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a b s t r a c t

Characterising post-translational regulation of key transcriptional activators is crucial for understanding
how cell division and differentiation are coordinated in developing organisms and cycling cells. One
important mode of protein post-translational control is by regulation of half-life via ubiquitin-mediated
proteolysis. Two key basic Helix-Loop-Helix transcription factors, Neurogenin 2 (Ngn2) and NeuroD, play
central roles in development of the central nervous system but despite their homology, Ngn2 is a highly
unstable protein whilst NeuroD is, by comparison, very stable. The basis for and the consequences of the
difference in stability of these two structurally and functionally related proteins has not been explored.
Here we see that ubiquitylation alone does not determine Ngn2 or NeuroD stability. By making chimeric
proteins, we see that the N-terminus of NeuroD in particular has a stabilising effect, whilst despite their
high levels of homology, the most conserved bHLH domains of these proneural proteins alone can confer
significant changes in protein stability. Despite widely differing stabilities of Ngn2, NeuroD and the chi-
meric proteins composed of domains of both, there is little correlation between protein half-life and abil-
ity to drive neuronal differentiation. Therefore, we conclude that despite significant homology between
Ngn2 and NeuroD, the regulation of their stability differs markedly and moreover; stability/instability of
the proteins is not a direct correlate of their activity.

� 2014 Published by Elsevier Inc.
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1. Introduction

Basic Helix-Loop-Helix (bHLH) transcription factors play a cen-
tral role in cell fate and differentiation in a wide variety of tissues,
often by acting as master regulators coordinating expression of
multiple downstream targets [1]. Tissue-specific class II bHLH pro-
teins contain a DNA-binding basic domain, followed by two a-heli-
ces separated by a loop, and flanked either side by regions of poorly
defined structure [2]. Structure and function studies have shown
that these transcriptional regulators act as heterodimers with the
ubiquitously expressed class I bHLH E2A gene products E12 or
E47; the Helix-Loop-Helix (HLH) domain mediates heterodimerisa-
tion whilst the basic region binds to a consensus E-box DNA motif
in the promoter region of target genes [3,4].
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One member of this family, Neurogenin 2 (Ngn2), acts as a mas-
ter regulator of neurogenesis in regions of the central nervous sys-
tem [5]. Ngn2 is essential for neuronal differentiation during
primary neurogenesis in the Xenopus frog embryo [6] and induc-
tion of ectopic neurons in Xenopus by Ngn2 has been widely used
to study Ngn2 function [7–9]. Differentiation of these primary neu-
rons also absolutely requires activity of an additional related bHLH
transcription factor, NeuroD [10]. In Xenopus, it has been shown
that Ngn2 both upregulates NeuroD expression in a unidirectional
cascade, and functions in parallel with NeuroD, activating a large
number of common target genes required for primary neurogene-
sis [11]. Yet even with their structural and functional similarities,
the half-life of these proteins differs significantly [12]. The basis
for this difference and its functional consequences have not been
investigated.

Transcription factors tend to be highly unstable proteins
degraded by the Ubiquitin–Proteasome System (UPS) [13]. To tar-
get proteins for destruction, Ubiquitin (Ub) is activated and cova-
lently fused to a specific substrate protein at electron-rich sites
(usually lysines, reviewed in [14]). Ubiquitylation can be repeated
to build up a chain of at least 4 Ub moieties that then targets the
substrate to the 26S proteasome [15]. Using energy from ATP
nscrip-
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hydrolysis, ubiquitylated proteins are then unfolded from an
unfolding initiation site [16] and cleaved into small peptides. This
regulation generally results in highly dynamic protein levels,
which adjust in response to intrinsic and extrinsic controls.

We have previously shown that Ngn2 is rapidly degraded by the
UPS, whereas NeuroD is stable under similar conditions [12].
Unusually, this rapid degradation of Ngn2 is brought about by both
canonical ubiquitylation on lysine residues, and non-canonical
ubiquitylation on cysteines, serines and threonines [17,18]. The
structural aspects of NeuroD and Ngn2 that confer stability/insta-
bility have not been explored, and whether differences in stability
relate to differences in ubiquitylation, or whether they relate to
differences in destruction of ubiquitylated proteins is yet to be
determined. Moreover, the relationship between proneural protein
half-life and ability to activate downstream target activation and
drive neurogenesis remains unknown.

