by which SCN
coordinates peripheral physiological rhythms (Figure 1; Boulos
and Terman, 1980; Damiola et al., 2000; Dibner et al., 2010). In
other words, feeding behavior may keep central and peripheral
rhythms coupled together.

Although the specific mechanism by which food/mealtime
exert the powerful synchronizing effects on peripheral rhythms,
remains unknown, once it is identified, targeted interventions to
help synchronize circadian rhythms can be developed. Synchro-
nizing rhythms may be beneficial for preventing or delaying age-
related conditions if rhythms become uncoupled.

HARMFUL EFFECTS OF DISRUPTED CIRCADIAN RHYTHMS
The importance of keeping the circadian system synchronized is
illustrated by the harmful outcomes of disrupted rhythms. It is
well reported that circadian dysfunction can have dramatic effects
on health in both animal models and humans. Disturbances in the
circadian system can have negative effects on cognition, immune
functioning, metabolic processes, and the cardiovascular system,
resulting in fatigue, disorientation, insomnia, altered hormone
profiles, higher morbidity, and higher mortality in humans and
animal models (Penev et al., 1998; Fu et al., 2002; Filipski et al.,

2003; Davis and Mirick, 2006; Fujino et al., 2006; Kubo et al.,
2006; Coogan and Wyse, 2008; Anea et al., 2009; Gibson et al.,
2009; Gery and Koeffler, 2010; Jung-Hynes et al., 2010; Coogan
et al., 2013).

In humans, the experience of jet-lag or shift work repre-
sents a state when the circadian system is out of sync with the
environment, and is associated with damaging effects on health.
Shift-workers are at a higher risk of harmful conditions such as
metabolic syndrome, obesity, cancer, and diabetes, which may
partly result from the disrupted rhythmicity of meals and sleep
(Bass and Takahashi, 2010).

In animals, disrupted circadian rhythms also result in subop-
timal health (Filipski et al., 2003; Anea et al., 2009; Wang et al.,
2010). For example, in aged mice, phase shifting (analogous to
jetlag) is associated with higher mortality (Davidson et al., 2006).
Similarly, continuous reversal of the light-dark cycle, decreases
survival in cardiomyopathic hamsters (Penev et al., 1998).

What jet-lag, shift work, and phase shifting have in common,
is that underlying rhythms become uncoupled and out of sync.
Uncoupling metabolic process from circadian drives may reduce
efficiency and cause imbalances in physiological activities. A
similar process may underlie age-related changes and contribute
to neurodegenerative disease.

CIRCADIAN RHYTHMS AND NEURODEGENERATIVE DISEASE
It is well documented that circadian rhythms become
disorganized and lose amplitude during healthy aging and
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neurodegenerative disease (Witting et al., 1994; Hofman and
Swaab, 2006; Kondratova and Kondratov, 2012). In rodent
models, there are age-related changes in the rhythms of
parameters such as body temperature, activity-wakefulness,
locomotor activity, and drinking behavior (Weinart, 2000;
Kolker et al., 2003). Aged animals given fetal SCN implants have
increased longevity, suggesting that age-related impairments may
be due to changes in the SCN (Hurd and Ralph, 1998).

In humans, similar age-related changes in melatonin secre-
tion, body temperature rhythms, and sleep-wake cycles are also
experienced (Duffy et al., 2002; Yoon et al., 2003; Hofman and
Swaab, 2006). These circadian disruptions are particularly com-
mon in patients with AD, who often complain of disrupted sleep
patterns as well as agitation, restlessness, wandering, and verbal
outbursts during the late afternoon or early evening, referred
to as “sundowning” and occurs in an estimated 13–66% of AD
patients (Volicer et al., 2001). Along with these behavioral symt-
poms, dementia patients also show disordered melatonin rhythms
(Mishima et al., 1999).

Importantly, the results of a large prospective study suggested
that the age-related changes in circadian activity patterns, pre-
dicted subsequent AD or mild cognitive impairment (Tranah
et al., 2011). Thus, impaired rhythms may be a preclinical
biomarker of disease.

Monitoring skin temperature is useful for assessing circadian
rhythmicity at the gross level. One study showed that proximal
skin temperature but not distal skin temperature was higher
during the day in AD patients compared with healthy elderly
subjects (Most et al., 2012). Higher proximal skin temperature
was associated with daytime sleepiness, which could exacerbate
cognitive symptoms.

