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Identification of platelet function defects by
multi-parameter assessment of thrombus
formation
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Assays measuring platelet aggregation (thrombus formation) at arterial shear rate mostly use

collagen as only platelet-adhesive surface. Here we report a multi-surface and multi-para-

meter flow assay to characterize thrombus formation in whole blood from healthy subjects

and patients with platelet function deficiencies. A systematic comparison is made of

52 adhesive surfaces with components activating the main platelet-adhesive receptors,

and of eight output parameters reflecting distinct stages of thrombus formation. Three

types of thrombus formation can be identified with a predicted hierarchy of the following

receptors: glycoprotein (GP)VI, C-type lectin-like receptor-2 (CLEC-2)4GPIb4a6b1,

aIIbb34a2b14CD36, a5b1, avb3. Application with patient blood reveals distinct abnormalities

in thrombus formation in patients with severe combined immune deficiency, Glanzmann’s

thrombasthenia, Hermansky–Pudlak syndrome, May–Hegglin anomaly or grey platelet syn-

drome. We suggest this test may be useful for the diagnosis of patients with suspected

bleeding disorders or a pro-thrombotic tendency.
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T
he fundamental role of platelets in haemostasis and
thrombosis relies on their capability of adhesion to specific
locations of the perturbed vessel wall upon injury, damage

or inflammation. Continued adhesion of flowing platelets leads to
buildup of a platelet plug or thrombus and is required to stop
bleeding or, under pathological conditions, to induce thrombosis,
for instance after rupture of an atherosclerotic plaque1. Many
experimental studies with genetically modified mice or with
blood from patients with haemostatic deficiencies, performed at
either arterial (high shear rate) or venous (low shear rate) flow
conditions, have emphasized that thrombus formation is a
complex process encompassing multiple platelet receptors and
signalling mechanisms2–4.

For over two decades, parallel-plate flow chambers have been
used to measure platelet adhesion and activation under arterial or
venous flow conditions, in particular using surfaces such as
extracellular matrix or collagen5,6. Currently, this process of
platelet adhesion and aggregation in flow devices is described as
flow-dependent thrombus formation, regardless of the presence
or absence of anticoagulants4. Whole-blood flow chamber tests
with blood from many strains of genetically modified mice have
revealed platelet function defects under flow in vitro that often
associate with a reduced arterial thrombosis tendency in vivo1,7,8.
These outcomes have boosted the use of commercial and
home-made flow devices, in particular for the assessment of
human platelet activity in preclinical settings, in spite of the
fact that international recommendations stress the need for
further standardization of devices, protocols and measurement
parameters9. In recent years, various types of microfluidic devices
have been developed requiring only small volumes of human
blood10,11, including devices containing endothelium, for instance
to study blood from patients with sickle cell disease12.
Unfortunately, however, the great variation in design and use of
the microfluidic chips hinders the process of standardization13.
On the other hand, relatively simple, one-parameter microfluidics
tests using collagen surfaces have already been employed to
determine inter-subject variability and the efficacy of antiplatelet
therapy in cardiac patients14–17.

Clinically, the PFA-100 is the only device currently validated
that assesses platelet function under high-shear flow conditions,
by measuring the occlusion time due to platelet aggregation on a
collagen matrix. The PFA-100 is frequently utilized to evaluate
deficiencies in platelet function or von Willebrand factor (vWF)
activity, but it only provides a single end-stage parameter.
Current guidelines for laboratory investigations to check for
heritable disorders of platelet function recommend the PFA-100
as an optional screening test, but also stipulate that this test is not
diagnostic and is insensitive to mild platelet disorders18. Taken
together, there are promising possibilities for clinical employment
of flow assays to test platelet adhesion and aggregation, but
current methods often are incompletely developed and
insufficiently standardized.

The classic concept of flow-dependent thrombus formation is
based on collagen-dependent models of platelet aggregation, both
in vivo in damaged mouse vessels and in vitro using collagen-
coated flow devices. Fibrillar collagen (collagen I or III) is
considered as the primary platelet-activating substance in the
damaged vessel wall controlling the thrombotic process2,4,8,19,20.
The concept, in brief, is that at high arterial wall shear rate, initial
platelet rolling is regulated by the interaction of platelet
glycoprotein Ib-V-IX (GPIb) to vWF which is bound to
collagen. Platelet adhesion and activation by vWF/collagen then
is enforced by interplay of the collagen receptors, glycoprotein VI
(GPVI) and integrin a2b1, and the fibrinogen receptor, integrin
aIIbb3 (refs 21,22). Platelets may first adhere via integrins and
then become activated via GPVI, or first interact with GPVI23.

Collagen-induced activation of platelets includes rises in cytosolic
Ca2þ , secretion of dense and a-granules (monitored as P-selectin
expression) and release of autacoids such as ADP, ATP and
thromboxane A2, thus resulting in a plethora of paracrine
substances able of recruiting and capturing other passing
platelets. Together with GPVI, these mediators induce affinity
changes in integrins a2b1 and aIIbb3, which are required for
thrombus stability24,25. Additionally, GPVI signalling stimulates
platelet procoagulant activity and thrombin generation via
phosphatidylserine exposure26.

However, in the perturbed vessel wall, platelets will be in
contact with many other adhesive ligands than only collagen and
vWF. Platelets indeed express adhesive receptors for a large
number of vascular and plasma proteins2. So far, adhesion of
platelets under flow conditions has been studied on surfaces
coated with fibrinogen27, fibronectin28, vitronectin29,30,
osteopontin, laminin31,32 and thrombospondin-1 (ref. 33).
Another relevant receptor is the C-type lectin-like receptor
(CLEC-2), which still lacks a clear physiological ligand, but yet
supports in murine studies thrombus formation in a similar way
to the collagen receptor, GPVI34–36. Precisely how these adhesive
proteins and receptors support thrombus formation under flow
conditions in comparison with collagen and GPVI remains
poorly understood.

In this paper, we present a first systematic study to compare
key physiological platelet-adhesive proteins for all major adhesive
receptors, alone and in combination, to support whole-blood
thrombus formation at specified wall shear rates. Based on this
inventory, we developed a multi-microspot test using nine
different surfaces, which we validated using blood samples from
patients with distinct platelet function deficiencies. Using systems
biology approaches, we employed the test outcomes for a model
predicting the roles of various receptors in thrombus formation at
high and low wall shear rate, and for a template determining
aberrations in this process in patients with platelet dysfunctions.

