
ZU064-05-FPR logic-paper 4 April 2014 14:29

THE REVIEW OF SYMBOLIC LOGIC
Volume 0, Number 0, Month 2014

A Machine-Assisted Proof of Gödel’s Incompleteness Theorems for the
Theory of Hereditarily Finite Sets

LAWRENCE C. PAULSON
University of Cambridge

Abstract. A formalisation of Gödel’s incompleteness theorems using the Isabelle proof assistant
is described. This is apparently the first mechanical verification of the second incompleteness theo-
rem. The work closely follows Świerczkowski (2003), who gave a detailed proof using hereditarily
finite set theory. The adoption of this theory is generally beneficial, but it poses certain technical
issues that do not arise for Peano arithmetic. The formalisation itself should be useful to logicians,
particularly concerning the second incompleteness theorem, where existing proofs are lacking in
detail.

§1. Introduction. Gödel’s incompleteness theorems (Feferman, 1986; Gödel, 1931)
are undoubtedly the most misunderstood results in mathematics. Franzén (2005) has writ-
ten an entire book on this phenomenon. One reason is they have attracted the attention of a
great many non-mathematicians, but even specialists who should know better have drawn
unfounded conclusions. One of the main obstacles to understanding these theorems is the
great technical complexity of their proofs, and indeed of their very statements.

Świerczkowski (2003) claims that the theory of hereditarily finite sets (HF) is more
suitable than the usual Peano Arithmetic (PA) as a basis for proving the incompleteness
theorems. The coding of terms and formulas can be done directly using traditional set-
theoretic constructions, without referring to prime factorisation or the Chinese remainder
theorem. As evidence, he gives a detailed presentation of the proofs of these theorems,
along with a development of the HF theory itself. He also states a theorem saying that the
theories HF and PA are definitionally equivalent.

The present paper describes a formalisation of Świerczkowski’s development using the
interactive theorem prover Isabelle/HOL. This formalisation makes some of the advantages
and drawbacks of his approach very clear, and these will be discussed below. Moreover,
the availability of this formal proof (which can be surveyed by anybody who has a suitable
computer and a copy of the Isabelle software) can help to demystify the incompleteness
theorems.

Boolos (1993) devotes more than two pages (pp. 33–34) to an explanation of how coding
syntax using integers differs from using PA to reason about addition and multiplication.
As a computer scientist, I do not see the need for such lengthy explanations: coding one
thing in another is how computers work on every architectural level. Coming from that
perspective, it isn’t obvious that representing the ordered pair hx,yi set-theoretically as
{{x},{x,y}} is more natural than representing it arithmetically as 2x3y, for example. What
we can objectively say is that the former approach is likely to save effort, eliminating the
need to formalise the fundamental theorem of arithmetic or the Chinese remainder theorem
explicitly in PA.

c� 2014 Association for Symbolic Logic
1 doi:

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Apollo

https://core.ac.uk/display/77405969?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ZU064-05-FPR logic-paper 4 April 2014 14:29

2 LAWRENCE C. PAULSON

It’s clear that Gödel regarded the need to construct explicit formal proofs as highly
undesirable. We can regard the proof of a sentence A on three levels: informally, as a
proof of ` A in a suitable formal calculus, or as a proof of ` Pf pAq, given a suitable
coding system defining pAq and a provability predicate Pf corresponding to the formal
calculus and coding system. Obviously, the effort required to prove A increases hugely as
we move up from one level to the next, but one could argue that the intrinsic complexity
does not increase at all; the additional effort is essentially mechanical and bureaucratic.
Nevertheless, Gödel’s treatment makes strenuous efforts to minimise the need to construct
formal proofs.

Gödel describes a relation R(x1, . . . ,xn) as entscheidungsdefinit (the modern term is
numeralwise expressible) provided there is a formula R(x1, . . . ,xn) such that, for each x1,
. . . , xn,

R(x1, . . . ,xn) implies ` R(xxx111,,, . . . ,,,xxxnnn) (1)

R(x1, . . . ,xn) implies ` ¬R(xxx111,,, . . . ,,,xxxnnn) (2)

Here, R means “not R” and xxx111,,, . . . ,,,xxxnnn denotes the numerals expressing the values of x1,
. . . , xn (Feferman, 1986, p. 130). This technique shows that ` R(xxx111,,, . . . ,,,xxxnnn) is a theorem
of the formal calculus without requiring an explicit proof. Unfortunately, the price is a
considerable increase in intrinsic complexity: explicit numerical bounds have to be given
for all quantifiers, and the proofs that these bounds are sufficiently large can be very
complicated. These proofs refer to the coding functions and require detailed reasoning
about primes, lowest common multiples, etc.

A S1 formula in PA is logically equivalent to one of the form 9x1 . . .9xnf , where f is
a primitive recursive formula. Based on this concept (henceforth simply “S formulas”),
one can eliminate the need for bounded existential quantifiers. S formulas turn out to be
sufficient to express the provability predicate Pf and the syntactic concepts underlying
it: terms, formulas, substitutions, etc. They satisfy property (1) above but not (2). To
recover the latter property, Boolos (1993) uses the concept of a D formula: a S formula
whose negation is also a S formula. Unfortunately, this approach again requires bounds
for existential quantifiers. Boolos (1993) devotes more than a page (page 41) to a “grisly”
proof of one of these bounds, concerned with the coding of terms. The very statement
of the theorem (which replaces one unbounded existential quantifier by three bounded
quantifiers) is highly technical. As there are a great many other existential quantifiers in
the definition of the provability predicate, this approach cannot lead to an intelligible proof
of the incompleteness theorems.

