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SYNOPSIS

In this thesis is presented the first high-field structural study of the vortex lattice
in YBayCu3O7. Small-angle neutron scattering was used to deduce the configuration of
vortices in a twinned sample of YBayCu3zO7 over the field range 1-11T applied parallel
to the crystal c-axis. The experiments revealed a field-induced continuous transition
from a distorted London-like vortex lattice at 1T, to an unconventional square vortex
lattice with a slight rectangular distortion. It is clear from the data that some kind of
unconventional intrinsic anisotropy is responsible for the high-field square lattice and
the data are suggestive of two possible origins, Fermi surface anisotropy and d-wave
effects, both of which may be described as non-local effects. However, from the present
data it is not possible to determine which of these effects is more important.

The dependence of the vortex lattice structure upon temperature and angle of
applied field was also studied. In accordance with expectation, it was found that
the unconventional anisotropy responsible for the stability of the square vortex lattice
is diminished with increasing temperature and the distorted triangular configuration
eventually reappears via a continuous transition. Similarly, the square vortex lattice
is suppressed by rotating the applied field away from the crystal c-axis. However, in
this case the transition between the triangular and square vortex lattices becomes first-
order. Moreover, the low-field triangular domains are very different to those observed
with the field parallel to the c-axis.

Three other neutron studies in which this author was involved were also briefly pre-
sented. Of these, two were small-angle neutron scattering studies of the vortex lattice
(in Nd; 85Ceg.15CuO4 and detwinned YBasCusO7_s) and are thus intimately related
to the main topic. In Nd; g5Ce.15CuQy4, a square vortex lattice was observed, but at
unprecedentedly low fields (20 mT). The detwinned YBasCu3zO7_s5 samples have pro-
vided confirmation of the results observed in the twinned sample and hold prospect for

further studies, particularly of the effect of doping on the transition to square. Lastly,

vii



measurements by inelastic neutron scattering of the spin fluctuations at the metamag-
netic field in SrsRusO7 were shown. These important experiments have demonstrated
the first microscopic evidence for a wholesale change in the character of the spin cor-

relations at the metamagnetic field.
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CHAPTER I

THE VORTEX LATTICE

1. Introduction

The existence of the vortex lattice in type-II superconductors was promulgated by
Abrikosov (1957) after he examined solutions of the Ginzburg-Landau equations in an
applied field for a case that was hitherto believed unrealistic. Before that time, the
Ginzburg-Landau equations had been successful in describing the properties of type-I
superconductors near the critical temperature, T.. The theory contains two important
length scales: the length A over which magnetic field variations occur inside a supercon-
ductor, and the length ¢ over which the superconducting order parameter varies. Prior
to Abrikosov’s work, only solutions of the Ginzburg-Landau equations with the ratio of
the length scales k = /& < 1/v/2 were considered. For x > 1/4/2 (the type-II regime
— see section 4), it was found that the energy of a domain boundary between normal
and superconducting regions can be negative (for fields above the first critical field,
H., — see below) which was, at that time, considered unphysical. However, Abrikosov
succeeded in solving the Ginzburg-Landau equations in the presence of an applied field
in this regime and discovered that close to T;. the superconducting order parameter has
a periodic solution. This admitted the interpretation that a magnetic lattice is formed
such that flux penetrates at positions in the superconductor where the order parameter

vanishes. The flux is quantised in units of the so-called flux quantum:

h
By = o = 2.07-107° Wh (1.1)
(&

Surrounding each unit of flux are circulating currents (vortices) that tend to shield the
rest of the superconductor from the penetrating flux.
In a type-II superconductor, the Abrikosov vortex lattice is only realised at high

temperatures or high magnetic fields; at sufficiently low temperatures and inductions,
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type-II superconductors are found to behave similarly to type-I superconductors, i.e.
they exhibit the Meissner effect (total flux expulsion). The reason for this is that
the formation of vortices represents a trade-off between an increase in the free energy
due to a loss of condensation energy, and a decrease in the free energy from allowing
flux to enter the superconductor. At low temperatures and low inductions the loss
of condensation energy proves too great and it is not auspicious for vortices to form.
Therefore, unlike type-I superconductors, which have only one critical field, H., at
which superconductivity vanishes, type-II superconductors have two critical fields, Hq
and Hg, such that H,y < H. < Heo *. Up to the first critical field, H.;, the behaviour
of a type-II superconductor is identical to a type-I (see figure 1.1). Beyond the first
critical field vortices penetrate the sample and their density increases until the second

critical field, H.o, at which point the superconductor returns to its normal state.

—M, .
Abrikosov

phase

Meissner
phase

Normal
state

Hcl Hc2 ~H

Fig. 1.1: Magnetisation as a function of applied field for a type-II supercon-

ductor.

In this chapter, a selection of theoretical tools used to model the vortex lattice
is reviewed. These tools range from the simple-minded London approach, which is
nonetheless applicable in many circumstances (see section 2), to more sophisticated
theories that elucidate the intricate effects associated with unconventional supercon-
ductivity. It is impossible to do justice to the vast body of material on the vortex
lattice, therefore only those theories with direct relevance to the material of this thesis

will be discussed.

* Assuming a comparison is being made between a type-II to a type-I superconduc-
tor with the same value of condensation energy per unit volume at (H,7T) = (0,0).
For a type-II superconductor, H. still has the interpretation of being a measure of

condensation energy even though nothing “interesting” happens at this field.
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2. The London theory of type-II superconductors.

The London theory (London & London, 1935) was the first successful phenomeno-
logical explanation of the electrodynamics of superconductors and — at a time when
type-1I superconductivity was unknown — provided a bridge between the two princi-
pal electromagnetic properties of type-I superconductors: perfect conductivity and the
Meissner effect. The London theory builds the bridge on the foundation of classical

electronic conduction, which is described by the Drude model:
m (\'f + X) = —cE. (2.1)
T

Equation 2.1 is simply the equation of motion for an electron with velocity v under
the influence of an electric field, E undergoing collisions with a characteristic time 7.
Clearly, the property of perfect conduction implies that the damping term is zero, i.e.
T — 00. Rewriting equation 2.1 (without the damping term) in terms of the magneti-
sation current density, J(r) = g 'V x B, results, after some trivial manipulation, in
the expression:

m

AVxJ+B=K(), A= (2.2)

ne?’
where K(r) is an arbitrary function of position resulting from integrating with respect
to time. This equation governs the magnetic response of a perfect conductor, but
is too general as a description of a superconductor. The most important difference
between a perfect conductor and a superconductor is that in the former, magnetisation
currents will be generated to oppose any change in flux, whereas the magnetisation
currents in the latter act to exclude flux from the bulk regardless of its history. This
property is known as the Meissner effect and to account properly for it requires that all
time-independent solutions, which would define a history, are rejected. Therefore the
function K(r) is set to zero. That the resulting form of equation 2.2 accords with the
Meissner effect is easily verified: consider an area X, bounded by a path I', that lies deep
within the bulk of a superconductor. Integration of equation 2.2 over this surface yields
zero for both the first term (since there is zero current density deep within the bulk)
and second term (since no flux is present in the superconductor). A non-zero value for
K(r) inside the superconductor would imply the existence of a time-independent flux

in disagreement with the Meissner effect.



F. and H. London took equation 2.2 with K(r) = 0 as being a fundamental equa-
tion governing the electromagnetic response of a type-I superconductor. Using the
differential form of Ampere’s law and V - B = 0 equation 2.2 can be recast into the

more familiar form

NVB=B, A= 2.3
LV ) L H()neQ, ( )

where \p, is the so-called London penetration depth, which gives the length scale over
which an external applied field is exponentially attenuated inside the superconductor*®
— typically ~ 107 m.

Although the nature of the vortex state in type-II superconductors was first ap-
preciated by studying the Ginzburg-Landau equations (Abrikosov, 1957), many use-
ful results may be obtained by examining a modified version of the simpler London
theory. The necessary amendments can made by re-examining the function K(r) in
equation 2.2, which was previously set to zero to account for the Meissner effect. The
nucleation of vortices in a type-II superconductor is clearly beyond the assumptions
under which 2.3 was derived, so they must be introduced by brute force. A single
vortex at the origin may be modelled by K(r) = ®¢d(r)z, which generates a single
flux quantum. Hence, the London equation, modified for the mixed state of a type-11

superconductor, can be written
ANVB-B=0> §(r-r)z, (2.4)

where the set of vectors {r;} denote the positions of the vortices.
Since the vortex lattice is a periodic structure it is more convenient to rewrite the
London equation (2.4) in terms of reciprocal space. To do this the magnetic field, B(r),

is written as a Fourier sum:
B(r) =Y Bgexp(iG ). (2.5)
G

Substituting the Fourier sum for B(r) into equation 2.4 and integrating over one prim-

itive unit cell provides the values of the Fourier components:
(B)z

=\ 2.
1+ MG (2.6)

Ba

* Although this result is well-known in Condensed Matter Physics, it has only fairly

recently been directly measured using slow muons (Jackson et al., 2000)
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where (B) is the average induction in the superconductor. At large inductions where
the inter-vortex spacing is much larger than the penetration depth (i.e. A2 G? > 1),
the unity in the denominator may be disregarded. Since G « v/B, in this limit the
London Fourier components are field independent.

Inevitably, a price must be paid for the simplicity of the London description of the

vortex lattice. In particular the free energy*,

1
F=— [ B2+ (V xB)? d°, (2.7)
2410

is divergent. This malaise arises because the London theory tacitly assumes that the
superconducting condensate is “rigid” with respect to perturbations. Rigidity implies
that on application of a magnetic field the canonical momentum of the electron pairs is
conserved. To keep the canonical momentum constant, the gauge-invariant superfluid
velocity, vg, changes in concert with the vector potential and thus the response in
the London limit of the eletron superfluid to an applied field may be written as a local
relation of the form J = —A~! A which is equivalent to the London postulate (Schrieffer
& Tinkham, 1999). So although London theory may be derived from the classical
theory of electromagnetism and a few empirical assumptions, it can also be viewed as
a limiting case of a fully-blown quantum theory of superconductivity if excitations can
be ignored.

Rigidity leads to a rather unphysical picture of vortices in type-II superconductors.
A London vortex can be pictured as truly singular with only an infinitesimal filament
along which superconductivity is suppressed and a logarithmically divergent field at
the core. (This divergence is responsible for the field independence of the Fourier
components seen in equation 2.6.) In reality, supercurrent flow causes quasi-particles
to be excited out of the condensate, which increases the free energy thus attaching
an extra penalty to large current densities in addition to the kinetic energy term (the
second term in equation 2.7). This removes the field divergence and spreads the core
over a finite volume.

Despite the shortcomings of London theory, the London free energy is still a useful

quantity to calculate so long as the vortex core size can be neglected with respect to

* Euler-Lagrange minimisation of the London free energy provides an alternative

route to equation 2.3



the penetration depth and, concomitantly, contributions near to the vortex core are
somehow removed. For studies of the vortex lattice it is most beneficial to do this in
reciprocal space. Integrating equation 2.7 by parts and disposing of the surface term,
which is negligible for a large vortex lattice, yields, after substituting equation 2.4 and

converting into reciprocal space quantities via equation 2.5:

_ (B
ff_%%:z.Bg, (2.8)

where JF is the free energy density. The quantity F is formally (logarithmically) di-
vergent for the same reasons that equation 2.7 is. As has already been alluded, this
necessitates a remedy that is most conveniently dispensed in the form of an arbitrary
Gaussian cut-off at large wavevectors (Brandt, 1995). (This result, which is valid near
H,, is derived from Ginzburg-Landau theory and represents the real space vortices
by Gaussian source terms. At low fields the cut-off may be approximated by an ex-
ponential (Yaouanc et al., 1997).) The cut-off is applied to each Fourier component
multiplicatively, i.e. Bq — Bg exp(—G?£2). The width of the Gaussian distribution,
~ ¢71 is taken so as to exclude contributions to the free energy at length scales less
than the width of the vortex core, ~ &, which is the length scale at which London
theory breaks down. With this ad hoc amendment the London free energy converges
and is minimised for a vortex lattice with triangular coordination. Since the free en-
ergy (equation 2.7) is invariant with respect to rotation of the coordinate system, there
is a degeneracy in the orientation of the vortex lattice. This degeneracy is a simple
consequence of the isotropic nature of the free energy and may be removed, in some
instances, by anisotropy (see section 3).

In figure 1.2 is shown a contour plot of the field distribution given by the Lon-
don model with the Gaussian cut-off described above. The parameters have been
chosen such that the lattice represented in the figure is similar to the vortex lattice
formed in YBayCusO7 at 1T, i.e. with the inter-vortex spacing approximately 0.3\,
(AL =140 nm) — see figure caption for details. The noteworthy features of the London
vortex lattice are: the saddle points, lying in between neighbouring vortices; the min-
ima, which occupy positions interstitial to three neighbouring maxima; and the maxima
whose divergence is suppressed by the convolution of the “ideal” London lattice by a

Gaussian of width £ as outlined above.



—

!
160 180 200

Fig. 1.2: Numerical calculation of the field distribution given by London the-
ory (equation 2.5), with a Gaussian cut-off. The calculation is performed in
units such that the flux quantum is unity and lengths are measured relative
to the London penetration depth. In these normalised units B = 9, which
corresponds to an inter-vortex spacing of approximately 0.3\r,, and £ = 0.02
(k = 50), giving a cut-off range of 25 reciprocal lattice vectors. The lattice

sum was taken to 100 reciprocal lattice vectors in each direction.

3. Anisotropic London theory

The range of application of equation 2.4 can be easily extended to take into account
electronic anisotropy, which is of particular relevance to the study of high-7T,. materials
due to their layered structure. This is accomplished by inserting a normalised effective-
mass tensor, M, into the expression for the free energy (equation 2.7) such that the

kinetic energy term remains invariant:

F[B(r)] = 2%0 /32 + A (VxB)- M- (V xB)d*-. (3.1)

In the above expression Ay, is calculated for the geometric mean mass and the normalised

effective-mass tensor in the frame of an orthorhombic crystal is given by:

m, 0 0
M = (mempyme) ™3 0 my 0 |, (3.2)
0 0 me.



where the effective masses, m;, are calculated in the usual way, i.e. from the Fermi-

2

surface average (v7). (v; is a component of the Fermi velocity.)

To obtain the anisotropic version of the London equation, the free energy functional
(equation 3.1) is minimised with respect to B(r), whereupon, after inserting the vortex

source terms (Dirac delta-functions), the equation
B+ MV x M- (VxB)]=&> §r-r)z, (3.3)

is obtained.

It is easy to appreciate that when the magnetic field is applied along a crystal axis,
the effect of electronic anisotropy on the vortex lattice is simply a scale transformation.
Since the vortices interact magnetically, the scale transformation depends on the ratio
of the penetration depths in the plane perpendicular to the vortex. (The penetration
depth ratios are, according to equation 2.3, proportional to the square-root of the mass
ratios.) For example, if the field is applied along the crystal c-axis then the resulting
vortex lattice may be formed by taking the standard isotropic vortex lattice and scaling
it in real space by 7;)% = \/m along the crystal a-direction and by vfb = \/T/)\b
along the crystal b-direction. If m, > m; the resulting distortion is that depicted in
figure 1.3. Note that the definition of anisotropic penetration depths used here gives
the magnetic penetration depth in the direction perpendicular to the relevant effective
mass (e.g. A\q X /My gives the screening length along the b-direction). The relationship
between mass anisotropy and field anisotropy is just a consequence of Ampere’s law

and is shown in figure 1.4.

When the field is applied at some angle to a principal axis, the diagonal components
of the effective-mass tensor mix also, resulting in distortion of the vortex lattice (Kogan,
1981). For simplicity, consider the case of uniaxial anisotropy where m, = my;, < m.
(see section 20 for an example in practice). If the field is applied at an angle © to
the c-axis by rotation about the a-axis (see figure 1.4) then it will mix my; and m,
into the effective mass in the gy’-direction; the effective mass in the z’-direction is
unchanged. The anisotropy experienced by the supercurrents flowing in the y’z’ plane

(perpendicular to 2’ vortex direction) is easily calculated by rotating the effective-mass
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tensor. The relevant scale factor is

€(®) = \/0052 O +12.sin 0, (3.4)

where in the real space vortex frame the vortex lattice (i.e. the field distribution) is

1
2

scaled by €2 in 2/ and by €2 in ¢/ (see figure 1.4).

Fig. 1.3: Effect of anisotropy in real space for the “diagonal” case: turning
on the anisotropy scales the isotropic lattice left by a factor 7_% along the

a-direction and 7% along the b-direction. Here v = 1.4.

Mass
anisotropy

LN

Field
anisotropy

N arZ

Fig. 1.4: Left: frames of reference: initially the crystal frame (a, b, ¢) and the

vortex frame (z,y, z) coincide; this is the “diagonal case”. The primed frame
(2',y’,2') is the vortex frame after rotation by © about the crystal a-axis.
Right: relationship between the anisotropy in effective mass and field in the

plane perpendicular to the vortex.

Effects subtler than than those described above arise when the magnetic field is
applied along an arbitrary direction because the effective-mass tensor is no longer diag-
onal in the vortex frame. Firstly, there is a preference for the vortex lattice to align such

that the nearest-neighbour direction corresponds to the direction perpendicular to the
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axis of rotation, which also corresponds to the direction of shortest magnetic penetra-
tion length in the plane perpendicular to the vortex direction (Campbell et al., 1988).
Clearly, no such alignment occurs in the isotropic case; nor does it in the anisotropic
case when the mass tensor is diagonal in the vortex frame. It might be thought that
in the latter case the vortices would have their nearest-neighbour direction along the
direction of shortest penetration depth: the rapid spatial variations along this direction
would be facilitated by currents going along an “easy” direction of little kinetic energy
cost. However, a scale transformation maps a diagonal anisotropic system back to an
orientationally degenerate isotropic system and so no orientation should be preferred.
The difference between diagonal and non-diagonal vortex directions in an anisotropic
superconductor can be accounted for by the coupling of supercurrent density along
different crystallographic directions.

The second effect of applying a field at an arbitrary direction in the crystal frame is
that field components, B¢, ,, transverse to the vortex axis may be induced (Thiemann
et al., 1989). Naturally, the average of these components over a unit cell must be
zero to satisfy flux quantisation. In a simple-minded picture of a uniaxial system
these components are generated because the supercurrents will not flow in the plane
perpendicular to the vortex, but will be tilted towards the easy plane. Indeed, Campbell
et al. (1988) have shown that when m. > m,; in a uniaxial system, the magnetisation
currents are almost exclusively confined to the basal plane for all orientations of applied
field except when it is close to perpendicular to the c-axis.

In general, both these effects may be deduced by minimising the free energy, which
assumes the same form as the isotropic case (equation 2.8). The Fourier components are
obtained by a similar method as the isotropic case, but the resulting tensor expression,

which defines Bg implicitly, is in general somewhat more complicated:
Ba.i — NeiaGemperjGiBa,j = (B)l;. (3.5)

Here the components of the effective-mass tensor are given by my, [; are the compo-
nents of the unit vector parallel to the vortices; (B) is the induction averaged over one
unit cell; and €;; is the fully-antisymmetric (Levi-Civita) tensor.

Burlachkov (1989) has calculated the free energy density corresponding to the
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Fourier coefficients of equation 3.5. He found:

—1

F =

) NG (G x i) M)
(B) S+ XRIG X0 - MG x] - — <[ < ) , (3.6)

2u0 45 (1 +A§G2[i-M-i])

where 1 is the unit vector specifying the vortex direction. The vortex lattice structure
in an anisotropic system may be determined by minimising equation 3.6. Naturally, a
cut-off is required to prevent divergence due to the singular vortex cores. It might be
thought that an anisotropic version of the Gaussian cut-off proposed in section 2 that
takes into account the effective mass in the plane perpendicular to the vortices would
be appropriate. However, Kogan (1981) has pointed out that such a cut-off constitutes
an attempt to correct the London model in a regime where it is no longer valid. In
this respect, it is important to bear in mind the limitations of London theory and not
to treat large-wavevector cut-offs as a panacea. Many dubious conclusions have been
reached due to the misappropriation of cut-offs. For example, Sardella & Moore (1993)
mention that tilt-wave instabilities can be induced in the vortex lattice by unphysical

cut-offs. (See section 20 for another example.)
4. Ginzburg-Landau theory

Like the London equations, the Ginzburg-Landau equations are phenomenological.
However, unlike the former, which are based on a classical electrodynamic description
of superconductivity, the latter are derived from a proper thermodynamic theory of the
superconducting state. Furthermore, due to the judicious choice of order parameter,
Ginzburg-Landau theory contains many of the quantum-mechanical aspects of super-
conductivity that are either ignored in the classical derivation of London theory or,
from a quantum mechanical view of London theory, lost in making the approximation
that the superconducting state is perfectly rigid. The inherently quantum-mechanical
nature of the Ginzburg-Landau equations yield great dividends such as the prediction
of the vortex state (see section 5), which can only be incorporated into London theory
by hand. For these reasons Ginzburg-Landau theory is more complete and in some
senses superior to London theory. However, Ginzburg-Landau theory in its simplest

form is only valid quite close to T.. At low temperatures it is often easier to use the
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London equations (assuming they are valid in the regime under consideration) perhaps
with corretions to handle small perturbations to the superconducting wavefunction (see
section 7). Nevertheless, Ginzburg-Landau theory remains a useful tool, particularly
in studying unconventional vortex structures (section 8), where the full microscopic
description is often unwieldy.

Ginzburg-Landau theory is based on the more general Landau theory of second-
order phase transitions, a basic tenet of which is the concept of the order parameter: a
quantity whose value is zero above the transition temperature, 7., and non-zero below
it. Landau theory has been brought to bear on a plethora of different phase transitions.
In each case the procedure is first to select an appropriate mathematical object (e.g.
scalar function) to play the role of the order parameter and then to expand the free
energy in terms of this order parameter, ensuring that the symmetry of the system
with respect to the order parameter is obeyed. In the case of superconductivity, the
order parameter is chosen to be a complex function of position, ¥(r), in analogy with a
quantum-mechanical wave function. The function n = [1)(r)|? can then be interpreted
as the number density of particles (Cooper pairs — see section 6) in the superfluid.

The free energy density expansion to quartic order for a uniform superconductor in

zero applied field is given by

T 0]) = Fo(T) + (D) [0 + Xt 4 (1.

where Fy(T") is the free energy density of the normal state. This form is chosen to
give the correct spontaneous-symmetry-breaking behaviour at 7T, and complies with
the criteria that the free energy should be invariant with respect to the phase of the
order parameter and that it should be an analytic function of the order parameter.
The coefficients of the second two terms, a(7") and B(T'), are chosen such that the free
energy is minimum for |¢| = 0 above T and [¢)| > 0 below T, as shown in figure 1.5.
This is accomplished if a(T") o (T — T¢) and ((T) is a constant, whereby minimising
the free energy with respect to || below T, yields*:
a(T
WP =5 (1.2

* The complex nature of the order parameter is ignored here since the phase is only

important when discussing non-uniform superconductivity.
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[¥] | [¥]
T <T. T>T.

Fig. 1.5: Free energy as a function of |¢)| below (left) and above (right) Tt.. For
the definitions of @ and 3 in the text the free energy is minimum for || = 0

above T¢, but is minimum at |¢)| > 0 below 7.

When studying the behaviour of superconductors under the influence of an ap-
plied field two modifications need to be made to equation 4.1: firstly, the field energy
density needs to be added and secondly, a gradient term needs to be added to allow
for non-uniformity (as is the case in the vortex state). The gradient operator selected
is analogous to the momentum operator in quantum mechanics. The gauge-invariant
form of this operator, (V — %A), is chosen to take into account the effect of an ap-
plied field. The factor of 2 in the term containing the vector potential is consistent
with the charge carriers being the paired electrons (Cooper pairs) predicted by BCS

theory (section 6). Inserting these two terms into the free energy density gives:

2ie
(V - T‘) v

where m is the mass of a Cooper pair. The free energy is given by the functional:

h? 2

2m

F(T) = Fo(T) + o) [of + P8yt

1
5 +-—DB%  (4.3)

2410

fW¢@%¢ﬁ@%V¢@%V¢WﬁrA@H=1/903fh (4.4)

which can be minimised using the Euler-Lagrange technique with respect to ¢ (and its

complex conjugate) and A to give the Ginzburg-Landau equations:

hz . 2
o [V 50A| wravsplufe o (4.5
: 2
V xB=pugJ where J= % (YVY*™ —p*Vh) — 2% lW|* A. (4.6)

13



Equation 4.5 is reminiscent of the time-independent Schrodinger equation, but con-
tains an extra non-linear term, 3[1|*1, which tends to favour solutions with uniform
|| (Tinkham, 1996). Equation 4.6 is identical to Ampere’s law with the correspond-
ing current density being of a quantum-mechanical nature. Therefore these equations
demonstrate that although Ginzburg-Landau theory is based on the theory of phase
transitions and is hence under the remit of thermodynamics, the quantum nature of
the superconducting state is built in by the choice of the order parameter and form of
the free energy density.

Two length scales arise naturally out of equations 4.5 and 4.6. The first of these

has its origin in equation 4.5 and is known as the coherence length:

car(T) =/ W (4.7)

The coherence length is the length scale over which the order parameter varies when
subjected to a perturbation. It can be formally related to H.o by linearising equation

4.5 and solving for the lowest Landau level, giving

%)

Heo(T) = 22 (1)

(4.8)

This expression may be appreciated more intuitively by regarding H.o as being set by
the flux density at which the closest possible vortex spacing, i.e. & &, is realised.