Results
Arrays of adhesive surfaces to assess thrombus formation. To
compare the roles of established platelet-adhesive receptors in
thrombus formation, we selected ligands of these receptors that
are present in either the vessel wall or platelet aggregates. In
addition, we used a number of chemically synthesized peptides
binding to the same receptors (Supplementary Table 1). In pre-
liminary experiments, we used different coating concentrations to
assure that the selected proteins and peptides: (i) remained bound
to degreased glass coverslips after repeated rinsing (Coomassie
staining), and (ii) showed optimal platelet adhesion under static
conditions (S.M.d.W., personal communication). Optimized sur-
faces for platelet adhesion consisted of the following proteins:
collagens I and III, decorin, fibrinogen, fibronectin, laminin 511/
521, osteopontin, thrombospondin-1, vitronectin and/or vWF
(Fig. 1). Also included were the snake venom rhodocytin, four
collagen-mimetic triple-helical peptides, that is, GFOGER-(GPP)n,
GFOGER-(GPO)n, (GPO)n and a vWF-binding peptide (vWF-
BP). Immobilized bovine serum albumin (BSA) served as negative
control surface. Optimally effective coating concentrations of the
collagen-mimetic peptides were established before24,37.

By coating these proteins/peptides alone or in combinations
as a row of three microspots (diameter 1,000 mm, separation
2,000 mm), and mounting the coated coverslips in a standard
parallel-plate perfusion chamber38, it was possible to determine
the thrombus-forming activity of multiple surfaces at the
same time (Fig. 2a). Tile scans performed after perfusion of
3,30dihexyloxacarbocyanine iodide (DiOC6)-labelled whole blood
indicated homogeneous adhesion of platelets to the microspots,
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either as single cells or in aggregates depending on the surface
coating (Fig. 2b). Control experiments further established that the
order of coated proteins in microspots did not affect platelet
deposition. For instance, microspotting of fibrinogen, fibronectin
or collagen I, at upstream or downstream positions, resulted in
the same amount of platelet adhesion and aggregation
(Supplementary Fig. 1). This pointed to the absence of
significant paracrine cross-talk from activated platelets on
adjacent microspots.

For a comparative analysis, whole blood from healthy subjects
was perfused over microspots (three per run) containing the 52
combinations of substrate proteins and peptides at a high
(arterial) wall shear rate of 1,600 s� 1. Thrombus formation on
all surfaces was measured using standardized microscopic
procedures (see Methods). Stable platelet adhesion of DiOC6-
labelled platelets was evaluated from sequential fluorescence
images captured in real time during blood flow. Thrombus
volume was assessed from z-stacks of confocal images of DiOC6

fluorescence at end stage. End stage, phase-contrast images were
captured to determine overall platelet deposition (surface area
coverage) and platelet aggregate size. Activation of the platelets
per surface was resolved from confocal fluorescence images after
labelling with fluorescein isothiocyanate (FITC)-labelled anti-
fibrinogen monoclonal antibody (mAb) (fibrinogen binding,
integrin aIIbb3 activation), FITC-anti-CD62P mAb (P-selectin
expression) or AF647-annexin A5 (procoagulant activity). As
illustrated in Fig. 3, platelet adhesion, aggregation and activation
markedly differed between the various microspots. No platelets
adhered to spots coated with BSA (negative control), while single
platelets with low activation state adhered to coated fibrinogen.
Small aggregates of platelets with activated integrin aIIbb3 and
surface-expressed P-selectin formed on coated vWF or collagen
III. Large platelet aggregates staining for all three activation
markers formed on collagen I microspots, as expected39.
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Figure 1 | Protein surfaces used for flow studies and assignment map of platelet receptors interacting with indicated proteins. Assignment of

interactions of platelet receptors to immobilized protein or peptide ligands was as represented in Supplementary Table 1. Surfaces were numbered

1–52, based on unsupervised hierarchical cluster analysis of thrombus parameters (see Fig. 4). Colour code: white, not involved; black, involved at low/high

wall shear rate.

Collagen I
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Collagen III vWF
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Figure 2 | Measurement of thrombus formation on microspot arrays of

platelet-adhesive surfaces. (a) Schematic drawing of the used parallel-plate

flow chamber (3 mm width, 50mm depth) and microspot-coated coverslip.

Note the small-angular (11�) chamber inlet and outlet, preventing flow

perturbations. (b) Distribution of DiOC6-labelled platelets adhered to

consecutive microspots of collagen type I, collagen type III and vWF, after

3.5-min flow of blood at wall shear rate of 1,600 s� 1. Given are tile scans of

fluorescence images of the full microspots (bar, 100mm). Black rims are

image artifacts due to the tile scanning. Lower panels are enlarged images.
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Control experiments were performed with blocking antibodies
(all at 20mg ml� 1) to verify the involvement of specific receptors
(Supplementary Table 1) to the flow-dependent deposition of
platelets on microspots with single or double coatings (S.M.d.W.,
personal communication). These antibody experiments affirmed
the previously established roles of: GPVI and a2b1 in thrombus
formation on collagen I or III (10B12 Ab against GPVI22,24 and
mAb 15D7 against integrin a2b1 (ref. 24)); and GPIb-V-IX for
surfaces with vWF or vWF-BP (Fab 6B4 against GPIba24). The
blocking mAb 15D7 had a moderate reducing effect on platelet
deposition on surfaces with expected contribution of a2b1 (vWF/
GFOGER-(GPP)n, vWF/GFOGER-(GPO)n), that is, � 42 and
� 28%, respectively (n¼ 3, Po0.05). Blocking experiments with
the anti-CD36 antibody Fab-152 gave a reduced platelet response
to thrombospondin-1 (n¼ 3, Po0.05), but unchanged platelet
deposition to vWF/thrombospondin-1. Other blocking
experiments were performed using mAb-1976 against integrin
avb3 and mAb-1969 against integrin a5b1 (20 mg ml� 1). Single
avb3-binding (vitronectin, osteopontin) and a5b1-binding
(fibronectin) surfaces did not show platelet adhesion at high
shear rate, either in the presence or absence of the corresponding
blocking antibody. In the presence of vWF, the antibodies caused
a small but insignificant inhibition of platelet adhesion (n¼ 3,
P40.06). Based on published analyses22,24,37, an assignment
matrix was constructed of the contribution of individual adhesive
receptors to platelet interaction with the different surfaces

(Fig. 1). Herein, the well-known vWF-capturing ability of
collagens I and III was taken into account.