Świerczkowski (2003) confines himself to S formulas. Since property (2) does not hold,
it is necessary to perform some proofs in the HF formal calculus. He presents detailed
proofs that the coded substitution operations on coded terms and formulas are single-
valued. These proofs are as long as the one given in Boolos (1993), but conceptually they
are simple; their purpose is to demonstrate that the proof of the single-valued property is
elementary enough to be proved in the HF calculus.

To actually exhibit a formal proof, some elementary concepts and lemmas in the theory
of HF have to be developed formally: the principle of mathematical induction, the linear
ordering for the natural numbers, etc. But to reach the first incompleteness theorem, these
formal developments do not even need to define addition. To reach the second theorem,
we require a few addition laws and some basic properties of finite sequences, but nothing
more: certainly, not multiplication. This is the main benefit of using HF, since hx,yi is
simply {{x},{x,y}}, and coding is no longer arithmetisation.

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 3

Świerczkowski (2003) quotes Boolos (1993), who describes his proofs as “incomplete”
and “irremediably messy” (page 16). Świerczkowski’s proof of the second incompleteness
theorem is certainly less messy, because he eliminates virtually all arithmetical arguments.
The Isabelle/HOL proofs are of course complete, and represent the first machine-assisted
proof of the second incompleteness theorem. The explicit derivations in the HF calculus
are necessarily messy, because they are strings of low-level logical inferences. But with
few exceptions, the statements actually proved are straightforward; generally, they prove
that various coded operations do exactly what they are supposed to do.

The rest of the paper discusses Isabelle/HOL (§2.) and the fundamental definitions
underlying the proofs (§3.). Techniques used to formalise Gödel-numbering are briefly
sketched (§4.). The steps leading to the first incompleteness theorem is then described
(§5.). One small but interesting finding concerns the technique for proving the second
incompleteness theorem. The descriptions given by both Boolos (1993) and Świerczkowski
(2003) are potentially misleading, if not actually wrong (§6.). Another finding is that
Świerczkowski’s proof is actually incomplete, with a significant gap which I have closed
using methods quite different from the ones he outlined (§7.). A brief section concludes
the paper (§8.).

Note that this paper contains no definitions or proofs as conventionally understood in
mathematics; rather, it describes definitions and formal proofs that have been conducted
in Isabelle/HOL, and lessons learned from them. Our focus below concerns such logical
issues revealed by the Isabelle/HOL development. Technological aspects of this develop-
ment are discussed in a companion paper Paulson (2013). In order to save space, standard
definitions involving the incompleteness theorems are not presented below except where
they need to be discussed specifically. This material is widely available, and Świerczkowski
(2003) can be downloaded from an Internet archive.1

§2. Background. These proofs were conducted using Isabelle/HOL, an interactive
theorem prover (Nipkow et al., 2002). Therefore all proofs are conducted in a formal
calculus: higher-order logic. Nevertheless, there is an enormous difference between proofs
carried out Isabelle/HOL’s native logic and those carried out in a formal calculus specified
within Isabelle/HOL. Interactive theorem provers typically hide the underlying calculus
as much as possible through automatic simplifiers and other tools, trying to create the
illusion that the user is writing a rigorous but flexible mathematical document. A logical
calculus formalised within Isabelle/HOL is an inductively defined set, and a proof within
this calculus is a demonstration that a particular object (representing a formula) belongs to
that set. Isabelle’s automation assists with such demonstrations, but they are nevertheless
long and all but incomprehensible.

Before formalising the logical calculus, we must formalise the syntax of terms and
formulas. A crucial question is the treatment of bound variables. The names of bound
variables are typically regarded as significant, so that 9xy [x > y] and 9vw [v > w] are distinct
(albeit logically equivalent) formulas. With such an approach, renaming a bound variable is
an explicit step. Gödel’s proofs make heavy use of explicit formulas with many quantifiers,
and also require induction over the structure of formulas. Having to rename bound variables
complicates proofs considerably.

1
http://journals.impan.gov.pl/dm/Inf/422-0-1.html

ZU064-05-FPR logic-paper 4 April 2014 14:29

4 LAWRENCE C. PAULSON

Nominal Isabelle is a formal theory developed within Isabelle/HOL in order to support
reasoning about named bound variables (Urban & Kaliszyk, 2012). Variable names are
significant where they appear free, but variable binding constructions are quotiented with
respect to the bound variable names, so that 9xy [x > y] and 9vw [v > w] denote the same
formula exactly as {0,1} and {1,0} denote the same set. Permutations on names are the key
underlying mechanism, for which can be derived the function supp(a), which coincides
with the set of free variables in a when a is something like a term or formula. When
performing induction on a formula, these mechanisms can ensure that any bound variables
inside the formula are distinct from those of any other formulas that we are interested in.
Thus we can avoid the many problems reported by O’Connor (2005), who formalised the
first incompleteness theorem using Coq.

One penalty that must be paid in exchange for these advantages is that any function
defined on formulas must use bound variables sensibly (for example, we may not define
the set of variables bound in a formula). While the formal definition of “sensibly” admits
all the definitions required for the incompleteness theorems, proving this property required
specialised skills (I frequently called upon Christian Urban for assistance), and they can be
very demanding of processor time.