The second length scale is the penetration depth, which is defined in analogy with
the London penetration depth equation 2.3 and arises from equation 4.6:

m

_m —T)
4ppe2n(T) '

Ao (T) = mmemn:wmn:_ﬁ (4.9)

The relative size of the coherence length and penetration depth dictates to which

type a given superconductor belongs. Since both length scales diverge as (T — TC)_l/ 2
at T, their ratio is a temperature-independent parameter:
A
K= —. (4.10)
3

The demarcation between type-I and type-II behaviour occurs at x = 1//2, with larger

values of k leading to type-II behaviour and smaller values giving type-I behaviour.
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5. The Abrikosov vortex lattice

Abrikosov’s seminal 1957 paper (Abrikosov, 1957) provided the first successful
interpretation of the Ginzburg-Landau equations in the type-II limit (v > 1//2).
This solution was realised by solving the Ginzburg-Landau equations perturbatively.
Firstly, he took the solution to the linearised version of equation 4.5, which had already
been discovered in the original Ginzburg-Landau paper (Ginzburg & Landau, 1950)
in the context of evaluating H.,. This solution is obtained in the gauge A = Byxy
(correspoding to a uniform magnetic field along the z-axis; this is in the London gauge).
For mathematical expediency, the units are normalised such that lengths are measured
in terms of the penetration depth, Aqr,; the magnetic field is in units of v/2B.; and
the order parameter is measured relative to the bulk value at zero temperature so that
near T, 1» < 1. The resulting linearisation of equation 4.5 gives rise to a differential

equation whose solution is written most generally as:

Qﬂ(l’,y): Z Cn¢n(may)

_%2 <x _ i_Z)Q] , (5.1)

where C,, and k are arbitrary constants, but will be determined later by the pertur-

Un(z,y) = exp(ikny) exp

bation solution. This solution is valid only very close to Heo(7') where ¢ < 1. The
amount by which the nascent superconductivity reduces the magnetic field within the
bulk of the superconductor is determined by substituting equation 5.1 into the second

Ginzburg-Landau equation (4.6):

2 1
B:Bo—% — A:Box—ﬂ/|¢|2dx. (5.2)

The perturbation solution for 1) now proceeds by substituting equation 5.2 into the first
Ginzburg-Landau equation (4.5) — complete with the non-linear term — to calculate
the small first-order corrections to the v, terms in equation 5.1. The resulting solution
1 can still be represented by equation 5.1, but in order to minimise the free energy,

the coefficients (', and k are constrained to minimise the famous Abrikosov parameter,

Oa, given by:

(5.3)



Furthermore, in order to get a periodic solution for ¢ a recurrence relation is expected

between the coefficients C,,:

Due to a numerical error in evaluating A for the triangular lattice, Abrikosov found
that the square vortex lattice (N = 1) had the lowest free energy corresponding to
Ba = 1.18. However, it was later discovered that the triangular lattice (N = 2 and
C7 = iCy) is more favourable since in this case S5 = 1.16. That there is so little
difference in Ba for these two configurations evinces the fact that only very small
higher-order terms in the free energy can give a propensity for an unconventional vortex

lattice; indeed triangular Abrikosov-like vortex lattices are in practice rarely observed!

It is of interest to calculate from the Ginzburg-Landau theory the Fourier com-
ponents of the internal field distribution as these are related to the neutron scattering
amplitude (see section 11). H. Brandt has performed these calculations (Brandt, 1995)
in the regime B > 0.5B.5 for an arbitrary arrangement of vortices, parameterised by the
set of reciprocal lattice vectors G, = (27/x1y2)(my2, —mxs + nxy). (The real-space

vortex lattice has basis vectors (x1,0) and (z2,y2).) He found:

2 B02
|(r)| —[1_1/ 2/12 ]ﬁAZaGCOSG r)
B(r) = By — (Ro/47\%) |y (x) . (5.5)

The Fourier coefficients ag are given by

ag = (—1)m+m”+” exp(—Gfmxlyg/Sﬁ). (5.6)

The solution presented in equation 5.5 is plotted in figure 1.6 with the same value
of the coherence length (¢ = 0.02) as in figure 1.2 and in the same dimensionless units.

The value of (B) = 300 is chosen such that the criterion 0.5B.2 < B < B2 is satisfied.
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Fig. 1.6: Numerical calculation of the local magnetisation given by Brandt’s
solution (1995) of the Ginzburg-Landau equations. The calculation is eval-
uated in dimensionless units such that &, = 1 and lengths are measured
relative to the penetration depth. In these normalised units B = 300, corre-
sponding to an inter-vortex spacing of roughly 0.06, and £ = 0.02 (k = 50
and B/Bcs ~ 0.75). The figure is 0.2\ x 0.2\ in size.

6. An outline of microscopic theory

Various techniques have been developed to tackle problems in vortex physics from
first principles. These are derived from the quantum- and statistical-mechanical be-
haviour of strongly interacting electrons which, in some materials at least, can form
Cooper pairs and become superfluid. There is an obvious inherent difficulty with such
a complete description of the superconducting state and this is reflected by the fact
that microscopic theory has yet to supplant in practice the more tractable and more
intuitive phenomenological theories. In most cases, the solution of a microscopic model
of the vortex lattice must be done numerically and therefore does not lend itself eas-
ily to a simple physical interpretation. In this section, the essentials of some of these
microscopic techniques are sketched. As this is a highly specialised field, no attempt
here is made to solve any of these problems; an interested reader should consult some
of the references presented in sections 8 and 24 or the book by Kopnin (2001) for more

details.
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The first successful microscopic assault on the problem of superconductivity was
achieved by the ground-breaking work of Bardeen, Cooper and Schrieffer (1957). Their

work was based upon the solution of an interacting-electron model Hamiltonian:

5 h2k?
H = ( - N) ko'cko' + o 2 : Ckl—l-q,o'l k2 qo'2vk1,k2chk2#72ck170'17 (61)
k,o ¢

kl,al
k2,02
where ck o (CLU) annihilates (creates) an electron in momentum state k with spin o; u
is the chemical potential; and Vi, x, q is the matrix element of the two-body electron-
electron interaction potential that scatters an electron from state k; to k; + q and
(to conserve momentum) another electron from state ko to ko — q. A prerequisite for
superconductivity is that the latter term gives rise to an attractive interaction, which
in standard phonon-mediated superconductivity is due to “overscreening” by the ionic
cores of the normally repulsive Coulomb interaction (Waldram, 1996).
Bardeen, Cooper and Schrieffer (BCS) found an approximate solution for the
ground state of equation 6.1 consisting of an ensemble of phase-coherent opposite-spin

electron pairs each with the same pair momentum, s:
BCs) =[] <uk + exp(if)vel,, et km) 10), (6.2)
Kk

where 0 is the phase of the superfluid and the wavefunctions, vy and wuy, obey the
normalisation condition uf + v = 1. When uy = 0 for k| < kp this wavefunction just
gives a filled Fermi sea®, but when uyx # 0 for |k| < kp the electron and hole states
become mixed and the occupation becomes more diffuse near the Fermi surface. This
is a characteristic property of the paired electrons in the BCS theory.

Despite being only an approximation, the wavefunction in equation 6.2 is very
successful in predicting the qualitative properties of the superconducting state. For
example, the superconducting gap, Ak, emerges naturally when computing the energy,

FEiy, required to make a single particle excitation in the superfluid:

ez \°
B (B2 o 9

* The precise condition on wuy and vy for a filled Fermi sea is: uy = 0 and v, = 1

for |k| < kg, and ux = 1 and vk = 0 for |k| > kp.
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It turns out that these excitations are neither exactly electron-like nor exactly hole-like.
Their nature depends on exactly where in k-space (i.e. the values of uy and vy) they
are created, according to the “Bogoliubov” creation and annihilation operators for the
excitations: : )
ﬁ/k’l = ukék’l — exp(—i&)vké_m
; (6.4)
’%ﬁl = ukék’l — exp(+10)vké_kﬂ.
The BCS formulation of the superconducting state presented so far makes no
account for cases where superconductivity is non-uniform. Fortunately, it is possible
to generalise the formalism above and bring the tools of microscopic theory to bear on

the vortex lattice. In a fairly straightforward generalisation, the Bogoliubov operators

(equation 6.4) can be extended to take into account spatial variations (Waldrum, 1996):

(6.5)
S = [ [inhs(x) = w01 @] @

where the operators 91 (r) and i, (r) respectively create and destroy an electron with
spin ¢ at position r and are the Fourier transforms of the number-representation op-
erators CLU and ck . The quasi-particle states created/destroyed by &JL’ | and 4, | are
labelled using the index n.

As a natural consequence of the position-dependent creation and annihilation of

quasi particles using the operators above, the superconducting gap is no longer uniform,

but is instead a function of position related to the following expectation value:

A(r) o< (¢ (r)y(r)). (6.6)

This muddies the interpretation of A as the magnitude of the superconducting energy
gap, but equation 6.6 provides other physical insights. Firstly A(r) may be interpreted
as a local field in the spirit of mean field theory and can therefore be related to the
complex order parameter, 1(r), of the Ginzburg-Landau theory. Furthermore, the form
of equation 6.6 suggests that correlations between spin-up and spin-down electrons is
important for superconductivity, which is a well-known property of the phenomenon.
The most important feature of a position-dependent gap function is that it gives

a handle on solving non-uniform problems. One such method is via the Bogoliubov-de
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Gennes equations (Ketterson & Song, 1999), which are a set of eigenvalue equations
for the hole and particle wavefunctions w, (r) and v, (r) which are coupled by A(r):
(H = p)un(r) + A% (£)on (r) =E,upn(r) 67)
—(H — p)va(r) + A(r)u, (r) =E, v, (r).
Solution of these equations is in general a difficult task except for the simple case
of uniform superconductivity (i.e. constant A) in which case wu,(r) and v, (r) assume
plane-wave forms (Waldram, 1996). However, since superconductors quite generally
have much larger coherence lengths than Fermi wavelengths (quasi-particle wavelength)
a quasi-classical approximation in often used (Kopnin, 2001). In this approximation the
momentum dependence of the pairing potential is treated separately to the variation of
order parameter in the solutions for u,,(r) and v, (r). The validity of the approximation
depends on the smallness of the ratio A/FEr. For low-T, materials this is well obeyed
(A/Ep ~ 1073), but in high-T, materials, which have large gaps, the approximation is
less good.

Green’s functions are another powerful tool for microscopic investigations of the
vortex lattice. Here too, great simplifications are made assuming a quasi-classical pic-
ture. Eilenberger (1968) applied this approximation to the Green’s functions of BCS
theory, which were derived by Gor’kov (1958). Like the Bogoliubov-de Gennes equa-
tions, Eilenberger’s theory has found extensive application in the field of unconventional

superconductivity (see sections 7 and 8).
7. Non-local London theory

Common to both the London and Ginzburg-Landau theories of the vortex lattice
is the local nature of the electrodynamics, i.e. the local relationship between the current
and vector potential of the form J(r) oc A(r). However, in reality a non-local relation
between J(r) and A(r) is expected because when the superfluid is subjected to a
perturbation (e.g. in the vicinity of a vortex) its response will be spread out over a
distance equal to the coherence length. The size of the coherence length relative to
the electrodynamic length scale (i.e. the penetration depth) is what determines the
importance of non-local effects in a given superconductor. Thus non-locality is more

pronounced in materials with low values of x, but, conversely, non-locality is less of an
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issue in high x materials. In the high-x regime non-locality may be neglected because
the superfluid wavefunction is rigid with respect to perturbations and London theory
may be applied. (In the extreme type-II limit (k — oo) this approximation becomes
exact.) However, at high inductions where the vortices come into close proximity
and the perturbations are large, non-local corrections are required for a satisfactory
explanation of the properties of the vortex lattice. In this section the impact on the
vortex lattice of the non-local corrections to the London theory is considered.

The non-local relationship between current and vector potential in an isotropic
superconductor may be written in terms of a convolution of a spatially-invariant kernel,
K(r—r'):

J(r) /K(r —1r)A(r))d3r. (7.1)

This non-local relation complicates matters considerably compared to the simple Lon-
don expression. However, for many superconductors « is sufficiently large that only
the first non-local correction to the London theory is required. In this case the kernel,
K(r —r'), is expected to be sharply peaked about r = r’ allowing significant simplifi-
cation of equation 7.1. Since K (r — r’) is sharply peaked it may be Taylor expanded

about G = 0 in reciprocal space, giving to leading order:
J(G) = K(G)A(G) ~ [1 + ¢G*] A(G). (7.2)

(Note that there is no term in G due to the symmetry of the kernel.) In real space
such an expansion corresponds to the inclusion of gradient terms, such that J(r) o
A(r) +eVZA(r) + -

From the point of view of the vortex lattice, the non-local term in equation 7.2
simply modifies the form of the lattice in the vicinity of each vortex core. Of greater
interest is the effect of non-locality when there is an underlying electronic anistropy.
The obvious heuristic generalisation of the G? term in equation 7.2 involves the con-
traction of a fourth-rank tensor with G (twice) and the vector potential. In reciprocal

space this may be written:

poji = =A"2(mg" = N GiGo)ay, (7.3)

”1 is the inverse-effective-mass tensor; A is the penetration depth calculated

where m

from the geometric-mean mass, i.e. ()\a)\b)\c)l/ 3. and the singularities at the vortex
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cores are removed by defining a new vector potential a = A + &gV ¢/27. Kogan et al.
(1996) have justified this form via the quasi-classical Eilenberger equations enabling, in
principle, the calculation of the tensor n;;;,, in terms of purely microscopic parameters,
in particular the fourth moment of the Fermi velocity:

"o 252<U¢Ujvlvm>7(T,T)
I T AZN2det (viv;) 173

(7.4)

where v; is the ith component of the Fermi velocity and Ag is the magnitude of the
superconducting gap at zero temperature. The constant of proportionality, (T, 1),
depends on scattering and is proportional to AZ (see Kogan et al. (1996) for details).

To obtain the form of the vortex lattice arising from the transport equation 7.3, the
Fourier coefficients of the field distribution need to be calculated. This is achieved in
the same fashion as for the local London theory. The vortex source terms are re-inserted
via the flux-quantisation condition, which is given by B =V xa+® ). 6(r —r;)z for

vortices directed along the z-axis, giving rise to the expression:
By + poN€rsjGs K5 (G)€imnGm B = o, (7.5)

Assuming the non-locality is small, the inverted kernel K i;l(G) may be approximated
by the Taylor expansion:

Kﬁ1<G> ~ mi; — )‘zmirmsjnrsmnGmGn- (76)

L)

The configuration actually adopted by the vortex lattice within this theory may be
determined by the minimisation of the free energy density given by equation 2.8, which
requires solving equation 7.5 for Bg. Unlike the local London free energy, the non-local
free energy is convergent by virtue of the non-local correction term, which gives rise to
Fourier components that vary as G—% at large G. Nonetheless, despite the inclusion of
the leading-order non-local correction, equation 7.5 is only a good approximation for
G < €71 and hence the reciprocal sum must be ameliorated by some kind of cut-off for
the same reason the local theory is.

The principal effect the non-local corrections have is to couple the vortex lattice
to the underlying electronic anisotropy in a way that cannot be “scaled away” even

when the vortices lie along a crystal axis. To illustrate this point consider the vortex
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lattice in a tetragonal superconductor (which symmetry dictates that A, = A = \p)
such that the vortices lie along the c-axis. Solving equation 7.5 in terms of Bg in this
high-symmetry situation gives (Kogan, 1997):

(B)” 3 1
210 45 1+ NG? + X [naG* + (2n1 — 6n2)G2G3]’

(7.7)

where n; o< (v{) = (v3) and ny o< (v?02). The term containing G2G?% in this expression
is responsible for anisotropy. At high fields this term favours a square vortex lattice
oriented such that the nearest-neighbour direction corresponds to that of the Fermi

velocity minima.
8. The vortex lattice in a d-wave superconductor

In an isotropic s-wave superconductor, the attractive electron-electron interaction,
Vi, is isotropic and results in a superconducting gap, Ay, that is uniform over the
Fermi surface. Most materials have far from spherical Fermi surfaces so the magni-
tude of the superconducting gap is modulated due to the variation of the density of
states over the Fermi surface. This gives rise to the effects described in the previous
section, but in many superconductors the gap itself exhibits a large degree of intrinsic
anisotropy. Indeed, there is good evidence for the existence of both p-wave and d-wave
superconductivity. These have an unconventional pairing symmetry entirely different
to s-wave. Rather than being isotropic and fully gapped, p- and d-wave pairing gives
rise to nodes at certain points of the Fermi surface. These nodes radically alter the
superconducting properties because quasi particles may be excited along these direc-
tions even well below T,. In this section, the implications of d-wave pairing® on the
superconducting state is briefly discussed and a survey of various theoretical studies of

d-wave vortices and vortex lattices is presented.

* Since the cuprate high-T. superconductors, including the subject of this thesis
(YBagCus0O7), are most likely d-wave, only pairing through this channel is discussed
here. Pairing is also possible through the p-wave channel (for example in SroRuQOy) in
which electrons are paired in a triplet state to satisfy the fermion antisymmetry of the

pair wavefunction.
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Although the exact mechanism of superconductivity in the cuprates is still the
subject of controversy, the symmetry of the crystal®™ imposes constraints on the pairing
potential and hence also on the gap function. In fact a whole class of different gap
functions compatible with the crystal symmetry are possible. These may be determined
by expanding Ak in terms of the basis functions that represent the crystal symmetry
(Tsuei & Kirtley, 2000a). For a cuprate material one such gap “wavefunction” is given
by:

Ai””Q_y2 = Ag(cosky —cosky) +... . (8.1)

This is known as the d,>_,2 gap function (since it has the same symmetry as the basis
function 22 —y?) and it is apparent that it is compatible with the Cy, point symmetry of
the CuO4 planes which are ostensibly responsible for superconductivity in the cuprates.

y2

Equation 8.1 is plotted in figure 1.7. Not only does Aiﬂ_ exhibit nodes along the
{110} directions, but also changes phase by 7 in going between adjacent lobes. (This
property is exploited in measurements of the gap symmetry using tricrystal junctions
— see Tsuei & Kirtley (2000a) for more details.)

The presence of nodes in the superconducting gaps of the cuprates turns out to
be just as important for the vortex lattice as it does for the other superconducting
properties. Since the nodes give the superconducting gap “100%” anisotropy it is
expected that their influence will be just as great as other sources of anisotropy, if
not more so. Therefore it is vital to include the form of the gap when constructing a
theory of the vortex lattice. In the Ginzburg-Landau theory, it boils down to choosing
correctly the terms in the free energy expansion. In a bulk d-wave superconductor
the expansion should contain higher-order gradient terms like (97 — 02)? in addition
to the isotropic terms contained in equation 4.3. The higher-order terms reduce the
symmetry of the free energy to four-fold. Moreover, the presence of vortices breaks

the translational symmetry of the crystal lattice and in general it is expected that in

the vicinity of a vortex core an s-wave component will be induced. This has been

* Other symmetries, such as time reversal and spin symmetry, are also involved.
The symmetry of the superconducting state will in general be a subset of the normal
state symmetry since there is spontaneous breaking of symmetry at 7. (In an s-wave

superconductor global gauge symmetry is broken at 7¢.)
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verified by Soninen et al. (1994) who examined the structure of a single vortex line in
a dg2_,2 superconductor using the Bogoliubov-de Gennes equations with an attractive
pairing interaction operating on nearest-neighbour electrons on a square lattice. The
vortex structure determined by this calculation is very rich. They identified three
regions: an inner core analagous to that of an s-wave superconductor in which the
order parameter is suppressed; an outer core where there is coexistence of s- and d-
wave order parameters; and a bulk region where the order parameter relaxes into a pure
d-wave state. The outer core region is of greatest interest because the coexistence of the
two order parameters bestows anisotropy on the vortex core, which as Soninen et al.
point out must lead to an angular variation in the inter-vortex interaction. This basic
theoretical observation, which has been reported by a number of authors, underpins

the natural tendency for d-wave vortices to organise into unconventional lattices.

lkky

o 4
8

d
Fig. 1.7: A plot of the d2_,» magnitude of the gap function, AkEZ’yZ, about
the Fermi surface; the phase of each lobe is also indicated. There are nodes
along k, = k, about which the phase of the gap (order parameter) changes
by .

In their analysis, Soninen et al. (1994) also wrote down a Ginzburg-Landau ex-
pansion containing the higher-order gradient terms described above. Following their

microscopic calculations the free energy expression contains two order parameters®, s

* These order parameters naturally have different T,.’s. In a d-wave superconductor

Ty > Ts.
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and d:
2

B
T =g o aslsl® + aald® + Bilsl" + Baldl + Bl

+ Ba(s72d% + c.c.) + s [TIs|? + ~q |TId? (82)
+ v, (IL,sIL,d* — 11, sI1,d* + c.c.),

where c.c. stands for the complex conjugate of the preceeding term and the operator
IT is the gauge-invariant momentum operator (see equation 4.3). The terms with
coefficients «ay, g, (1, B2, 7s and 4 are all recognisable as the terms needed for
separate expansions of the Ginzburg-Landau free energy in the s- and d-wave order
parameters. The other terms provide coupling between the two order parameters. For
example, the mixed gradient terms are responsible for generating the s-wave component
near a vortex core. Ren et al. (1995) derived equation 8.2 from the Gor’kov equations
and discovered that the s-wave component decays over a distance comparable with the
magnetic penetration depth. Therefore even for moderate inductions (§ < ag < A)
the s-wave component persists everywhere in the mixed state.

Berlinksy et al. (1995) and Franz et al. (1996) have made further analyses of vor-
tices using the Ginzburg-Landau expansion shown in equation 8.2. The topological
structure of the s-wave order parameter elucidated by these calculations exhibits a
complicated configuration of five vortex cores arranged with one at the vortex centre
surrounded by four symmetrically-placed vortices with opposite winding. This is essen-
tially the same anisotropy discussed by Soninen et al. (1994) and, perhaps predictably,
has the effect of enforcing its four-fold symmetry on the vortex lattice, albeit at dis-
tances much further than the extent of the induced s-wave vortices. (In this respect
the s-wave vortices are more of a symptom of the unconventional nature of d-wave
vortices than a cause of an unconventional vortex lattice.) Berlinsky et al. (1995) have
minimised the free energy for the vortex lattice using a variety of strengths of the
coupling parameter ~,. For small values of 7,, the standard triangular vortex lattice
appears to be preferred, but as 7, is increased, the equilibrium vortex lattice becomes
at first oblique and then square at some critical value that depends upon the value of
the other parameters in equation 8.2. Franz et al. (1996) examined the dependence
of the square vortex lattice free energy on its orientation relative to the crystal axes.

By defining a coordinate system rotated by an angle « relative to the crystal {110}
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direction and studying its effect on the mixed gradient term (the only term in equation
8.2 that is not invariant under rotation), they found that the free energy is minimised
for « = 0,£7/2,- -+, i.e. the vortex lattice aligns itself along {110}.

Affleck et al. (1997) have also studied the vortex lattice using the Ginzburg-Landau
free energy expansion shown in equation 8.2. Their approach differs from earlier works.
Instead of deriving and solving the Ginzburg-Landau equations arising from equation
8.2, they first simplified the problem by integrating out the s-wave component. This
was accomplished by deriving the Ginzburg-Landau equation in s and substituting it
back into the free energy expansion, which to leading order gives:

2

B 2
T = g old 4 ol o | P @2l (s

In making this approximation structural information on the scale of £ is lost, but it
is not important considering that most investigations of the vortex lattice in high-T,
materials occur well below Bg. With this in mind Affleck et al. made the further
approximation that the magnitude of the order parameter, d, was constant. Writing
the superfluid velocity as v(r) = VO(r) — 2¢A(r) (where 6(r) is the phase of d) this
yields an expression reminiscent of the standard London free energy (equation 2.7), but
with higher-order terms in the kinetic energy part:

F, = % + 'yydg {v2 — % [(vi — ?};)2 + (Oyvy — 8351}35)2} } . (8.4)
Although this London-like expression does not contain the rich detail of the vortex
cores, it is sufficiently accurate to calculate the morphology of the vortex lattice. Min-
imising the free energy yields the same lattice configuration as the microscopic and
pure Ginzburg-Landau studies. The Fourier coefficents within this extended-London

model are given by
exp(=G*¢/2)
B(G) =(B
(G) =(B) 14+ A2G? + 4eX262G2G2’

(8.5)

where € = 3ag72/asv3. The Gaussian term in the numerator of this expression origi-
nates in the choice of vortex source term and is purely phenomenological (see section 2).
Note the near isomorphism of the terms in equation 8.5 with those from the non-local
London theory of a tetragonal superconductor (the terms in the sum of equation 7.7).

The close correspondence is no accident. In the standard London and Ginzburg-Landau
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equations the electrodynamics are local. Adding the first corrections to the kernel in
non-local London theory or higher-order gradient terms in the d-wave Ginzburg-Landau
theory both have similar effects, even though the physical basis for each is quite differ-
ent. Put more intuitively, in the d-wave Ginzburg-Landau theory the order parameter
nodes can be thought of as inducing non-locality since along these directions the coher-
ence length is infinite. Therefore, in some systems it may not be possible to discern,
based solely on qualitative observations, whether “plain” non-locality or d-wave effects

are responsible for unconventional vortex lattices.

The quasi-classical Eilenberger equations have been used extensively to make
highly detailed calculations of the nature of d-wave vortices and their lattices. The
Eilenberger formulation has the advantage over Ginzburg-Landau because it is valid
over the whole (H,T) plane (not just near H.o(7")) and because it does not rely on
phenomenological expansion coefficients; but it is disadvantaged by the lack of a simple
physical picture and the inherent difficulty of the calculations, which mostly require
numerical solution. Nevertheless, such calculations have been performed with great
success. Ichioka et al. (1996a) have undertaken calculations to find out the structure of
a vortex in a d,2_,2 superconductor in which there is finite pairing in the s-wave and
d,-wave channels. Their results give good agreement with the Bogliubov-de Gennes
and Ginzburg-Landau models cited above. In another study by the same group (Ichioka
et al., 1996b), a single d,2_,2-wave vortex was investigated in the absence of other in-
duced components. Their results demonstrate the four-fold symmetry of a vortex even
without the other components. This is reflected in the local density of quasi-particle
states, which at low quasi-particle energy extend along the {110} directions for many
coherence lengths. These quasi-particle tails do not feature in s-wave vortices in which
the density of quasi-particle states peaks isotropically (i.e. as a circle) around an iso-
lated vortex as a function of energy. The effect of these quasi-particle tails on the vortex
lattice was worked out by Ichioka et al.(1999). When d-wave vortices are packed to-
gether close enough, tunnelling between vortex cores of the quasi-particles is enhanced
if the vortices are arranged such that the nearest-neighbour direction is along the d-
wave order parameter node ({110}). Therefore, there is a term in the free energy that

favours a square arrangement of vortices oriented along {110} due to the reduction of
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the quasi-particle kinetic energy by tunnelling along this direction. The free energies
of square and triangular vortex lattices with nearest-neighbour along either {100} or
{110} have been computed at T' = 0.57, by Ichioka et al. (1999) using the Eilenberger
formalism with material parameters corresponding closely to those of YBayCuzOr_s.
At low fields the triangular vortex lattice is preferred (both orientations have the same
free energy), but at H > 0.15H.o the square lattice oriented along {110} is stabilised
as expected from the preceeding argument. (The other orientation of square lattice has
the highest free energy for all values of H.) No other vortex lattice configurations were
tested due to the intensive nature of these numerical calculations, but it is reasonable
to suspect a continuous transformation from an isotropic triangular vortex lattice to a

square one as predicted by Berlinsky et al. (1995).

9. The non-ideal vortex lattice

Underpinning the theory presented so far is the rather false ideal of the vortex
lattice as an infinite structure with perfect translational order. Not only does this
view inadequately reflect the reality of experiments, but it also neglects the physics
of disorder and imperfections, which can give rise to rich physics in their own right.
Therefore the ideal of a perfect vortex lattice will be abandoned; in the remainder
of this thesis the phrase “vortex lattice” will assume a more colloquial meaning, i.e.
the structure formed by an ensemble of vortices, as opposed to the rigorous meaning
implied by the technical definition of “lattice”. In this section some aspects of the
theory of the non-ideal vortex lattice will be reviewed.