Identification of thrombus type by multi-parameter analysis.
Replicate measurements of blood perfusion experiments
over all 52 coated microspots and using different fluorescent
labels (nZ4 donors per condition and label) resulted in detailed
insight into the contribution of each surface to thrombus for-
mation (see wall chart in Supplementary Fig. 2). Standardized
analysis of microscopic (fluorescence) images provided the
following parameters of thrombus formation: morphological
score, integrated feature size, stable platelet adhesion, fibrinogen
binding, P-selectin expression, overall platelet deposition,
thrombus volume and procoagulant activity. Unsupervised
hierarchical cluster analysis of all data (52 microspots, 8 para-
meters) revealed separation into three patterns of thrombus
formation, indicated as types I–III (Fig. 4a). Surfaces producing
type I thrombi consisted of single-protein coatings causing
limited adhesion of few platelets. Type II thrombi mostly formed
on surfaces co-coated with vWF or vWF-BP causing deposition of
multiple platelets, single or in small aggregates, and showing
limited activation (fibrinogen binding, P-selectin expression).
Type III thrombi formed on several combined surfaces giving
rise to large aggregates of platelets, high in activation markers.
With the exception of collagen I (which binds vWF from plasma),
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Figure 3 | Different types of thrombi formed on various microspots. Blood from control subjects was perfused over microspots with indicated coating for

3.5 min at 1,600 s� 1. Shown are representative microscopic images (45 donors), from left to right: phase-contrast images of adhered platelets (i);

fluorescence images of platelets binding FITC-labelled anti-fibrinogen mAb (ii), FITC-labelled anti-CD62P mAb (iii) or AF647-annexin A5 (iv); further,

z-stacks from aggregates of DiOC6-labelled platelets (v). Bar, 10mm. Images from typical surfaces are given (for all 52 surfaces, see Supplementary Fig. 1).
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type III thrombi only appeared at double- or triple-coated
surfaces containing vWF, vWF-BP and/or laminin combined with
rhodocytin or (GPO)n peptides. Robustness of the unsupervised

cluster analysis was checked by data re-sampling and rebuilding
the tree by 10,000 randomizations with an approximately
unbiased P-value of 90, indicative of a strong fit (Fig. 4b).

The eight output measurements clustered into adhesion-related
parameters (morphological score, integrated feature size, stable
platelet adhesion) on the one hand, and activation-related
parameters on the other hand. Cohesion of the parameters was
confirmed by multiple regression analysis (Table 1), indicating
that all eight parameters contributed significantly to the clustering
into type I–III thrombi (Po0.001). The strongest coefficients of
determination for thrombus type were the linked parameters,
morphological score and integrated feature size; the linked
parameters, fibrinogen binding, P-selectin expression and platelet
deposition; and procoagulant activity. Individually, two para-
meters, stable platelet adhesion and thrombus volume, were still
significantly but less strongly determinative (R2¼ 0.71� 0.68).
Complete linkage analysis after removal of the latter two
parameters resulted in a cluster plot showing the same division
into type I–III thrombi (Supplementary Fig. 3A,B). Overall, this
analysis indicates that the distinction into three types of thrombi
is not dependent on the specific measurement parameters.
However, a further division into subtypes would be parameter
dependent.
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Figure 4 | Clustering of thrombus formation at 52 microspots using eight outcome parameters. Whole blood from control subjects was perfused

over arrays of microspots in a parallel-plate flow chamber for 3.5 min at 1,600 s� 1. Numbering of coatings with different adhesive proteins or peptides as in

Fig. 1. Recorded phase-contrast images were analysed for morphological score, integrated feature size and platelet deposition (surface area coverage).

Following in situ DiOC6 labelling, fluorescence images were recorded to assess stable platelet adhesion (during blood flow) and thrombus volume

(after blood flow). Thrombi were poststained to determine fibrinogen binding (FITC-labelled anti-fibrinogen mAb), P-selectin expression (FITC-anti-CD62P

mAb), and procoagulant activity (AF647-annexin A5). Mean values of the parameters (n¼ 5–7, thrombus size: n¼4–6) were normalized from 0–10,

and arranged by unsupervised hierarchical cluster analysis. (a) Clustered heatmap for 52 different surfaces (columns) and eight measurement

parameters (rows). Clustering of surfaces revealed three different types of thrombus formation, (b) Robustness of data set, assessed by bootstrapping

randomizations of all data with Pvclust. Shown are the pro forma clusters obtained, using approximately unbiased (AU) P-values of 90 and 95,

indicative for a strong fit.

Table 1 | Multiple regression analysis of measurement
parameters for the assessment of type I–III thrombi.

Parameter R2 P R2 P

Morphological score 0.92 (0.68) <0.001

Integrated feature size 0.91 (0.73) <0.001
0.94 <0.001

Stable platelet adhesion 0.71 <0.001

Fibrinogen binding 0.73 (0.67) <0.001

P-selectin expression 0.95 (0.68) <0.001
0.72 <0.001

Platelet deposition 0.85 (0.75) <0.001

Thrombus volume 0.68 <0.001

Procoagulant activity 0.79 (0.42) <0.001
0.69 <0.001

Given are R2 values (Pearson correlation coefficient) with statistical significance for the
contribution of each measurement parameter to the type of thrombus formation at shear rate of
1,600 s� 1 for 52 surfaces (150 s� 1 for 36 surfaces).
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Contributions of vWF and shear rate to thrombus type. Given
the established role of vWF/GPIb in platelet adhesion at high-
shear blood flow2,21, we performed a sub-analysis of thrombi
formed on microspots co-coated with indirectly or directly GPIb-
binding substances, that is, vWF-BP or vWF, respectively. The
resulting heatmaps of Fig. 5a show that, for the majority of
microspots, the presence of vWF-BP or vWF increased thrombus
formation, as assessed from the morphological score, integrated
feature size, stable platelet adhesion, platelet deposition and
thrombus volume. Values of these parameters significantly
increased (Po0.05, Student’s t-test) compared with the surfaces
without vWF (-BP), with the exception of microspots containing
a6b1 ligand, laminin (Fig. 5b). Other parameters, such as
fibrinogen binding and P-selectin expression, increased to a
lesser extent, still significant with co-coated vWF but not vWF-
BP. Procoagulant activity was not increased. Overall, the analysis
identified most prominent roles of vWF (-BP) on thrombus
formation co-coated with, in decreasing order, (assigned

receptors in brackets): rhodocytin (CLEC-2)4(GPO)n (GPVI),
GFOGER-(GPP)n (a2b1)4decorin, osteopontin, fibrinogen,
fibronectin, vitronectin (integrins a2b1, a5b1, aIIbb3, avb3)4
laminin, thrombospondin-1 (a6b1, CD36).