Actigraphy, a noninvasive method for monitoring rest/activity
cycles, is another technique for evaluating rhythmicity in AD
patients (Witting et al., 1990; Satlin et al., 1992; van Someren
et al., 1996; Ancoli-Israel et al., 2003a; Hatfield et al., 2004).
Daily activity-rest rhythms of demented patients exhibit increased
fragmentation, a loss of amplitude, and higher nighttime activity
(van Someren et al., 1996; Hatfield et al., 2004). These rest-activity
disturbances may be correlated with the severity of dementia
(Witting et al., 1990). AD patients also show reduced scale invari-
ance of activity fluctuations (Hu et al., 2009). This parameter is
found to be dependent upon the SCN in rodents (Hu et al., 2007),
suggesting that the changes in scale-invariant locomotor patterns
in AD patients may reflect SCN dysfunction.

Post mortem studies have revealed neuropathological changes
in the SCN of healthy elderly and AD patients (reviewed by Hof-
man and Swaab, 2006). Although there have been some inconsis-
tencies, possible pathological changes in the SCN of AD patients
include decreased vasopressin-, neurotensin- and melatonin-
expressing neurons, increased astrocyte to neuron ratio, neuronal
loss in the SCN, and an overall decrease in SCN volume (Swaab
et al., 1985; Stopa et al., 1999; Liu et al., 2000; Wu et al., 2007;
Harper et al., 2008). Neurodegeneration of SCN in AD patients
is correlated with the magnitude of circadian rhythm impairment
in core body temperature (Harper et al., 2008).

AD patients also show desynchrony in rhythmic expression of
circadian clock genes in the oscillation between cingulate cortex,

pineal gland and the bed nucleus of the stria terminalis (BNST;
Cermakian et al., 2011), suggesting that the circadian oscillators
outside the SCN become uncoupled in AD patients. Hatfield
et al. (2004) came to a similar conclusion when they compared
activity/rest and cortisol rhythms in AD patients and concluded
that the loss of circadian control of rest/activity was not a result of
a global circadian disruption.

There are a few potential pathways by which circadian rhythms
could be affected in AD (for a review see Coogan et al., 2013).
The input from photic and non-photic zeitgebers may become
weakened due to age-related changes in physiology and behavior.
For example, with increasing age people often experience changes
in eye functioning and have routines with less physical exercise,
both of which could reduce input into the circadian system. Older
age and retirement often result in more sporadic scheduling of
activities such as mealtime, which can play an important role in
synchronizing central and peripheral rhythms in animal models.
The reduced input from these changes in physiology and behavior
may then be compounded by changes in SCN and weakened inter-
nal feedback mechanisms within the body. If the resulting SCN
output is weak, then pineal activity, hippocampal functioning,
and the HPA axis are affected.

Given the considerable evidence of circadian dysfunction in
AD patients, chronotherapeutics targeting circadian abnormali-
ties have been used in attempts to reset the clock (Coogan et al.,
2013). The most marked circadian abnormality in AD patients
is reduced amplitude of rhythms and rhythm fragmentation,
suggesting that interventions should be aimed at strengthening
zeitgebers instead of phase-resetting. Changes to the patient’s
environment (e.g., light therapy), behavioral routines (e.g., exer-
cise), and circulating hormone levels (e.g., melatonin supplemen-
tation), have all been attempted to strengthen rhythmicity.

Evening and/or morning light therapy have been shown to
help stabilize rhythms and improve sleep (Satlin et al., 1992;
Mishima et al., 1994; Yamadera et al., 2000; Ancoli-Israel et al.,
2003b). One study found that in institutionalized patients, light
therapy was only minimally beneficial at stabilizing circadian
phase, but was more beneficial when combined with melatonin
treatment (Dowling et al., 2008). A double-blind study showed
that melatonin treatment improved cognition, decreased noc-
turnal activity, and increased nocturnal sleep in AD patients
(Asayama et al., 2003), although larger follow-up studies have
showed no benefits of melatonin treatment (Singer et al., 2003;
Gehrman et al., 2009).