In this study we compare the roles of protein structure and
ubiquitylation in regulating Ngn2 and NeuroD stability and activity
by undertaking a domain-swap analysis between the two proteins.
We show that similarly structured proteins do not necessarily
exhibit similar biochemical properties with respect to ubiquityla-
tion and degradation. Furthermore, we show that there is poor cor-
relation between protein half-life and protein activity in vivo.
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2. Materials and methods

2.1. Cloning

Point-mutant constructs were made by site-directed mutagen-
esis (Stratagene) and cloned into pCS2+ as described previously
[12,17] using standard methods.
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2.1.1. Unfolded domains
Unfolded domain constructs were a kind gift of Andreas Matou-

schek [19]. The domains were fused to the N- and C-termini of
NeuroD using the Gateway� cloning system (Invitrogen). Neu-
roD-UD: NeuroD DNA was amplified by PCR between attB1 and
att5Br sites: Forward ATGACCAAATCGTATGGAGAGAATGG, Reverse
TTAATCATGAAAGATGGCATTTAGCTGG. UD DNA was amplified
between attB5 and attB2 sites: Forward ATGCTAAAATACAAACCTT-
TAC, Reverse TTATTCAGCGGGCGAAAATC. UD-NeuroD: NeuroD
DNA was amplified by PCR between attB5 and attB2 sites: Forward
ATGACCAAATCGTATGGAGAG, Reverse ATCATGAAAGATGGCATT-
TAGC. UD DNA was amplified between attB1 and att5Br sites: For-
ward ATGCTAAAATACAAACCTTTAC, Reverse TTCAGCGGGCGAAAA
TCTTTTG.
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2.1.2. Domain-swaps
Domain-swapped mutants were produced using primers con-

taining Ngn2 fused to NeuroD sequence, so that there was no arti-
ficial linker between the domains of the proteins. The PCR products
of the N-terminal portion of the domain-swap were used as the
forward primers in a second PCR reaction, using a plasmid encod-
ing the other protein as the vector. The primers at the extreme N-
and C-termini of the final domain-swapped product lie between
BamHI and XhoI restriction sites, with a Kozak sequence before
the initiation site.
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2.1.3. Primer sequences (where primers overlap, the Ngn2 sequence is
in bold)

N-Ngn/BC-NeuroD, Ngn2 portion: Forward: ATGGTGCTGCTC
AAGTG, Reverse: TAAAGATCAAGAAGACCAGACGCATGAAGGCAA
A; N-Ngn/BC-NeuroD full protein: Forward: Ngn2 portion, Reverse:
TTAATCATGAAAGAT.
Please cite this article in press as: G.S. McDowell et al., Complex domain intera
tion factors, Biochem. Biophys. Res. Commun. (2014), http://dx.doi.org/10.101
NB-Ngn/C-NeuroD, Ngn2 portion: Forward: ATGGTGCTGCT-
CAAGTG, Reverse: TTAGCGAAACTTTGCGCTCCGGCAAAAGCCCAGA;
NB-Ngn/C-NeuroD full protein: Forward: Ngn2 portion, Reverse:
TTAATCATGAAAGAT.

N-Ngn/BC-NeuroD full protein: Forward: Ngn2 portion,
Reverse: TTAATCATGAAAGAT. N-NeuroD/BC-Ngn, NeuroD portion:
Forward: ATGACCAAATCGTATGGA, Reverse: TGGAGCGATT-
TAAAGTGCGGCGCGTTAAAGCTAA; N-NeuroD/BC-Ngn full protein:
Forward: NeuroD portion, Reverse: TCAAATGAAAGCGCT.

NB-NeuroD/C-Ngn, NeuroD portion: Forward: ATGAC-
CAAATCGTATGGA, Reverse: TTTCTGAGATTTTAAGGCTTGGCGACC-
CAGTGCA; NB-NeuroD/C-Ngn full protein: Forward: NeuroD
portion, Reverse: TCAAATGAAAGCGCT.