To substantiate this further, we also investigated the role of
vWF by comparing thrombus formation at high (1,600 s� 1) and
low (150 s� 1) wall shear rates, using 36 surfaces. At low shear
rate, all six parameters analysed contributed to formation of type
I–III thrombi with high coefficients of determination (Table 1).
Heatmaps indicated that, in general, many surfaces that actively
supported thrombus formation at high wall shear rate performed
less well at low wall shear rate (Fig. 6a,b). On the other hand,
several of the surfaces that were less active at high shear rate,
particularly those not containing vWF, became more active at
lower shear rate. These effects were even more apparent after
subtraction analysis (Fig. 6c), pointing to improved thrombus
formation at high shear rate for all vWF-containing surfaces
(Po0.05) on the one hand. Interestingly on the other hand,
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Figure 5 | Stimulating effect of co-coating of microspots with vWF-BP or vWF. Whole blood from control subjects was perfused over arrays of

microspots for 3.5 min at 1.600 s� 1, and analysed for thrombus formation as in Fig. 1. (a) Sub-heatmaps of thrombus formation parameters of single

coatings (left panel), co-coatings with vWF-BP (middle panel) or co-coatings with vWF (right panel). Formation of type I, II and III thrombi is represented

by colour bars from grey to black. (b) Subtraction heatmaps, indicating the effects of co-coating with vWF-BP (middle) or with vWF (right). Colour

code is from � 1 to 10. *Po0.05 (two-tailed Student’s t-test) compared with single coating, per row or column.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms5257

6 NATURE COMMUNICATIONS | 5:4257 | DOI: 10.1038/ncomms5257 | www.nature.com/naturecommunications

& 2014 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


combinations of laminin (a6b1), rhodocytin (CLEC-2) and
GFOGER-(GPO)n (GPVI, a2b1) provoked high and often
increased thrombus formation in the absence of vWF at lower
shear rate. Confirmation of these shear-dependent effects was
obtained by perfusion studies with 19 surfaces at three wall shear
rates of 150, 1,000 and 1,600 s� 1. In general, platelet deposition
at 1,000 s� 1 was somewhat lower than at 1,600 s� 1, the
exception being laminin-containing surfaces where highest values
were obtained at 1,000 s� 1 (Supplementary Fig. 4).

Receptor combinations in type of thrombus formation. A
partial least-squares regression model was built in Matlab using
all output parameters to verify the division of thrombi into three
types, determined by unsupervised cluster analysis (Fig. 4). In the

first model obtained, it was found that two components deter-
mined most of the variation (82.9 and 7.9%) in the data set
assessing type I, II and III thrombi; furthermore, the six key
parameters contributed similarly to this division. This allowed
us to calculate mean values of these parameters as a proxy for
the type of thrombi formed per surface and wall shear rate
(Supplementary Table 2).

A second model was then built, again using partial least-
squares regression data analysis, by fitting in the data obtained at
low shear rate (which were not used in the first model). This
model made it also possible to predict the thrombus type under
low-shear conditions (Supplementary Table 2). From this analysis
it appeared that 6 out of 11 surfaces, which each produced type I
thrombi at high shear, formed type II thrombi at low shear.
Furthermore, two out of eight vWF-containing surfaces
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Figure 6 | Effect of wall shear rate on thrombus formation on microspot surfaces. Whole blood was perfused over surfaces with or without vWF at

indicated wall shear rates. (a) Measured parameters of thrombus formation at 1,600 s� 1 (2� 18 surfaces, clustering order as in Fig. 4). (b) Measurement

parameters of thrombus formation at 150 s� 1. (c) Linear subtraction heatmap of outcome parameters at low shear rate compared with high

shear rate. Po0.01 (two-tailed Student’s t-test).
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producing type III thrombi at high shear formed type II thrombi
under low-shear conditions. This class analysis confirmed the
heatmap subtraction analysis of Fig. 6c.

By combining the analysis of thrombus types and the receptor
assignment matrix per surface (Fig. 1), we then evaluated the
combinations of receptors contributing to formation of type III
thrombi. First, computational analysis was performed for the
high-shear condition of the surfaces binding GPIb (vWF, vWF-
BP) in combination with the key integrins a2b1/a6b1 and the
signalling receptors GPVI/CLEC-2. In combination, these three
receptor/ligand classes consistently produced type III thrombi
(Fig. 7). Integrins seemed to have a stimulatory but not essential
role, with a6b1 being more active than a2b1. This was also clear
from the mean scores of laminin-containing surfaces (a6b1

binding), which performed better than GFOGER- or decorin-
containing surfaces (a2b1 binding) (Supplementary Table 2).

A similar analysis was performed by partial least-squares
regression analysis linking the various receptors to thrombus type
(high shear rate). For the 52 surfaces of the main heatmap, a new
model was built with three components (together 72% of the
variance), which after rounding gave three predicted thrombus
types. A confusion matrix indicated that only 10 of the 52
samples appeared in the wrong class, with misassignment
predominantly (8 out of 10) in the lower classes of thrombi
(type I–II), where severity was overestimated. This model was
confirmed by cross validation. Using the receptor assignments per
surface, a b-weight matrix was constructed to calculate the
contribution of each receptor to the type of thrombus formation
(Table 2). The matrix confirmed prominent differences in
contribution of the various receptors, pointing to major roles
for GPIb, the signalling receptors GPVI and CLEC-2, as well as
for the integrins a6b1 and aIIbb3. While contribution of a2b1 is
less pronounced, the other integrins a5b1 and avb3 along with
CD36 score lowest. Note that negative values in the matrix only
indicate relative inability of the receptor to contribute to type III
thrombus formation. Overall, these findings identify highly
stimulatory roles of CLEC-2 and a6b1 in type III thrombus
formation at high shear rate, in addition to the established roles of
GPIb, GPVI and a2b1.

Using the same receptor assignments and partial least-squares
regression analysis, a new b-matrix was built to predict the
contributions of individual receptors at low shear rate, that is, by
clustering the low-shear data into the matrix of high-shear data.
Cross-validation predictions showed that only 7 of the 36 surfaces
were wrongly predicted for thrombus type. The resulting
b-weight factors (two components, 58% of the variance) pointed
to a minimized contribution of GPIb to thrombus type at low
shear rate (Table 2). Further, this analysis indicated similarly high
contributions of GPVI, CLEC-2, a6b1 and aIIbb3. At low shear
rate, CD36 had a positive role, while avb3 and a5b1 again did not
contribute to formation of type III thrombi. Finally, the model
was rebuilt by exclusion of a contribution of GPIb at low shear
rate, giving essentially the same results (only 4 out of 36 surfaces

wrongly predicted). This calculated absence of the GPIb-V-IX
at low-shear flow conditions is in good agreement with the
literature2.