For the coding of formulas, bound variables can be formalised using the nameless ap-
proach of de Bruijn (1972). Bound variable occurrences are designated by non-negative
integers: 0 for the innermost bound variable and increasing for each intervening quantifier.
Substitution and abstraction can be defined easily. The main drawback of eliminating
bound variable names in this manner is a complete loss of readability, but that is of no
importance for coding. The Isabelle/HOL development proves an exact correspondence
between the syntax of terms and formulas defined using Nominal Isabelle and the codes of
terms and formulas. This correspondence extends to syntactic operations, such as substitu-
tion, encoded using a combination of Świerczkowski’s and de Bruijn’s techniques. There
is no need to formalise the nominal theory in the HF calculus, and the complications would
be considerable.

A sceptical reader is entitled to ask why we should trust this complicated software and
the mysterious nominal theory. We gain confidence in it—as with all human artefacts—
through a combination of personal experience, its reputation and an understanding of its
design. Isabelle/HOL has now been used in a great many substantial projects by hundreds
of users, giving strong reasons to accept that it is a correct implementation of higher-order
logic. The nominal theory is a definitional extension of this logic, all concepts ultimately
reducible to HOL primitives. The formally verified correspondence between nominal syn-
tax and de Bruijn syntax, mentioned above, is further evidence for its correctness. The
formal development itself presents a proof of the incompleteness theorems at a level of
detail vastly greater than can be found in any published account. Moreover, this formal
development is a live document: our sceptic can load it into Isabelle/HOL, point to any
part of any proof, and quickly see what has to be proved at that point. Transparency is the
best response to scepticism.

§3. The Isabelle/HOL formalisation: fundamentals. Let us see what typical defini-
tions and proofs look like in Isabelle/HOL. One claim for this work is that the machine
proofs are readable, at least to a limited extent, allowing this very lengthy and complicated
series of definitions and proofs to be examined.

The hereditarily finite sets are recursively defined as finite sets of hereditarily finite sets.
Świerczkowski (2003) presents a first-order theory having a constant 0 (the empty set), a

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 5

binary operation symbol C (augmentation, or “eats”), a relation symbol 2 (membership)
as well as equality, satisfying the following axioms:

z = 0$8x [x 62 z] (HF1)
z = xC y$8u [u 2 z$ u 2 x_u = y] (HF2)

f(0)^8xy [f(x)^f(y)! f(xC y)]!8x [f(x)] (HF3)

The third axiom expresses induction. Świerczkowski (2003) develops the necessary ele-
ments of this set theory, including functions, ordinals (which are simply the natural num-
bers) and definitional principles. Kirby (2007) presents an elegant generalisation of ordinal
addition to the universe of sets. Formalising such material in Isabelle/HOL is routine.

The first milestone in proving the incompleteness theorems is to formalise the syntax
of the HF calculus. Remember, in Isabelle/HOL, mathematics is expressed in higher-order
logic. This is a typed formalism, and the following declaration establishes a recursive type
tm of HF terms. The type name has already been established, using the nominal framework,
as the type of variable names for this calculus.

nominal datatype tm = Zero | Var name | Eats tm tm

This declares that a term is either Zero or has the form Var i, where i is a name, or has
the form Eats t1 t2 for terms t1 and t2.

It is now possible to define the type fm of HF formulas.

nominal datatype fm =
Mem tm tm (infixr "IN" 150)

| Eq tm tm (infixr "EQ" 150)
| Disj fm fm (infixr "OR" 130)
| Neg fm
| Ex x::name f::fm binds x in f

The HF calculus includes an existential quantifier, denoted Ex, which involves variable
binding via the nominal framework. The infixr declarations provide an alternative syntax
for the membership relation, the equality relation, and disjunction. A formula can also be
a negation. The other logical connectives are introduced later as abbreviations.

Substitution is often problematical to formalise, but here it is straightforward. Substitu-
tion of a term x for a variable i is defined as follows:

nominal primrec subst :: "name) tm) tm) tm"
where
"subst i x Zero = Zero"

| "subst i x (Var k) = (if i=k then x else Var k)"
| "subst i x (Eats t u) = Eats (subst i x t) (subst i x u)"

For substitution within a formula, we normally expect issues concerning the capture of
a bound variable. Note that the result of substituting the term x for the variable i in the
formula A is written A(i::=x).

nominal primrec subst fm :: "fm) name) tm) fm"
where
Mem: "(Mem t u)(i::=x) = Mem (subst i x t) (subst i x u)"

| Eq: "(Eq t u)(i::=x) = Eq (subst i x t) (subst i x u)"
| Disj: "(Disj A B)(i::=x) = Disj (A(i::=x)) (B(i::=x))"
| Neg: "(Neg A)(i::=x) = Neg (A(i::=x))"
| Ex: "atom j] (i, x) =) (Ex j A)(i::=x) = Ex j (A(i::=x))"

ZU064-05-FPR logic-paper 4 April 2014 14:29

6 LAWRENCE C. PAULSON

Substitution is again straightforward in the first four cases (membership, equality, disjunc-
tion, negation). In the existential case, the precondition atom j] (i, x) (pronounced “j
is fresh for i and x”) essentially says that i and j must be different names with j not free in
x. We do not need to supply a mechanism for renaming the bound variable, as that is part of
the nominal framework, which in most cases will choose a sufficiently fresh bound variable
at the outset. The usual properties of substitution (commutativity, for example) have simple
proofs by induction on formulas. In contrast, O’Connor (2009) needed to combine three
substitution lemmas in a simultaneous proof by induction, a delicate argument involving
1900 lines of Coq.