The simplest cause of loss of perfect translational order in the vortex lattice is
sample geometry. In the general case, a sample will posess a non-zero demagnetisation
coefficient, which will tend to cause the flux going through the sample (i.e. the vortices)
to bend in order for the electromagnetic boundary conditions to be satisfied. This
macroscopic bending becomes more important for samples with large magnetisations
(i.e. far below H.z).

A more interesting and considerably less trivial cause for imperfections in the
vortex lattice is caused by disorder in the underlying crystal. Defects in a crystal

(precipitates, vacancies, impurities etc.) suppress superconductivity in their vicinity,
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forming centres onto which vortices may be “pinned”. Pinning occurs because it is
advantageous for a vortex to form on a site that confers no increase in the free energy
due to the local suppression of superconductivity by the vortex core (superconductivity
is already suppressed by the pinning centre).

Pinning plays an important role in determining the properties of a superconductor.
In the mixed state even a DC current may be dissipated by the movement of the
vortices by the Lorentz force. Pinning defeats this process and superconductors with
many pinning centres will generally have large effective critical current densities (the
current density at which point the Lorentz force overcomes the energy barriers of the
pinning centres). Thus the study of pinning and the flux flow state is technologically
important.

Pinning also influences the static magnetic properties of type-II superconductors.
Strong pinning will hinder the flow of vortices into the sample as the applied field is
increased, hence increasing the magnetisation. (It can be a surface and/or a bulk effect.)
In a “hard” superconductor (strong pinning) this process may be described by the Bean
model (Bean, 1964) in which flux enters at the sample edges and is pushed inside the
superconductor such that the field gradient is equal to the critical current density. This
is often called the critical state model because at all points in the superconductor the
vortices are just on the edge of flux flow.

Several types of pinning site are possible, but the commonest are point pinning-
centres. Since vortices are one-dimensional objects, a vortex may be pinned along its
length by many point pinning-centres. The route that a vortex takes through a sample
depends on the balance of the energies associated with gain in condensation energy from
the pinning centre, the vortex line tension and the interactions with other vortices. An
expression governing this behaviour is easily written down: in the continuum limit, the
Hamiltonian (Giamarchi & Bhattacharya, 2001;Giamarchi & Le Doussal, 1997) can be
written in terms of the vortex displacement vector field u(r), the elastic response tensor

¢i; and a random potential, V (r), which models the pinning sites:

H = % D) aii(Gui(G)uy(G) +/ V(r)) 6@ -Ry—w)| &r, (9.1)
ij G ¢

where R are the positions of the vortices in the absence of disorder. Due to the highly
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non-linear coupling of the vortex displacements, u;(r), to the Hamiltonian, the solution
of equation 9.1 represents a formidable problem in statistical mechanics. Fortunately,
some progress has been made, particularly by Larkin (1970), who has calculated the

form of the relative vortex-displacement correlation function:

b(r) = ([u(r) — u(0)]"). (9-2)

In this analysis the integral of the disorder term in equation 9.1 was expanded to first-
order in the displacement field, u(r), yielding the surprising result that the relative
vortex-displacement function grows algebraically as a function of distance. It might be
concluded from this statement that arbitrarily weak disorder destroys the long-range
translational order of the vortex lattice. However, as Larkin first realised, the expansion
is only valid up to distances R. such that u(R.) ~ &, which is well below the length
at which dislocations start to appear (of the order or greater than the inter-vortex
spacing). Beyond R., b(r) grows slightly more slowly and — vitally to the existence of
the vortex lattice — b(r) grows only logarithmically beyond R,, which is the distance
at which b(r) = a. Therefore, as long as the pinning is not too strong, the vortex lattice
may retain long-range order. Long-range order is able to survive in part by virtue of
the periodicity of the vortex lattice: each vortex will accommodate pinning sites close
to it, but there is no incentive for any particular vortex to make a displacement of more
than one vortex spacing. This results in a vortex phase that exhibits perfect topological
order. Such a vortex lattice phase is known as the Bragg glass phase and is responsible
for the observation of strong Bragg peaks in neutron scattering (see section 11).

The realisation of the Bragg glass in a type-II superconductor depends upon a
number of factors. Obviously, a sample with strong pinning will be more susceptible to
disorder. Indeed, dislocations will occur if the inter-vortex spacing becomes comparable
with R,. The Bragg glass is also sensitive to the value of the induction in the sample.
At low values of induction the inter-vortex separation may be too great for the inter-
vortex interaction to organise effectively the vortices into a lattice. In contrast, the
Bragg glass is also destroyed by large inductions. This transpires due to the fact that
the strength of the disorder term in equation 9.1 increases with induction more than the
elastic term. In this regime the vortices form a glassy phase (the vortex glass), which

is riddled with dislocations. Furthermore, thermal fluctuations at large temperatures
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may induce the Bragg glass to melt into a vortex liquid or gas. Therefore, insofar as
disorder is concerned, the phase diagram for vortices in a type-II superconductor may

be represented rather generally as in figure 1.8.

A

Bragg glass
phase

Disordered
phase

T
Fig. 1.8: A cartoon of the generic disorder phase diagram of a type-II super-

conductor. The ordered phase (the Bragg glass) is confined to an intermediate
field range and low temperatures. Surrounding this ordered phase are either

glass-like or liquid-like disordered phases.

Another type of pinning, which is particularly pertinent to high-T, materials, is
pinning due to twin planes. Twin planes are extended planar crystal defects. They arise
in materials which have a transition from a tetragonal phase at high temperatures to
an orthorhombic phase at low temperatures, which has basal plane lattice parameters
that are similar in size. As the sample cools through this transition, the degeneracy
in the two basal plane lattice parameters is removed and the sample is divided into
two types of domain at roughly 90° to each other (see figure 1.9). Due to their planar
nature, these defects form very effective pinning sites. Even when the density of twin
planes is low compared to the density of vortices, they can still exert a strong influence
by pinning vortices along a line and thus imposing an orientation on the vortex lattice.
In this case two types of vortex lattice domain, mutually orthogonal to each other, is
realised. The orientation of the vortex lattice by twin planes is generally much stronger
than any other source because the energy involved is the condensation energy, albeit

for only some of the vortices in a domain, rather than the very subtle energy balances
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typical of coupling to crystal anisotropy.

Fig. 1.9: A schematic of a twin boundary in an orthorhombic crystal. The
dashed line indicates the twin boundary, either side of which the basal plane
axes are exchanged. In this figure a = 1.2b, which is highly exaggerated (for

clarity) compared to typical differences between a and b of just a few percent.
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CHAPTER II

SMALL-ANGLE NEUTRON SCATTERING

10. Introduction

Small-angle neutron scattering (SANS) is an elastic neutron-scattering technique
used to probe mesoscopic systems whose characteristic length scales are in the range
10-1000nm. Colloids, precipitates in alloys and the vortex lattice are all examples
of systems that fit within this broad remit. Studying such systems using neutron
scattering requires an instrument that is well-adapted to handle large-scale structures.
To illustrate these requirements, consider the d-spacing of a triangular arrangement of

vortex lines, a representation of which is shown in figure 2.1. Flux quantisation gives:

dp =1/ \/23;50. (10.1)

Even at relatively high inductions, e.g. 1T, where da is approximately 40 nm, this is

at least two orders of magnitude larger than that in a typical crystal! To cope with
the extremely small momentum transfers involved in this type of scattering, SANS
instruments utilise long-wavelength (A, ~ 1nm) neutrons. Nevertheless the angle of

scatter, 20, which is given by the famous Bragg law:

2dsinf = A, (10.2)

is still only of the order of a degree. Hence SANS instruments are also characterised
by their large sample-detector distances.

The use of SANS to study the vortex lattice was pioneered by Cribier et al. in
1964 (Cribier et al., 1964). Since then it has become a ubiquitous and indispensible

tool for vortex physics and, with the discovery of unconventional superconductivity, has
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enjoyed somewhat of a renaissance during the last fifteen or so years. Recent examples
of its application include measurements of the vortex lattice in high-T, cuprates, heavy

fermion materials, the borocarbides and SroRuQy.
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Fig. 2.1: The Bragg picture of the vortex lattice. Shown on the left in real
space is a region of a triangular-coordinated vortex lattice with a set of planes

indicated. On the right is shown the equivalent picture in reciprocal space.

The purpose of this chapter is to provide a thorough review of SANS measurements
on the vortex lattice with particular emphasis on the methodology and the theory that
underpins it. For a broader research-based review of recent SANS results in high-7¢

materials the reader is directed to the excellent review by Forgan (1998a).
11. Basic scattering theory and geometry

Making full use of information gleaned by SANS requires the development of a
proper quantum-mechanical theory of the scattering of neutrons from the vortex lattice.
The Hamiltonian describing this may be written in terms of the interaction between
the neutron magnetic moment and the local induction:

. K2
H=-—
2m,,

V2 — p, - B(r), (11.1)

where the neutron magnetic moment is p, = 9.66 x 10727 JT~!. An important sim-
plification can be made in this analysis: the kinetic energy of a neutron of wavelength
Inm (typical in SANS) is ~ 1 x 10722]J whereas the potential energy of a neutron in a
field of 1T is only ~ 1 x 10726J. Therefore the potential term in the Hamiltonian may
be regarded as a perturbation and the problem may be solved using the well-known

first Born approximation (Merzbacher, 1998) in which the differential cross-section is
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calculated from the Fourier transform of the scattering potential:

do
dQ

mpy
21 h?

2 :

=|f(q)]” where f(q)~ /p,n -B(r) exp(—iq - r)d*r, (11.2)
where f(q) is the scattering amplitude for a neutron undergoing scattering with mo-
mentum transfer Aq. (Note that there is zero energy transfer in this type of scattering

because the scattering potential is time-independent.)

It is instructive to examine equation 11.2 for the case of a vortex lattice with
perfect translational order, which may be represented by the Fourier sum B(r) =
> cBcexp(iG - r). Calculating the differential cross-section in this idealised scenario
gives:

j_g@ = (2m)° <%>2§Z|BG|25(<1—G), (11.3)

where V' is the sample volume and ~ is the neutron magnetic moment in nuclear mag-
netons. Despite its apparent complexity, this equation embodies two simple conditions
for diffraction, which provide an intuitively appealing geometric picture of SANS and,

indeed, diffraction in general:
|kin| = |kout|7 kout - kin =q (11.4)

The first of these relations expresses the elastic nature of the scattering; the second,
which is a consequence of the delta functions in equation 11.3, is just Bragg’s law.
These criteria can be represented pictorially as in figure 2.2, in which the incoming
neutron wavevector k;, is directed at the origin of the two-dimensional reciprocal space
and the outgoing neutron wavevector, Koy, lies on the Ewald sphere (the locus of
elastic scattering). In a SANS experiment, the direction of k;, is fixed and in the
“standard” geometry the field is applied nominally parallel to the neutron beam. The
plane containing the reciprocal lattice vectors of the two-dimensional vortex lattice
is therefore nominally perpendicular to the neutron beam (see figure 2.2). To satisfy
the conditions for diffraction (equation 11.4) the vortex lattice must be rotated — or

“rocked” in diffraction patois — until a reciprocal lattice vector spans the Ewald sphere.
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v | Plane containing
reciprocal vortex
lattice vectors

Ewald sphere w

Fig. 2.2: A simple picture of the scattering geometry described by equation
11.3. The Bragg condition is fulfilled when a reciprocal lattice vector forms a
chord of the Ewald sphere. For this to occur, the reciprocal vortex lattice plane
(represented by a line) is rocked (rotated) from its zero-angle position (dashed
line) until the angle of rock, w, is equal to the Bragg angle, #. For clarity the
angle of scatter has been exaggerated: in a real SANS experiment the Bragg
angle, 6, is typically of the order of a degree and the neutron wavevector is

much larger than q.

In a real experiment the intensity of a Bragg peak integrated over all solid angles
and all rocking angles, w, is measured, rather than the differential cross-section. The
integrated intensity may be calculated easily from equation 11.3, taking just the Dirac
delta-function corresponding to the Bragg peak of interest. The intensity is then given
by

do

dI(q,w) = ¢@dﬂdw, (11.5)

where ¢ is the neutron flux. In the case of a perfect vortex lattice, the integral over solid
angles will only have contributions when the argument of the delta function d(q — G)
is zero, which occurs when the sample is rocked by the Bragg angle, 6. From figure 2.2
the distance between q and G in the small-angle limit is given by Gw, where w is the
angle of rock. The small-angle limit allows the three-dimensional delta function to be
expanded as a product of delta functions, one in the plane containing the reciprocal
vortex lattice vectors (two-dimensional) and one perpendicular to it (one-dimensional).
The latter integral, which can be represented as §(G(w —0)) is performed first. Making

a change of variables and integrating yields a factor G~! in the integrated intensity.
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The integration over the remaining two dimensions of the delta function is done easily
by converting it to an integral over the area of the Ewald sphere, which near to the
reciprocal lattice vector is approximately parallel to the plane of the reciprocal vortex
lattice (in the small-angle limit). This entails the change of variables dQ) — k~2dA,
providing a factor of A2. The final result, as first quoted by Cribier et al. (1964), is:

2 N2
1 Bgl.
G

Ig = 21¢ (%) (11.6)

2
n

Therefore, in addition to the kinematic factor A\Z/G, the integrated intensity depends
upon the neutron flux, ¢, and the sample volume, V' in the manner expected. The only
other factor of interest is the vortex form-factor, |Bg/|, for which various theoretical
models exist, but whose effect on the integrated intensity may be illustrated using the
London model as a starting point. The London model is often a decent approximation
in the region of phase space (H,T') accessible to SANS. In this theory, the form-factors,
Bg ~ (B)z/(1 + A2G?) (equation 2.6) are field independent for B > B.;, which sim-
ply expresses the fact that no field contrast is lost in going to large inductions because
of the logarithmic divergence of the field at the vortex cores. Hence, the only loss in
integrated intensity experienced from increasing field is a rather slow (B _%) kinematic
one. However, the effect of the penetration depth, Ay, on the scattered intensity is
extremely strong: Ay 41 This makes the study of superconductors with long penetra-
tion depths extraordinarily difficult. Unfortunately many of the currently en wogue

superconductors (e.g. high-T, and heavy fermion) fall into this category.
12. SANS instrumentation, set-up and technique

The specialisation of SANS instruments to large-scale structures — and hence
low momentum transfers — means that they are quite different from their large-
momentum-transfer brethren in both appearance and operation. In figure 2.3 is shown
a schematic that typifies modern SANS instruments, which are now commonly found

at both reactor-based and spallation-based neutron sources*. In order to maximise

* The measurements presented in this thesis were obtained from D11 and D22 at

the Institut Laue-Langevin (ILL), Grenoble, France and SANS-I at the Paul Scherrer
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the angle of scatter, SANS instruments utilise cold neutrons produced by the modera-
tion of fission neutrons, typically in liquid deuterium at a temperature of around 20 K,
which corresponds to a typical wavelength of the order of 0.1 nm. Cold neutrons can be
transmitted by multiple critical reflection through a so-called “supermirror” neutron
guide. These guides have walls consisting of a highly polished nickel surface deposited
on top of a multilayer giving an effective critical angle of a few degrees, thus enabling

neutrons to be delivered to the experimental area.

Monitor Aperture Detector

Cold Collimation |
Neutron . ol _ _ ____ 1\ ____
Source : |
Velocity <
5d
selector leon et

Fig. 2.3: A schematic of a SANS instrument. The neutrons are extracted from
the cold source by a neutron guide (parallel lines) and a wavelength, A, is se-
lected by a mechanical velocity selector. The two other important instrument

parameters are the collimation length, .., and the detector distance, Sqet.

Before the neutrons are scattered from the sample it is first necessary to select a
wavelength band from the cold thermal spectrum produced by moderation. The choice
of wavelength is a crucial one: larger wavelengths yield proportionately larger Bragg
angles, but since SANS invariably uses the low-energy tail of the Maxwell-Boltzmann
distribution, which varies as A, a significantly lower flux must be tolerated. (A small
recompense to this is the A2 dependence of the integrated intensity — see equation
11.6.)

Wavelength selection is accomplished by mechanical velocity selection. The neu-
tron beam passes through a turbine of neutron-absorbing blades that transmits a mean
wavelength inversely proportional to the angular velocity (typically around 10,000 rev-
olutions per minute) with a fractional spread of A\,/A, ~ 10%. This large spread is

one cause of the rather poor resolution of SANS instruments since, from Bragg’s law,

Institut (PSI), Villigen, Switzerland. The ILL is a 54 MW reactor-based source and at
PSI spallation neutrons are produced from a 590 MeV proton beam incident on a lead

target.
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it translates to a 10% spread in 26. (See section 14.)

Directly after the velocity selector lies the monitor. The monitor is a low-efficiency
detector and its purpose is to facilitate normalisation since the total number of monitor
counts during a run reflects the total number of neutrons incident on the sample. This is
of particular importance in a spallation-based neutron source where the beam intensity
may be subject to very large fluctuations. In such cases, it is more prudent to count to
a set number of monitor counts rather than a set time.

In addition to wavelength spread, another important factor in the resolution of a
SANS instrument is beam divergence. On a SANS instrument, collimation is effected
by removing some of the neutron guide near the sample and by using a source aperture.
The angular divergence of the beam can be reduced in a linear fashion by increasing

the length, l.o11, over which the beam is collimated, but this comes at the expense of

—2

neutron flux at the sample which decreases with I_J;.

After the collimation, the beam passes through a sample aperture, which defines
the beam size on the sample. The sample resides inside a cryomagnet (or a thin-tailed
cryostat placed inside the bore of an electromagnet), which provides the magnetic field
and the low temperatures required for superconductivity. Substantial care must be
taken with this arrangement. Most importantly, every effort should be made to limit
the amount of material (other than the sample) lying in the beam’s path because it
will contribute to the background signal; anything necessarily in the beam should be
constructed from a material with a low absorption and low incoherent scattering cross-
section such as pure aluminium, and should be as free as possible from precipitates
and defects, both of which give rise to significant small-angle scattering. This places
constraints on the mechanical design of the cryomagnet. Furthermore, parts of the walls
of the cryostat through which the beam passes are often replaced by sapphire (Al;O3)
windows because aluminium alloy used in cryostat construction contains precipitates.

Where possible, the sample itself should comply with the guidelines above, and if
the sample contains a strongly absorbing isotope then it should be not be made thick

relative to the attenuation length*. For sample mounting, a thin layer of glue may

* (Clearly an attempt is made to maximise the total signal which will increase linearly

with the sample volume, but decrease exponentially with its thickness.
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be used. This practice would seem an anathema to an inelastic neutron scatterer due
to the strong incoherent scattering from hydrogen in the glue, but in SANS bigger
problems arise from precipitate scattering, which is not distributed over all solid angles
like incoherent scattering from hydrogen. As a final precaution against background
scattering components in the beam (such as the plate onto which the sample is mounted)
are masked with a neutron-absorbing material such as cadmium, and samples with flat
faces may have their edges masked to prevent unwanted reflections. (A paint made
from gadolinium oxide is convenient for this.)

To maximise flux incident on the sample for a particular set of instrument param-
eters (wavelength, collimation, etc.), both sample and sample aperture should be well
positioned with respect to the beam. The neutron intensity drops quite rapidly off axis
so even displacements of a few centimetres can give rise to changes in flux by small
integer factors.

Neutrons scattered from the sample pass through an evacuated tank in which
resides a position-sensitive detector placed at a (variable) distance, sqet from the sample
(see figure 2.3). In common with most modern neutron detectors, SANS detectors are

based on the absorption of neutrons by 3He:
SHe + n —°H +'H + 764 keV. (12.1)

The reaction produces a charge pulse that is amplified by a cascade process similar
to that in a Geiger counter and is detected by a series of horizontal and vertical wire
anodes maintained at high voltage relative to a cathode at the back of the detector.
The position of the neutron is given by the indices of the horizontal and vertical wires
that recorded the charge pulse. The count rate of the detector is limited to about
50 kHz because only one neutron can be counted at once by the detector. Therefore to
prevent excessive dead-time (or even damage to the detector) the strong undiffracted
beam is terminated by a cadmium beam-stop placed just in front of the detector.
Recently, SANS detectors have been developed that consist of a series of vertical wire
anodes in tubes. In this arrangement, the horizontal position of the detected neutron
is determined by which wire the charge pulse is measured on and the vertical position
is determined by charge division between the two ends of each wire anode. Typically a

count rate of about 50 kHz per wire can be achieved in these detectors.
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Two stepper motors facilitate the rocking of the cryomagnet about two mutually
orthogonal axes perpendicular to the beam. In SANS these degrees of freedom are
conventionally denoted w (rotation about the vertical axis) and ¢ (rotation about the
horizontal axis perpendicular to the beam). Most SANS instruments are endowed with
a good deal of automation and the instrument may be programmed to scan through
the Bragg condition by sequentially moving one or both motors and then counting. (In
diffraction parlance such a scan is known as a rocking curve.) It is good practice always
to scan these motors in the same direction to avoid problems arising from backlash.
This is done not just for the obvious reason that the Bragg condition will move due to
backlash, but also because more often than not background measurements need to be
subtracted to see clearly the signal from the vortex lattice. Background measurements
can be obtained either by performing the same scan with zero applied field or, more
commonly, by taking the sample above its critical temperature. A high degree of scan
repeatability is desirable because the background signal, which has its origins in, e.g.,

precipitates, may be very strongly angle-dependent.

Fig. 2.4: An example of data obtained using SANS: a diffraction pattern
of the vortex lattice in niobium with a field of 0.2T applied parallel to the
crystal (110) direction. The picture shows the logarithm of the sum over many
rocking angles showing several orders of diffraction. The two dark bands are
due to bad “lines” on the detector and the lack of counts in the centre square

is due to the beam-stop.
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An example of a SANS diffraction pattern is shown in figure 2.4. These data were
obtained from the vortex lattice in niobium formed by field-cooling in 0.2 T. The sample
was rocked in such a way as to satisfy the Bragg condition for the first few orders of
diffraction. Although taken under relatively low resolution conditions, the diffraction

pattern in figure 2.4 demonstrates the often poor resolution of SANS measurements.
13. Bragg’s law revisited: specialisation to SANS

Before explaining the effects of finite resolution, it is worth reappraising the Bragg
conditions for scattering (equation 11.4) for the case of the vortex lattice. The vortex
lattice is a two-dimensional entity thus in general all the scattering vectors, q, lie in the
plane containing the reciprocal lattice vectors, G. (The exact arrangement of G-vectors
in this plane is not important to what follows.) The Bragg conditions stipulate that
the locus of scattered neutrons is formed by the intersection of the Ewald sphere (locus
of elastic scattering) with the plane of G-vectors. This intersection is obviously a circle
whose radius in reciprocal space depends upon the wavelength, \,, and the rocking
angles, w and ¢; for brevity this locus will named the Ewald circle. The equation of the
Ewald circle in reciprocal space is easily calculated using simple coordinate geometry:
assume the vortex lattice g-vectors lie in the g,-g, plane and that when w = 0 = ¢, the
incoming neutron wavevector lies along the ¢,-axis. Rocking the sample corresponds
to rotating in reciprocal space the incoming neutron wavevector about the ¢,-axis by

w and about the g -axis by ¢

1 COS W COS ¢
2 2
k= ——|0] —2F sin w (13.1)
An An .
0 cosw sin ¢

(Note that the order of rotation is not important because rotation is commutative
in the small angle limit to be applied shortly.) Intersecting equation 13.1 with the
vortex lattice plane, ¢, = 0, provides the equation for the Ewald circle, which in the

small-angle limit is:
(gy — kinw)Q + (g — kin¢>2 = kiQn("‘)2 + ¢2>7 (13.2)
where ki, = 27w /A,. Equation 13.2 is plotted in figure 2.5, which also shows an example

of a two-dimensional g-vector that satisfies the Bragg condition (i.e. lies on the Ewald

circle).
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The projection of the Ewald circle onto the detector is a circle. To map a point in
reciprocal space onto the detector the two Bragg angles, 0p , and g ,, corresponding
to the two components of the g-vector are calculated independently:

Anr COS qg
A7

Angr Sin gg

- (13.3)

QB@ = and GB,y =

The position on the detector is given by rqet = 254et(0B,4,68,y), as is shown on the
right-hand diagram of figure 2.5. Figure 2.5 provides a nice geometrical picture of
diffraction in SANS: as the sample is rocked the Ewald circle expands and any Bragg
peaks lying underneath it are projected on the detector. (In the figure, q is mapped to
rget-) This picture is limited in the sense that it ignores resolution effects; these will

be included in the next few sections.

4= Zdet

q = q,(cos gy, sin gp) Tdet = ki;lsdetq

kind |- 7/~----= Sdet® |/~ --—==

k/’in"U dy SdetW Ydet

Reciprocal space Detector

Fig. 2.5: The Ewald circle — the locus of points in reciprocal space (left)
that are able to scatter a neutron of wavelength A\, = 27/k;,. On the right
is shown the locus of points on the detector (placed at a distance sqet) where

the neutrons land. The sample has been rotated by (w, ¢).

Equation 13.2 can be generalised to three dimensions, thus removing the earlier
restriction that the G-vectors lies in a plane. This is most naturally done in spherical
polar coordinates by introducing an azimuthal angle ¢, (in addition to the in-plane
coordinates ¢, and ¢p) that specifies the orientation of a particular plane under con-
sideration. The angle g, corresponds to a rotation about the g¢.-axis, which is in the
same direction as the sample rotation angle w. Therefore, for the purpose of speci-
fying the Bragg condition, these parameters may be lumped into a single parameter

w' = w — q,. The assumptions under which equation 13.2 was derived are not affected
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because although both w and ¢, can be large, the criterion for small-angle scattering
is still satisfied if their difference is small. This reflects closely the reality of SANS ex-
periments where rotations by ¢ are generally small — for technical reasons — whereas
rotations in w, which are effected by a sample turn-table can be large (w € [—m, 7]
under ideal circumstances) allowing large-scale structures to be probed in different di-
rections. The Bragg condition for small-angle scattering off q = (g, gs, ¢.,) may hence
be written:

Angr = 47 [(w' + @) cosgg + (¢ + B) singo] . (13.4)

In the expression above, the angles o and 8 have been added preemptively to w’ and
¢ (respectively) to take into account diffraction from a beam rotated by a and 8 away
from the nominal beam direction. These angles alter the radius and centre of the Ewald
circle in an obvious manner. This generalisation will be needed later in the discussion

of beam divergence.
14. Resolution of SANS

The low-resolution nature of a typical SANS set-up is a double-edged sword: on
the one hand it can be a blessing, allowing in many cases the simultaneous measurement
of multiple Bragg peaks and hence offering good neutron economy; on the other hand
it can be a curse if, for example, Bragg peaks overlap on the detector (see, e.g., section
23), or if instrumental effects need to be deconvolved to obtain intrinsic information.
In either case, a proper understanding™® of resolution effects is requisite to making the

best use of SANS data. In this section, the two instrumental sources of finite resolution,

* The resolution effects described here and in the next section are based upon a
simple set of rules developed by Brown (2001), which also demonstrates an example of
their application in correcting measurements for sampling bias. The current presenta-
tion (sections 14 and 15) is a more mature and extended version of that earlier work
and is further supplemented by the calculation of the instrumental resolution function
(appendix A) and the reciprocal-space sampling function (appendix B). In comparison
to the pioneering work in this area by Cubitt et al. (1992), the present work takes
a more general three-dimensional view of the scattering of neutrons from the vortex

lattice (see the discussion at the end of section 15).
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wavelength spread and beam divergence, are evaluated. First, their effects are dealt
with separately by considering how each contributes to the region of reciprocal space
accessible in a single measurement; to where on the detector this region is mapped;
and how the rocking curve is affected by each. Next, their combined effect is exposed
in terms of the resolution function, which maps a single point in reciprocal space onto

the detector.