Platelet function disorders leading to impaired thrombus for-
mation. A panel of nine microspot surfaces (all major receptors
and vWF co-coated) was selected to determine reference values of
all parameters for nZ6 healthy subjects (Supplementary Table 3).
To assess intra-individual variability, blood samples were ana-
lysed from six healthy volunteers, taken each at four different
days. For all surfaces together: intra-individual coefficient of
variations (CVs) for the morphological score (5.7%) were 2.0
times lower than inter-individual CVs (11.2%); for platelet
deposition, intra-individual CVs (10.8%) were 3.1 times lower
than inter-individual CVs (33.7%). Similarly, for the platelet
activation markers, that is, fibrinogen binding, P-selectin
expression and phosphatidylserine (PS) exposure, intra-indivi-
dual CVs were 3.4 times, 2.6 times and 3.5 times lower, respec-
tively, than the corresponding inter-individual CVs.

Thrombus formation was also assessed in blood from rare
patients with established platelet function disorders. Heatmap
mean data were generated for the control subjects and the
individual patients under investigation (Fig. 8a,b). These data
were further evaluated in subtraction heatmaps and significance
maps (Fig. 8c,d).

Thrombus formation was assessed in blood from a patient with
severe immune deficiency syndrome (SCID)40, associated
with near-complete deficiency in store-induced calcium entry in
haematopoietic cells including platelets. In spite of a reduced
morphological score of thrombus formation, platelet activation
parameters on surfaces producing type III thrombi, that is, vWF/
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Figure 7 | Contribution of platelet-adhesive receptors to formation of type I–III thrombi. Schematic representation of thrombus type formed at

high shear rate on surfaces capturing platelets via adhesive receptors (GPIb, and integrins a2b1, a6b1) as well as signalling-linked receptors (GPVI, CLEC-2).

Table 2 | Predicted contribution of platelet receptors in
formation of type III thrombi at high shear rate.

Receptor Weight factor 1,600 s� 1 150 s� 1

b constant 0.947
GPIb-V-IX 0.687 0.049
GPVI 0.858 0.903
CLEC-2 0.763 0.964
a6b1 0.653 0.879
aIIbb3 0.527 0.877
a2b1 0.193 0.165
CD36 �0.262 0.898
a5b1 �0.102 �0.834
avb3 �0.159 �0.746

Beta matrix values after principal component analysis of weight factors, predicting the
contribution of individual adhesive receptors to formation of type III thrombi. The model built for
shear rate of 1,600 s� 1 was based on 52 surfaces and six parameters (71% of variance). A
separate-scaled model was built for shear rate of 150 s� 1, based on 36 surfaces and six
parameters (58% of variance). Both models used the assignment matrix of Fig. 1. Note that
negative values designate relative inactivity of the receptors to participate in type III thrombus
formation.
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Figure 8 | Abnormal thrombus formation in blood from patients with rare platelet function defects. Whole blood from controls subjects or indicated

patients was perfused over microspots of nine different surfaces (three microspots per run, 2–3 runs per surface). Surface numbering as in Fig. 1.

(a) Heatmap of average parameters of thrombus formation for blood samples from control subjects (left), and blood samples from day control subjects

(right). (b) Heatmaps and (c) subtraction heatmaps of parameters of thrombus formation for patients with indicated syndromes: SCID, May–Hegglin

anomaly, grey platelet syndrome, Glanzmann’s thrombasthenia or Hermansky–Pudlak syndrome. *Po0.05 compared with control subjects (two-tailed

Student’s t-test). (d) Significance map of parameters from a representative control subject and a day control subject, as well as from all patients.

Colour key: red¼ deviating omean� 2 s.d.; green¼ deviating 4meanþ 2 s.d., relative to normal values.
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rhodocytin and collagen I, were increased in comparison with
control subjects (Fig. 8d,e). This may point to increased CLEC-2-
and GPVI-dependent platelet activation under high shear flow,
for example, compensating for the absence of one of the calcium
entry pathways. Blood samples were also examined from a patient
with May–Hegglin anomaly41, characterized by a myosin
cytoskeletal defect and macrothrombocytopenia, in which
disease the consequences for platelet function are not well
understood. Thrombus formation parameters were mostly within
the normal range, with the exception of reduced platelet aggregate
formation (morphological score, integrated feature size, platelet
deposition) on GPVI-binding surfaces (vWF, vWF/GFOGER-
(GPO)n, collagen I). Most values for nonGPVI-binding surfaces
were in the normal range. However, platelet procoagulant activity
tended to be higher on two-component surfaces.

Also investigated was blood from a patient with grey platelet
syndrome41, phenotyped with a partial deficiency in platelet a-
granules. The thrombi formed were reduced in most parameters,
with the exception of procoagulant activity, typically on type III-
inducing surfaces, that is, vWF/rhodocytin, vWF/GFOGER-
(GPO)n and collagen I (Fig. 8d). P-selectin expression was
markedly reduced on all surfaces, as expected. Overall, these
results may point to impaired thrombus formation due to the
reduced a-granule release, in particular on surfaces activating via
CLEC-2 or GPVI. Furthermore, testing the blood from a patient
with Glanzmann’s thrombasthenia (deficiency in aIIbb3) resulted
in a significant reduction in platelet aggregation tendency
(morphological score, integrated feature size and/or fibrinogen
binding) on most surfaces, thus substantiating aIIbb3 as being
invariably implicated in platelet–platelet interactions. Platelet
activation parameters (P-selectin expression, platelet deposition)
were most prominently reduced on vWF/fibrinogen surface. A
final blood sample was used from a patient with Hermansky–
Pudlak syndrome41, characterized by absence of dense granules.
In this case, parameters of thrombus formation decreased with
vWF/vitronectin, vWF/rhodocytin, vWF/GFOGER-(GPO)n and
collagen I. Thrombus formation hence diminished on surfaces
binding GPIb plus avb3, CLEC-2 or GPVI. For all patients
together, thrombus formation was mostly altered on vWF-
containing surfaces with rhodocytin, GFOGER-(GPO)n or
collagen-I; the most affected parameters were morphological
score, integrated feature size and fibrinogen binding.