Along with promoting health, regulating circadian rhythmicity
may also affect wellbeing. Elderly demented women with higher
daytime activity levels and lower nocturnal activity (i.e., consoli-
dated, nonfragmented sleep/wake cycles) showed higher levels of
wellbeing compared to elderly women with more disrupted sleep-
patterns (Carvalho-Bos et al., 2007).

Given the difficulty of assessing core circadian processes in
patients, animal models are useful for elucidating circadian alter-
ations. Rats injected with transgenic cells overexpressing β/A4
amyloid into the SCN, displayed disrupted locomotor rhythms
indicative of deterioration of circadian regulation (Tate et al.,
1992). Similarly, hamsters injected with β-amyloid 25–35 into the
SCN, showed phase-advanced and less consistent diurnal activity
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rhythms (Furio et al., 2002). These effects were attenuated by
melatonin administration.

Some transgenic mouse models of AD such as APP23, Tg2576,
and 3xTg display disturbances in circadian activity rhythms (Van
Dam et al., 2003; Vloeberghs et al., 2004; Sterniczuk et al., 2010).
The 3xTg AD mouse model shows abnormalities in circadian
rhythmicity that precede AD pathology (Sterniczuk et al., 2010).
In contrast, no circadian abnormalities in sleep-wake behavior
were reported in the AβPPswe/PSEN1A246E or SPPswe/PS1dE9
transgenic mouse of AD (Jyoti et al., 2010; Otalora et al.,
2012).

To summarize, disrupted circadian rhythms are associated
with higher morbidity and higher mortality in humans and
animal models. With increasing age, rhythmicity becomes more
irregular and these changes are more extreme for AD patients and
may precede the cognitive impairment associated with AD. Light
therapy has had some success at regulating circadian rhythmicity
and improving symptoms in AD patients.

UNCOUPLED HYPOTHESIS: USING FOOD-ENTRAINMENT TO
SYNCHRONIZE RHYTHMS
It is largely assumed that the circadian disruptions associated
with age and neurodegenerative diseases, such as AD, are caused
from the dampening of central SCN-driven rhythms. However,
another possibility is that the disrupted patterns in behavior and
physiological rhythms are due to the central rhythms becoming
uncoupled from and out of sync with peripheral rhythms, and
not from disruptions in central clock functioning.

Chen et al. (2014) used a transgenic Drosophila model, to
provide the first evidence that progressive circadian deficits anal-
ogous to those experienced by AD patients were not due to an
arrhythmic internal timekeeping mechanism, but rather due to a
disruption in the communication between a central timekeeping
mechanism and peripheral rhythms. The Aβ expression in the
Drosophila model resulted in age-related disturbances in circa-
dian rhythms, causing sporadic sleep-wake behaviors. Despite the
behavioral irregularities, the central timekeeping mechanism of
this Drosophila model appeared intact. The behavioral arrhythmia
was not due to a failing central clock.

If these findings translate to AD patients, then it would suggest
that the SCN would stay entrained to daylight while the peripheral
rhythms affecting behavior become out of sync. If circadian
behavioral abnormalities in patients are not caused by a loss of
SCN function, then it could have potential implications for the
treatment and prevention of AD.

For example, if in AD patients, the SCN is intact but central
and peripheral rhythms become uncoupled, then, because feeding
plays a dominate role in synchronizing central and peripheral
rhythms, it may be possible to draw on the food-entrainment lit-
erature for insights into how we can bring physiological processes
back in sync.

Maywood et al. (2010) used a food-entrainment paradigm
to restore circadian disturbances in behavior and peripheral
metabolic processes in the R6/2 mouse model of Huntington’s dis-
ease. This demonstrates that it is possible to regularize circadian
behavioral and metabolic disturbances using food-entrainment in
a mouse model of neurodegenerative disease.

Food-entrainment paradigms would be challenging to intro-
duce as therapies for human patients, but there may be a
way to pharmacologically induce synchrony between central
and peripheral rhythms using a feeding-related peptide such as
ghrelin.

GHRELIN: CIRCADIAN SYSTEM
The metabolic hormone, ghrelin, may be one promising candi-
date signal that could be particularly useful for synchronizing
rhythms and preventing age-related memory loss in AD.