Figure 2.5 provides a means to examine finite-resolution SANS. The first resolu-
tion effect to be considered is wavelength spread, which is illustrated in figure 2.6 for
the generalised vortex lattice plane described above. The dashed scattering triangle
corresponds to a wavelength shorter (larger k;,,) than the solid triangle, which denotes
the nominal wavelength. It is easily seen that the former surveys a larger-radius circle
of reciprocal space than the latter. In reality, there is a distribution of wavelengths
thus the accessible region of reciprocal space will be crescent-shaped rather than the
idealised Ewald circle shown in the previous section. However, the cones of scatter
from each wavelength all subtend the same angle. Therefore, the scattering from the
crescent region of reciprocal space is distributed over a single circle on the detector as
shown in the bottom right diagram of figure 2.6. In this way wavelength spread con-
volves the scattering from g-vectors with the same gy, but different ¢,.. Note though,
that for fixed rocking angles wavelength spread alone cannot smear the scattering from
a given g-vector over the detector. This only occurs for a combination of wavelength
spread and beam divergence (see the resolution function later in this section) or if data

at different rocking angles are added (see below).

Wavelength spread plays a crucial role in determining the width of the rocking
curve of a reciprocal lattice vector. Differentiating Bragg’s law gives d6/0 = d\/\.
Therefore although beam divergence is often the dominant instrumental contribution
to rocking curve width, the constant fractional spread due to the velocity selector (nor-
mally about 10%) becomes more important with increasing ¢ because beam divergence
gives a constant absolute spread. Furthermore, as the sample is rocked through the
Bragg condition for the mean wavelength, the position of the diffracted spot will move
radially outwards; figure 2.7 illustrates the idea. The upshot of this is that scatter-

ing from a single point in reciprocal space will give a radial smear of intensity on the
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detector when summed over a rocking curve even for a perfectly collimated beam.

27T TS

/
/ \
q
Reciprocal vortex lattice plane l/_\ )
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Detector

2SqetW

Fig. 2.6: Scattering from two different wavelengths for a sample rocked by w
(¢ ignored for clarity). Shown on the left are the two scattering cones and on
the right are diagrams equivalent to figure 2.5. The two different wavelengths
see different parts of reciprocal space given by the locii q and q'. However,

when projected onto the detector both cones of scatter coincide.

"_’J?’Q__

kin

Fig. 2.7: The effect of wavelength spread on the rocking curve. The dashed
triangle represents the rocked on case (for A,) and the solid triangle is the
scattering from the same g-vector rocked off slightly. In the latter case a
longer wavelength satisfies Bragg’s law and the scattering angle is increased

commensurately.

The second instrumental contribution to resolution is beam divergence, which may
be described by two angles, a and (3, that quantify the direction of a given neutron
wavevector by rotations about the vertical and horizontal axes (respectively) relative
to the nominal beam. The resolution effects associated with beam divergence are

demonstrated in figure 2.8. On the left diagram of that figure the vortex lattice plane
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normal is rotated by the rocking angle w away from the nominal beam direction, kjj,.
Also shown is another neutron wavevector, k! , with the same wavelength as k;,, but
at an angle « to the latter. From this geometry, it is evident that the radius of the
circle in reciprocal space to which k!  is sensitive is just proportional to the sum w + «
in accordance with equation 13.4. Therefore, beam divergence resembles wavelength
spread in that it samples a crescent-shaped region of reciprocal space. However, in
contrast to the latter, the projection of this crescent on the detector is not just a circle
because each orientation of wavevector has a different cone of scattering. Instead, each
incident wavevector is scattered onto a circle of radius Sqet(w + @) centred at —sSqetcr.
(Note that the centre of the circle moves such that the Ewald circle encompasses zero-
q scattering which does not divert the beam.) Therefore the diffracted neutrons land
on an annular band on the detector. In this respect, beam divergence needs to be
treated with some care and does not, for example, simply correspond to sample rotation:
although in reciprocal space only relative orientations are important, the detector does
have an absolute measure of orientation — the nominal beam direction, which accounts
for the difference according to the detector between rotating the beam and rotating the

sample.

Like wavelength spread, at fixed rocking angles it is impossible for beam divergence
alone to give a diffraction peak radial width as it is forbidden by the Bragg condition.
(Although radial width may be effected when they act in concert — see below.) How-
ever, Bragg’s law makes no proscription concerning scattering tangent to a reciprocal
lattice vector and is in fact automatically satisfied by any degree of divergence per-
pendicular to G. Physically, divergence perpendicular to G corresponds to rotating
the scattering triangle about G, which obviously cannot cause a violation of Bragg’s
law (see figure 2.10); this idea is fleshed out more mathematically in the derivation of
the resolution function (appendix A). Thus a diffraction peak may be endowed with
tangential width. Here collimation has found a niche as there in no mechanism by

which wavelength spread can influence the tangential width of a Bragg peak.

From the point of view of the rocking curve, beam divergence gives scattering over
a range of rocking angles just like wavelength spread, though the effect is somewhat

different as shown in figure 2.9. If the sample scatters the nominal wavevector of
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wavelength )\, by 26 when rocked on, then when it is rocked off by dw the component of
the beam that scatters is that propagating at dw to the nominal beam. This wavevector
will be scattered by 20 + dw, in contrast to the 2(f + dw) obtained with wavelength

spread.

m \‘
I\
1
6} U 2hin 1 2hin(w + )
/
\\ L’

~

-— -

Reciprocal space

— Sdet (Y Sdet (2w + )

2SqetW

Detector
Fig. 2.8: A schematic showing the effect of beam divergence on resolution. The
nominal beam has been rocked by w and the divergent beam is at an angle
a to it (see left). (Both wavevectors are equal in magnitude.) The circles
sampled in reciprocal space and scattered to (on the detector) are shown in

the top right and bottom right diagrams respectively.

Fig. 2.9: The impact beam divergence has on the rocking curve of a g-vector.
The dashed triangle is taken as the centre of the rocking curve and the solid
triangle corresponds to the sample rocked by dw. The wavelength of both
scattering triangles is the same. Hence the component of the beam giving
scattering in the rocked off case is rotated relative to the main beam by dw.

The scattering from this wavevector is 260 + dw.
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Wavelength spread and beam divergence are the two instrumental parameters that
define the resolution in a SANS experiment. Their combined effect is to “smear” a point
in reciprocal space over the detector both radially to q (a combination of wavelength
spread and beam divergence) and tangentially (beam divergence only). Figure 2.10
illustrates this process in one dimension. The nominal beam is rocked on to the g-
vector giving scattering at 260 = 2w relative to the nominal beam direction. A larger
wavelength (smaller k;,) neutron may also satisfy the Bragg condition if the beam
divergence angle, «, is such that the Bragg condition is satisfied. That neutron will be
scattered by 2w+ « relative to the nominal beam direction and therefore the diffraction
peak will have a radial spread. In two dimensions, the diffraction peak will also have
a tangential spread as discussed above. This is easy to appreciate by inspecting figure
2.10 since rocking tangentially to q (i.e. out of the page) satisfies the Bragg condition
(equation 13.4) for arbitrary rocks.

Fig. 2.10: Geometry for scattering off a single q-vector by neutrons with
different wavevectors. The solid scattering triangle represents scattering of
neutrons with the nominal wavelength, A, , directed at an angle w (the rocking
angle) to the sample. The dashed triangle represents scattering from the same
g-vector of neutrons of a larger wavelength at an angle o to the nominal beam.
The latter neutrons are scattered by 260’ = 2w+« relative to the nominal beam
direction (k;y)

The resolution function for SANS is computed in appendix A in two dimensions for
arbitrary w and ¢ (i.e. not necessarily rocked on). Performing the calculation requires
knowledge of the form of the distributions in wavelength and beam divergence. In
principle these may be measured, but it is often sufficient to assume that they are

Gaussian, which have the advantage of mathematical convenience because they are
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easily integrated:

()‘ - )‘n>2

P(\) o exp (— 5.2 > , P(d) xexp(—d-D-d). (14.1)
A

Here, d = («, 3) is the beam divergence vector and the beam anisotropy is given by
the matrix D, which is taken to be diagonal (since the principal axes of the instrument
are horizontal and vertical). The general resolution function describing scattering from

a two-dimensional g-vector (¢, gp) (using polar coordinates) is given by:

1 4

2
Rq(0z,0y) ocexp | —=—5 | — (20, cosqg + 20, sin gy —wcos gy — ¢singg) — Ay
20% r

1

X exp <——2 [Qx(sin2 go — cos? q0) — 26, cosgpsingg + w cos® gy + ¢ cos gg sin qe] 2>
O-Oé
1

X exp (—0—2 [09(0052 qo — sin® qg) — 26, cos g sin gy + ¢sin® gy + w cos gg sin qe} 2) )
B

(14.2)
where (6,,0,) are the scattering angles and o; (i € A, «, ) are the widths of the
distributions.

To see the effect of resolution, consider scattering from a g-vector with g9 = 0 at
¢ = 0. A much simpler equation results, which is easier to interpret:
Re(62,0,)  exp (-% [4—”(2990 )] - Lo a 0—5;) C(143)

205 | qr o2 o5

Here @ is the value of w that satisfies the Bragg condition for the mean wavelength,
An, and dw is some arbitrary deviation from this angle. Equation 14.3 comprises three
terms: the first two define the radial width and the last term contains the tangential
dependence. The radial and tangential factors are plotted in figures 2.11 and 2.12
respectively. From equation 14.3 it is clear that the contributors to radial spot-width
(wavelength spread and horizontal beam divergence) modulate each other and the net
width is dominated by the narrower of the two distributions. This is reflected in figure
2.11 in which the width is significantly smaller than the beam divergence and in fact

is attributable to the 1 A spread in A, which in angular terms is equivalent to 0.05°%.

* The width of the X\ distribution measured in the same units as beam divergence

(i.e. radians) is obtained by dividing by the factor 47 /q.
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Fig. 2.11: The radial part of equation plotted using the values A, = 10 A,
qr = 10 mA‘l, oy = 1A and o, = 0.1°. The black curve corresponds to being
rocked on (w = 0.46°) and the red curve corresponds to being slightly rocked
off (w=0.6°).
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Fig. 2.12: The tangential part of equation 14.3 plotted for og = 0.1°. In the
inset is shown a two-dimensional plot of the full resolution function using the
w = 0.46° of figure 2.11.

Also shown in figure 2.11 is the effect of rocking on the spot position measured
on the detector. In this regard there are two clearly identifiable limits: the limit of
perfect velocity selection (o, — 0, thus the first term is dominant) and the limit of
perfect collimation (o, — 0, hence the second term prevails). In either case, the spot

will be shifted according to the mechanism associated with the widest distribution.
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For example, by inspection of equation 14.3 it is clear that when rocked off the Bragg
condition by dw good collimation favours a “A-type” spot shift of §6 = dw (see figure
2.7). In contrast, the shift bestowed when wavelength is well-defined is just half of the
latter: 00 = 0w/2 (see the “beam divergence-type” shift in figure 2.9). In figure 2.11
where the wavelength distribution is comparatively narrow, the shift of the rocked off

(red) curve is about dw/2 ~ 0.07°.
15. Effects of imperfections on resolution

The final resolution effect to be discussed is due to the sample itself. Though not
a strictly extrinsic source, the sample gives rise to similar effects as the instrumental
agents. To understand this, consider the differential cross-section, which is proportional

to the Fourier transform of the auto-correlation function of B(r):

j—g x B(q)B(—q) = F{B(r) ® B(r)}. (15.1)

If the correlations of the vortex lattice along the induction (the z-axis) are independent
of those perpendicular to it then the differential cross-section may be factorised as
B(q)B(—q) = B(duy)B(—qzy)B(q.)B(—q.). Physically, this corresponds to a vortex
lattice whose vortex lines meander through the sample without affecting the in-plane
structure; thus, it may be thought of as a “mosaic” of crystallites with some distribution
of orientations (see figure 2.13). The resulting reciprocal vortex lattice is quasi two-
dimensional. In other words, the two-dimensional lattice structure is retained, but the
spots now have some out-of-plane width.

Independence of correlations along the induction from those perpendicular to it
is not a good assumption to make in general. For example, pinning certainly does
not adhere to this ideal since the displacement of a vortex to accommodate a pinning
site involves all the elastic moduli of the vortex lattice, not just the “tilt” modulus.
Isotropic systems are particularly susceptible because there is no mechanism by which
in-plane orientation is enforced and the shear modulus is substantially smaller than the
tilt modulus (Brandt, 1995). So in general, reciprocal space ought to be considered
in truly three-dimensional terms, cf. the Vortex glass state in section 9, and lattice

effects cannot rigorously be described in the language of resolution. However, there
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are cases when reciprocal space may be reduced to the quasi-two-dimensional space
described above, e.g. when there is a macroscopic curvature of the applied field or
a small demagnetisation effect in a sample with low pinning. This is demonstrated
in figure 2.13, where the magnitude and in-plane orientation of the reciprocal lattice
vector, G, is unchanged, but it gently tilts as a function of position along the induction

axis.

Gnominal

Bapplied /\_—_/

Fig. 2.13: An illustration of mosaic spread in the vortex lattice. The vortex

lines meander along the field direction giving rise to a distribution in orienta-

tion of q along the vortex lines.

In figure 2.14 is shown the consequence of vortex-lattice mosaic spread on resolution
in SANS. A neutron of wavevector k;, may be scattered off any of a distribution of
reciprocal vortex-lattice planes, each with identical in-plane structure. The length of
the in-plane reciprocal lattice vector grows in proportion with the angle v, by which that
scattering plane differs from the nominal plane direction. For example, in figure 2.14 k;,,
can be scattered by either q (small Ewald circle) or ' (large Ewald circle). Therefore
mosaic spread acts similarly to instrumental effects in that it causes a crescent shaped
area of the vortex reciprocal-lattice plane to be sampled (top right of figure 2.14).
The crescent maps onto another crescent on the detector (bottom right of figure 2.14),
in contrast to both beam divergence and wavelength spread. Note that each circle of
scatter on the detector passes through the undiffracted beam as expected (bottom right
diagram of figure 2.14).

Mosaic spread has an identical impact on rocking curve width as beam divergence.
This transpires because both cases correspond to a relative rotation of sample and
beam. However, unlike beam divergence mosaic spread does not cause a diffraction
spot to move during rocking. For a well-collimated monochromatic beam, rocking a

mosaic simply moves the reciprocal lattice vector, G, of a different two-dimensional
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crystallite onto the Ewald sphere. Since the different G-vectors are all related by
rotation in this sense, the resulting scattering triangles are all identical. An illustration
is shown in figure 2.15 in which rocking the sample to get any of the dashed/dotted

G-vectors to satisfy Bragg’s law will leave the scattering triangle unchanged.
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Fig. 2.14: An illustration of the contribution of mosaic spread to resolution.
Neutrons of wavevector k;, are diffracted by two different g-vectors corre-
sponding to two different orientations of Bragg planes. One Bragg plane is
the nominal Bragg plane (rotated by the rocking angle, w, from parallel to

kin) and the other is at an angle v to the latter.

Distribution of
_" G-vectors

0

kin

Fig. 2.15: Effect of mosaic spread on the rocking curve. The Bragg condition
is satisfied by a range of G so the rocking curve width is increased, but all of

these form the same scattering triangle therefore the peak intensity does not
shift.

Mosaic spread may also be incorporated into an expression for resolution in the
quasi two-dimensional limit, which was achieved by Cubitt et al. (1992). They have

calculated the radial spot width including the effects of mosaic spread. Furthermore,
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they have allowed for a variation in the d-spacing in their sample, which is easily
done because it has precisely the same effect as wavelength spread and the two can
be combined in quadrature. In this respect their expression is not really a resolution
function like equation 31.10, but it is arguably more useful as it predicts the radial
width of the spot in terms of the wavelength spread, beam divergence and sample
characteristics. Since the former two can be measured, intrinsic sample properties can

be deduced from the spot width.
16. Summary of resolution considerations

In common with most experiments dealing with scattering from condensed matter,
it is vital in SANS that decisions involving the set-up of the instrument are tailored
towards the measurement. Since wavelength spread is normally fixed to around 10%,
these decisions generally boil down to the choice between low flux and high collimation
or vice-versa. In this section, the concepts of the previous few sections are summarised
and paraphrased into a loose set of rules governing best practice.

A pictorial summary of how each of the agents involved in resolution affect the mea-
surement of correlation lengths is shown in figure 2.16. The three correlation lengths
of interest are: the radial correlation length (d¢raq), which corresponds to a variable
d-spacing in the sample; a tangential correlation length (dgtang), which quantifies ori-
entational order (with respect to rotations of the vortex lattice about the induction);
and an out-of-plane correlation length (0¢norm ), which in this scattering geometry mea-
sures the meandering of the vortex lines along the direction of the induction (see figure
2.13). Measurements of these intrinsic length scales will be contaminated by extrinsic
sources. For example, the radial and out-of-plane correlation lengths will both be con-
volved with beam divergence and wavelength spread and together these determine both
the radial width on the detector and the rocking curve width in a rather complicated
way described in the previous two sections.

To measure the radial and out-of-plane correlation lengths via the rocking curve
width using the expression due to Cubitt et al. (1992) the collimation should be set
to a sufficiently high degree such that the width of the rocking curve is not resolution

limited. However, not much is to be gained by going below the width due to wavelength

o6



spread because this sets the minimum extrinsic width of the rocking curve and neutrons
will be wasted.

If the radial spot width is used to deduce the correlation lengths then the choice
of collimation is largely arbitrary because, from Bragg’s law, the radial spot width
cannot be larger than the narrowest of the distributions contributing towards resolution.
Nevertheless, using this technique requires performing a rocking curve to establish the
Bragg angle so it is still worth setting the collimation to be comparable in effect to that

of wavelength spread.

Reciprocal vortex-
lattice plane OQnorm

5(]tang

o 4 dgraa

Fig. 2.16: The measurement of correlation lengths in different directions. The
radial and out-of-plane correlation lengths, d¢;aq and dgnorm, both lie in the
scattering plane and hence convolve with wavelength spread and radial beam
divergence to define the radial spot width and rocking curve width. The
tangential correlation length, dgang, is convolved with the tangential beam

divergence to give the tangential spot width.

Only if good tangential resolution is required is it worth increasing the collimation
any further. The tangential correlation length will be convolved with the beam diver-
gence to give the measured tangential width on the detector and wavelength spread
plays no role at all. On occasion it may be worth sacrificing neutron flux if, for ex-
ample, the diffraction pattern consists of many domains and resolving spots becomes
an issue. Though in general, if good tangential resolution is needed it may be worth
performing the experiment in the geometry where the field is applied perpendicular to
the incoming beam. In this geometry, the scattering triangle (figure 2.16) lies in the

plane containing the reciprocal lattice vectors and diffraction peaks that were separated
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by only a few degrees azimuthally on the detector are now separated by a few degrees
in rocking angle.

Once the instrument has been set-up and the appropriate resolution realised, it is
useful to have a picture of how much of reciprocal space the diffractometer is sensitive
to in any given measurement. The net effect of the three contributions to resolu-
tion (wavelength, collimation and mosaic spread) described above is to sample a finite
crescent-shaped region of reciprocal space. The function S),we(¢z,qy) describing this
has been calculated assuming Gaussian distributions of the relevant quantities (see ap-
pendix B). A plot of Sy, w¢(gz,qy) for a rock in ¢ from —0.8° to 0.8° in 0.2° steps
is shown in figure 2.17. The other angle (w) is fixed at zero for the duration of the
rock and A, = 10A. The wavelength spread is chosen to be 10% and the standard
deviations in beam divergence and mosaic spread (both horizontally and vertically) are
all 0.14°. The figure demonstrates clearly the “fuzzy” Ewald sphere sweeping through
the “fuzzy” vortex lattice plane and at each rocking angle a distribution of the in-plane
structure is sampled. The last plot (bottom right) is of the sum over the entire rock
from which it can be seen that any diffraction peaks lying along the horizontal (i.e.
orthogonal to the direction of rocking) are well illuminated. This is an example of the
virtue of poor resolution in that it allows many Bragg peaks to be observed simultane-
ously. Indeed when working at low inductions — and hence low ¢ — it is often sufficient
to measure at w = 0 = ¢ if only structural information is sought. However, at high
q the temptation to use poor resolution as an economy is best avoided because of the
shifting of spots as a function of rocking angle, which will give false structural informa-
tion. Indeed, it is normally well worth rocking through a diffraction peak rather than
making an educated guess of the Bragg angle (e.g. by assuming an isotropic triangular

vortex lattice) and measuring there.
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Fig. 2.17: Plots of the reciprocal space sampling function (arbitrary) units
for the sequence ¢ = —0.8°, —0.6°, —0.4°, —0.2°,0°,0.2°,0.4°,0.6°,0.8°. The
other parameters are w = 0, A = 10A, o), = 1A, o¢c = 0.2° = g, (see appendix

B). Bottom right plot is the sum of plots. The plot axes are in mA~1.
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17. Other probes of the vortex lattice

SANS is not the only weapon in the vortex physicist’s armoury. A plethora of
other techniques are employed, each with their own advantages and disadvantages with
respect to SANS. In this section, a brief review of a selection of these techniques and
their application to structural studies of the vortex lattice is presented.

One strategy for extracting information about the vortex lattice is to look for its
effect on macroscopic sample properties. Near a vortex structural phase transition a
jump in the free energy or its derivative is expected. Thus the measurement of a ther-
modynamic quantity, such as heat capacity (Cy = —T(9°G/0T?)y) or magnetisation
(M = —(0G/0H)r), may pin-point the location of a structural phase transition in
reversible (low pinning) samples. For example, Park et al. (2005) have recently used
both magnetisation and specific heat measurements to identify a re-entrant triangular-
square-triangular phase transition in the vortex lattice of LuNiyBoC. (This type of
transition, common in the borocarbides, is related to non-local effects — see section 7).
Magnetisation has also been exploited in identifying vortex lattice melting in high-T,
materials (see, for example, Zeldov et al., 1995). So too have thermal measurements: in
YBayCu3zO7_s, Schilling et al. (1997) have used a differential heat-capacity technique
to establish the melting line. (Vortex lattice melting in high-T, materials is first-order
and is manifest by a peak in both the magnetisation and the heat capacity.)

In non-reversible samples, features in the magnetisation may also indicate a vortex
matter transition. A second peak in the irreversible part of the magnetisation curve
can be attributed to a sudden increase in pinning (section 9). Such peaks have been
observed in YBayCu3zO7_s (Deligiannis et al., 1997) and BisSroCaCuy0g (Khaykovich,
1996) and were attributed to a transition from weak disorder (Bragg glass) to strong
disorder (vortex glass). The magnetisation data are supported by resistivity measure-
ments (e.g. Shibata, 2002), which provide a good measure of the strength of pinning.

The principal drawback to thermodynamic and transport measurements is that
although they can provide useful information (such as the order of a phase transition),
they do not measure the vortices directly. Therefore any interpretation regarding the
nature of the transition is subject to speculation and inference. For example, Rosen-

stein and Knigavko (1999) have interpreted the second peak in the magnetisation of
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YBayCuszO7_s5 as due to a structural phase transition (from distorted triangular to
square) in the vortex lattice, which softens the vortex lattice and hence increases the
propensity for it to pin. In such instances, structural information gleaned from SANS

can resolve ambiguities (see chapter III).

Vortices may be imaged directly using a class of local magnetic probes (see Bend-
ing (1999) for a review). Amongst these techniques is the so-called Bitter decoration
technique which was used by Essman and Traiible (1967) to see vortex lines on the
surface of a type-II superconductor. The Bitter decoration technique works by deco-
rating with a fine magnetic powder the ends of vortices as they emerge from the sample;
an electron microscope is then used to study the resulting pattern. This enables the
structure of the vortex lattice to be examined over a small surface region (=~ 30 x 30
vortex lines), which reveals both the local coordination and the presence of pinning
centres and dislocations. At larger scales, magneto-optical imaging provides similar
information. It relies on the Faraday rotation by the local magnetic field of a circularly
polarised light beam passing through a magneto-optical layer deposited on the sample
surface. Although it cannot be used to image individual vortex lines, it can discern

microstructural features such as domains or flux penetration at sample edges.

Other local magnetic probes work on the principle of scanning rather than imaging.
These include scanning hall-probe microscopy and magnetic force microscopy (Bending,
1999). Scanning hall-probe microscopy is particularly useful in that it directly measures
the local field profile at the sample surface. (Magnetic force microscopy also, in prin-
ciple, measures the local field, but obtaining it from the raw data is more difficult due
to the complex magnetic interaction between the sample surface and the microscope
tip.) However, all these local probe techniques (scanning and imaging) suffer from the
constraint that their spatial resolution is poor (particularly true for magneto-optical
imaging). They are therefore limited to low field studies which renders many of the
phase transitions associated with unconventional superconductivity or non-local effects
inaccessible. The fact that they only measure the vortex lattice at the surface (not the
bulk) and only sample a small region are additional objections that may favour the use

of SANS for structural studies.

Scanning tunneling microscopy (STM) is a local technique that is not constrained

61



to low inductions. STM measures the differential conductance as a function of sample
bias and is essentially a spectroscopy of the quasi-particle states. In the bulk (where the
order parameter is constant) the differential conductance will exhibit a peak at a bias
equivalent to the superconducting gap. However, inside a vortex core there are bound
quasi-particle states (with energy ~ A2%/2FEgr) and STM can also probe these states
(Hess et al., 1990). By scanning the tip of the microscope at a fixed bias corresponding
to these bound states, a map of where the vortices lie can be obtained. STM has
atomic resolution therefore there is no practical limitation to the induction at which

this technique can be used.

Since STM measures the local density of states of quasi particles, it is quite comple-
mentary to SANS and uSR (see below), which are sensitive to the magnetic properties
of vortices. In particular, STM allows a more direct measurement of the symmetry of
the order parameter by its effect on the local density of states near a vortex core (see,
for example, Shibata, 2003a). In a fairly recent development Pan et al. (2000) have
investigated the vortex lattice in BiaSroCaCusOgys with a dilute concentration of Zn
atoms, which act as pinning centres. By performing separate scans over the surface at
energies corresponding to the vortex bound states and to the Zn impurities they were

able to obtain indepedent images of both the pinning centres and the vortices.