Additional role of thrombin. To determine the role of thrombin,
as a potent platelet agonist in thrombus formation, recalcified
blood samples were flowed over microspots containing surfaces
co-coated with tissue factor. Corn trypsin inhibitor and Gly-Pro-
Arg-Pro were added to prevent contact activation and fibrin
polymerization, respectively. Representative results are given in
Supplementary Table 4. On a vWF/fibronectin surface, all para-
meters of thrombus formation increased in the presence of
thrombin generation. However, on coated collagen-I, platelet
deposition and fluorescence markers of platelet activation para-
meters appeared to decrease in the presence of thrombin. This
paradoxical effect was due to contraction of the thrombi on
collagen, resulting in lower surface area coverage of the (labelled)
platelets in the presence of thrombin. Incidental presence of fibrin
clots on the surfaces made this assay variant less suitable for
standardization. Overall, these data pointed to a more complex
way of thrombus phenotyping in the presence of thrombin, which
requires further evaluation in the future.

Discussion
The present results aim to contribute to the recognized high need
for full standardization and exploitation of flow assays for

integrative whole-blood platelet function testing9. By systematic
assessment of thrombus formation under high shear flow on
52 microspot surfaces using eight outcome parameters, we have
identified the most determinative parameters of this process.
These reflect overall platelet adhesion and aggregation
(morphological score, integrated feature size, platelet
deposition), and determinants of platelet activation (fibrinogen
binding, P-selectin expression, procoagulant activity). Leaving out
two parameters—stable platelet adhesion and thrombus
volume—did not change the initial clustering of surfaces with
different types of thrombi. The remaining six parameters
contributed equally to the thrombus-forming process, and were
hence combined in least-squares regression analyses to build a
model for the formation of thrombi with different phenotypes.
The division into three thrombus types was almost identical to
that achieved by unsupervised cluster analysis of all data (52
surfaces, 8 parameters).

The cluster analysis indicated a robust distinction of surfaces
into three classes, supporting: adhesion of few single platelets
(type I); extensive adhesion with small aggregates and minimal
platelet activation (type II); or large aggregates with fully activated
platelets (type III). Thrombi of type III were only present on
combined microspots containing vWF or vWF-BP, an exception
being collagen I which binds vWF from plasma; other necessary
components were laminin (binding a6b1), peptides containing
(GPO)n (binding GPVI) or rhodocytin (binding CLEC-2). Other
adhesive proteins tested appeared to be less active in combined
surfaces (fibrinogen4osteopontin, collagen III4fibronectin,
vitronectin, thrombospondin-1, decorin). Note that the CLEC-2
ligand podoplanin is not present in the arterial wall or in
plasma35.

A particular role in high-shear thrombus formation is played
by vWF, because it binds to two abundant platelet receptors,
GPIb and aIIbb3 and to several matrix proteins2, that is, fibrillar
collagens (via its A3 domain)19 and, as recently demonstrated, to
laminins42. The latter finding explains why we could not identify
co-operative roles of vWF and laminin on microspots and high
activity of laminin/rhodocytin co-coatings. For the majority of
other surfaces, co-coating of vWF (or vWF-BP) increased the
parameters of thrombus formation at high shear rate, but not at
low shear rate. The platelet-activating effect of surface-
immobilized laminin has been observed before under stasis, and
was attributed to a6b1 and GPVI32,43. However, using GPVI
inhibitors we did not find a role of GPVI in flow-dependent
platelet adhesion and activation on laminin. Our data with
microspotted peptides agree with the earlier conclusion that
synthetic peptides designed to mimic platelet-collagen
interactions via GPVI, vWF/GPIb and a2b1, namely (GPO)n,
vWF-BP and GFOGER peptides, can completely replace native
collagen fibres in supporting thrombus formation24,37,44.

Regression models built to predict the involvement of different
platelet receptors to full-thrombus formation yielded interesting
results. In addition to the established contribution of GPIb and
GPVI, we find major roles for CLEC-2 and the integrins a6b1 and
aIIbb3. At high shear rate, platelet adhesion via integrin a2b1

contributed little to type III thrombus formation, while other
receptors avb3, a5b1 or CD36 were even less effective. This
conclusion is in full accordance with the major and additive roles
of GPVI, CLEC-2 and integrin a6b1 in arterial thrombus
formation in established mouse models of arterial thrombus
formation in vivo35,42. Importantly, fitting the low-shear data into
these regression models pointed to an almost annulled
contribution of GPIb, which is in accordance with the current
concept of the GPIb-V-IX complex as key receptor for platelet
adhesion at high-shear conditions2. Although these results
indicate a strong role of this complex in the formation of type
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III thrombi at high shear, they do not prove that GPIb itself
triggers signalling events in platelets. According to the built
model, the other most remarkable change in weight factors at low
shear rate is a positive contribution of CD36.

Normal values were determined for nine surfaces and six
outcome parameters. In particular, the parameters fibrinogen
binding, P-selectin expression, platelet deposition and platelet
procoagulant activity showed high inter-sample variation. High
inter-individual variability in platelet deposition on collagen
surfaces has also been reported by others, and could be correlated
to plasma levels of vWF, platelet count, haematocrit, sex and
platelet receptor genotype14. Using different types of microfluidic
devices, it has also been possible to correlate outcome parameters
of thrombus formation to platelet calcium responses (under
stasis)15, and to aspirin and/or clopidogrel intake in patients with
heart disease16. Taken together, the inter-individual variability in
this kind of whole-blood measurements seems to be linked, at
least in part, to clinically relevant determinants of platelet
function in cardiovascular disease.

Consistent results were obtained upon application of the multi-
parameter microspot assay to blood from patients with
established platelet deficiencies in platelet functions. With the
exception of blood from the SCID patient, the overall effect of
disease on all parameters was reduced thrombus formation (9–18
out of 54 parameters reduced) (Fig. 8d). Spots of collagen I, vWF/
GFOGER-(GPO)n and vWF/rhodocytin were most discrimina-
tive, all normally resulting in type III thrombi. Of the type II
thrombus-inducing surfaces, only vWF/vitronectin showed two
reduced parameters for the majority of patients. Together, the
patient data indicate that this multi-parameter, multi-surface test
detects the consequences of actin cytoskeleton alterations (May–
Hegglin), deficient alpha or dense granule secretion (grey platelet,
Hermansky–Pudlak) and impaired aIIbb3 activity (Glanzmann).
However, in the case of impaired store-operated calcium entry
(SCID patient), we find a similar number of parameters decreased
and increased.