Ghrelin is an orexigenic hormone synthesized by oxyntic
cells in the stomach and by neurons in the medial and lateral
hypothalamic nuclei (Kojima et al., 1999; Cowley et al., 2003).
It is a peripheral and central hormone directly implicated in
feeding related activity, and an endogenous ligand for the growth
hormone secratague receptor (GHS-R1a; Kojima et al., 1999).

Ghrelin acts in the pituitary and hypothalamus to stimulate
growth hormone secretion, energy homeostasis, appetite, wake-
fulness, weight gain, and adrenocorticotropic hormone and cor-
tisol release (Kojima et al., 1999; Wren et al., 2000; Tschöp et al.,
2000; Kojima and Kangawa, 2005; Szentirmai et al., 2006; Chen
et al., 2009; Castañeda et al., 2010). Ghrelin stimulates feeding
(Nakazato et al., 2001; Toshinai et al., 2006), and circulating levels
rise prior to mealtime in both rodents (Bodosi et al., 2004; Drazen
et al., 2006; LeSauter et al., 2009) and humans (Cummings et al.,
2001; Frecka and Mattes, 2008).

In addition to regulating appetite, there is evidence that ghrelin
also plays a role in the circadian system by directly entraining
circadian clocks that drive behavior or indirectly by stimulating
appetite and activity. Ghrelin positive immunoreactive neurons
are found in brain regions involved for circadian timing such
as the paraventricular, dorsomedial, ventromedial, and arcuate
nuclei, and may affect SCN processes via the ventromedial arcuate
nucleus (Cowley et al., 2003; Yi et al., 2006). Under restricted
feeding conditions, the circadian system is sensitive to ghrelin
and other feeding-related neuropeptides (Yannielli et al., 2007).
Additionally, peripherally administered ghrelin has been shown
to modulate SCN activity in rats and mice and attenuate light-
induced phase delay in mice (Yi et al., 2008).

However, there is mixed evidence as to whether ghrelin can act
a zeitgeber. Two studies show that ghrelin receptor knock out mice
fail to anticipate a daily meal (LeSauter et al., 2009; Davis et al.,
2011; Verhagen et al., 2011), however other studies have shown
that ghrelin ligand or receptor knock-out mice do continue to
show FAA (Blum et al., 2009; Szentirmai et al., 2010; Gunapala
et al., 2011).

Overall, the evidence suggests that ghrelin is not the uniden-
tified “food-entrainable oscillator” but rather that it exerts effects
on the circadian system by acting downstream from or in parallel
with a food entrainable oscillator (Patton and Mistlberger, 2013).
Even though ghrelin may not be necessary for anticipatory activity
it may still promote its expression by strengthening the zeitgeber.

Another useful paradigm for studying food-entrainment,
which may be more translatable to humans, is examining the
effects of a daily palatable snack or meal on the circadian system of
animals that are not food-restricted. Without caloric restriction,
a palatable snack (e.g., chocolate) can engender food anticipatory
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behavior (Mistlberger and Rusak, 1987; Mendoza et al., 2005; Hsu
et al., 2010).

Ghrelin has been examined as a modulator factor in palat-
able meal anticipation with mixed results. One study found that
plasma ghrelin levels correlated with locomotor activity counts
during the 3 h prior to the chocolate snack, and that injected
ghrelin increased anticipatory activity (Merkestein et al., 2012).
However, another study found no increase in ghrelin prior to a
daily chocolate snack (Dailey et al., 2012).

Overall, evidence suggests that ghrelin could be involved in the
mechanism by which mealtime acts as a zeitgeber. However, there
is not enough evidence to draw conclusions about whether ghrelin
could be useful for synchronizing central and peripheral rhythms
in the elderly at risk for AD. It remains an empirical question
whether appropriately timed daily administration of ghrelin could
help to amplify food-entrainment to daily scheduled meals in the
elderly. If the uncoupling of rhythms contributes to age-related
neurodegenerative disease, then combining ghrelin treatment
with scheduled mealtimes may help synchronize rhythms. It is
possible that bringing out-of-sync rhythms back in sync could
promote healthy aging, delay the onset of neurodegenerative dis-
ease, and may even help reduce symptoms and improve wellbeing.