Despite its apparent superiority over other local probes, STM still suffers from
only being able to sample a small region of the surface, rather than the sample-averged
bulk measurements provided by SANS and uSR. However, STM remains a valuable tool
for structural studies and the spectroscopic information it also furnishes is a welcome

bonus, if not the principal reason for employing the technique.

Like SANS, uSR is sensitive to the magnetism of the vortices and is a bulk mea-
surement (see Sonier et al.(2000) for a review of uSR applied to the vortex lattice). In
1SR the muons incident on the sample are produced by pion decay with a kinetic energy
of roughly 4 MeV and their polarisation opposite to their momentum. After the muon
has come to rest (a process which is very quick and preseves spin direction) it precesses
in the local field according to its Larmor frequency, v, /27 = 135.5342 MHz. T~ until
it decays (with a mean lifetime of about 2.2 us). When it decays, the muon emits a

positron preferentially in the direction in which its spin was pointing. The asymme-
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try in emission allows muons to measure the local field. By implanting muons into
the sample at random positions* one by one and measuring by two (or more) oppo-
sitely placed detectors the asymmetry in emitted positrons as a function of time after
implantation, SR gives the probability density for local internal fields (known as the
lineshape). For example, consider the simple case of a uniform field applied to a sample
with no magnetisation. The muons all precess at the same frequency and therefore the
asymmetry spectrum will just be sinusoidal (after corrections for the muon lifetime,
which will multiply the asymmetry by an exponential damping term). If the field is
non-uniform (as is the case when a vortex lattice is present) then the sinusoidal asym-
metry spectrum will be depolarised. Inverse Fourier transforming the time dependent
muon polarisation measured in this way gives the muon lineshape, P(B). The form of
the lineshape depends on the details of the vortex lattice structure and, unlike SANS,
structural information cannot be immediately gleaned from the lineshape. Rather, it
is neccessary to calculate the lineshape from theory and compare.

Due to its relative simplicity, SANS would appear to be the experiment of choice for
most structural studies of the vortex lattice. There are, however, many occasions when
uSR measurements provide useful complementary information for SANS. One such
example is provided by the work of Kealey et al. (2000) in which both the magnitude
and the sign of the vortex lattice Fourier components in SroRuO,4 were deduced. SANS
alone cannot measure the sign of the Fourier component because the intensity of scatter
is proportional to the modulus squared, but by guessing the signs (or taking them
from theory) the real space vortex lattice can be reconstructed from which the muon
lineshape may be calculated and compared with experiment.

There are even instances when muon experiments are preferred to SANS. The
scattered intensity from SANS is proportional to A=* so SANS may not be viable
in samples with very long penetration depths. upSR, on the other hand, has much
less constraint as the penetration depth affects the width of the muon lineshape by

(B?) oc \74.

* Actually, the positively-charged muon is most likely to bind to a negatively-charged
ion, but this does not matter for vortex lattice studies because the intervortex distance

is much larger than the interatomic spacing. Therefore the field is sampled randomly.
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Another experiment that is worth mentioning — purely on the merit of its inge-
nuity — is the novel atomic-beam magnetic-resonance technique utilised by Hauglin et
al. (2003) to study the low-field vortex lattice in YBasCusO7_5. In these experiments
a thermal beam of 3°K atoms in the lower of two hyperfine-split levels is prepared by
optical pumping. Passing the beam over the surface of a type-1I superconductor in
the mixed state causes the atoms in the beam to experience a time dependent B-field
that drives the transition to the higher hyperfine state (f = 462 MHz). The probabil-
ity of transition depends upon not only the field distribution of the vortices (i.e., to
leading order the inter-vortex spacing), but also on the velocity of a given atom in the
thermal spectrum. Therefore, after passing through a Stern-Gerlach magnet, which
rejects atoms still in the lower hyperfine state the number of excited atoms needs to be
detected as a function of velocity. This is accomplished through resonant fluorescence,
which may be tuned to a particular velocity by the Doppler shift.

The atomic-beam magnetic-resonance technique suffers a number of disadvantages:
it only measures in one-dimension; is confined to low fields and only looks at the surface.
Its main advantage with respect to gaining structural information is that it is a sample-
averaged experiment. Furthermore, it is has one important advantage over SANS: it is

much more sensitive to the vortex lattice close to Tk.
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CHAPTER III

VORTEX LATTICE TRANSITION IN YBCO

18. Introduction

In this chapter the main results of the thesis are presented. The principal result
is the observation by SANS of a field-induced transition to square coordination in
the vortex lattice in a fully oxygenated sample of YBasCuzOr7_s (YBCO). This has
been supplemented by additional measurements on the dependence of this transition
on temperature and applied field direction.

The motivation for the measurements has been provided by the need to understand
how the unconventional nature of d-wave superconductivity in materials such as YBCO
affects the vortex state. There has been much theoretical speculation concerning the
stability of the square vortex lattice in d-wave materials and these measurements are
amongst the first to corroborate the theoretical investigations; other similar investi-
gations have been carried out on Laj g7Cag17CuO4 (Gilardi et al., 2002), CeColns
(Eskildsen et al., 2003) and Nd; g5Ceq.15CuOy4 (Gilardi et al., 2004 and section 29 of
this thesis).

Very much related to d-wave anisotropy are non-local effects in s-wave materi-
als (see section 7). Here too are often seen unconventional square vortex lattices.
In high-T. materials, both d-wave and non-local effects are, in principle, at play. In
La; g7Cag.17CuQy it appears that the Fermi surface anisotropy is sufficient to counter-
mand the order parameter anisotropy (Gilardi et al., 2002).

This chapter will begin with a brief overview of the properties of YBCO* and

previous measurements of the vortex lattice therein, with emphasis placed on structural

* See, e.g., Waldram, 1996 and Burns, 1991 for a more elaborate account of the
material presented there including similar material on high-7T, materials in general.

The material presented in section 19 is intentionally biased towards vortex physics.
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studies of static vortex lattices. Next, the experimental results and data analysis will
be presented in detail, starting first with the field-dependent transition before exploring

the other directions of parameter space, namely temperature and field angle.
19. YBCO: history and basic properties

YBCO is one of the most famous and well-studied members of the family of high-
temperature cuprate superconductors. The first high-temperature (high-T;) supercon-
ductor to be discovered was Lag_5SrsCuO4 (Bednorz & Miiller, 1986), which when
optimally-doped has a T, of 30 K. YBCO was discovered by Wu et al. (1987) about
one year later and its relatively high T, of 93 K (at optimal doping) is partly responsible
for its ubiquity in studies of high-T. materials. In addition to its high 7., YBCO is
also renowned for its extremely large H.o, which, depending on oxygen doping, can
easily exceed 100 T with the field applied parallel to the crystal c-axis. Such figures
are typical of high-T,. compounds and are indicative of the large values of x in these
materials.

With such favourable superconducting properties relative to low-7, materials, it
might seem surprising that high-7. compounds have failed to encroach into some of
the areas of application of superconductors (such as superconducting magnets, for in-
stance). A significant obstacle to this goal is their crystal structure: they are all ceramic
materials (perovskites), which are neither malleable nor ductile and extremely difficult
to synthesise as wires on an industrial scale. Nevertheless, the remarkable properties
of high-T,. superconductors arise out of their complicated structure and therefore an
appreciation of the complex crystallography is essential.

Figure 3.1 shows the crystal structure of YBay;CuzOg and YBayCusO; (Burns,
1991). Both have a perovskite-like crystal structure consisting of CuOs planes separated
by BaO or Y layers. These two compounds sit at opposite ends of the oxygen doping
scale of the parent compound, YBayCu3Og. The electronic properties of YBCO are
dominated by the CuOs planes, which form electronic states due to the overlap of the
3d orbitals of copper and the 2p orbitals of oxygen; the remainder of the electrons may

be neglected as they are too strongly involved in ionic bonding*. In YBasCuzOg, which

* An exception is electrons from dopant atoms (e.g. Ca in Las_5CasCuQOy). These
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is tetragonal, there is one hole per CuOs plane per unit cell, but at low temperatures
it is an insulating antiferromagnet. This is the so-called Mott insulating state and
it occurs in systems with low carrier density where Coulomb repulsion overcomes the
desire to form a Fermi liquid with a partially-filled band.

When oxygen is added to YBasCusOg, they occupy sites interstitial to the Cu
atoms sandwiched between the BaO planes. For large enough concentrations of these
oxygen “impurities” two things occur. Firstly, it causes the compound to become or-
thorhombic (at low temperatures) and in doing so forms the CuO chain structures
running parallel to the crystal b direction. The very slight orthorhombicity, which sets
in below about 500°C, is responsible for the appearance of twin planes (see section 9
and Forgan et al., 1998b). The formation of twin planes may be suppressed by apply-
ing uniaxial pressure to a sample along one of the basal plane axes in the tetragonal
phase and maintaining the pressure during cooling. The uniaxial pressure causes the
b-direction to form preferentially perpendicular to the force applied; this trick may be
applied to “de-twin” other cuprate superconductors.

The second effect of the extra oxygen atoms is electronic in nature. Since the
oxygen atoms form O?~ ions, each oxygen takes two electrons that come from changes in
valence of the copper atoms. This creates holes and thus alters the electronic properties
of YBCO profoundly. As ¢ is decreased from 1 to 0, YBay;Cu3zO7_s evolves from a
low-temperature antiferromagnetic ground state to a superconducting ground state,
which appears at around § = 0.4. At this point the Néel temperature collapses and
T. begins to rise. (The maximum value of T, occurs at around 6 = 0.04.) Such
behaviour is common to all cuprate high-7, materials and in this doping regime the
normal state appears to be metallic, but in a quite unconventional sense as it does not
fit nicely into the Fermi liquid picture of metals. For example, resistivity is found to
be linear in temperature above T.. That could easily be interpreted in terms of the
standard phonon-dominated scattering rate, but microwave measurements indicate that
the eletron-electron scattering is the dominant process (Schofield, 1999). The linear
dependence disagrees with the T2 scattering rate predicted by Fermi liquid theory.

However, a T2 dependence is observed in experiments on the Hall effect (Waldram,

types of non-oxygen dopants may also be substituted into YBCO (see section 30).
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1996). The apparent contradiction between resistance and Hall-effect measurements is
one of the outstanding problems in understanding the normal state properties of the

cuprates, which is seen as vital in gaining understanding of the superconducting state.

CuOyg chains

BaO

CuO4 plane
Y spacer
CuO4 plane

BaO

CuOyg chains

C

YBaQCU3OG t b YBagCu307
a

Fig. 3.1: The crystal structures of YBagCuzOg (left) and YBagCuszO7 (right).
The Y (@), Ba (@), Cu (O) and O (@) atoms are represented by spheres.
The lattice parameters for YBayCusOg are roughly a = 3.8A = b and ¢ =
11.6 A. In the fully oxygenated compound b is larger than a by roughly 1%.

Despite the difficulties in applying Landau’s Fermi liquid theory to YBCO, a band
theory description does have some success in explaining its electrical properties for
values of § close to zero. However, there is a paucity of good experimental evidence on
the Fermi surface due to the difficulty in measuring the de Haas-van Alphen oscillations.
(de Haas-van Alphen experiments need to be performed at low temperatures and hence
require very large fields to suppress superconductivity.) Photoemission experiments
(see Liu et al., 1992; Schabel et al., 1998a and 1998b) have led the way in this field
and, surprisingly, reveal good agreement with calculations based on an independent
electron model. The Fermi surface is found to consist of four pieces. Two of these are
roughly cylindrical hole surfaces and are mostly associated with the CuOs planes. An
example of one of these surfaces is shown in figure 3.2. Within a tight binding picture,

the distortion of this surface from a perfect cylinder is due to anti-bonding overlaps
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forming S. As a result, the anisotropy of the Fermi surface velocity is such that it is
large along the (100) and (010) directions compared to the (110) direction. This is
relevant in vortex physics because non-local corrections to the London theory depend
upon the anisotropy of the fourth moment of the Fermi velocity (see section 7), which
is non-zero for the type of distortion shown in figure 3.2 since 3(vg ,vg ) # (vg ).
The other two pieces are associated with the CuO chains. The presence of the
CuO chains gives rise to non-zero anisotropy of the second moment of the basal plane
Fermi velocity. (The highly schematic Fermi surface shown in figure 3.2 has an isotropic
second moment of Fermi velocity, i.e. (vp,) = (v ,).) This has an impact upon the
vortex lattice even within the simple local anisotropic London theory (section 3) and the
penetration depth along a and b will be unequal as a result of the fact that vp , < vp .
Measurements of the anisotropy of penetration depth, Yap, (72, = ma/myp) typically

give values of around 1.2-1.4, depending on the degree of doping (see, for example,

Dolan et al., 1989; Sun et al., 1995 and Wang et al., 1998).

r X

Fig. 3.2: Schematic of one of the cylindrical hole Fermi surfaces in YBCO.
The points I', X, Y and S define the vertices of the first Brillouin zone.

None of these pieces of Fermi surface has much dispersion along the k, direction,
which is reflected by the rather two-dimensional character of YBCQ’s electrical prop-
erties. Indeed the effective mass is much larger along the c-axis than along a or b.
Typically v, = 5, which translates to an effective mass anisotropy of 25 between the c-
axis and basal plane. The large c-axis effective mass can have an even greater effect on

the vortex lattice than the basal plane anisotropy (see the next section and references

69



therein).

In its superconducting state, YBCO exhibits typical high-T. behaviour, i.e. large
H. and a large x (= 100). As a consequence of the latter, the penetration depth
is long (Agp =~ 150nm) and the coherence length is short (£,, =~ 2nm). The su-
perconducting properties of YBCO are heavily influenced by the electronic structure
described above. The coherence length displays a similar degree of anisotropy as the
penetration depth and is typically very short along the c-axis ({, ~ 0.5nm). Al-
though short, it is still considerably larger than the distance between CuO, planes and
hence YBCO is nowhere near as two-dimensional as other high-7,. superconductors
such as Lag_sSrsCuOy4 (LSCO) or BiySroCaCuyOgys (BSCCO) (which is particularly
anisotropic). Therefore, vortices in YBCO may be regarded as fully three dimensional
objects over a large field range and there is no need to consider the Josephson cou-
pling between adjacent planes as is done in the Lawrence-Doniach model (Lawrence &
Doniach, 1971). In contrast, the vortices in BSCCO are more weakly coupled between
adjacent planes and can decouple into “pancake” vortices at sufficiently high fields
(Cubitt et al., 1993).

Another important property of YBCO vis-a-vis the vortex lattice is the uncon-
ventional nature of the superconductivity and the non-s-wave symmetry it confers.
Measurements by Tsuei et al. (1994), which show a non-integer multiple of the flux
quantum threading a specially arranged junction of three crystals, assert that YBCO
is a d-wave superconductor. There is more or less a consensus on the d-wave nature,
but there are still detractors. Miiller (2002) has suggested that d-wave effects in high-T,
materials are a surface phenomenon and that high-7T, materials are in fact bulk s-wave
superconductors. This has some support from measurements of the penetration depth
in YBCO using muons (Harshman et al., 2004), but the general view seems to be in

favour of d-wave pairing.

20. Vortex lattice structure in YBCO

To date there have been numerous structural investigations of the vortex lattice
in YBCO at low fields. Amongst the first of these is the decoration experiments by

Gammel et al. (1987), which show a well-ordered triangular lattice at low fields. These
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measurements have been improved upon by Dolan et al. (1989) who, using the same
method, were able to extract the anisotropy in the basal plane (7., = 1.15+0.02) and
the anisotropy of the basal plane with respect to the c-axis (4. = 5.5 £ 1).

In 1990 YBCO became the first high-T, vortex lattice to be investigated by SANS
(Forgan et al., 1990). The success of this and many subsequent neutron studies on the
intrinsic behaviour of the vortex lattice has been fuelled by the availability of good-
quality single-crystal samples of YBCO — in particular, samples free from precipitates
and impurity phases, which may obscure the intrinsic structure of the vortex lattice by
inducing disorder (see section 9) or stymie SANS measurements by giving too much
background (see the guidelines laid out in section 12). However, even good-quality
crystals of YBCO contain twin planes and vortices are very susceptible to pinning by
these (section 9 for an explanation of pinning due to twin-planes). When the field is
applied parallel to these extended planar defects, a four-fold diffraction pattern ensues
due to pinning along the {110} (twin plane) directions, which when viewed along the
(001) direction has four-fold symmetry in the approximately tetragonal crystal. This
can be very pronounced in heavily twinned samples and they often appear to have a
square vortex lattices as was demonstrated by Yethiraj et al.(1993a). In the same study,
it was shown that by rotating the field away from parallel to the c-axis the influence
of the twin planes is degraded. More recent SANS measurements (Simon et al., 2004)
have explored this effect further. In that study, the vortices were found to pin to twin
planes for rotations of the field away from the twin plane direction less than some
critical angle (about 10° in their sample). Beyond the critical angle the vortices were
found to meander through the sample, i.e. locally following a twin plane, but crossing
over to the next twin plane in order to keep the global direction of the vortex parallel

to the applied field.

Despite the inherent difficulties imposed by sample limitations, SANS has led
the way in understanding the intrinsic structure of the vortex lattice in YBCO. At
intermediate fields, where H.,; < H < H., a high-x superconductor like YBCO
would be expected to follow quite accurately the London model. (Recall that a large
k translates to small £ and large A. In this regime the intervortex spacing, ag, is large

enough for the order parameter to remain constant except for a small region ~ ¢ < ag
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near the core, but the spacing is small enough for the vortices to overlap magnetically
(A > ag) and therefore interact strongly.) Experimentally, the London model has been
reasonably well established at low fields, but there is evidence that this behaviour is

perturbed slightly by unconventional sources (see later).

An early SANS investigation of the vortex structure in YBCO was undertaken
by Yethiraj et al. (1993b). They observed the vortex lattice in a twinned crystal in
a modest applied field of 0.8 T. The value obtained for the c-axis anisotropy, V4., was
4.5 4+ 0.5, which is in agreement to that determined by decoration. Moreover, they
studied the variation of the vortex lattice anisotropy with angle of applied field from
parallel to the c-axis, to 80° to the c-axis. It was found that the anisotropy of the
vortex lattice varies with angle of induction as predicted by anisotropic London theory
(section 3). The orientation of the vortex lattice in this experiment was found not
to agree with that predicted by Campbell et al. (1988), but it was attributed simply
to twin plane pinning, which has a much stronger effect on orientation than does the
rather weak London correction. Therefore in lightly twinned samples (as opposed to
heavily twinned samples such as the ones used in the experiments by Yethiraj et al.
(1993a) and Simon et al. (2004)) the structure of the vortex lattice agrees with the

predictions of London theory, but the orientation is determined by twin-plane pinning.

Unfortunately, Yethiraj et al. (1993b) were unable to deduce ~y,, due to its small
value and the complications of twinning. The basal plane anisotropy has been measured
with SANS by Johnson et al. (1999) using a detwinned crystal. They obtained a value
of yap = 1.18 £ 0.02, which is similar to most estimates (see section 19), but note that
since basal plane anisotropy comes from the presence of the CuO chains, 7,, depends

strongly on the oxygen doping.

In addition to measuring the basal plane anisotropy, Johnson et al. were able to
observe the intrinsic orientation of some domains of the vortex lattice. With a field
of 0.5'T applied parallel to the crystal c-axis, they saw four well-formed vortex-lattice
domains, each with a distorted triangular configuration. Two of these originated from
residual twin-plane pinning and were “removed” by applying the field at a small angle
(1.5°) to the c-axis. (The domains pinned to the twin planes do not disappear; instead,

they form 1.5° away in rocking angle from those domains whose vortices are parallel to
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the applied field and can therefore be separated out of the diffraction pattern containing
the intrinsic domains.) The other two domains, which were found to be equally popu-
lated, were aligned with the crystal axes and their distorted triangular structures were
found to be static up to the highest field investigated (4 T). Consequently, Johnson et
al. concluded that these were entirely conventional London-like vortex lattice domains.
However, the fact that these well-ordered domains are both found to be oriented along
the crystal axes implies that they are not strictly conventional because there is no
preferred orientation in either the local London and Ginzburg-Landau theories. The
reason for this has already been discussed in the context of the London theory (see sec-
tion 3). In the Ginzburg-Landau theory it arises because the relevant interaction length
scales (A and &) scale in the same way with the anisotropy in the diagonal situation.
(If the anisotropies in A and £ were different then scaling away the anisotropy would
be impossible.) Although the exact nature of the alignment discovered by Johnson et
al. is unclear, it is presumably due to coupling of the vortex lattice with the underlying
crystal lattice and it therefore seems natural that both domains should align with the
major symmetry directions of the crystal.

More satisfying evidence for unconventional behaviour in the low-field vortex lat-
tice in YBayCu3O7_5 was found by Johnson et al. when they applied the field at an
angle to the c-axis. Here anisotropic London theory does make a prediction as to which
orientation the vortex lattice will favour (in addition to the effect on the structure of
coupling the large c-axis effective mass to that of the basal plane) (Campbell, 1988).
Although YBaysCu3zO7_; is biaxial, the argument outlined in section 3 still holds, but
the conclusion is slightly modified. The vortex lattice will still be oriented perpendic-
ular to the axis of rotation. However, this may not necessarily correspond to the short
magnetic direction because if a is the axis of rotation, then the effective mass given by
coupling the b- and c-axes may still be smaller than the effective mass along a. This
alignment was indeed observed at low fields (0.2T) by Johnson et al.. With a as the
axis of rotation they discovered a tendency for the vortex lattice oriented along b (or
its projection perpendicular to the field) to gain intensity with increasing angle, at the

expense of the a-oriented domain®. However, at higher fields (above 3 T) they observed

* Johnson et al. (1999) indulge in a confusing habit of describing a vortex lattice
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a transition from the predicted anisotropic London orientation to one where the vortex
lattice is oriented along the crystal a-direction. No explanation was offered by the au-
thors (and indeed, according to the present author, none has ever been forthcoming),
but it seems sensible to suspect that this effect derives from vortex core interactions,
which though negligible at low inductions, ought to become more important as the field
is increased and the vortices experience greater overlap.

Curiously, the results with b as the axis of rotation were less conclusive and only
a polycrystalline ring of scattered intensity was observed. This was attributed by
Johnson et al. to some unqualified effect of the CuO chains, but note also that in this
configuration the mixing of the c-axis mass with the a-axis mass enhances the basal
plane anisotropy making the penetration depth along the b-axis (i.e. perpendicular to
the predicted nearest-neighbour direction) significantly longer. Since the vortex lattice
elastic moduli are proportional to A=2 (Brandt, 1995) the vortex lattice should be softer
and the vortices more susceptible to disorder-induced displacements perpendicular to
the theoretical nearest-neighbour direction.

In summary, the results of Johnson et al. seem to imply a more-or-less anisotropic
London-like vortex lattice at low fields (< 4'T) in which the orientation is governed by
small perturbations. The work of Kealey et al. (2001) can be interpreted as broadly
agreeing with this assessment. In that experiment, the transverse field components
arising from applying the magnetic field at an angle to the c-axis (see section 3) were
measured by their ability to spin-flip neutrons. The sample used was the same as that
used in Johnson et al. (1999) and exhibited the expected anisotropic-London depen-
dence of vortex lattice distortion as a function of angle of applied field. However, the
magnitude of the transverse field components, which may be measured by the ratio of

spin-flip to non-spin-flip scattering, was found to be inconsistent with the values pre-

domain with, for example, a scattering vector, q parallel to the a-axis as being “a-
oriented”. This is not rigorously true: such a g-vector implies that a set of vortex
lattice plane normals are oriented along a; the vortex nearest-neighbour direction is
actually perpendicular to this. Such muddling of real and reciprocal space is avoided
here and vortex lattice orientation is defined in terms of a nearest-neighbour direction

in real space mot reciprocal space, unless explicitly stated.
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dicted by anisotropic London theory (Thiemann et al., 1989; Kealey et al., 2001) given
the measured value of v,. = 4.5. Reconciliation is possible, but only if a much larger
value of .. (about 50) is assumed. Kealey et al. pointed out that this discrepancy
could be due to the fact that the structure of the vortex lattice is frozen in at the
irreversibility temperature, which is rather higher than those at which the experiment
was performed. (It is the generally accepted dogma in SANS that experiments should
be performed at low temperatures where the penetration depth is shorter and, as a
consequence, the scattering stronger.) On the other hand, the transverse field com-
ponents will reflect more truthfully the intrinsic low-temperature behaviour, which, it

appears, is far more two-dimensional and unconventional than at high temperatures.

Not all measurements of the vortex lattice structure in YBasCu3zO7_s concur with
a London-like picture. For example, Keimer et al. (1994) believed they had found
evidence for unconventional behaviour, which they associated with gap anisotropy. This
was based on the observation of four oblique lattices (with an angle of 74° between equal
length lattice vectors) at fields of up to 5 T. Keimer et al. rejected the thesis that these
domains could be attributed to conventional triangular lattices that were distorted by
basal plane anisotropy and pinned by twin planes. Instead, they presented an argument
based on the flawed evaluation of the London Gibbs free energy as a function of angle
between reciprocal lattice vectors, which misleadingly showed an increasing instability
of the minimum (60° for an isotropic vortex lattice) with increasing applied field. They
wrongly assigned this to a failure of London theory to account accurately for their
data. That conclusion was refuted by Forgan & Lee (1995), who demonstrated that
the calculation of the Gibb’s free energy was tainted by numerical artefacts generated by
an inappropriate sharp cut-off. Walker & Timusk (1995) employed a simple argument
based on symmetry, which states that any orientation-favouring pertubation of an
undistorted vortex lattice cannot simultaneously give the alignment and the structure
in the distorted frame as seen by Keimer et al.. Instead Walker and Timusk claim, quite
correctly, that Keimer’s data can be interpreted simply in terms of mass anisotropy and
twin-plane pinning. More recent measurements (Johnson et al., 1999; Brown et al., 2003

and section 22) have reinforced these views.
Scanning tunnelling microscopy (STM) studies of the vortex lattice structure of
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YBayCu3zO7_s have also hinted at departures from simple anisotropic London theory.
In an early study, Maggio-Aprile et al. (1995) discovered in an applied field of 6T
a structure similar to that observed by Keimer et al., which they also interpreted
— probably incorrectly as explained above — as a distorted square vortex lattice.
These data are not very reliable measurements of the vortex structure because a region
containing only 5 X 5 vortices was sampled. Moreover, the vortex lattice, by their own
admission, was very disordered (‘“glass-like” in their words) and within the sampled
region the density of vortices was found to correspond to an induction greater than
the applied field. However, assuming that the extent of the low energy states is ~ ¢,
these STM measurements do provide a unique measurement of the anisotropy in the
basal-plane coherence length (£,/&, = 0.67). This value is consistent with the broad
range of values (see the previous section), but it would be of great interest to have
measurements in the same sample of the anisotropy in both the penetration depth and
the coherence length to see whether a scalable London or Ginzburg-Landau picture
really was valid.