For NgnNDNgn and NDNgnND proteins, the domain-swapped
plasmids above were used as vectors for the PCR reaction of the
C-terminal portion of the protein e.g. for NgnNDNgn the N-termi-
nal Ngn2 PCR product (Forward: ATGGTGCTGCTCAAGTG, Reverse:
TAAAGATCAAGAAGACCAGACGCATGAAGGCAAA) was used as the
forward primer and the reverse primer was TTAATCATGAAAGAT,
using NB-NeuroD/C-Ngn as the vector.
2.2. In Vitro Translation

TNT� SP6 quick coupled transcription/translation system (Pro-
mega), with 35S-methionine (GE Healthcare), was carried out
according to the manufacturer’s instructions.
2.3. Xenopus extracts

Activated interphase egg extracts [12], mitotic egg extracts [17]
and neurula embryo extracts [18] were prepared as described
previously.
2.4. Degradation assays

Degradation assays were performed as described previously
[17].
2.5. Ubiquitylation assays

Ubiquitylation assays were performed as described previously
[18].
2.6. Clustal W2 analysis

Clustal W2 analysis was carried out to align protein sequences
[20].
2.7. Xenopus laevis embryos

Acquisition of Xenopus laevis embryos, preparation and injec-
tion of synthetic mRNA, staging of embryos and in situ hybridisa-
tion and qPCR were conducted as described previously [7,21].
2.8. Multiple comparison testing

Multiple comparison tests were carried out on the log2-trans-
formed ratios of protein half-lives compared to wild type. Analysis
was carried out with MATLAB� by one-way analysis of variance
(ANOVA) followed by a multiple comparison test using the statis-
tical output of the ANOVA. Statistical significance of the differences
between the means was determined using a critical level of alpha
of 0.05.
ctions regulate stability and activity of closely related proneural transcrip-
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3. Results and discussion

3.1. Both Ngn2 and NeuroD are ubiquitylated but only Ngn2 is
degraded

Xenopus egg extracts contain all necessary components of the
ubiquitin–proteasome machinery for in vitro study of protein deg-
radation. We have previously reported that Ngn2 protein is
degraded rapidly in interphase Xenopus egg extract [7], whereas
NeuroD is stable [12]. Given that Ngn2 is less stable in mitosis than
interphase [17], we determined whether NeuroD degradation was
enhanced in mitosis. Degradation assays were performed in vitro
using Xenopus egg extracts, comparing degradation rates of Ngn2
and NeuroD during both interphase and mitosis. Whilst Ngn2
was indeed more unstable in mitotic compared to interphase
extract, NeuroD was stable in both (Fig. 1A).

Ngn2 is ubiquitylated on canonical lysine residues, and addi-
tional non-canonical sites such as the N-terminus and serine/thre-
onine/cysteine residues [17,18]. Whilst NeuroD contains more
potential canonical ubiquitylation sites (lysines) than Ngn2, partic-
ularly in the conserved bHLH domain (highlighted in red, Fig. 1B),
stability of NeuroD could result from a lack of ubiquitylation on
A B
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37.4 +/- 10.0Interphase
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Half-life (mins)Extract
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Fig. 1. Ngn2 is degraded whilst NeuroD is stable despite being ubiquitylated. (A) X. laevis
or NeuroD and incubated at 21 �C. Samples at increasing time points were analysed by S
calculating the half-lives using first-order rate kinetics, and errors calculated using the Sta
Ngn2 and NeuroD. The N-terminal domain is bordered in blue; the bHLH domain in re
Interphase egg extracts were supplemented with IVT 35S-labelled Ngn2 or NeuroD in the
were bound to Ni–NTA beads and subjected to SDS–PAGE in reducing or non-reducing co
the text. n = 2. (For interpretation of the references to colour in this figure legend, the r

Please cite this article in press as: G.S. McDowell et al., Complex domain intera
tion factors, Biochem. Biophys. Res. Commun. (2014), http://dx.doi.org/10.101
these sites. Hence, we next investigated whether radiolabelled
NeuroD would undergo in vitro ubiquitylation in Xenopus egg
extract. Despite the difference in their stability, both Ngn2 and
NeuroD were ubiquitylated in Xenopus extracts, as evidenced by
ladders of poly-ubiquitylated proteins on SDS–PAGE after his-Ub
pulldown on NTA-agarose beads [17] (Fig. 1C, lanes 1–4). Therefore
ubiquitylation alone does not explain the difference in degradation
rates between the two proteins.