The HF proof system is an inductively defined predicate, where H ` A means that the
formula A is provable from the set of formulas H .

inductive hfthm :: "fm set) fm) bool" (infixl "`" 55)
where
Hyp: "A 2 H =) H ` A"

| Extra: "H ` extra axiom"
| Bool: "A 2 boolean axioms =) H ` A"
| Eq: "A 2 equality axioms =) H ` A"
| Spec: "A 2 special axioms =) H ` A"
| HF: "A 2 HF axioms =) H ` A"
| Ind: "A 2 induction axioms =) H ` A"
| MP: "H ` A IMP B =) H’ ` A =) H [H’ ` B"
| Exists: "H ` A IMP B =)

atom i] B =) 8C2H. atom i] C =) H ` (Ex i A) IMP B"

Note that the existential rule is subject to the condition that the bound variable, i, is fresh
with respect to B and the formulas in H . The definitions of boolean axioms, etc., are taken
from Świerczkowski (2003). He formalised a simpler inference system, with theorems of
the form ` A. Introducing H allows a proof of the deduction theorem and the derivation of
a sort of sequent calculus, a practical necessity if we are to conduct proofs in this formal
calculus.

Another deviation from Świerczkowski (2003) is the inclusion of extra axiom. It is a
parameter of the entire development; it can be any formula that is true under the Tarski
truth-definition.2 Its purpose is to generalise the statements of the incompleteness theo-
rems, which Świerczkowski proved only for one specific calculus. O’Connor (2005) has
gone further to prove the first incompleteness theorem even for infinite extensions of the
calculus.

The incompleteness theorems require the definition of a great many predicates, mostly
for coding the syntax of terms and formulas, and operations on them. It may be instructive
to look at a very simple definition, namely of the subset relation:

nominal primrec Subset :: "tm) tm) fm" (infixr "SUBS" 150)
where "atom z] (t, u) =) t SUBS u = All2 z t ((Var z) IN u)"

This introduces SUBS as the name of the subset relation, which is defined using a bounded
quantifier by t ✓ u () 8(z 2 t) [z 2 u]. Note that All2 is our syntax for a bounded
universal quantifier. The condition atom z] (t,u) states that the quantified variable (z)
must be fresh for the terms t and u. In other words, and in contrast to some treatments, the

2 This is formalised as the function eval fm, which is presented in the companion paper (Paulson,
2013, section 3.1). The constraint that extra axiom must be true is not shown here.

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 7

bound variable is a parameter of the definition rather than being fixed; however, the choice
of z cannot affect the denotation of the right-hand side, thanks to quotienting.

Proving the elementary properties of the subset relation within the HF calculus is ex-
tremely tedious, over 200 lines of proof script. Extensionality must be proved by induction
within the calculus:

lemma Extensionality: "H ` x EQ y IFF (x SUBS y AND y SUBS x)"

The length of these trivial proofs might be taken as a sign that mechanising the incom-
pleteness theorems is infeasible. It is fortunate that proofs of apparently more advanced
properties do not get longer and longer, even when we come to prove the Hilbert-Bernays
derivability conditions.

Świerczkowski (2003) discusses S formulas, constructed from atomic formulas using
conjunction, disjunction, existential quantification and bounded universal quantification.
Strict S formulas contain no terms other than variables, and the bound j in 8(i 2 j)A must
not be free in the quantified body, A.

inductive ss fm :: "fm) bool" where
MemI: "ss fm (Var i IN Var j)"

| DisjI: "ss fm A =) ss fm B =) ss fm (A OR B)"
| ConjI: "ss fm A =) ss fm B =) ss fm (A AND B)"
| ExI: "ss fm A =) ss fm (Ex i A)"
| All2I: "ss fm A =) atom j] (i,A) =) ss fm (All2 i (Var j) A)"

One advantage of formal proof is that these conditions are immediately evident, when they
may not be clear from an informal presentation. Świerczkowski (2003) does not impose
the last condition (on the bound of a universal quantifier), but it greatly simplifies the main
induction needed to reach the second incompleteness theorem. (If we are only interested
in formalising the first incompleteness theorem, we can use a more generous notion of S
formula, allowing atomic formulas and their negations over arbitrary terms.) Formally, a S
formula is defined to be any formula that can be proved equivalent (in the HF calculus) to
a strict S formula:

"Sigma fm A ! (9B. ss fm B & supp B ✓ supp A & {} ` A IFF B)"

The condition supp B ✓ supp A essentially means that every variable free in B must also
be free in A . After a certain amount of effort, it is possible to derive the expected properties
of S formulas and ultimately to reach a key result based on this concept:

theorem Sigma fm imp thm: " [[Sigma fm A; ground fm A; eval fm e0 A]] =) {} ` A"

If A is a true S sentence, then `A. This result reduces the task of proving ` A in the formal
calculus to proving that A holds (written eval fm e0 A) in Isabelle/HOL’s native higher-
order logic.