In conclusion, we developed a standardized procedure to
systematically test thrombus formation upon whole-blood
perfusion over arrays of microspotted adhesive surface. Using
systems biology approaches, we built a model predicting the roles
of platelet receptors in shear-dependent thrombus formation, and
generated templates to determine aberrations in this process in
patients with platelet dysfunctions. This knowledge of surfaces
and output parameters is pivotal in the planned design of
microscope-independent flow devices. Applications of this
advanced technique are numerous, not only in the profiling of
patients with a (suspected) bleeding disorder or a pro-thrombotic
tendency, but also in the monitoring of functional aberrations in
platelet count and of antiplatelet therapy. Furthermore, in a
modified way, it can be used to assess the platelet-adhesive
properties under flow of blood-derived leukocytes, natural stem
cells and malignant cells in cancer.

Methods
Materials. Sources of proteins for microspot coatings are indicated in
Supplementary Table 5. VWF purified from human plasma was obtained from
University Medical Center Utrecht45. Rhodocytin was purified by gel filtration
and ion-exchange chromatography from venom of the Malayan pit viper,
Calloselasma rhodostoma46. The following triple-helical peptides were synthesized
as C-terminal amides and were purified by reverse-phase high-performance
liquid chromatography47: H-GPC(GPO)3GFOGERGPO)3GPC-NH2 [GFOGER-
(GPO)n]; H-GPC(GPP)5GFOGER(GPP)5GPC-NH2 [GFOGER-(GPP)n] and cross-
linked collagen-related peptide, (GPO)n (ref. 48); H-GPC(GPP)5GPRGQOGV
MGFO(GPP)5GPC-NH2, collagen type III derived vWF-BP, also called VWF-III
(ref. 44). BSA was obtained from Sigma; D-phenylalanyl-L-prolyl-L-arginine
chloromethylketone (PPACK) from Calbiochem; DiOC6 from AnaSpec; corn
trypsin inhibitor from Haematologic Technology; recombinant human tissue factor
from Dade-Behring; Gly-Pro-Arg-Pro from Stago.

Anti-fibrinogen antibody labelled with FITC was from WAK Chemie; FITC-
labelled anti-CD62P (P-selectin) mAb from Immunotech; annexin A5 labelled with
Alexa fluor (AF)647 from Molecular Probes. Blocking mAbs against specific
receptors came from the following sources: mAb-1950 against integrin a2, mAb-
1976 against integrin avb3 and mAb-1969 against a5b1 from Merck-Millipore; Fab-
152 against CD36 from Santa Cruz; chimeric mAb abciximab, directed against
integrins aIIbb3 and avb3 from Centocor. Sources of single-chain Ab 10B12 against
GPVI48, mAb 15D7 against integrin a2b1 (ref. 48) and of 6B4 Fab2 fragment
against the vWF-binding site on GPIba49.

Microspotting of proteins and peptides. Glass coverslips (24� 60 mm, Menzel)
were degreased with 2 M HCl in 50% ethanol, and rinsed with water and saline.
Using a precision mall, arrays of three consecutive microspots (3 mm centre-to-
centre distance) were applied on coverslips as 0.5 ml volumes of coating proteins or
peptides. Coating concentrations were optimized to give maximal static platelet
adhesion, previously established in the range of 50–250 mg ml� 1 (refs 24,37,45).
Osteopontin, vitronectin and vWF were applied at 50 mg ml� 1; collagens, vWF-BP,
laminin and thrombospondin-1 at 100mg ml� 1; and other proteins and collagen-
related peptides at 250 mg ml� 1. Coated podoplanin did not support platelet
adhesion, and was not used for further experiments. Sources of coated proteins and
peptides are given in Supplementary Table 5. Microspots with double or triple
coatings were prepared by mixing the desired proteins or peptides at the con-
centrations above.

Microspot-coated coverslips were incubated for 1 h in a humid atmosphere, and
washed twice with saline. Coatings were verified by staining with Coomassie
brilliant blue G, showing circular stained spots of B1,000 mm in diameter for most
coated proteins; only laminin and collagen I gave smaller (800 mm) and larger
(1,200 mm) spots, respectively. Before flow perfusion, coverslips were blocked with
HEPES buffer pH 7.45 (136 mM NaCl, 10 mM HEPES, 2.7 mM KCl, 2 mM MgCl2,
0.1% glucose, 1 U ml� 1 heparin) supplemented with 1% BSA.

Healthy control subjects and patients. Studies were approved by the local
Medical Ethics Committee (Maastricht University Medical Centre,
NL31480.068.10). Blood samples (10 ml) were taken from healthy control subjects
and patients, who had not used antiplatelet or anti-inflammatory medication for 2
weeks. All donors gave informed consent in accordance to the Declaration of
Helsinki. Healthy controls (both sexes, age 23–58 years) were not under medical
care, had not experienced bleeding problems, and had normal platelet counts (200–
300� 109 l� 1) and haematocrit values (32–42%). For determination of intra-
subject variability, blood samples from six healthy donors were taken on four
different days, perfused and analysed.

Patients all had a well-defined platelet deficiency and mild bleeding tendency, as
reported by the examining physicians: a patient with Glanzmann’s thrombasthenia
with confirmed deficiency in platelet aIIbb3 expression and normal blood cell
counts50; a patient with SCID, ORAI1 mutation and abolished store-regulated
influx in platelets51; a patient with May–Hegglin anomaly (MYH9 gene mutation)
displaying macrothrombocytopenia (9� 109 platelets l� 1) and a relatively high
haematocrit level (46%); a patient with confirmed Hermansky–Pudlak syndrome
(HPS3 gene mutation), characteristically lacking platelet dense granules, as
confirmed by flow cytometry (280� 109 platelets l� 1, haematocrit 31%); a patient
with suspected grey platelet syndrome with major deficiency in platelet a-granules
and reduced P-selectin expression, which was accompanied by macrothrombo-
cytopenia (37� 109 platelets l� 1, haematocrit 33%). Blood samples from every
patient were run in parallel to blood samples from healthy travel controls.

Blood collection. Blood collection was into 0.1 volume of saline containing
PPACK (40 mM) and fragmin (40 U ml� 1, final concentrations); alternatively,
where indicated, collection was into 0.1 volume of sterile 129 mM trisodium citrate.
Citrated blood samples were recalcified with 3.75 mM MgCl2 and 7.5 mM CaCl2
(final concentrations) in the presence of PPACK (40 mM) and fragmin (40 U ml� 1)
prior to the flow experiment. Prior to perfusion, blood samples were checked for
platelet counts and the absence of visible clots.