Non-canonical ubiquitylation of Ngn2 can occur on cysteine
residues [17,18] via disulphide bonds [14]. When pulling down
poly-ubiquitylated proteins, any Ngn2 linked to his-Ub chains via
cysteine linkages will be released under the reducing, high pH con-
ditions [17,18] to run as unconjugated protein on SDS–PAGE. As
expected, unconjugated Ngn2 protein was released in high pH/
reducing conditions (compare Fig. 1C, lanes 1 and 3, arrow), con-
firming ubiquitylation on non-canonical sites ([17,18], reviewed
in [14]). However, unconjugated NeuroD is not released by high
pH/reducing conditions (Fig. 1C, lane 2, arrowhead). Therefore
whilst both proteins were ubiquitylated, non-canonical residues
such as cysteines are targeted only on Ngn2 and not on NeuroD.
However, as Ngn2 is still efficiently targeted for degradation even
in the absence of cysteine ubiquitylation [18], this also cannot
K
K

KK K

K K KK K
K K KKKK K K K

K K
K K K K K K K

K K K

98
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50
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gn2 NeuroD
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DS–PAGE followed by autoradiography and quantitative phosphorimaging analysis,
ndard Error of the Mean (SEM). n = 2. (B) ClustalW2 [20] analysis of sequences from

d; and the C-terminal domain in green. Lysine residues are highlighted in red. (C)
presence of MG132 and His6-ubiquitin and incubated at 20 �C for 90 min. Samples

nditions and analysed by autoradiography. Lanes are numbered 1–4 as described in
eader is referred to the web version of this article.)
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solely account for the stability difference between the two
proteins.
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3.2. NeuroD is not destabilised by addition of an unfolding initiation
site

For degradation to occur, an unfolding initiation site is required
in addition to polyubiquitylation and regions resistant to unfolding
may impede ubiquitin-mediated destruction [16]. To determine
whether NeuroD stability is influenced by inappropriate ubiquitin
linkages or structural constraints against degradation, we
expressed different domains of NeuroD and assayed their relative
stability in interphase egg extract. The small bHLH domain of Neu-
roD could not be expressed in reticulocyte lysate, indicating an
inherent instability that precluded further study of this domain
in isolation. Instead we investigated NeuroD truncation mutants
of the N and C-termini, with and without the bHLH domain (see
Fig. 2A for schematic).

Deletion mutants that contained the C-terminus of NeuroD,
either with or without the bHLH domain, showed significantly
reduced protein half-life compared to full-length NeuroD. In con-
trast, all constructs containing the N-terminus of NeuroD, with or
without the bHLH domain, had a substantially greater half-life
(Fig. 2B). One possibility for the enhanced stability of the N-termi-
nus of NeuroD is that the N-terminal domain does not provide the
unstructured region required to initiate proteasomal unfolding, or
A

B

C

NeuroD

NT NeuroD

bHLH NeuroD

CT NeuroD

NT NeuroD

bHLH NeuroD

CT NeuroD

NT

0 18015012090604020Time (mins)

xNeuroD

NT NeuroD

CT NeuroD

0 1815012090604020Time (mins)

NeuroD

UD-NeuroD

NeuroD-UD

Fig. 2. Stability of NeuroD domains and fusions between NeuroD and an unfolding doma
mutants were subjected to degradation assay in interphase egg extract. n = 3. (C) Unfold
egg extract. n = 3.

Please cite this article in press as: G.S. McDowell et al., Complex domain intera
tion factors, Biochem. Biophys. Res. Commun. (2014), http://dx.doi.org/10.101
alternatively, the N-terminal domain could actively impede Neu-
roD degradation. To distinguish between these possibilities, we
fused an unfolded domain (UD) onto the N- or C-terminus of Neu-
roD. This UD consisted of residues 1–95 of the mitochondrial pre-
cursor protein cytochrome b2 [19] that promotes unfolding of the
heterologous proteins to which it is fused. The stabilities of these
UD-fused NeuroD proteins were then compared with wild-type
NeuroD in interphase Xenopus extract (Fig. 2C). Neither N- nor C-
terminal fusion of the UD to NeuroD reduced protein half-life, indi-
cating that adding an unfolding domain was not sufficient to bring
about destabilisation.
3.3. Ngn2 and NeuroD domain-swapping