GHRELIN: MEMORY AND ALZHEIMER’S DISEASE
Although the potential of ghrelin to entrain the circadian sys-
tem of elderly at risk for AD remains to be confirmed, recent
evidence suggests that administering ghrelin may have other
potential benefits as well. Extra-hypothalamic actions of ghrelin
have been identified, including pro- cognitive, antidepressant,
(anti-)anxiogenic, and neuroprotective properties (Asakawa et al.,
2001; Kanehisa et al., 2006; Lutter et al., 2008; Andrews, 2011;
Frago et al., 2011; Steiger et al., 2011). Consistently, intracra-
nial infusions and systemic ghrelin treatments have beneficial
mnemonic effects (Carlini et al., 2002, 2004, 2007, 2008, 2010a,b;
Diano et al., 2006; Atcha et al., 2009; Tóth et al., 2010; Chen
et al., 2011; Chen, 2012), affect measures of hippocampal synaptic
plasticity (Diano et al., 2006; Carlini et al., 2010b; Chen et al.,
2011), and promote hippocampal neurogenesis (Moon et al.,
2009; Chen, 2012).

Carlini et al. (2002) were the first to demonstrate that ghre-
lin treatment can improve memory retention. The researchers
injected the peptide intracerebroventricularly (ICV) in rats and
found that the treatment improved memory in a dose-dependent
manner, as measured by latency time in a step-down behavioral
test. Since that study, the beneficial mnemonic effects of intracra-
nial infusions or systemic ghrelin treatment have been repeatedly
replicated (Carlini et al., 2004, 2007, 2008, 2010a,b; Diano et al.,
2006; Atcha et al., 2009; Tóth et al., 2010; Chen et al., 2011; Chen,
2012).

Importantly, beyond its effects on the circadian system and
hippocampal dependent memory, ghrelin may also have potential
for preventing or treating neurodegenerative disease.

Neurodegenerative disorders often display coexisting
metabolic dysfunction, and there are several converging lines of
evidence linking metabolic syndromes with an increased risk of
developing AD (Naderali et al., 2009; Kapogiannis and Mattson,
2011; Cai et al., 2012). For example, there is a growing literature

suggesting that insulin deficiency and insulin resistance act as
mediators of AD-type neurodegeneration. This has led some to
refer to AD as “type 3 diabetes”, a form of diabetes that selectively
involves the brain (Steen et al., 2005; de la Monet and Wands,
2008). Because ghrelin has been shown to modulate insulin
sensitivity (Chen et al., 2010), as well as several other metabolic
and mnemonic effects, ghrelin may be a potential candidate
molecule responsible for the relationship between metabolic and
cognitive dysfunction. It is possible that disruption of the normal
modulation of ghrelin secretion may contribute to the metabolic
changes associated with AD.

Indeed, there is increasing evidence suggesting an association
between ghrelin and AD pathology (Gahete et al., 2011). The
first line of evidence is that involuntary weight loss and nutri-
tional deficiencies are common in individuals diagnosed with AD,
as well as being associated with cognitive impairment in non-
demented elderly (Inelmen et al., 2009; Theodoropoulou et al.,
2012).

Importantly, weight loss may precede the memory loss asso-
ciated with dementia (Buchman et al., 2005; Stewart et al., 2005;
Johnson et al., 2006; Knopman et al., 2007). Because ghrelin is
an important regulator of appetite, the age-related weight loss
is in agreement with the finding of an age-related decline of
plasma ghrelin concentrations as well as the age-related decline in
growth-hormone releasing effect of ghrelin (Figure 2; Rigamonti
et al., 2002; Broglio et al., 2003). AD patients compared with
age-matched controls, also show a reduction in local ghrelin
production in the brain (Gahete et al., 2010). Because weight
loss appears to precede cognitive impairment in patients with AD
(Knopman et al., 2007), metabolic changes could be targets for
early detection and prevention of cognitive decline.

Although the human data examining the relationship between
ghrelin and AD pathology is promising, there have been some
mixed results. For example, one study reported that ghrelin
levels do not vary in the cerebrospinal fluid of AD patients
compared with age-matched controls (Proto et al., 2006) and
another reported that ghrelin levels were negatively correlated
with several cognitive domains, including verbal memory and
working memory (Spitznagel et al., 2010).