Other STM investigations of the structure have been performed by Fischer et
al. (1997) at 6 T and Shibata et al. (2003b) at 1T. Fischer et al. state that after the
effects of anisotropy are undone their results are consistent with a square vortex lattice.
Shibata et al. are somewhat more ambivalent in this respect and more concious of the
fact that STM samples only a small region of sample. Indeed, they turn this fact to
their advantage by examining the influence of a twin plane on the vortex lattice. (Other
local probes are capable of this — see section 17 — but they are restricted to much
lower fields than STM.) Their results indicate that the vortex lattice is severly distorted
in the vicinity of a twin plane, but that the distortion persists only for roughly five
vortex spacings, which is much shorter than the typical twin plane distance in their
lightly twinned sample. The influence of a twin plane on orientation stretches much
further, though, and is seen by Shibata et al. to still be controlling the vortex lattice
orientation at distances of order 1 um away. This provides a beautiful microscopic

confirmation of similar conclusion made from SANS experiments (e.g. Yethiraj et al.

(1993b), Johnson et al. (1999) and Brown et al. (2004)).
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21. High-field vortex lattice studies: set-up

The wealth of theoretical work concerning the impact of non-local and d-wave ef-
fects on the vortex lattice in YBCO — and the corresponding lack of good experimen-
tal evidence for these structures — has motivated a programme of research exploiting
SANS to study the vortex lattice in YBCO at high fields. Although structural phase
transitions have been discovered in similar materials at lower fields (e.g. below 1T
(Gilardi, 2003) in Lag_, Sr, CuQOy,), much higher fields are demanded in YBCO because
loosely speaking, the field at which such a transition occurs is expected to scale with
H.o, which can be as much as 150 T for YBCO (approximately a factor 3 higher than
Lag_,Sr,CuQOy). Anticipating that the field range of interest for YBCO will be roughly
1-10T a high-field SANS facility has been commissioned* on the SANS-I instrument
at the Paul-Scherrer Institut, Villigen, Switzerland. Central to the facility is a custom-
made horizontal-field cryomagnet manufactured by Oxford Instruments (U.K.). This
magnet is composed of a Helmholtz pair and is capable of delivering fields of up to
10T with a field uniformity of 0.2% over a 1cm sphere, which easily encompasses the
sample used here. The maximum field can be improved by pumping on a lambda-stage
to reduce the temperature of the coils and increase their critical current, allowing fields

as large as 11 T.

The sample environment is provided by a variable-temperature insert, which is
cooled by pumping helium through a needle valve in an arrangement similar to many
cryostats. (During operation, a small amount of helium exchange gas (about 50 mbar
at 100 K) is left in the sample space to ensure good thermal contact with the gas being
pumped through the tail.) The temperature is computer controlled via a Lakeshore
temperature controller and, for well-adjusted PID values, is stable to within 0.1 K.
The system is very versatile and allows sample temperatures from room temperature
down to about 1.5K to be attained, thus making it ideal for studies of temperature

dependence.

* This venture was initiated by a collaboration lead by E.M. Forgan of the Uni-
versity of Birmingham with substantial resources from the Paul-Scherrer Institut, The

University of Ziirich and Warwick University.
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When in use, the cryomagnet is mounted on top of the sample turntable and
goniometer, which facilitate rocking onto the Bragg condition (goniometer tilts of up
to 10° are possible). Care has to be taken with the motors driving the turntable and
goniometer due to the potentially very large stray field. In particular, magnetic shaft
encoders cannot be used and must be replaced with optical ones. The stray fields
generated by the cryomagnet are even sufficient to affect adversely the operation of the
motors themselves. This has necessitated the positioning of the motors at fairly large

distances from the magnet and the use of long drive shafts.

The other important element in these high-field measurements is the sample itself.
It has already been explained in section 12 that good sample quality is a must for
favourable signal-to-noise ratios in SANS. Likewise, since the intrinsic properties of the
vortex lattice are of primary interest, a sample with as little disorder as possible is
desirable. To this end, a small (36 mg) high-quality single-crystal of overdoped YBCO
(T. =86K) was used. The sample was grown by A. Erb from a melt in a BaZrOs
crucible, which is known to provide very low-impurity samples. (See Erb et al., 1996
for a description of the growth process.) To reduce pinning even further the sample
was oxygenated close to Oy, freeing the CuO chains of oxygen vacancies that might
pin vortices. However, the sample is not pinning free and does contain a low density
of twin planes. These complicate matters slightly by giving correlated pinning (which
is to be avoided when looking at intrinsic properties) and presumably contribute to
the small-angle background scattering, but on balance, they are better than random
point disorder, which would reduce the signal from the vortex lattice by increasing the

rocking curve width.

The sample was mounted on an aluminium plate and surrounded by a cadmium
mask according to the recommendations of section 12. The sample was oriented with
its c-axis perpendicular to the backing plate and the whole assembly was constructed
such that it was easy to swap between having {100} horizontal /vertical or {110} hor-
izontal /vertical. The alignment was checked using by taking an X-ray Laue pattern,
after which the sample assembly was fixed to a “sample stick” and installed in the cry-
omagnet with the c-axis was parallel to the applied field. By attaching a laser pointer

to the top of the stick and projecting the laser spot on a wall some distance away,
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accurate rotations of the c-axis with respect to the field could be achieved using the
magnet turntable. (Naturally, any rotation was performed above T¢!)

In most measurements, the vortex lattice was formed by cooling through the ir-
reversibility line with a field applied. (The experiments were performed at a “base”
temperature of 4 or 5K.) This offers an obvious advantage over the converse, namely
applying a field after cooling, because not only will sample irreversibility inhibit flux
penetration into the sample in the latter case, but the vortex lattice is also likely to
be better ordered. Some authors (e.g. Dewhurst et al., 2003) have reported an im-
provement in vortex lattice order by oscillating the applied field by some small amount
(typically 10%) whilst going through the irreversibility line to “wiggle” the vortex lines
into their equilibrium position. No benefit was found in this procedure here, which is

probably testament to a comparatively high degree of reversibility in the sample.
22. Low field measurements

Before embarking on an examination of the high-field vortex lattice, it was neces-
sary first to characterise the sample by studying the vortex lattice at lower fields. The
sample was mounted with B parallel to the c-axis and the {110} (twin plane) directions
horizontal /vertical, and was cooled to 4K in an applied field of 1 T. From the work
of Johnson et al. (1999) it is expected that anisotropic London theory will be a good
description of the vortex lattice in this regime, although as pointed out in section 20
there is still controversy surrounding this issue so these measurements will provide a
good check.

At 1T the d-spacing for the undistorted triangular lattice is dao =42 nm, hence
at a wavelength of A, =8 A a Bragg angle of about f, = 0.5° is expected. Since the
basal plane anisotropy is small, this gives a good guide to a suitable range of rocking
angles. To reach the rocking curve peak of all the diffraction spots the sample was
rocked over the range [—1°,+1°] in 0.1° steps in both w and ¢ (separately). Following
the discussion in section 16, it is evident that in these scans the resolution volume
will pass directly through the Bragg condition for g-vectors along {110}, but g-vectors
lying along {100} will only be caught by the “side” of the Ewald circle. It transpires

that this is sufficient because at the extremes of the rocks the component of the Ewald
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circle along {100} is 1°/4/2 = 0.7°, which just covers the Bragg angle for the spots in

this direction (assuming not too much distortion).

In figure 3.3 is shown the sum of the data acquired in the rocking curves described
above, minus background rocks taken at 100 K (well above T¢). (In these measurements
the detector was placed at 12.7m from the sample and the beam was collimated over
11m; this proved sufficient to resolve the spots clearly.) Subtracting backgrounds is
an efficient way of removing the strong background signal from the sample. Never-
theless, near to the beam centre the small-angle background scattering becomes very
large (it varies as an inverse power law in ¢) therefore even subtraction leaves a resid-
ual background from the statistical fluctuations arising from the subtraction of two
large signals. Furthermore, there are systematic remanents of the background due to
thermal expansion of the sample stick which alters the background between low and
high temperatures. In figure 3.3 pixels near the centre of the pattern containing this

detritus have been zeroed.

The pattern shown in figure 3.3 clearly has the same four-fold symmetry as the
(twinned) sample and bears considerable resemblence to the patterns obtained by
Keimer et al. (1994). Twenty distinct spots are identifiable, four of which are sig-
nificantly stronger than the other sixteen and lie along {110}. Their arrangement is
highly suggestive of four anisotropic-London vortex lattice domains pinned to the twin
planes. The origin of each of these domains is illustrated schematically in figure 3.4.
The twin planes divide the sample into two orientations of crystallographic domain
with interchanged anisotropy and so there exist two different environments in which
the vortex lattice can form. The presence of strong spots along {110} indicates that
the orientation of each vortex domain is controlled by the twin planes. The microstruc-
tural measurements of Shibata et al. (2003b) demonstrate that the twin planes exert
an influence on the vortex lattice over large distances. Presumably then, two different
vortex domains will exist in the vicinity of a twin plane with interchanged anisotropy
either side of the twin plane. Within a given crystallographic domain, it is most proba-
ble that there exist a number of vortex domains with the same anisotropy, but oriented
in different directions as prescribed by the orientation of the twin planes that define

the borders of the crystal domain. Therefore, four different domains are expected from
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the two possible anisotropies and two possible twin plane orientations.
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Fig. 3.3: Sum of the horizontal and vertical rocks described in the text show-
ing the vortex lattice in the YBasCu3zO7 sample at 1 T. A background above
T. has been subtracted and the the centre of the diffraction pattern has been
masked by software. The data have also been smoothed numerically by con-

volving twice the raw data with a 3x3-pixel pseudo-Gaussian kernel.
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Fig. 3.4: A schematic showing how the four vortex lattice domains in figure
3.3 are formed. Twinning in the crystal gives rise to two different anisotropies
and two possible orientations enforced by the twin planes. The spots along
the twin plane direction are stronger in part due to the fact that two vortex

lattice domains contribute to each.
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Few would argue with the statement that the twin planes control the orientation
of the vortex lattice, but the fidelity of the other part of the preceding hypothesis,
that the vortex lattice structure is given by London theory, can only be established
by more detailed analyses. The positions on the detector of the twenty spots have
been calculated by fitting each spot to a two-dimensional Gaussian — a procedure
used extensively throughout this work*. There is no particular justification for this
choice of fitting function; indeed the exact shape of a Bragg peak will depend upon the
forms of the distributions in wavelength, beam divergence and mosaic spread (section
14). Regardless of these exact forms, a Gaussian will give a reliable estimate of the
width of a spot and a very good estimate of its position for all reasonable distributions.
The Gaussian fitting function is defined by six parameters: height, A; z-position, xg;
y-position, yo; (nominally) minor width, o1; (nominally) major width, oo and angle of
orientation, ¢:

Glz.y) = Aexp (_ [r(z, y) COSC(w,y)P) exp (_ [r(z, y) Siné(w,y)P) (22

2 2
207 205

where 7(z,y) = /(z —20)? + (y — y0)2, ¢ = atan[(y — yo)/(z — x0)] — ¢ and (x,y)
is the position of the spot on the detector. The fitting routine allowed a variable
background, but it was set a priori to zero since its effect has already been countered
by the background subtraction. Due to the close proximity to one another of spots
on the detector, the spots could not be fitted separately. Instead, by selecting an
appropriate fitting region, fits were done on four groups of three spots for the spots

along {110} (top, bottom, left and right in figure 3.3) and four groups of two spots

* The data reduction presented in this thesis was performed using SANSAN, a text-
based menu-driven FORTRAN SANS analysis programme evolved at Birmingham by
generations of experimenters — including the present author — under Prof. E.M. For-
gan. A rival programme called GRASP developed by C. Dewhurst at ILL, Grenoble
was also used. It has most of the functionality and reliability of SANSAN, but beats
its older redoubtable brother in terms of useability: it has a graphical user inter-
face. At the time of writing, details of SANSAN are obtainable from Prof. E.M. For-
gan at the University of Birmingham and GRASP is available from the ILL website
(http://www.ill.fr /Iss/grasp/grasp_main.html).
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for the spots along {100} (along the diagonals of the figure). In each case, only data
taken near the peak of the rocking curve for a particular group were utilised thus
simultaneously minimising the fractional error in the data and preventing any of the
systematic errors described in section 16. The rocking curves for two ensembles of spots

(top and top-left) are shown in figure 3.5.
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Fig. 3.5: Rocking curves as a function of ¢ for two of the sets of spots shown
in figure 3.3. The curves were obtained by summing as a function of angle the

foreground minus background counts over a box encompassing the spots.

Once the spot positions had been obtained, the spots were all mapped onto the
same anisotropy by taking the spots associated with one orientation of anisotropy (the
red and black domains at the bottom of figure 3.4) and shifting their angular position
by 90°. This mapping brings all of the spots onto the same ellipse whose eccentricity,

€, can then be fitted. For convenience the fit was done to »—2, which is linear in cos? 6:

1 (1—¢)? €?
7”'_2 = TCOS 0+ ﬁ, (222)

where (r,0) are the polar coordinates of the spot relative to the detector centre, which
was determined self-consistently by averaging over pairs of q «» —q symmetry-related
spots (and checked against a centre-of-gravity fit of an attenuated image of the direct

beam) and R is the “radius” of the ellipse. The fit yields a value of € = 4, = 1.28(1) for
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the anisotropy. This value is quite similar to the one obtained by Johnson et al. (1999),
but larger (statistically significant), which almost certainly reflects the higher degree
of anisotropy due to the well-oxygenated CuO chains in the stoichiometric sample used

here.

To verify the London nature of these vortex domains, the anisotropic London vor-
tex lattice structure was calculated by minimising numerically the free energy (equa-
tions 2.8 and 3.5) using the measured value v,5. The minimisation was performed sub-
ject to the constraint that one of the reciprocal lattice vectors, Ga, lies along {110}.
This is tantamount to infinitely strong pinning by twin planes, which is a reasonable
approximation given the ambivalence to orientation of the London vortex lattice. The
calculation was performed for a flux density corresponding to an inter-vortex distance
of 0.1\r,. As discussed in section 2, an isotropic Gaussian cut-off was used to force
convergence of the free energy sum. The cut-off was implemented with a coherence

length, & = 0.02), or equivalently, x = 50, which is within the extreme type-II limit.

The computer programme listed in appendix C performs the minimisation by
exploring a reasonable region of the vortex-lattice-structure parameter space. The two
variable parameters in the problem are the angle, 3, between the primitive reciprocal
lattice vectors and the length of Go (see figure 3.4) measured with respect to the
length of the corresponding isotropic triangular lattice (the lengths of the other two
vectors, G1 and Gg are fixed by flux quantisation). The parameter space surveyed
was (3 € [40°,80°] and G2 € [0.8,1.2] with a granularity of (63,5G2) = (1.0°,0.025).
Summing over 100 reciprocal lattice vectors in each direction (sufficient given the chosen
value of €) determined the equilibrium vortex lattice structure to be that defined by
B =52° and G, = 0.975. Therefore the other angle, o, defined in figure 3.4 is a = 73°
and the other vector lengths are G; = 1.127 and G5 = 0.934 (see table 3.1 for a
summary). (Summing over 1000 vectors gave the same answer with no difference in

the free energy to one part in 1010.)

The equilibrium London vortex lattice structure may also be determined by a
simple scaling argument that only works when the induction is along a principal axis
as in the present case. Scaling works by taking an isotropic vortex lattice (equal-length

basis vectors each spanned by angles of 60°) and distorting it by the anisotropy in
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the penetration depth. Consider an isotropic vortex lattice in reciprocal space (or real
space, since the two structures are related by a 90° rotation); the lattice vectors are

given by:
G = Golcos(1)x + sin(y)y]
. (22.3)
G+ = Golcos(¢ £ 60°)x + sin(¢ £+ 60°)y]
In equation 22.3 the vector G lies at an angle 1 to the (isotropic) horizontal basal plane

axis and two other basis vectors of the same length, G, lie at 60° relative to G. The

2

1 _
distortion is applied by scaling by «2 in along x and 7,,> along y (for an anisotropy

’7@1))3
1
2

_l . A
G =G [%b cos(V)x + 7,2 sm(¢)y}
/ . A 1 RE (22.4)
4 = Go |74, c0s(1 & 60°)% + 7, sin( & 60°)y
The angle v is still a free parameter because of the orientational degeneracy of the
London vortex lattice. However, twin-plane pinning requires that G’ lies at an angle of
45° to the anisotropic basal plane axes, which determines the angle v in the isotropic

frame:

tan(y) = yqp tan(45°) (22.5)

Using the measured anisotropy of 74, = 1.28(1), a vortex lattice pinned along the twin
plane direction may be derived by scaling an isotropic vortex lattice with a basis vector
at ¢ = 52° to the basal plane axes. (By inspecting figure 3.4 it can be seen that G’ may
be identified with G2 (the reciprocal lattice vector along the twin plane direction) and
G/ and G’ are equivalent to G3 and G respectively.) The results are summarised in
table 3.1, which demonstrates the equivalence of the scaling and numerical techniques
apart from slight differences caused by the granularity of the numerical technique.
The values derived from the scaling argument and the numerical minimisation of
the anisotropic London free energy are found to be in good agreement with the exper-
imental values deduced from the fitted positions of the spots. Since four degenerate
vortex lattice domains are observed, the structure was calculated from experimental
data by averaging over symmetry-related spots. The results are summarised in ta-
ble 3.1 alongside the theoretical predictions. All show very good agreement with the
theoretical values, but there appears to be a slight systematic discrepancy (about 1%)

between the the calculated and measured values of G; (and as, a consequence, the other
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reciprocal lattice vector lengths). The origin is unclear, but given the good agreement
of the other values it is unlikely that this affects the conclusion that the 1T data are
consistent with London theory. It is most likely due to miscalibration of either the
sample-detector distance (G o Sget), the mean wavelength (G; o \,) or the applied
field (G1 o« B~%/?). (Resolution effects are an unlikely cause since the spots were fitted

using data symmetric about the rocking curve.)

Low-field vortex lattice (v, = 1.28(1))

Parameter Measured Numerical Scaling
G1/mA~! 17.0(1) 16.72 16.73
G1/Go 1.149(8) 1.156 1.144
G1/G3 1.21(4) 1.21 1.222
« 73(2)° 73° 72.3°
I6] 51(1)° 52° 51.3°

Table 3.1: Summary of the structural parameters of the low field vortex lattice
derived from numerical minimisation of the London free energy, a scaling
argument and data taken at 1 T. Differences between the numerical and scaled
values can be attributed to the finite parameter step-size in the minimisation

programme.
23. Field-dependent structural phase transition

Having established the London nature of the low-field vortex lattice in the over-
doped YBCO sample, measurements were undertaken to examine its field dependence
up to the highest available field (11 T). As before, the vortex lattice was formed by
field-cooling, done at intervals of 1T over the field range 1-11T (field applied parallel
to the crystal c-axis).

The first indication of a field-dependent structural phase transition is given by the
data taken at 4T, which are displayed in figure 3.6. These data were taken with 6 m
collimation, a sample-detector distance of 8 m (reduced from the value used at 1T to
account for the factor two increase in ¢) and a mean wavelength of 8 A. The reduction
in collimation compared to the 1T data was necessary in order to gain good statistics
over a reasonable amount of time. (Recall, that even assuming London-like vortices,

which do not suffer a form-factor drop-off with field in their integrated intensity, there
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is still a B~'/2? dependence on the scattered intensity in equation 11.6 and so a factor

two decrease relative to 1T is expected in the very least.)
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Fig. 3.6: Vortex lattice diffraction pattern taken at 4T and a temperature
of 5K. The asymmetrically located bright spot in the bottom-left corner of
the pattern results from poor background subtraction in that region and was
observed at the same place on the detector in data taken at different applied
fields using the same backgrounds. Careful inspection reveals a very slight
misalignment (=~ 1°) of the twin planes relative to the horizontal/vertical
of the detector; it is of no importance to the nature of these measurement
since the experiment has effective cylindrical symmetry with B parallel to the

crystal c-axis.

Rather than rocking by simply w and ¢, the data at 4T are acutally formed from
a sum of diagonal scans designed to rock directly through the Bragg condition of the
weak spot ensembles in the corners of the pattern. For the diffractometer set-up given
above a Bragg angle of 05 = 1.1° is expected, but due to the distortion of the vortex
lattice, which tends to push the spots into the corner, the diagonal scan was done such

that w = ¢ € [0.9°,1.1°] in 0.1° steps. (Obviously in terms of an absolute “diagonal”
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angle, this corresponds to a range v/2 larger than these numbers.) These short rocks
were intended to gain as much structural information in as little time as possible: at
0.9° the “corner” spots are rocked on (this was verified by a rock down to w = ¢ = 0.5°
at low statistics and with no backgrounds) and at 1.1° the spots horizontal and vertical
in the pattern (i.e. those due to the twin planes) were rocked on.

Although some of the difference between the diffraction pattern at 4 T (figure 3.6)
and that at 1T (figure 3.3) can be attributed to the poorer resolution of the former,
there are clear intrinsic differences too. The pattern is visually more square with the
corner spots positioned further towards the vertices of the square whose basis vectors
consist of equal combinations of the horizontal and vertical spot g-vectors. The spots
have also coalesced somewhat, although it is not immediately discernible due to the

decrease in resolution and requires further quantitatve analysis (see later).
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Fig. 3.7: Vortex lattice diffraction pattern taken at 6 T. Negative values, aris-
ing from statistical fluctuations in the background, have been zeroed in addi-

tion to those near the centre.
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The evolution in vortex lattice morphology continues as the applied field is in-
creased. In figure 3.7 is shown the diffraction pattern at an applied field of 6 T. These
data were taken in a similar fashion as the data at 4 T, but the range of rocking angles
was increased to w = ¢ € [1.1°,1.3°] (in 0.1° steps) to allow for the expected increase
in the Bragg angle; the sample-detector distance was commensurately reduced to 6 m.
The arrangment of the reciprocal lattice vectors at 6 T is very similar to that at 4T,
though the spots appear to have coalesced further. However, the intensity of the re-
flections lying directly along {110} has increased relative to the intensities of the other
spots. It seems that even without much apparent change in the positions of the recip-
rocal lattice vectors, the observation of much stronger scattering along {110} indicates
that nearest-neighbour correlations of vortices lying on a square lattice are becoming
more important in determining the vortex structure. Next-nearest-neighbour correla-
tions (corner spots) do not seem to be as prevalent as they scatter less (by roughly
a factor four), probably due to a field-dependent reduction in the vortex form-factor
along this direction (see figure 3.15 and discussion thereof).

The diffraction pattern at 7T exhibits a remarkably different structure to those
at 6T and 4T. In this pattern, which is shown on a logarithmic scale in figure 3.8,
there is significant overlap of the spots. To combat the difficulty arising from the
spot ensembles smearing into single entities, the collimation length was increased to
8 m*; naturally, the scattered intensity was reduced by a factor (6/8)? ~ 0.5. Despite
the greater resolution of these measurements, there is still a much greater degree of
coalescence of the spots. Each of the ensembles of three spots lying near the {110}
direction appears to be converging into a single spot, as are the two-spot ensembles in
the corners of the picture. The latter spots have also moved further out to the corner
of the square and have become noticeably weaker compared to the same reflections
observed at low fields (figure 3.8 is on a natural logarithmic scale). The implication is
that each of the four vortex lattice domains present in the twinned sample is distorting

into a square lattice.

* A slightly larger collimation length might have been chosen, but the next (larger)

value was 11 m, which would result in an unacceptable reduction in count rate.
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Fig. 3.8: Natural logarithm of the vortex-lattice diffraction pattern taken at
7T.
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Fig. 3.9: Natural logarithm of the vortex lattice diffraction pattern taken at
9T.
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At 9T (figure 3.9) the vortex lattice domains have a distinctly square structure.
There appears only one spot along each {110} direction in these data; if these spots are
composed of more than one reflection then they are resolution limited. The collimation
has been relaxed to 6 m for these measurements since even at 8 m the spots would not
be resolved into their putative components. It is likely that the degree of collimation

required to remedy this would reduce the scattered intensity to intolerably low levels.

Note also that the diffraction peaks along the diagonal directions are weaker and
tangentially narrower than in the 7T data. These spots appear to have evolved into the
second-order spots of a single-orientation square vortex-lattice domain. This is even

clearer in the data taken at 11T (figure 3.10) in which these spots are weaker still.

20 40 60 80 100 120

Fig. 3.10: Natural logarithm of the vortex lattice diffraction pattern taken
at 11'T. To make the weak spots in the corner of this pattern more visible
the data have been truncated above a threshold and numerically smoothed a

further two times.

In the present experimental set-up there is no real hope of resolving the structural
evolution of the vortex lattice beyond about 6 T. Partly, this is due to the poor resolu-
tion of SANS, which is inescapable, but it is also due to the degeneracy in orientation

of the vortex lattice domains caused by the twin planes. Therefore the strategy to

advance from that unsatisfactory position was to attempt to remove the degeneracy.
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This was accomplished by rotating the sample about the vertical axis by a small angle
such that the twin planes that were vertical ran instead at some angle to the applied
field. It was found that rotating by only 5° vitiated the ability of the vertical twin
planes to pin the vortex lattice. (The horizontal twin planes were unaffected because
after rotation the applied field was still within these planes.) The rotation should also
affect the intrinsic properties of the vortex lattice, but it is reasonable to suspect that
such effects will be negligible because their dependence on the applied field direction is
much less sensitive than that of the twin planes. For example, London theory predicts
a change in distortion (equation 3.4) approximately proportional to cos; for § = 5° it
gives a difference of only 0.4%, which is a change smaller than the statistical error on
the measurement of v, quoted in section 22. Similarly, effects associated with non-local
corrections to the London model and d-wave phenomena are also expected to deviate
very little from their behaviour with B paralllel to the c-axis for small rotations of the

sample.

In figure 3.11 is shown the result of the rotation described above on the vortex
lattice diffraction pattern at 7T. The figure shows data summed over an w rocking
curve through the spots near the horizontal (w € [£0.9°,£1.9°] in 0.1° steps) and a ¢
rocking curve through the vertical spots (¢ € [+0.9°, £1.9°] in 0.1° steps). Both scans
were done with sget = 6m and [, = 6m, and backgrounds were re-taken above T,
since the slight sample rotation was expected to alter the background significantly. It
is clear that the rotation has had the desired effect of removing two of the domains
from the diffraction pattern. Those domains giving rise to strong scattering along the
horizontal {110} direction (see figures 3.8 and 3.4) are not apparent in figure 3.11. It
is not quite clear what happens to these domains. If they were replaced completely
the remaining two domains would yield twice the scattered intensity. This does not
appear to be the case, although there is a significant increase in the intensity of these
spots. Rocking the sample further in w around the position that the horiztonal spots
would be expected to appear if they were still pinned to the twin planes produced no
peak in the rocking curve (as might be predicted in a strongly twinned sample such as
the one studied by Simon et al. (2004)). It is possible, given the frustration induced

by the sample rotation that the flux associated with these twin planes forms a highly
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disordered vortex state with a very wide rocking curve and hence immeasureably small
Bragg peaks at any given angle. Inspecting figure 3.11 reveals very faint scattering
distributed around a ring with roughly the correct g-value for 7T, but no structure is

discernible.
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Fig. 3.11: Vortex lattice diffraction pattern taken at 7T with B applied at 5°
to the crystal c-axis. The diffraction pattern is composed of w and ¢ rocks
through the bottom/top and left /right spots taken with A, =8 A, sqe; =6m

and lcoll =6m.