§4. The Isabelle/HOL formalisation: The coding of syntax. The coding of terms,
formulas, substitution, the HF axioms and ultimately the provability predicate is straight-
forward to formalise. Gödel (1931) and Świerczkowski (2003) present full details. Many
other authors prefer to simplify matters via repeated appeals to Church’s thesis. Even the
detailed presentations mentioned above omit any demonstration that the definitions are
correct. The proof formalisation condition for the provability predicate (written PfP below)
is typically stated with a minimum of justification:

ZU064-05-FPR logic-paper 4 April 2014 14:29

8 LAWRENCE C. PAULSON

theorem proved iff proved Pf: "{} ` A ! {} ` PfP pAq"

One could argue that there is no need for the definitions to be correct in every detail,
provided they convince the reader that correct and suitable definitions exist. However, only
correct definitions can be verified in Isabelle/HOL. Most of these proofs are indeed routine,
though in places (for example, in the specification of an instance of the HF induction
axiom) extremely tedious.

The de Bruijn (1972) representation of variable binding requires new versions of the
syntactic predicates for “formula”, “substitution”, etc. The coding of terms and formulas
is done by first translating them from nominal syntax to de Bruijn syntax. In verifying the
coding predicates, we also verify this translation.

A standard treatment of de Bruijn syntax requires defining two operations: abstraction
and substitution. Abstraction replaces free occurrences of a given term by a new bound
variable, represented by a numeric index; the resulting formula is ill-formed until a match-
ing quantifier is prefixed to it. Substitution is the inverse of abstraction, replacing the
outermost bound variable (after a quantifier has been stripped from a formula) by some
given term. For the incompleteness theorems, both operations can be simplified: abstraction
replaces a free variable by a bound variable, and substitution replaces a free variable by a
given term. Abstraction is needed to formalise the construction of a formula, because it is
a necessary step before a quantifier can be attached.

The interplay of these various points can be seen below:

definition MakeForm :: "hf) hf) hf) bool"
where "MakeForm y u w ⌘

y = q Disj u w _ y = q Neg u _
(9v u’. AbstForm v 0 u u’ ^ y = q Ex u’)"

Thus y is the code of a formula constructed from existing formulas u and v provided y

codes the disjunction u_v, the negation ¬u or the existential formula 9(u’), where u’ has
been obtained by abstracting u over some variable, v. The predicate AbstForm performs de
Bruijn abstraction over a formula; its definition is complicated, and omitted here. Note that
the codes of quantified formulas do not mention the names of bound variables.

This predicate is given by a higher-order logic formula, and therefore at the level of the
meta-theory. Working at this level eliminates the need to construct HF proofs, and most
of the correctness properties we need can be proved in this manner. However, in order
to perform the diagonalisation argument and exhibit the undecidable formula, we need a
version of every coding predicate as an HF formula. Therefore, each predicate must be
defined on both levels:

nominal primrec MakeFormP :: "tm) tm) tm) fm"
where " [[atom v] (y,u,w,au); atom au] (y,u,w)]] =)

MakeFormP y u w =
y EQ Q Disj u w OR y EQ Q Neg u OR
Ex v (Ex au (AbstFormP (Var v) Zero u (Var au) AND y EQ Q Ex (Var au)))"

As we saw above in the definition of Subset, constraints are required on all quantified
variables. Here there are only two, but to define AbstForm requires 12 bound variables.
The necessary declarations are lengthy and messy, and put a heavy burden on the nominal
package (proofs run very slowly), but the alternative of having to rename explicit bound
variables is also unattractive.

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 9

§5. The Isabelle/HOL formalisation: first incompleteness theorem. The diagonal-
isation theorem is now easily reached. Continuing to follow Świerczkowski (2003), the
next step is to define a function K such that ` K(pfq) = pf(pfq)q. Formally, K is a
pseudo-function, represented by the single-valued relation KRP, taking two arguments. The
following result is not difficult to obtain, given the existing coding of substitution, and
some other steps that will be discussed later. This theorem does not require a proof within
the HF calculus, but follows from Sigma fm imp thm because it is a sentence (coded syntax
contains no free variables) and a S formula.

lemma prove KRP: "{} ` KRP pVar iq pAq pA(i::=pAq)q"

The property of being single-valued is easily stated, but it is neither a sentence nor a S
formula. Proving this result requires about 600 lines of explicit reasoning steps in the HF
calculus, verifying that substitution over terms or formulas yields a unique result.

lemma KRP unique: "{KRP v x y, KRP v x y’} ` y’ EQ y"

The diagonal lemma is now reached by the standard argument. It concerns an arbitrary
formula, a, presumably containing i as a free variable. Note that a(i::=pdq) denotes
the result of replacing i by pdq. The obtains syntax represents a form of existential
quantification, here asserting the existence of an HF formula d satisfying the two properties
shown.

lemma diagonal:
obtains d where "{} ` d IFF a(i::=pdq)" "supp d = supp a - {atom i}"

The second part of the conclusion, namely supp d = supp a - {atom i}, states that the
free variables of the formula d are those of a with the exception of i ; it is necessary in
order to show that the undecidable formula is actually a sentence.

The first incompleteness theorem itself can now be proved. Figure 1 presents the full text.
Even a reader who is wholly unfamiliar with Isabelle/HOL should be able to see some-
thing intelligible in this proof script. Assuming consistency of the calculus, formalised
as ¬ {} ` Fls (falsity is not provable), we obtain a formula d satisfying the properties
shown, in particular ¬ {} ` d and ¬ {} ` Neg d . Lines beginning with commands such
as obtain, hence, show introduce assertions to be proved. The details of the reasoning may
be unclear, but milestones such as "{} ` d IFF Neg (PfP pdq)" and "¬ {} ` d" are
visible, as references to previous named results. This legibility, however limited, is possible
because the entire Isabelle/HOL proof is written in the structured Isar language (Wenzel,
2007). Only the HF calculus proofs remain unintelligible: it is not easy to impose structure
on those.