The second line of evidence in support of a role of ghrelin
in the development of AD comes from animal models. The first
demonstration of a direct effect of ghrelin on AD-like alter-
ations was in an AD mouse model (SAMP8), which develops
an age-related increase in β-amyloid. In this model, ghrelin
treatment improved retention on the T-maze foot shock avoid-
ance task (Diano et al., 2006). Another mouse model, generated
by intrahippocampal injection of oligometric forms of the Aβ

peptide, demonstrated that systemic injection of ghrelin rescued
performance on two behavioral paradigms (Y-maze and passive
avoidance tasks), as well as attenuated AD-associated neuropatho-
logical abnormalities, possibly by inhibiting microgliosis and
protecting neuronal integrity (Moon et al., 2014). Furthermore,
neurons treated with ghrelin for 1 h show decreased tau hyper-
phosphorylation (Chen et al., 2010).

Although the evidence from human patients and from ani-
mal models is minimal and mixed, it is possible that an
age-related decline in ghrelin may contribute to disruptions in
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FIGURE 2 | Hypothesized link between ghrelin and symptoms often
associated with aging and Alzheimer’s disease. Ghrelin has been
shown to directly affect hippocampal plasticity and neurogenesis,
hunger-levels, and circadian processes. Both aging and Alzheimer’s
disease (AD) are associated with lower levels of circulating ghrelin. Low
ghrelin levels may result in reduced hippocampal plasticity and

neurogenesis, and contribute to the cognitive deficits associated with
old-age and AD. Lower circulating levels of ghrelin may also reduce
hunger levels, and may partially underlie the weight loss associated
with older age and AD. Finally, if ghrelin acts to enhance
feeding-related zeitgebers, then reductions in circulating ghrelin could
dampen food-entrained oscillators and disrupt circadian rhythmicity.

age-related circadian disruption, weight loss, cognitive decline,
and reductions in hippocampal neurogenesis (Figure 2). Because
of this, well-timed supplements of ghrelin may have poten-
tial benefits for synchronizing an uncoupled circadian system,
promoting hippocampal plasticity and neurogenesis, benefitting
memory, and improving appetite and thus possibly nutrition, and
may even help reduce pathology in AD patients.

Much more research needs to be done before drawing any
conclusions, but taking a systems level approach that considers
overall health hints at a potentially powerful role of ghrelin.

CONCLUSIONS
It has been over a 100 years since AD was first identified by
German psychiatrist and neuropathologist Aloysius Alzheimer,
and yet we remain without effective treatments or a cure for this
devastating disease. AD and other dementias are arguably the
greatest global public health challenge of the 21st century. It is
imperative that research go towards understanding the underlying
disease processes at every level of analysis from genetics and
molecular processes to systems and behavior; however, here it was
proposed that there is great potential for identifying inexpensive
and effective interventions by studying AD from a systems level
approach that considers synchrony in the circadian system.

Aging is the greatest risk factor for developing AD. If we
think about AD and other age-related neurodegenerative dis-
eases as taking 60–70 years to develop, then it seems reason-
able to think that there are ways to slow the development even
further. Cell structures within tissues maintain a continuous
synthesis and degradation of worn-out proteins that is integral
to normal function. This process slows during aging, and the
oxidative damage to proteins and protein misfolding lead to
the accumulation of altered and abnormal proteins, which may

contribute to neurodegenerative disease (Martinez-Vicente et al.,
2005; Martinez-Vicente and Cuervo, 2007; Rattan, 2010). By
promoting overall health, we may be able to maintain our natural
defenses and cellular health.

Studying circadian rhythm disruption in AD holds great
promise for inexpensive interventions. We know that harmonious
interaction of internal and environmental rhythms ensures that
physiological processes occur at an optimal time, and that main-
taining this synchrony is best for longevity. If uncoupled circadian
rhythms exacerbate symptoms or contribute to disease progres-
sion, then we may be able to draw from the food-entrainment
literature to identify ways to synchronize peripheral rhythms with
the SCN in elderly at risk for AD.

Future research should look for the earliest cues that inter-
nal rhythms are becoming uncoupled. A combination of light
therapy, scheduled mealtimes, and other interventions, such as
appropriately timed ghrelin administration, may have the poten-
tial to maintain circadian organization and synchrony throughout
the body, and slow down the progression of disease. Delaying
the onset of symptoms can potentially reduce the impact these
devastating diseases have on the patients, their families, and
society.
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