Having established that Ngn2 is unstable whilst NeuroD is sta-
ble, and demonstrating a role for the N-terminus of NeuroD in con-
tributing to its stability, we next examined the relationship
between protein half-life and domain identity using a further ser-
ies of domain-swapped constructs. We generated mutants of Ngn2
and NeuroD, in which the N-and C-termini, with and without the
bHLH domain, were swapped between the two proteins; stability
of the hybrid proteins was then determined as described previ-
ously (Fig. 3).

When comparing the half-life of the fusion proteins to that of
Ngn2, substitution of any domain of Ngn2 for the corresponding
domain of NeuroD resulted in a stabilisation compared to wild type
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Ngn2. Substituting the N-terminus of NeuroD into Ngn2 resulted in
at least a 3-fold increase in protein stability. Furthermore, consis-
tent with the greater stability of the N-terminal domain of NeuroD
alone, substituting the C-terminus of NeuroD into Ngn2 had a rel-
atively smaller effect on increasing stability than the N-terminal
substitution (Fig. 2B,C).

Perhaps surprisingly, even though the bHLH domains of the two
proteins are 70% identical at the amino acid level, replacing the
bHLH domain of Ngn2 with that of NeuroD resulted in 4-fold sta-
Please cite this article in press as: G.S. McDowell et al., Complex domain intera
tion factors, Biochem. Biophys. Res. Commun. (2014), http://dx.doi.org/10.101
bilisation compared to wild type Ngn2. Conversely, substituting
the NeuroD bHLH with that of Ngn2 led to a protein with almost
half the stability of the wild type NeuroD (Fig. 3B,C). Hence, the
bHLH domain also plays an important role in determining the
half-life of both NeuroD and Ngn2. However, it is clear that there
is strong interplay between domains in determining half-life and
the bHLH domain is not the sole determinant of protein stability
as the N-terminus and bHLH domain of NeuroD fused to the C-ter-
minus of Ngn2 has a shorter half-life (110 min ± 8) than the fusion
ctions regulate stability and activity of closely related proneural transcrip-
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of N-and C-termini of Ngn2 either side of the NeuroD bHLH
(185 min ± 25).

Taken together, Ngn2 and NeuroD have markedly differing half–
lives in Xenopus, even though they show strong homology and
functional overlap. Both proteins are ubiquitylated, although
Ngn2 shows non-canonical ubiquitylation on cysteines that is not
observed in NeuroD. Truncation mutants demonstrate that whilst
the C-terminus of NeuroD can be degraded, the N-terminus confers
stability with or without the bHLH domain. When domain-swap
mutants are made between Ngn2 and NeuroD, the bHLH domain
of Ngn2 is destabilising, whilst all domains of NeuroD are stabilis-
ing. Nevertheless, we can conclude that stability/instability is not
conferred by any single domain of either protein, but is protein
context-dependent. Hence, final protein half-life must be a result
of interaction between ubiquitylation and intrinsic stability of all
domains of the protein. This is in contrast to proteins such as
p42 protein in Influenza C virus, where stability is regulated by
one part of the protein and can be transferred to effect the degra-
dation of another protein [22].

Upon overexpression in Xenopus embryos, both Ngn2 and Neu-
roD can induce ectopic neurogenesis and the proteins share many
common downstream targets [11]. DNA binding resides in the
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basic region, which is 85% homologous at the amino acid level
between the two proteins, and heterodimerisation to their com-
mon E-protein partners occurs via the HLH domain [5]. There are
likely to also be important, though ill-defined, interactions with
the N- and C-terminal domains that will affect both target specific-
ity and transcriptional activity, possibly through cofactor/regulator
binding. The impact of protein half-life on the ability to drive neu-
rogenesis has not been explored. One might expect a stabilised
protein to have greater transcriptional activity and so be more effi-
cient at driving neuronal differentiation. However, studies have
also suggested that intrinsic instability might be a requirement
for transcriptional activation [23,24]. Hence, we investigated the
relationship between the half-life of the domain-swapped fusion
proteins and their ability to drive neurogenesis.