§6. Issues involving the second incompleteness theorem. My object in writing this
paper is not to discuss the formalisation in general, but to examine the specific conse-
quences of basing the development on HF set theory rather than Peano arithmetic. A further
aim is to look at a crucial step in the proof of the second incompleteness theorem that is
not described especially well in other presentations.

It is well-known that the theorem follows easily from the Hilbert-Bernays derivability
conditions (Boolos, 1993, p. 15), one of which is ` Pf(pfq)! Pf(pPf(pfq)q). This result
is a consequence of the theorem

if a is a S sentence, then ` a ! Pf(paq), (3)

ZU064-05-FPR logic-paper 4 April 2014 14:29

10 LAWRENCE C. PAULSON

theorem Goedel I:
assumes "¬ {} ` Fls"
obtains d where "{} ` d IFF Neg (PfP pdq)" "¬ {} ` d" "¬ {} ` Neg d"

"eval fm e d" "ground fm d"
proof -

obtain d where "{} ` d IFF Neg ((PfP (Var i))(i::=pdq))"
and [simp]: "supp d = supp (Neg (PfP (Var i))) - {atom i}"

by (metis SyntaxN.Neg diagonal)
hence diag: "{} ` d IFF Neg (PfP pdq)"

by simp
hence np: "¬ {} ` d"

by (metis Con Iff MP same Neg D proved iff proved Pf)
hence npn: "¬ {} ` Neg d" using diag

by (metis Iff MP same NegNeg D Neg cong proved iff proved Pf)
moreover have "eval fm e d" using hfthm sound [where e=e, OF diag]

by simp (metis Pf quot imp is proved np)
moreover have "ground fm d"

by (auto simp: ground fm aux def)
ultimately show ?thesis

by (metis diag np npn that)
qed

Fig. 1. Proof of the first incompleteness theorem

which can be proved by a tricky induction on the construction of a as a strict S formula.
For this proof, the system of coding is extended to allow variables in codes. If we regard

variables as indexed by positive integers, then the variable xi is normally coded by the term
SUCCi(0), where SUCC(x) = xC x is the usual successor function. Similarly, the formula
x1 = x2 is normally coded by the term hp=q,px1q,px2qi. If variables are preserved rather
than coded, we instead get the term hp=q,x1,x2i. In general, bacV designates the coding of
a where all variables from the set V are preserved as variables in the result, while all other
variables are coded by constant terms. Świerczkowski (2003) calls this pseudo-coding.

Imagine that we could define in HF a function Q such that

Q(0) = p0q = 0 (4)
Q(xC y) = hpCq,Q(x),Q(y)i (5)

Then we would have Q(x) = ptq, where t is some canonical term denoting the set x.
[Świerczkowski (2003) introduces a total ordering on HF to make this possible, as dis-
cussed below.] Suppose that a is a formula whose set of free variables is V = {x1, . . . ,xn}.
Given the theorem ` a , obtain ` Pf(paq) by the proof formalisation condition, then
successively replace xi by Q(xi), for i = 1, . . . , n. The replacements are possible because
the HF calculus includes a rule to substitute a term t for a variable x in the formula f :

H ` f
H ` f(x/t)

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 11

Performing the replacements requires the analogue of this substitution rule as encoded in
the provability predicate, Pf . For example, we can obtain the following series of theorems:

` y 2 (xC y)
` Pfpy 2 (xC y)q proof formalisation condition
` Pfhp2q,pyq,hpCq,pxq,pyqii definition of coding
` Pfhp2q,pyq,hpCq,Q(x),pyqii replacement of x
` Pfhp2q,Q(y),hpCq,Q(x),Q(y)ii replacement of y

To simplify the notation, let a(V/Q) abbreviate a(x1/Q(x1), . . . ,xn/Q(xn)), the result
of simultaneously replacing every free variable xi in a by the term Q(xi). As a further
simplification, let us write btcV (Q) instead of btcV (V/Q). Then the sequence of steps
above can also be written

` Pfpy 2 (xC y)q
` Pfby 2 (xC y)c

{x} (Q) replacement of x

` Pfby 2 (xC y)c
{x,y} (Q) replacement of y

A crucial part of the reasoning is that the replacement of pyq by Q(y) leaves the occur-
rences of Q(x) unchanged. That holds because Q(x) is always the code of a constant term,
as can trivially be proved from (4) and (5) by induction on x. A constant term is unaffected
by substitutions.