Flow chamber device and flow perfusion protocol. Microspot-coated coverslips
were mounted onto a transparent parallel-plate flow chamber (50 mm depth, 3 mm
width and 20 mm length), and pre-rinsed with HEPES buffer pH 7.45 containing
0.1% BSA. Anticoagulated whole-blood samples (400–500 ml) were perfused
through the flow chamber for a time period sufficient for full-thrombus formation
on collagen I spots, that is, 6 min at 150 s� 1, 4 min at 1,000 s� 1 and 3.5 min at
1,600 s� 1. Where indicated, blood samples were preincubated for 5 min with
DiOC6 (0.5mg ml� 1), and fluorescence images were recorded from the microspots
during blood perfusion. In other cases, thrombi formed after blood flow were
poststained by 2-min perfusion (1,000 s� 1) with colour-selected combinations of
the following platelet activation markers: FITC-labelled anti-fibrinogen mAb
(1:100), FITC-labelled anti-P-selectin mAb (1.25 mg ml� 1) and/or AF647-annexin
A5 (0.25 mg ml� 1), all in HEPES buffer pH 7.45 supplemented with 0.1% BSA.
After 2 min of staining (stasis), unbound label was removed by a short perfusion
with the same HEPES buffer. No fixative was used.
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To assess the role of thrombin on thrombus formation under high-shear flow
conditions, tissue factor (500 pM) was immobilized together with a dual coating of
vWF with fibronectin or collagen-I. Corn trypsin inhibitor (5 mg ml� 1) was present
in the blood collecting tube to inhibit the contact activation pathway of
coagulation. Blood was drawn on 0.32% trisodium citrate and Gly-Pro-Arg-Pro
(5 mg ml� 1) was added to block fibrin polymerization and thus clot formation.
During the flow perfusion, the blood was recalcified with 6.3 mM CaCl2 and
3.2 mM MgCl2 to allow thrombin to be formed via co-coated tissue factor. Platelet
activation markers were determined as described for the noncoagulating
conditions.

Standardized recording of microscopic images. Phase-contrast bright-field
images were recorded from all three microspots during buffer perfusion immedi-
ately after outflow of the red blood cells, using an inverted Nikon Diaphot
microscope, equipped with a � 40 oil-immersion objective (numerical aperture,
1.3), a � 1.8 relay lens and a CCD camera (640� 480 pixels)38. For measuring
platelet activation markers, the flow chamber was placed on the stage of a confocal
Bio-Rad/Zeiss MRC-600 microscope, equipped with a � 60 oil-immersion
objective (numerical aperture 1.4). Dual-colour confocal fluorescence 8-bit images
(512� 512 pixels) were recorded at 488 and 633 nm excitation and settings, as
described previously52. Thrombus volume was determined using a fast line-
scanning Zeiss LSM7 microscope system, equipped with a � 63 oil objective.
Confocal z-stacks were recorded of DiOC6-labelled platelets in thrombi (8-bit
images of 512� 512 pixels; 106� 106mm, stack distance 0.5 mm). The same label
and system were used to measure stable platelet adhesion during blood flow (8-bit
images, taken at 2-s intervals). For each flow run, five representative microscopic
images were taken from each of the microspots. Flow assays per blood sample were
performed in duplicate or in triplicate, if duplicates showed marked variation.

Quantitative analysis of recorded images. Phase-contrast and fluorescence
images were analysed by standardized journals, using Metamorph software
(Molecular Devices), or in the case of LSM7 images with Axiovision Rel.4.8 soft-
ware (Carl Zeiss). End-stage phase-contrast images of adhered platelets were
judged as follows. The morphological score was obtained by visual inspection of the
platelet features per microspot: 0, no or hardly any adhered platelets; 1, multiple
single-adhered platelets; 2, extensive coverage of single-adhered platelets; 3, small
platelet aggregates; 4, intermediate platelet aggregates; 5, full thrombi with large-
size platelet aggregates. Platelet deposition was determined as surface area coverage
by using supervised image analysis journals. In brief, auto-enhanced images were
filtered vertically and horizontally and thresholds were set. The resulting binary
images were subjected to a close-and-open filter, which resulted in identified
regions of single or clustered adhered platelets. The integrated feature size was
determined as a parameter, taking into account a proportional contribution of large
and small thrombi on microspots. It was defined as the cumulative contribution of
squared feature areas (f2), ranked from small to large (1�N), to the total feature
size (Sf) (equation 1):

XN

i¼1

f 2
i

� �
=
XN

i¼1

fi ð1Þ

In cumulative plots, where larger size features appear at the right, the area above
the curve represents a value of the integrated feature size.

Time series of images of DiOC6 fluorescence (1 min, 2-s intervals) were
converted into subtracted, differential images using Metamorph software, and
analysed for changes in pixel intensity above background53, thus producing a value
for stable platelet adhesion. Confocal fluorescence images were thresholded with
predefined journals using Metamorph software, to obtain percentage values of
surface area coverage for each platelet activation label: FITC-anti-fibrinogen mAb
(aIIbb3 activation), FITC-anti-P-selectin mAb (a-granule secretion; correction for
non-specific labelling), AF647-annexin A5 (phosphatidylserine exposure)38.
Z-stacks of confocal images of DiOC6 fluorescence were analysed with Axiovision
software to obtain a summed thrombus volume per surface area37. Protocols were
checked by three different observers, who were blinded to the experimental
variables.

Bioinformatics and statistics. For comparative analysis, mean values of all
thrombus parameters from 52 surfaces were linearly normalized to a range from
0–10 (values of all parameters were normally distributed). Two-way unsupervised
hierarchical clustering was performed using the R package version 2.3
(www.r-project.org). Euclidean distances were calculated, and clustering was by
complete linkages. Robustness of the clusters was checked using the R program,
Pvclust. The clusters were rebuilt based on 10,000 randomizations, and their sig-
nificance was assessed using an approximately unbiased P490. Pvclust was also
used to evaluate the robustness of the clusters by leaving out particular surfaces or
parameters, with the aim to select those surfaces and parameters giving non-
redundant information. Partial least-squares regression models with b-matrices
were built in Matlab, and were employed to make 2–3-component prediction
models for thrombus type and platelet receptor contribution. All models were
checked by cross-validation predictions.

Parameters were correlated or compared by multiple regression analysis using
the statistical package for social sciences (SPSS 19.0). Patient data were compared
with normal ranges established for healthy control subjects, and statistically
analysed by probability analysis. Effects of antibodies and heatmap subtractions
were compared using a two-tailed Student’s t-test.
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