To assess whether stability tracks with activity, mRNA coding
the chimeric proteins was injected into fertilised one-cell Xenopus
embryos. The extent of neurogenesis was assayed in Stage 19
embryos by in situ hybridisation (ISH) to detect neural b-tubulin
(Fig. 4A,B), allowing a semi-quantitative comparison of activity
between proteins. For a more quantitative readout of relative activ-
ity, qPCR assays were performed to measure expression of neural
b-tubulin, the marker of neuronal differentiation, and xEbf2 and
n
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Xath3 (Fig. 4C), downstream targets common to both Ngn2 and
NeuroD [11]. Both assays gave similar results with respect to chi-
meric protein activity.

Overexpression of both Ngn2 and NeuroD resulted in ectopic
neurogenesis, with Ngn2 the more potent of the two molecules.
Although both proteins have some overlapping targets that pro-
mote neurogenesis, Ngn2 acts as a master regulator of primary
neurogenesis whilst NeuroD acts downstream of Ngn2 in cells that
have already committed to neuronal differentiation [6,9,11].

When comparing the activities of chimeric proteins, the impor-
tance of the bHLH domain for driving neuronal differentiation is
evident, and simply substituting the bHLH of Ngn2 with that of
NeuroD renders the chimera NgnNDNgn inactive. However, making
the reciprocal swap of the Ngn2 bHLH into NeuroD has little effect
on NDNgnND activity when compared to the activity of wild type
NeuroD (Fig. 4A). Most chimeric proteins show significantly
reduced activity compared to wild type Ngn2 with the striking
exception of N-NeuroD/BC-Ngn, the chimera containing the N-ter-
minal domain of NeuroD fused to the bHLH and C-terminal domain
of Ngn2, which showed activity similar to, if not greater than, Ngn2.

Therefore, the bHLH domain is important for regulating neuro-
genic activity, yet there are additional interactions involving both
the N- and C-terminal domains that can influence activity. These
may include intramolecular interactions between the domains of
the protein molecule, or intermolecular interactions, either within
the heterodimeric bHLH/E-protein complex, or more extensive
protein–protein interactions mediating the assembly of larger
multimeric transcriptional complexes. However, we found no cor-
relation between the stability of the chimeras and their proneural
activity in vivo; for instance Ngn2 is much more active than
NeuroD, despite having a much shorter half-life, and N-NeuroD/
BC-Ngn has a half-life 3–4 times as long as wild type Ngn2, yet
shows similar activity.

The bHLH domain of Ngn2 is necessary but not sufficient to
retain high-level neurogenic activity and whilst the C-terminal
domain of Ngn2 confers high activity to the corresponding chime-
ric constructs, the N-terminal domain does not. Conversely, substi-
tuting either the bHLH or C-terminus of NeuroD into a chimera
reduces the activity of the construct when compared to wild type
Ngn2. Interestingly, the chimeric protein consisting of the N- and
C-terminal domains of Ngn2 with the bHLH of NeuroD results in
no ectopic neuron induction. This indicates that simply binding
to the NeuroD E-box consensus sequence via the basic region is
not enough to generate proneural activity, when the bHLH domain
is surrounded by Ngn2 transcriptional activation domains.

Taken together, these data demonstrate that neither half-life
nor DNA binding alone play a defining role in controlling the neu-
rogenic activity of these closely related but distinct proneural pro-
teins, but instead complex and coordinate interactions between
the N- and C-termini and the bHLH domains are crucial for regula-
tion. The nature of these interactions remains to be determined
although the small amount of evidence available indicates that
the N- and C-termini may be natively unstructured [25]. In such
cases, conformation may be acquired by DNA- and protein part-
ner-binding and such interactions may account for domain-specific
requirements.

Proteins from similar families are often assumed to have similar
folding mechanisms [26], similar regulation of degradation
[12,17,18,27], and/or similar control of transcriptional activity.
However, as we show here, the regulation of proteins within clo-
sely related families can differ substantially and extrapolation
between family members is unwise. It will be important to now
understand how differences in protein behaviour and activity con-
tribute to their differing roles in neurogenic determination and dif-
ferentiation [6].
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