The difficulty with this sketch is that no function Q(x) can exist, because the HF
language has only one function symbol, C. Extending this language with the function
symbol Q would require redoing all the coding and syntactic functions; Q would also need
to encode references to itself. Instead, Q(x) is typically regarded as a “pseudo-function”: it
must be defined in the form of a relation QR(x,y) for which 8x [9!yQR(x,y)] can be proved.
We must modify the transformations above accordingly. Boolos (1993) and Świerczkowski
(2003) both state that the formula A(Q(x)) is an abbreviation for 9x0 [QR(x,x0)^A(x0)]; the
latter author describes a detailed procedure for replacing occurrences of pseudo-functions
from the inside out (Świerczkowski, 2003, p. 47). This suggests the following modified
sequence:

` Pfpy 2 (xC y)q
` Pfb9x0 [QR(x,x0)^ y 2 (x0C y)]c

{x} replacement of x

` Pfb9y0 [QR(y,y0)^9x0 [QR(x,x0)^ y0 2 (x0C y0)]]c
{x,y} replacement of y

Further evidence that this is the intended transformation is the remark (Boolos, 1993, p. 45)
that the transformed formula, Pf(bacV (Q)) in our notation, “has the same variables free
as” the original formula, a . The difficulty is that this modified sequence does not work,
and neither can any other that leaves the original variables free in the transformed formula.
The explanation is simple: these variables (in particular x above) range over all values,
including the codes of all possible formulas. There is no reason why QR(x,x0) should
be left unchanged after the substitution for y: there is nothing to exclude the possibility
that x = pyq, for example. One could argue that the remarks and explanations that I have
cited are true in spirit if not in fact, but they are misleading. We even see a detailed proof
that Q(xi) is correctly substituted for xi with reference to the definitions of the syntactic
substitution predicates (Świerczkowski, 2003, p. 25), but there is no such term as Q(x).

ZU064-05-FPR logic-paper 4 April 2014 14:29

12 LAWRENCE C. PAULSON

The correct sequence of steps introduces new free variables in the transformed formula,
while simultaneously constraining them as constants on the left-hand side of the ` symbol.

` Pfpy 2 xC yq
QR(x,x0) ` Pfby 2 x0C yc

{x0} replacement of x

QR(y,y0),QR(x,x0) ` Pfby0 2 x0C y0c
{x0,y0} replacement of y

Here, x is replaced by x0, constrained by the new assumption QR(x,x0) and then y is re-
placed by y0. Now x0 is unaffected by substitutions because (given the assumption QR(x,x0))
it can be shown to contain no variables. This reasoning is straightforward enough to con-
duct formally in the HF calculus.

This may seem to be a small detail, but as can be seen, it is not difficult to explain
correctly. One could argue that the correct version is actually simpler to explain than the
traditional version involving the pseudo-function Q: the notation bacV (Q) is no longer
necessary. Eliminating the pseudo-functions from the presentation actually simplifies it.

§7. Issues connected with the use of HF sets. The motivation for using hereditarily
finite sets rather than Peano arithmetic is that it allows more natural and simpler proofs.
But it appears to complicate the definition of the function Q(x) mentioned above, which
is needed to prove both incompleteness theorems. In PA, the analogous function Z(n) is
trivial to define (Feferman, 1986, p. 165): there is only one way to write a natural number
in the form SUCCn(0).

Świerczkowski (2003) eliminates the ambiguity implicit in (5) above by appealing to a
total ordering, <, on the HF universe. The difficulty is how to define this ordering within
the HF calculus. Świerczkowski develops the theory, including a definition by recursion
on the rank of a set, but it does not look easy to formalise in HF. Another approach is
to define the function f : HF! N such that f (x) = Â{2 f (y)

| y 2 x}. Then we can define
x < y () f (x) < f (y). Again, the effort to formalise this theory in HF may be simpler
than that needed to formalise the Chinese remainder theorem, but it is still considerable.

The alternative is to eliminate the need for this ordering. Świerczkowski has already
completed part of this task. In his proof of the first incompleteness theorem, he introduces
a function H such that H(pfq) = ppfqq. This function is recursively defined on valid
codes, that is, on terms recursively built over natural numbers using ordered pairing. In
fact, H is identical to Q but with a restricted domain, ensuring that it can easily be proved
to be a function.

For the second incompleteness theorem, the solution to our conundrum is again to focus
on the corresponding relation, QR. There is no need to prove that this relation describes a
function. All that is necessary in order to prove (3) is the property

QR(x,x0),QR(y,y0) ` x 2 y! Pfbx0 2 y0c
{x0,y0}, (6)

Świerczkowski shows that this follows from the lemma

QR(x,x0),QR(y,y0) ` x = y! Pfbx0 = y0c
{x0,y0}, (7)

which clearly holds even if QR does not describe a functional relationship. A way to prove
both (6) and (7) can be seen from the following elementary set-theoretic equivalences,

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 13

which connect the relations 2, ✓ and =:

z 2 /0 () ?
z 2 xC y () z 2 x_ z = y

/0✓ z () >
xC y✓ z () x✓ z^ y 2 z

x = y () x✓ y^ y✓ x

The point of all this is that (6) and (7) can be proved by a simultaneous induction:

QR(x,x0),QR(y,y0) ` (x 2 y! Pfbx0 2 y0c
{x0,y0})^ (x✓ y! Pfbx0 ✓ y0c

{x0,y0})

The induction is on the sum of the lengths of the derivations of QR(x,x0) and QR(y,y0).
Like most of the syntactic predicates used in the incompleteness theorems, QR(x,x0) is
defined to hold provided there exist k and s such that s is a k-element sequence representing
the conditions (4) and (5). Induction on the sum of the lengths allows us to prove

x 2 y! Pfbx0 2 y0c
{x0,y0}

by case analysis on the form of y, while proving

x✓ y! Pfbx0 ✓ y0c
{x0,y0}

by case analysis on the form of x. One case of the reasoning is as follows:

x1 C x2 ✓ y () x1 ✓ y ^ x2 2 y
=) Pfbx01 ✓ y0c

{x01,y0} ^ Pfbx02 2 y0c
{x02,y0}

() Pfbx01 C x02 ✓ y0c
{x01,x02,y0}

The formalisation of the entire mutually inductive argument in the HF calculus requires
under 450 lines of Isabelle/HOL. The need to define an ordering on the HF universe has
disappeared.