As a result of the sample rotation, the two Bragg peaks either side of the (now
absent) horizontal twin-plane peak are clearly resolved enabling the vortex lattice struc-
ture to be obtained quantitatively. The spots in the corners are also absent, but only
due to the fact that neither the w-scan nor the ¢-scan gets close enough to the Bragg
condition for these weak reflections to be visible in the data. Nothing is lost though,
because fitting just two reciprocal lattice vectors is sufficient to determine the Bravais
structure of the vortex lattice. (In principal, diagonal scans could have been per-

formed, but a considerable time investment would be required to measure the corner
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spots, which has already been achieved in the case with B parallel to the c-axis. From
the perspective of measuring the structure from the top/bottom and left /right spots,
straightforward w- or ¢-scans are preferred to diagonal ones since they rock directly

through those spots.)
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Fig. 3.12: Vortex lattice diffraction pattern taken at 10.8 T with B applied at
5° to the crystal c-axis, taken under the same conditions as figure 3.11, but
with appropriately larger rocking angles to compensate for the larger Bragg
angle at this field.

The diffraction pattern taken at 10.8 T and under the same conditions as above
provides satisfying confirmation that the high-field vortex lattice does indeed have
square-like morphology. These data are shown in figure 3.12, which is on a linear
scale. The square structure is realised by a continuous deformation from the anisotropic
triangular structure just as was seen in the data with B parallel to the crystal c-axis. It
is not clear, however, whether at 10.8 T the domains are truly square or the spots along
the horizontal axis of figure 3.12 are actually unresolved double spots. The tangential

width of the left /right spots is larger by a factor 1.7(1) than the tangential width of the
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top/bottom spots, which may imply a slight splitting in the latter spots if it is assumed
that the correlation length transverse to the g-vectors is the same for both types of
reflection. The presence of twin planes would argue against this being the case, but
making the assumption that these correlation lengths are identical allows the fitting of
two peaks for each of the horizontal spots by fixing their tangential width to that of
the fitted value for the top and bottom spots. This gives an estimate of the angle o

when the measurements become resolution limited.

With the sample in its new orientation, data were taken at a variety of fields with
the view to use the greater effective resolution to map out the field-dependent vortex
structure. The resolution-enhanced data complement the data taken with B parallel to
the c-axis, which despite the complications of orientational degeneracy are still useful

up to about 6T.

In figure 3.13 is shown the evolution as a function of field of the angles a and 3,
which define the vortex lattice structure for vortices aligned along the {110} direction.
The data shown are a mixture of the B-parallel and 5° data. For B < 6T the curve
of a(B) is derived from data with B parallel to the c-axis, but at larger fields, where
it becomes difficult to resolve adjacent spots, data taken at 5° was used, which is why
the datum at 7T has such small error bars. Similarly, the low field data (<9T) of
the 5(B) curve were taken with the field aligned with the c-axis. At higher fields, the
data displayed are calculated from the 5° data by adding the two measured reciprocal
lattice vectors to form the vector in the corner of the diffraction pattern. (The results
gave reasonable agreement with fits of the diagonal scans with B parallel to the c-axis,
but at high fields the two spots in the corner are very close and very weak, therefore

fitting them from the experimental data is not as reliable as the above method.)

Even at the highest available applied field (11 T) the transition is not quite com-
plete and plateaux are not observed in either curve of figure 3.13. Strictly speaking,
a single perfectly square vortex lattice domain would not be expected to exist due to
the very slight orthorhombicity of the sample. In its stead, one rectangular vortex
lattice domain should occupy each of the two types of crystallographic domain shown
in figure 3.14. The domains are expected to form with one nearest-neighbour direction

along a twin plane direction, which run horizontally in the present case. Therefore
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both domains share common top/bottom reflections, but have different side spots cor-
responding to the differing anisotropy of the underlying crystal domains. An upper
limit on the distortion (i.e. the ratio of the sides of the rectangular unit cell) of the
high-field rectangular lattice can be obtained from the highest field datum of figure
3.13. The distortion obtained from the datum at 10.8T is 0.972(5). (At 11T this
corresponds to a difference in vortex lattice parameters of only 4 A — comparable with

the size of the basal-plane crystal parameters!)

% _
! ) I ]
80 = -
i I T ]
2 [ T
s, 70 -
g | _
D
60} -
< - -
50F T T I T I - .
=T _
L I -
L | L |
409 5 10

B/T
Fig. 3.13: The variation with applied field of the angles « (blue curve) and

(red curve) defining the vortex lattice structure (see figure 3.4). At low fields

the data are consistent with anisotropic London theory (horizontal lines),

but tend towards the values for an isotropic square vortex lattice (o = 90°,

B = 45°) at higher fields. (For an isotropic triangular arrangement of vortex

lines a = B = 60°.)

The structural transformation presented so far is just one facet of the transition
to a square vortex lattice. Since the transition to square is driven by anisotropy in
the vortex-vortex interaction (see the following section), it might also be expected to

have an influence on the form-factor. Some evidence of this can be seen in the field-

evolution of the relative spot intensities, but the data collected here is geared primarily
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towards a structural study, thus there is a lack of complete rocking curves from which

the form-factor could be calculated using equation 11.6.

{110}

Fig. 3.14: The two possible distorted square reciprocal vortex lattices expected
from symmetry when the field is applied at 5° to the sample c-axis (vertical
axis of rotation). The squares are elongated along the basal plane direction
due to the presence of the CuO chains. (Note: with the field applied parallel to
the c-axis four domains would be expected; the other two may be constructed

by rotating this figure by 90°.)

There is clearly motivation to perform complete rocking curves of the first-order
triangular reflections since some evolve into second-order square reflections, but it would
be time consuming and only realistic for a limited set of fields. In the absence of such
data, some idea of the behaviour of the form-factor can be extracted from the existing
data set under some assumptions. For example, if a constant rocking curve width
for all diffraction spots at all fields is assumed, then the integrated intensity is just
proportional to the peak intensity and the absence of complete rocking curves is not a
problem. In reality, the rocking curve width will have a field dependence and matters
are complicated by the use of different instrument set-ups at different fields, which also
change the rocking curve width. However, if all that is required is the relative form-
factors (i.e. their ratio), then an approximation may be obtained from the ratio of the

peak intensities of the spots. This approximation becomes exact if all the spots in some
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data set at a particular field have the same rocking curve width, which may not be a
water-tight assumption (particularly in the presence of twin planes), but is much less
rigid than the assumption of equality of all rocking curve widths. There is one caveat,
however: it cannot be guaranteed on the basis of a partial rock, which perhaps consists
of only a few points covering only a fraction of the rocking curve width, that the peak
has been reached. Fortunately, for the diagonal scans (done with B parallel to the
c-axis) the positions of the spots are such that they all lie nearly simultaneously under
the sampling function so that the three-point rocks around the calculated Bragg angle
are flat for all the spots, which is a good indication of being at the peak. Low resolution
has undoubtably also helped in this respect, but it has hindered too: with B applied
parallel to the c-axis, the degeneracy of vortex lattice domain orientation ensures that
the reflections overlap over the entire field-range studied. Therefore, calculating the
peak intensity in the usual way — i.e. by summing over a region on the detector around
the spots — will give rise to systematic errors due to contamination from nearby spots.

Instead, the intensity must be derived from fitting multiple spots that coalesce.

The procedure outlined above has been carried out for data taken with B parallel
to the c-axis. The intensities of the strong doubly-degenerate spots along the {110}
directions (vectors Gg in figure 3.4) and the weak corner spots (vectors Gy in figure
3.4) were calculated and a ratio of the two was formed at each field (under a given set
of experimental conditions). (The intensity of the other spots, which are satellites of
the main {110} spots, is less interesting as they eventually merge with the {110} spots
and thus are very similar to the latter over the whole field range.) At high fields it
becomes impossible for the fitting routine to resolve the three spots near {110} and the
two corner spots. Here, single spots were fitted and the intensities were divided by a
factor two to account for field-induced degeneracy. (Recall that the spots lying directly
along {110} are doubly degenerate at low fields and thus their intensity is divided by
a factor four at high fields.)

The form-factor ratio, |[Bg,|/|Ba,|, of the reflections G; and G are displayed
in figure 3.15 as calculated from the diagonal scans (as before, the results have been

averaged over symmetry-related reflections). The relationship between the measured
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integrated intensity and form-factor was derived in equation 11.6 and can be expressed:

|B(;| X \/I(;|G|. (23.1)

The data shown in figure 3.13 were used to obtain the ratio |Ga|/|G1| required in
calculating |Bg,|/|Ba,| from Ig,/Ig,. It should be reiterated that these are not
the true form-factor ratios, but are subject to the assumptions described above that

underpin the calculation of the intensity ratio.

Ratio of form-factors of two first-order reflections
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Fig. 3.15: The estimated form-factor ratio |Bg,|/ |Ba,| as a function of field

(see figure 3.4 for the definition of G; and Gy). Both the observed ratio (ap-

proximated by the calculation discussed in the text) and the ratio calculated

from the London form-factor are shown. The latter was calculated from the
measured structure shown in figure 3.13. The horizontal line at 0.5 indicates

the prediction for an isotropic square London vortex lattice.

Also shown in figure 3.15 is the intensity ratio predicted by anisotropic London
theory with a basal plane anisotropy of v,, = 1.28. The London form-factor for an
anisotropic superconductor is given by equation 3.5, which when B is parallel to the
c-axis may be written:

_ (B)
1+ A\ (G2my, + G2z ) ’

Be (23.2)

where the unity in the denominator may be disregarded (see section 2). The data

in figure 3.13 was used to calculate the field evolution of the London form-factor for
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the observed vortex structure (even if that structure was not the one predicted by
London theory)*. Comparing these data with the experimental ones reveals that the
diminished intensity of the corner spots at high fields is not simply a consequence of the
larger ratio of |Gz|/|G1| and its concomitant effect on the anisotropic London form-
factor, nor the G~1 geometrical dependence of the integrated intensity (equation 11.6
or 23.1). However, it should be pointed out that the results do agree with the ratio of
the second-order to first-order form-factors of an isotropic square lattice. (An isotropic
square London lattice has G171 = V2G1o and therefore the form-factor ratio of these
two spots is 0.5.) While this may indicate that vortices have London-like magnetic
properties, even the existence of a square vortex lattice, let alone a field-dependent

change in the electronic anisotropy, is beyond London theory.
24. Interpretation of the square vortex lattice

Figure 3.13 gives clear indication of a continuous transition from the conventional
distorted triangular vortex lattice at low-fields to what appears to be an unconventional
square vortex lattice at high fields, with nearest-neighbours along the {110} direction.
This begs the question: what causes the anisotropy that is responsible for the high-field
square vortex lattice? It cannot be described simply in terms of anisotropic London the-
ory because even allowing a field dependence to the London anisotropy, it is impossible
to get a square lattice from a distorted triangular one by a simple scale transforma-
tion. In addition, figure 3.15 shows a marked departure of the form-factors from the
anisotropic London model.

The other possible candidates comprise both intrinsic and extrinsic sources: non-
local effects (see section 7), d-wave effects (see section 8) and twin-plane pinning (see
section 9). Twin planes almost certainly have influence on the structure of the vortex
lattice because even though only a small fraction of the vortices are directly affected,

the energy involved is comparable with the condensation energy for each vortex. It is

* In an isotropic triangular vortex lattice the ratio |Bg, |/ |Bg,| is identically unity.
The same is true for the predicted London structure with B parallel to the c-axis
because the scale transformation that converts the isotropic lattice to the anisotropic

one preserves the degree of magnetic contrast along any direction in real space.
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unlikely, however, that the twin planes are responsible for the transition to the square
vortex lattice even though it might be thought that their arrangement would enhance
square-like vortex correlations along {110}. Clearly, the twin-planes do not achieve this
at “low” fields, e.g. 1T, although they do appear to control the orientation. To conclude
that the twin planes increase their influence as a function of field so as to favour a
square arrangement of vortices is unnatural; that could only happen if the vortex lattice
crossed over from a short-range weakly interacting system at low fields to a longer-
range strongly-interacting system at high fields, which would propagate the twin-plane
influence more effectively. That is not the case here: even at low fields the inter-vortex
spacing is much smaller than the penetration depth (ag(1T) ~ 40nm < A;, &~ 150 nm)
therefore the vortices are already in the strongly interacting regime. If anything, it
would be expected that increasing the induction would lead to a decrease in the relative
contribution of the twin planes to the free energy since there are fewer twin planes per

vortex at high fields.

Ruling out the effect of twin planes leaves the two intrinsic effects. As was stated
in section 8, distinguishing between non-local effects and d-wave effects is a tricky
and somewhat ill-defined problem because both correspond to non-locality (in some
sense) and can sometimes give the same qualitative effects. Unfortunately, the vortex
lattice in YBasCuzOr is one such case. In section 7, an expression for the London free
energy including the leading-order non-local corrections was presented for a tetragonal
superconductor and it was noted that, all things being equal, the free energy was
minimised with the vortex nearest-neighbour direction along the minimum of the Fermi
velocity. YBasCu3zOr7 is not tetragonal, but since the degree of othorhombicity is
small (see figure 3.14 and the related discussion) it should be resonable to assume it
is approximately tetragonal and to consider just the principal Fermi surface associated
with the CuOs planes (see figure 3.2). From this picture, it is clear that the minimum in
the Fermi velocity occurs along {110} and therefore non-local London theory predicts
that the square vortex lattice has its basis vectors along these directions. d-wave theory
gives exactly the same prediction (recall the nodes are also along {110} in a dy2_,2

superconductor).
One possible way to distinguish between non-local and d-wave effects is to calculate
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from each theory the vortex form-factor and to compare it with the experimentally
derived value. Unfortunately this task is difficult from both the experimental and
theoretical sides. Firstly, the data available on the vortex form-factor (see figure 3.15)
is, at present, incomplete and not totally reliable; and secondly, non-local London
calculations of the vortex lattice structure in YBay;CusO have not yet been done and
the required information on the electronic properties does not exist. There do exist
theoretical results arising from d-wave theory. In the same paper that predicted through
d-wave pairing the orientation of square vortex lattice observed here, Ichioka et al.
(1999) have calculated ratios of the magnetic form-factors for variously oriented s-
and d-wave vortex lattices. Of interest here is their calculation of |B11|/|Bio|, which
can be compared to |Bg,|/|Bg,| of figure 3.15. Ichioka et al. (1999) found that in
almost every vortex structure considered — except the square d-wave vortex lattice
with nearest-neighbours along {110} that is stable at high fields — the magnitude of
the ratio |B11|/ |B1o| decreased monotonically. For the d-wave {110}-oriented square
lattice, the ratio of the Fourier coefficients dips slightly at around 0.1H.s, but then rises
monotonically (almost linearly) towards H.s. The robustness at very high fields of B
relative to Byg is probably due to the nodal reduction of the superfluid near {110},
which increases the magnetic penetration depth along Gy (recall that the vortex lattice

reciprocal lattice vector Gyg lies along the crystal {110} direction).

In the high-field region of the experiment (~~11T~ 0.1H., which corresponds
to the low-field range of theory), the theoretical prediction (Ichioka et al., 1999) for
the {110}-oriented square lattice is |Bi1|/|B1o| =~ 0.5, which agrees well with the
experimental data of figure 3.15. However, direct comparison of the data in figure
3.15 with the numerical calculations of Ichioka et al. (1999) is not a trivial matter:
notwithstanding the limitations of the experimental data (see discussion at the end of
section 23), the calculations of Ichioka et al. were performed for an isotropic d-wave
superconductor. Furthermore, the ratio |By1|/|Big| for a square vortex lattice in an
s-wave superconductor is very close to the d-wave value (for a vortex lattice oriented
along {110}) and hence it is not even possible to distinguish between these from the
present experimental data. Given the small difference in form-factor ratio between d-

wave and s-wave pairing, it is likely that the form-factor ratio derived from non-local
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London theory for a similarly configured vortex lattice will also be rather similar to the
d-wave value at this field. Clearly more work is needed, both experimental (measuring
complete rocking curves) and theoretical (calculating non-local London form factors),
but it may prove quite difficult to differentiate between d-wave and non-local London

theory in the present field range.
25. Temperature dependence

To map out the phase diagram of the vortex lattice morphology, temperature-
dependent measurements have been undertaken. Since the square vortex lattice is
realised only at high fields, these measurements were performed at applied fields of
4T and larger. Furthermore, to allow accurate measurements of the angles between
reciprocal lattice vectors, data were taken with the field applied at 5° to the crystal
c-axis. In keeping with the previous methodology, the vortex lattice was formed by
field cooling (as opposed to setting a sample temperature and then applying the field).
Temperature scans were performed by both warming and cooling the sample; at no
point in these investigations was any hysteresis observed despite the fact that some
changes in vortex lattice structure occurred below the irreversibility temperature for
macroscopic motion of vortex lines.

Figure 3.16 shows a series of diffraction patterns focused on the peaks appearing on
the right-hand side of the 10 T diffraction pattern (i.e. those spots along the horizontal
{110} direction, which due to the sample rotation do not arise from vortex lattice
planes parallel to the twin planes). In the field-dependent data, this group of spots
was manifest as a doublet at low fields (see figure 3.11), but at high field coalesced
into a single mass corresponding to a single first order square peak or the very close
unresolved peaks of two rectangular vortex lattices (see figures 3.12 and 3.14). The low
temperature patterns (10K, 30 K and 40K) in figure 3.16 match the latter. However,
as the temperature is increased, the vortex lattice appears to transform back into the
low-field structure, i.e. distorted triangular vortex arrangements. This can first be seen
at 45 K where there is a perceptible increase in the tangential width of the spot. (All
the patterns shown in figure 3.16 were taken under the same conditions.) At 50K the

spot begins to separate into two. This trend continues with increasing temperature
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and at around 60K the spots are well separated and remain so up to about 75K
where the neutron signal from the vortex lattice disappears. The behaviour implies a
temperature-induced transition back to a distorted triangular arrangement of vortices.

That the square vortex lattice is observed to transform back into a distorted tri-
angular one with increasing temperatures provides confirmation of its intrinsic nature.
The only effect temperature should have even on correlated pinning like twin plane
pinning is on the correlation lengths, not the structure of the vortex lattice. However,
from these data it would be still difficult to choose between the non-local and d-wave
theories because both anticipate a transition back to the triangular vortex lattice. In
d-wave theory, it occurs because of the tendency of thermal fluctuations to smear out
the anisotropy in the the quasi-particle spectrum, which in turn reduces the anisotropy
of the vortex-vortex interaction. From a Ginzburg-Landau viewpoint, high tempera-
tures suppress the order parameter to the point that the higher-order terms become
negligible, which reduces the free energy to a simple s-wave like expression.

Thermal fluctuations have a similar effect in the non-local London theory. The
temperature dependence of the vortex lattice structure should depend upon the relative
size in equation 7.3 of the non-local term (x G2a(G)) to the local term (o< a(G)). The
local term depends only on the effective mass tensor so has no temperature dependence.
The non-local term does have a temperature dependence and it transpires (Kogan et
al., 1996 and Kogan et al., 1997) that it is contained entirely within the term ~(7', 1),
which in the clean limit appropriate here is reduced only by a factor two between low
temperatures and T.. This counters the field-dependent increase in non-locality: the
field dependence at constant low temperature of the ratio of the non-local term to the
local one depends upon G? o B, which also changes by a factor ~ 2 between low
fields (<4 T), where a London structure is observed, and high fields (=10 T) where the
square lattice is established. With more detailed theoretical analyses of systems with
both Fermi surface and gap anisotropy (such as an equivalent YBCO version of the
study by Nakai et al., 2002), it might be possible to distinguish quantitatively between

non-local London and d-wave theories based on the temperature dependence.
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Fig. 3.16: Temperature scan at 10T (applied at 5° to the c-axis) showing
the temperature evolution of the right-hand diffraction peak(s). Each picture
represents the same area of the detector and each share the same arbitrary-

unit scale displayed in the centre.
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The temperature-induced transition back to the distorted triangular vortex lattice
can also be seen by its effect on the spots lying at the corners of the detector. Quantify-
ing the transition using data from these reflections is obviously more difficult than using
the Bragg peaks that scatter in the horizontal plane (see above) because the former are
second-order reflections at low temperatures and hence they yield far weaker scattered
intensity. Although these spots are less useful for measuring the vortex lattice struc-
ture, there exists a prospect that they exhibit an interesting temperature dependence:
since they evolve from second-order spots at low temperatures to first-order spots of
a triangular lattice at high temperatures, it is expected that their integrated intensity
as a function of temperature will be non-monotonic. The plot of the peak intensity
of these spots as a function of temperature (see figure 3.17) indicates the anticipated
behaviour. Although the data are not the true integrated intensity, the corresponding
trace for the right-hand spots shows no upturn that might arise from greater perfection

of the vortex lattice due to annealing effects at higher temperatures.
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Fig. 3.17: A plot of the peak intensity of the corner spot(s) as a function of
temperature, which exhibits non-monotonic behaviour. Shown for comparison
is the peak intensity for the sum of the two right-hand spots divided by a
factor five. (The intensity is in arbitrary units and normalised to a standard

monitor.)
Measurements taken as a function of temperature at a number of applied fields

allow the mapping of the intrinsic vortex lattice phase diagram. This was obtained by
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repeating the temperature scan shown in figure 3.16 at a variety of fields and measuring
the angle between the two reflections present in the patterns. Although the two spots
belong to different vortex lattice domains, due to their symmetry relationship, the angle
between them can be related to one of the true reciprocal lattice vector angles. The
temperature dependence of the reciprocal lattice angle « (see figure 3.4) is plotted at
4, 7,8, 9 and 10T in figure 3.18. Not much temperature dependence is observed in
this angle at low fields where the vortex lattice is London-like, but at higher fields,

increasing temperature suppresses the tendency to form a square vortex lattice.
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Fig. 3.18: The reciprocal lattice angle o as a function of temperature for

various applied fields.

The temperature-dependent scans displayed in figure 3.18 were used to formulate a
structural phase-diagram for the vortex lattice in YBayCu3zO7, which is shown in figure
3.19. Since the transition to a square (or rectangular) vortex lattice is a continuous
one, the solid line of demarcation between the two phases in figure 3.19 represents the
mid-point of the transition (defined as when o = 83°). The phase diagram shows that
at low temperatures (lower than about 20K) the phase “boundary” is very flat and

at T'= 0K the mid-point of the transition occurs at about 7.5T. Only above roughly
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20 K do thermal fluctuations start to become important for the vortex lattice structure.
Near H.o(T) there is an upturn in the phase line with increasing temperature; this is
entirely predictable given the proposed effects of thermal fluctuations reasoned earlier
in this section. It is quite possible, in fact, that at higher fields the phase boundary
bends backwards away from H.(7T) and towards the field axis, thus giving a small
region near H.o(T') where the triangular lattice is preferred. This type of re-entrant
transition is seen quite often, for example in the borocarbide LuNiyB,C (Eskildsen et

al., 2001; Nakai et al., 2002).
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Fig. 3.19: The vortex structure phase diagram twinned of YBayCu3zO7. Both

the triangular-square phase line and the vortex lattice melting line are shown.
The latter was obtained from the crystal grower (Erb et al., 1996) and the
former is a guide to the eye showing where the angle o assumes the value
of 83° (the mid-point of the transition). Points in phase space where « is
79°, 81°, 83° and 85° are also indicated. (These were taken by interpolating
between the points of figure 3.18.)

26. Angle dependence

Based on the assumption that some kind of unconventional anisotropy in the basal
plane — either non-local London-like or due to d-wave effects — is responsible for the
appearence of a square vortex lattice at high fields, it follows that the angle of the

applied field relative to the crystal axes should have an impact on the physics of the
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high-field vortex lattice in YBasCu3O7. To study the effect of angle of applied field,
the sample geometry shown in figure 3.20 was employed. The sample was mounted
initially with the basal-plane crystal axes horizontal/vertical and then rotated (above
T.) about the vertical axis by the required angle*. This geometry was chosen over
the geometry used in the preceeding investigations (with the crystal axes at 45° to
the horizontal /vertical before rotation) because rotations in the present configuration,
which were not restricted to small angles as in earlier measurements, give a more
“cleanly” coupled vortex frame: figure 3.20 shows that in the vortex frame there is
coupling between either a or b (depending on the orientation of the crystal domain under
consideration) and ¢ along the horizontal, whereas vertically the electronic environment
consists of a single uncoupled crystal axis; in contrast, the situation with a and b intially
at 45° would involve coupling of the electronic properties along all three crystal axes.
Another benefit of this geometry is that no {110} directions, along which the twin
planes, order parameter nodes and Fermi velocity minima lie, are perpendicular to the
vortex direction. Whilst this is likely to lead to a disordered vortex lattice at low fields
(where the twin planes help to fix the orientation), at high fields it will show how much
the rotation suppresses the square lattice, which following the discussion of section 24

forms due to the intrinsic preference of vortices to align along {110}.

p/a

|
B
Fig. 3.20: Sample geometry used in the angle-dependence studies: the sample

c-axis has been rotated in the horizontal plane by an angle v away from parallel
to the applied field, B.

* This necessitated taking separate backgrounds for each angle due to the possibly

strong dependence on orientation of background scattering
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In figure 3.21 is shown data taken at 5K with a field of 5T applied at 10°. The
pattern is quite distinct from anything seen with B applied (nearly) parallel to the
c-axis in the other sample orientation and comprises twelve clearly identifiable spots
that belong to two domains of vortex lattice as illustrated in the figure. These lattices
(hereon referred to by their identifying colour in figure 3.21) are both distorted hexag-
onal lattices. (By symmetry, the distortion has as its primary axes the vertical and
horizontal of the diffraction pattern.) The black lattice is only slightly distorted from
a perfect hexagon (squashed horizontally in the figure), with angles between the recip-
rocal lattice vectors (angles subtended by the vertices of the hexagon from its centre)
of 54.2(6)° and 63.0(5)°. The magenta lattice, which is squashed vertically, is more
distorted and its reciprocal lattice angles are 50.3(6)° and 64.9(3)°. Since the domains
have either top/bottom or left/right spots, in real space they are oriented with their
nearest-neighbour directions along a basal plane axis (black domain) or the projection
of a basal plane axis onto the plane perpendicular to the applied field (magenta do-
main). (Obviously, the real-space nearest-neighbour directions of these two-dimensional
lattices are perpendicular to the g-vectors; see also figure 3.20.) Furthermore, since the
two domains are of nearly equal intensity they presumably each occupy one of the two
types of crystal domain in the twinned sample. (In fact the black domain is slightly
more intense than the magneta one; the reason for this will be made clear when looking
at data taken at higher fields.) It follows that because the two domains are oriented
90° with respect to each another, and because the crystal domains are also 90° apart,
the two vortex lattice domains must be oriented in the same way with respect to the

axes within their respective crystallographic domain.