The mechanised proof requires only the simplest induction principles throughout. The
basic principle of the hereditarily finite sets (HF3) is used eight times, mostly to develop
the fundamentals of the HF set theory itself. Complete induction on the natural numbers is
used ten times, while ordinary mathematical induction is used eleven times. No other form
of induction is necessary. Świerczkowski (2003) frequently sketches proofs by induction
on terms or formulas. He suggests induction on the HF ordering, <, to prove (6) above and
also to prove the bounded quantifier case of the main theorem:

` 8(j 2 i)a(j)! Pf(b8(j0 2 i)a(j0)c)

Each of these theorems concerns syntactic predicates defined by the existence of a k-
element sequence, and is more directly proved by complete induction on k, or rarely (where
there are two sequences, as above) on the sum k1 + k2.

§8. Discussion and conclusions. The first mechanised formalisation of Gödel’s (first)
incompleteness theorem is due to Shankar (1986). It was an astonishing accomplishment
given the technology of the 1980s. An interesting technical note is that Shankar (2013)
found de Bruijn indices indispensable in a companion proof (of the Church-Rosser theo-
rem), but not in his formalisation of the logical calculus. He also used HF set theory, but
using a different axiom system (Shankar, 1994, p. 12) that he attributes to Cohen. Nineteen

ZU064-05-FPR logic-paper 4 April 2014 14:29

14 LAWRENCE C. PAULSON

years later, O’Connor (2005) mechanised the first theorem using quite different methods
and the Coq proof assistant. Another proof, by John Harrison, can be downloaded with his
HOL Light proof assistant, http://code.google.com/p/hol-light/. There appears
to exist no other machine proof of the second incompleteness theorem.

The mechanised incompleteness theorems described above were difficult chiefly because
of their sheer size, and because of the presentational issues discussed from §6. onwards,
which resulted in a great deal of wasted work. But we now have a complete, transparent
and machine-checked formalisation of these landmark results.

Acknowledgement Jesse Alama drew my attention to Świerczkowski (2003), which was
the source material for this project. Christian Urban assisted with some proofs and wrote
some code involving his nominal package. Brian Huffman assisted with the formalisation
of the HF sets. Dana Scott offered advice and drew my attention useful related work, for
example Kirby (2007). Matt Kaufmann made insightful comments on a draft of this paper.
The referee made a great many constructive remarks.

Bibliography

Boolos, G. S. (1993). The Logic of Provability. Cambridge University Press.
de Bruijn, N. G. (1972). Lambda calculus notation with nameless dummies, a tool

for automatic formula manipulation, with application to the Church-Rosser Theorem.
Indagationes Mathematicae 34, 381–392.

Feferman, S., editor (1986). Kurt Gödel: Collected Works, Volume I. Oxford University
Press.

Franzén, T. (2005). Gödel’s Theorem: An Incomplete Guide to Its Use and Abuse. A K
Peters.

Gödel, K. (1931). Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198.

Kirby, L. (2007). Addition and multiplication of sets. Mathematical Logic Quarterly 53(1),
52–65.

Nipkow, T., Paulson, L. C., & Wenzel, M. (2002). Isabelle/HOL: A Proof Assistant for
Higher-Order Logic. Springer. LNCS Tutorial 2283.

O’Connor, R. (2005). Essential incompleteness of arithmetic verified by Coq. In Hurd, J.
& Melham, T., editors, TPHOLs, LNCS 3603, pp. 245–260. Springer.

O’Connor, R. S. S. (2009). Incompleteness & Completeness: Formalizing Logic and
Analysis in Type Theory. Ph. D. thesis, Radboud University Nijmegen.

Paulson, L. C. (2013). A mechanised proof of Gödel’s incompleteness theorems using
Nominal Isabelle. Submitted for publication.

Shankar, N. (1986). Proof-checking Metamathematics. Ph. D. thesis, University of Texas
at Austin.

Shankar, N. (1994). Metamathematics, Machines, and Gödel’s Proof. Cambridge
University Press.

Shankar, N. (2013). Shankar, Boyer, Church-Rosser and de Bruijn indices. E-mail.
Świerczkowski, S. (2003). Finite sets and Gödel’s incompleteness theorems.

Dissertationes Mathematicae 422, 1–58. http://journals.impan.gov.pl/dm/

Inf/422-0-1.html.
Urban, C., & Kaliszyk, C. (2012). General bindings and alpha-equivalence in Nominal

Isabelle. Logical Methods in Computer Science 8(2:14), 1–35.
Wenzel, M. (2007). Isabelle/Isar — a generic framework for human-readable proof

documents. In Matuszewski, R. & Zalewska, A., editors, From Insight to Proof —

ZU064-05-FPR logic-paper 4 April 2014 14:29

GÖDEL’S INCOMPLETENESS THEOREMS 15

Festschrift in Honour of Andrzej Trybulec. University of Białystok. Studies in Logic,
Grammar, and Rhetoric 10(23).

COMPUTER LABORATORY
UNIVERSITY OF CAMBRIDGE

CAMBRIDGE, CB3 0FD, UK
E-mail: lp15@cam.ac.uk