Given the above empirical observations, and the very plausible assumption that the
two vortex lattice domains form in different crystallographic domains, it is interesting
to consider why these two domains arise in such a configuration. They are certainly
not conventional anisotropic London vortex lattice domains. If this were the case they
would be expected to have very similar anisotropy because even at 10° the effect of
coupling the c-axis effective mass is negligible (= 2%) and the basal plane anisotropy
dominates, which is the same for both vortex lattices if they are oriented similarly. In

any case, the measurements on the sample reported here indicate that at 5T the vortex
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lattice does not behave very conventionally. (Recall that with B parallel to the c-axis
the vortex lattices are part way through the transition to square.) Indeed, fitting the
diffraction peaks to an ellipse gives eccentricities that are too small compared to that
seen at 1 T applied parallel to the c-axis: the fits give € = 1.14(2) (black domain) and
e = 1.229(6) (magenta domain) compared to v, = 1.28(1) at 1T. Therefore, whatever
agent is responsible for the occurrence of the nearly isotropic square lattice at high fields
appears to be having the effect at this intermediate field of making the two hexagonal

domains more isotropic than the bare London electrodynamic anisotropy.
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Fig. 3.21: Sum of diagonal rocks (linear scale) at 5 K with 5T applied at 10°

to the crystal c-axis. Two triangular vortex lattice domains are outlined and

the white arrows indicate extra scattering along the lines running 45° radially

from the centre of the diffraction pattern.

Despite the failure of London theory to account correctly for the distortion of ei-
ther vortex lattice domain, its basic concepts concerning the effects of anisotropy can
be used qualitatively to speculate as to which of the basal plane axes the observed
domains are aligned. (The twinned nature of the sample means that this question

cannot be resolved unambiguously.) If it is assumed that the basal plane anisotropy is
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the leading factor in determining the distortion of the two domains, then the orienta-
tion of the distortion points to both vortex lattice domains being oriented with their
nearest-neighbour direction along the crystal a-axis (black lattice) or its projection onto
the plane perpendicular to the vortices (magenta lattice) — see section 3. That the
two domains do not have the correct value of London distortion does not affect this
qualitative argument.

It is unclear exactly what controls the nearest-neighbour directions in either vortex
lattice domain. At first sight, the magenta domain seems to be oriented as predicted by
anisotropic London theory*. However, it is unlikely, given the palpable departures from
London theory already seen at 5T, that the mechanism favouring a-axis orientation is
the same as the London one. Similarly, there appears to be no explanation as to the
orientation of the black domain. However, something similar to it has already been
observed by Johnson et al. (1999) with a field of 3T applied at 33° to c-axis (effected,
as here, by rotating about the a-axis). They too were unclear as to its origin, but
proffered that it may be due to an “unexpected influence” of the CuO chains. Given
that based on a rather simplistic model of the properties of YBasCuzO7, none of the
unconventional theories documented here provides any clues, it is likely that a better
understanding of the electronic structure of YBay;Cu3O7 will be required to explain
these effects.

Although the discrepancy between the London anisotropy and the distortion ob-
served in the domains of figure 3.21 can be explained away in terms of the field-induced
transition to a nearly isotropic square vortex lattice, that the distortions of these two
domains are different from each other is an altogether more puzzling matter. Inspection

of figure 3.21 reveals that the vortex lattice domain formed in the crystal domain with

* See Campbell et al. (1988) and the discussion in section 3. Note that Campbell’s
conclusion for a uniaxial superconductor — that the nearest-neighbour direction is
along the axis perpendicular to the rotation — is unaffected by the biaxial nature of
the sample here. This is true regardless of the value of effective mass along the axis
of rotation since it is not coupled with the mass in any other direction. Recall that
only the presence of off-diagonal terms in the mass tensor is able to effect a preferential

orientation within the London theory.
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the b-axis rotated by 10° (the black domain) is more isotropic. On the contrary, the
magenta vortex lattice, which forms in crystal domains where the b-axis is perpendicu-
lar to the applied field, is less isotropic. London theory cannot account for the different
distortions any more than it can account for the fact that both of the domains are more
isotropic than expected because the 10° rotation is too small to give any measureable
difference between the two. Curiously though, London theory does give the correct
qualitative behaviour, i.e. that the black domain should be made more isotropic than
the magenta one given some rotation (see figure 3.22). The enhancement of the angu-
lar dependence of distortion is clearly beyond the realms of anisotropic London theory,
but may be explainable in terms of the extended Ginzburg-Landau or non-local London
theories, which contain high-order powers of the effective-mass tensor and whose pre-
dicted distortion should vary with angle faster than the London cos(6). It is probably
unnecessary to invoke a non-continuum theory such as the Lawrence-Doniach model
(Lawrence and Doniach, 1971) because YBasCu3O7 is only moderately anisotropic.

(The cross-over to two-dimensional vortex line behaviour is expected at Bap ~100 T in

YBaQCU3O7.)

b
Before rotation a
about vertical axis
a b
b
After rotation a
about vertical axis
a’ v

Fig. 3.22: The effect of rotation on the effective mass in the plane perpendic-
ular to the vortex direction. (Large effective masses are represented by short
arrows therefore the arrows give the actual real-space vortex-lattice distor-

tion.) The primed axes are coupled to the c-axis.
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Aside from the two strongly-scattering triangular vortex lattices, there is also
present in the diffraction pattern shown in figure 3.21 significant scattering roughly
along {110} as indicated by the white arrows. In a sample with much stronger pinning
it may be feasible to attribute these to the tails of the wide rocking curves of vortices
pinned to the twin planes, which are at 10° to the applied field direction. However the
scattering along {110} appears to be centred at the Bragg angle expected given the
g-value of these features, not at some large angle expected if the vortices ran along the
twin planes. Rocking curves taken over small regions™ encompassing the two diffraction
peaks at the top-left of figure 3.21 and the weak intensity along {110} between them

are shown in figure 3.23.

The origin of the weak interstitial spots in figure 3.21 is not immediately apparent.
Although their arrangment is suggestive of a square vortex lattice domain, the measured
g-value of 32.6(2) mA ™" seems more consistent with the triangular value (33.2 mA_l)
than the square (30.9 mA_l). Their angular coordinates are difficult to establish be-
cause there is a lot of overlap with the adjacent triangular peaks. The only way to
get a satisfactory fit was to tie the tangential and radial widths of the trio of spots
in the corners of the diffraction pattern; otherwise, the fitting routine attributed zero
weight to the {110} spots. However, the angular positions of the spots measured in
this way are unlikely to be reliable because of significant correlations in fitting between
the angular position of the interstitial spots and the position and tangential widths of
the strong spots. Thus, all that can really be deduced about the interstitial spots from
the data is that they lie roughly along the {110} directions and have g-values too large

for them to be the diffraction peaks of a square vortex lattice.

* Due to the overlap of the spots neither the rocking curve in figure 3.23 nor the
rocking curve in figure 3.25 shows the total detector-integrated spot intensity as a func-
tion of angle. Instead, to avoid contamination from neighbouring spots, the intensity
is integrated over similar-size areas around each peak. The results obtained this way
allow a reliable comparison of the integrated intensity of different spots at the same
field. Comparing the same spot at different fields is not so reliable, however, because

the regions summed over are necessarily different.
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Fig. 3.23: Rocking curves as a function of “diagonal” rocking angle (i.e. w = ¢)
of the three centres of intensity seen in the top-left of figure 3.21. (These
rocking curves are representative of the ones done on identical spots in the
other corners of the detector.) The two larger peaks correspond to the bright
triangular domains and the smaller one to the diffuse scattering along the
{110} direction. Also shown are Gaussian fits to the rocking curves; these fits
give the following values for integrated intensity (in arbitrary units): 1.1(1)
(black domain), 0.58(5) (magenta domain) and 0.35(8) ({110} domain).

One possible interpretation that is consistent with the facts is that they belong to
four vortex lattice domains oriented along {110} similar to those seen at low fields with
B-parallel to the c-axis. The absence of the other spots can be explained by the fact
that they are much weaker than the four principal ones, which are doubly degenerate
(see figure 3.3). Furthermore, the other spots would be expected to lie close to the
positions of the strong peaks in the present diffraction pattern thus masking their
presence (see figure 3.4). Even assuming the veracity of this hypothesis, it remains
to be understood why the four putative domains orient along the projection of the
{110} direction since the possibility that the vortex lines run along the twin planes has
already been discounted. It may be that the twin planes still control the orientation of
these domains if the vortices are pinned only at points where the twin planes intersect
the CuO planes but are otherwise straight and follow the applied field (Yethiraj et

al., 1993b). By this mechanism, a single vortex will be pinned by the intersection of
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many twin planes as it threads the sample. Adjacent vortices will line up along the
projection, ¢win, of {110} onto the plane perpendicular to the vortex direction for a

sample rotation of 8, simple geometry gives this to be:

Gtwin = arctan(cos tan45°). (26.1)

For small rotations, e.g. 10°, ¢iwin is practically identical to 45° and is therefore in
agreement with the position of the weak spots in figure 3.21. It should also be pointed
out that similar reasoning should apply to the orientation of the nodes of the order
parameter. Within the quasi-classical d-wave theory (Ichioka et al., 1999), the free
energy of a triangular arrangement of vortices aligned along {110} is very close to that
of a similarly coordinated lattice aligned with the crystal axes.

Regardless of what causes the vortex lattice domains associated with the scattering
along the diagonals of figure 3.21 it is quite possible that in each crystal domain there is
a coexistence of two vortex lattice phases: one almost isotropic triangular (the black or
magenta domains) and one with its nearest neighbour directions along {110}. Studying
the field-evolution of the diffraction pattern gives good evidence of this. Figure 3.24
shows diffraction patterns taken at 7T and 8.5T. At 7T the black domain of figure
3.21 is still clearly visible, but the magenta domain has become much weaker. This is
verified by the rocking curves of these spots shown in figure 3.25. Compared to the
rocking curves at 5T (figure 3.23) the magenta domain is definitely diminished relative
to the black domain. Unfortunately, the rocking curve of figure 3.25 did not go to
sufficiently small angle to get a good estimate of the integrated intensity of the {110}
spot, but it is nevertheless clear that its intensity has grown relative to the others’.
In the very least it is of the same magnitude as the magenta domain, whereas at 5T
it was approximately half. The black vortex lattice domain seems unaffected at 7T.
However, at 8.5'T the black domain is now also weaker. The magenta domain is now
completely invisible and both domains have been all but replaced by the now strong

square-looking® domain oriented along the {110} direction. Also just visible at the

* Regretably, an error (discovered only after the experiment) in the data acquisition
macro used to gather the high-field scans caused a systematic error in the rocking

angles, which made all rocking angles v/2 too large. As a result the g-values of the spots
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very edges of this pattern along the horizontal axis are a pair of spots. These are the
second order spots of the now bright {110} spots.

The only logical conclusion from the sequence of diffraction patterns at 5T, 7T
and 8.5 T is that the region of sample occupied by the {110} domain(s) is growing at
the expense of the other two domains, of which the magenta is the first to disappear,
followed thereafter by the black domain. Curiously, this process occurs without much
change in the shape of the these lattices. Table 3.2 shows the field dependence of
the two angles between reciprocal lattice vectors of the black and magenta domain.
Both domains have a more or less static structure, but there is a subtle tendency,
measureable in the black domain, towards a more isotropic structure. It is probably
simply a continuation of the trend towards more isotropic vortex lattice structures
with increasing applied field whose ultimate manifestation is the square vortex lattice
observed at high fields, which is visible in the data taken at 8.5T. In this respect it is
perhaps unsurprising that the magenta domain — whose distortion is larger than the

black’s — is the first to disappear.

measured on the detector are systematically too large due to the effects of resolution
described in section 15, thus it is not possible to make the distinction between triangular
and square g-values from these data. However, the structure of the diffraction pattern
(i.e. the angles between reciprocal lattice vectors) is unaffected because the distortion

due to resolution only affects the radial component of the reciprocal lattice vectors.
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Fig. 3.24: Low-temperature diffraction patterns taken at 7T (top) and 8.5T

(bottom). These patterns are sums over diagonal rocks.
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Fig. 3.25: Rocking curves of the three spots visible in the bottom-left sector
of the data taken at 7T. (The spots are denoted according to the convention
of figure 3.21.) These rocking curves are representative of rocking curves of
other symmetry-related spots. Also shown are Gaussian fits to these data. The
fits yields integrated intensities (in arbitrary units) of 1.1(1) (black domain),
0.40(5) (magenta domain) and 0.50(5) ({110} domain). (The fit for the {110}
domain is not very good owing to a lack of points on the left side of the rocking
curve. The fit was performed assuming a width of 0.14°, which is the average
of the other two curve widths (0.13° and 0.15°.))

Triangular vortex lattice structures (/(B,c) = 10°,B || (100))

B/T Qp ﬁb Qm ﬁm
5 54.2(6)°  63.0(5)°  50.3(3)° 64.9(3)°
7 55.9(5)°  62.1(5)° 51(1)° 65(1)°
8.5 58.3(5)°  61.0(5)° — —

Table 3.2: The angles between reciprocal lattice vectors, a and 3, defining
the black and magenta domains in figure 3.21. (These are denoted by the
subscripts “b” and “m” respectively.) At 8.5T only the black domain was
observable (see figure 3.24).

Figure 3.26 shows the diffraction pattern taken at 9 T in the configuration with the
field applied at 10° to the crystal c-axis. From this it can be seen that even the black
domain has practically vanished: the spots of this domain that are along the diagonals

are still just visible, but the ones on the horizontal axis can only be seen amongst the
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noise by the eye of faith. All that remains is a single (within resolution) square vortex
lattice domain that presumably occupies both types of crystallographic domain. The
distortion of the “square” lattice is very small. The two angles defining this lattice are
those subtending the top-left and top-right spots, and the top-right and bottom-right
spots. (By symmetry, the angles subtending the bottom-left and bottom-right, and
the top-left and bottom-left are respectively equivalent to the former two.) Fitting
the strong diffraction peaks of figure 3.26 gives these angles to be 90.8(3) and 89.2(3)
respectively. The very small amount of distortion corresponds to a ratio of the sides of
the rectangular unit cell of 0.986(4), which is a smaller distortion that that seen with
B applied 5° away from the c-axis in the other sample orientation. However, the latter
measurement was only an “upper” estimate of the distortion for B parallel to the c-axis

(see section 23) and the true value is likely to be closer to unity.
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Fig. 3.26: Diffraction pattern obtained by diagonal rocks at 9T.
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The coexistence over a wide field-range of the square vortex lattice domain with
the two hexagonal phases implies that the transition to square seen here is very different
compared with the case where the field is applied parallel to the twin planes. It is most
likely that in the present case the transition is first-order, which permits coexistence of
two phases. If at a given applied field, the transition to square occurs somewhere below
the irreversibility temperature (below which the vortex lattice structure is frozen) then
pinning may be responsible for the survival of large regions of triangular vortex lattice
in each of the crystallographic domains. Since the energy balance between different
vortex configurations is usually very delicate and the energies involved in pinning are
large (of the order of the condensation energy for each vortex pinned), it is quite possible
that pinning may freeze in an unstable vortex lattice structure over a wide temperature
range even in a sample with relatively low pinning like the present one.

A temperature scan was performed at 8.57T in order to compare with the cor-
responding data taken with B applied along a twin plane direction. For expediency,
the vortex lattice structure at each temperature was investigated by rocking onto the
positions of the two diffraction peaks in the bottom-left of the diffraction pattern (see
figure 3.24). To recap: at low temperatures the brighter of these two spots is the one
associated with a square vortex lattice domain and the slightly less intense one belongs
to the “black” triangular vortex lattice domain seen also at lower fields.

The temperature scan is shown in figure 3.27, in which is displayed the region
around the two spots as a function of temperature all on the same linear colour-scale.
The temperature scan was performed by cooling to 20K in an applied field and then
raising the temperature between each successive frame of figure 3.27 until the signal was
lost (about 70 K); a couple of measurements were then taken going down in temperature
for comparison. Notwithstanding changes in intensity due to the usual increase in
penetration depth with increasing temperature, the structure of the pattern remains
static (a fact that can be verified by fitting the spot positions). This is consistent with
the conclusion stated above that the diffraction pattern in this orientation comprises
two types of vortex lattice, separated by a first order transition, that coexist due to

pinning. Furthermore, the occupation of the two domains is quite constant over the
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temperature range 20-50 K (the intensity ratio of the weaker domain to the stronger
domain is about 0.7). However, there is some evidence of hysteresis at higher temper-
atures. At 50K there is a difference between the “up” data and “down” data in the
ratio of the intensities of the two spots, which are 0.6(1) and 0.8(1) respectively. That
there is a larger volume of the triangular lattice relative to the square lattice in the
data taken going down in temperature is consistent with the freezing-in of this type of
domain below the transition to square.

To elucidate further the effect of applied field angle on the high-field vortex lattice
in YBayCu3O7, measurements were performed with the same sample orientation as
above, but with an angle of 30° between the applied field and the crystal c-axis. In figure
3.28 is shown the diffraction pattern taken with 5T applied at 30° to c¢. The pattern is
composed of data taken by rocking the sample diagonally; neutrons of wavelength 8 A
were used and the sample-detector distance and collimation length were 6 m and 8 m
respectively.

Figure 3.28 is quite a complicated diffraction pattern, but even at first sight a
nearly isotropic triangular domain consisting of the six bright spots is clearly visible.
This domain bears close resemblance to the domain coloured black in figure 3.21, but it
is more isotropic and the angles defining this domain (59.4(2)° and 61.2(4)°) are closer
to 60° than the corresponding angles of the lattice formed when B is only 10° from the
c-axis (table 3.2). To an extent, this behaviour is expected from anisotropic London
theory alone. The black domain forms with nearest-neighbours along the crystal a-axis,
which is perpendicular to the applied field. On the other hand, the b-axis in this crystal
domain is rotated towards the applied field due to the sample rotation. The effect of
rotation is to couple the effective mass along the c-axis (the “hard” direction) with the
effective mass along the b-axis (the “easy” direction). At around 30° (depending on
oxygen doping) this coupling negates the basal plane coupling (Johnson et al., 1999).
For a biaxial superconductor, rotating the effective-mass tensor (equation 3.2) gives

the distortion between the a-axis and the projection of the b-axis to be:

e = /7’ cos?(6) + v sin?(6). (26.2)

Using the value of 7,, = 1.28 obtained at low fields (section 22) in this over-doped
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sample and 7., = 4.5% gives €,(30°) = 1.109. (In this sample a perfectly isotropic
vortex lattice arises when # = 38°, which is larger than the corresponding value of
the sample used by Johnson et al. (1999) reflecting the lower oxygen doping in that
sample.) Fitting the bright spots of figure 3.28 to an ellipse using the method of section
22 yields an experimental value of €qxp(30°) = 1.043(9). This is slightly less than the
theoretical value suggesting that the anisotropy is to some extent suppressed by the
same field dependent effect that gives rise to the high-field square lattice with B applied
both parallel to the c-axis and at 10° to it.
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Fig. 3.28: Sum over diagonal rocks taken at 5K with a magnetic field of
5T applied at an angle of 30° to the crystal c-axis. In addition to the very
clear triangular domain formed of the six strong diffraction peaks two further

domains are marked out by the coloured hexagons.

* This quantity has not been determined at low fields for the present sample, but
represents a rather typical value (see Yethiraj et al., 1993). The precise value is not

important because the second term in the surd is only a small correction.
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In addition to the almost isotropic triangular domain, the diffraction pattern of
figure 3.28 contains weaker scattered intensity that lies on an eccentric ring with its
major axis horizontal in the pattern. If the bright isotropic triangular domain is related
to the black domain in the diffraction pattern taken with B at 10° to ¢ (figure 3.21),
which forms in the crystal domain with the a-axis vertical in real space, then this extra
scattering is associated with vortex structures that form in the other domain (the one
with b vertical). However, this scattering bears no resemblence to the magenta domain
of figure 3.21. Instead of just one nearly isotropic triangular domain, close inspection
reveals that this scattering consists of two highly eccentric triangular domains (indi-
cated by the dashed hexagons in figure 3.28). To verify these structures, the spots at
the vertices of the hexagons were fitted. Unfortunately, the four spots associated with
these domains residing at the top/bottom of the diffraction pattern were too close to
the very strong spots of the intense domain to give a reasonable fit even though the
odd shape of the strong spots gives good reason to suspect that they are composed
of two diffraction peaks. Nevertheless, fitting the other two types of lattice vector in
each domain and combining them appropriately gave a set of vectors which lie convinc-
ingly close to where by eye the top/bottom spots lie. Further credence is given to this
conclusion by taking two of the fitted reciprocal lattice vectors from each domain and

verifying that the proposed lattices obey flux quantisation.

The formation of the two eccentric triangular domains is presumably in response
to the greater degree of rotation, which takes the a-axis in this crystal domain —
along which the predecessor (magenta) vortex lattice was correlated — further away
from being perpendicular to the applied field. These domains are similar in appearence
to ones observed in another twinned stoichiometric YBasCuzO7 sample with the field
(0.8 T) applied at angles in the range [45°,80°] to the c-axis (Yethiraj et al., 1993b).
There it was claimed® that those structures were consistent with alignment along the
intersections of the twin planes, which is not the case here. At § = 30° equation 26.1
predicts that the twin-plane-correlated nearest-neighbour direction should be 41° to

the vertical real-space axis. None of the reciprocal lattice vectors points to correlations

* No details of this calculation are presented in Yethiraj et al.(1993b), nor is the

exact structure of any of the domains offered.
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along this direction. The closest are the diffraction peaks lying roughly along the
diagonal direction, whose corresponding angle is only 33°. Exactly what causes the
orientation of the doubly degenerate domains is unclear, but again underlines the need
for a good understanding for the intrinsic electronic properties of YBasCu3zO7 assuming
extrinsic causes can be ruled out. Whatever the cause, it appears that the structure
of these two vortex lattices follows fairly closely that prescribed by anisotropic London
theory. To calculate this, the term 7;)2 in equation 26.2 is replaced with its reciprocal
to allow for the interchanged a- and b-axes of this crystal domain relative to the former.
The resulting distortion of €, (30°) = 1.406 is in rather good agreement of the measured

value of €qyp, (30°) = 1.39(7).

120

100

80

60

40

20

20 40 60 80 100 120

Fig. 3.29: Diffraction pattern obtained by diagonal rocks at 9T applied at
30° to the crystal c-axis. The square and triangular domains present in the
pattern are outlined. Following the discussion of the data with B applied at
10° to the c-axis, the two vortex lattice domains probably occupy separate

crystal domains.
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At high fields the behaviour of the vortices mimics closely that at 10°. Figure
3.29 shows the diffraction pattern taken at 9T under the same conditions as the data
taken at 5T described above. Comparing these data with those of figure 3.26 demon-
strates the similarities. Both patterns consist of the same two domains, one square
and one triangular. The latter is the same “black” domain (oriented in real space
with its nearest-neighbour direction along the crystal a-axis, which is vertical in this
crystal domain) that has been seen throughout the angle-dependent studies. The for-
mer domain is the “final” square domain into which the low-field structures transform.
Interestingly, the intensity of this domain relative to the surviving triangular domain
is much weaker at 30° than it is at 10°. The implication of this observation is that
increasing angle of applied field suppresses the square lattice. Such a conclusion is
anticipated by both the d-wave and non-local London theories since the anisotropy
that drives the vortices to a square arrangement is confined to the basal plane in both
theories. Surprisingly though, the square vortex lattice domain is actually weaker than
the “black” domain. If the volumes of the crystal domains are equal then at least equal
populations of the two lattices would be expected if each resides in one of the two
domains. (The “black domain might be slightly less populated if pieces of it had made
the transition to square.) Clearly, more detailed investigations would be required to
ascertain whether this is simply a form factor effect or whether disorder plays a role in
reducing the scattered intensity.

That increasing the angle of the applied field suppresses the transition towards
square is reinforced by figure 3.30. There are shown diffraction patterns taken at 10T
with the field appied at 20° and 30° to the crystal c-axis. (The data were obtained
by rocking each of w and ¢ separately over the range [—3°,43°] in 0.1° steps with
Sdet = DM, leon = 6m and A\, =8 A.) Figure 3.30 demonstrates two things. Firstly by
comparing the data taken at 10T applied at 30° with the 9T data of figure 3.29 it
can be seen that in-line with the corresponding field dependence at 10° the triangular
domain disappears with increasing field to the benefit of the square domain, whose
scattered intensity increases. Secondly, comparing the diffraction patterns at 20° and
30° (both at 10T) shows quite clearly that the transition to square is inhibited by

increasing the angle of applied field. (The triangular domain is stronger at 30°.)
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Fig. 3.30: Diffraction patterns at 10 T applied 20° (top) and 30° (bottom) to

the c-axis.
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It is also of interest to examine the dependence on applied field angle of the high-
field square lattice distortion. Fitting the square spots visible in the diffraction pat-
terns of figure 3.30 gives values of 0.956(3) and 0.934(6) for 20° and 30° respectively.
The direction of these distortions is consistent with a larger effective mass along the
horizontal direction perpendicular to the applied field (in real space) caused by the
rotation about the vertical {100} direction. However, the degree of distortion seems to
vary more slowly than that predicted by anisotropic London theory. In figure 3.31 the
measured dependence of the square lattice distortion is compared with the anisotropic
London prediction for v,. = 4.5 (Yethiraj et al., 1993). Rather than use the experi-
mentally determined value of the basal plane anisotropy (see section 22) an isotropic
basal plane has been assumed because with B parallel to the c-axis an almost isotropic
square lattice is observed. Unsurprisingly, the agreement between London theory and
the measurements is poor, which emphasises the unconventional nature of the square

vortex lattice observed at high fields in YBayCusO7.

777 T 1
0.98
0.96 o) -
0.94
'§0.92
0.9
0.88
0.86
0.84 N

1 l 1 l 1 l 1 l 1 l 1 l 1
0'820 5 10 15 2 25 30 35

0
Angle of applied field /degrees

T
|

T

Distor
T T
| |

T
|

T
|

Fig. 3.31: Distortion of the high-field square vortex lattice as a function of
applied field angle. The green curve shows the expected dependence from
anisotropic London theory assuming that the basal plane is isotropic at § = 0°

and v, = 4.5 (see equation 26.2).
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27. Summary

In this chapter the first structural studies of the high-field vortex lattice in YBCO
have been presented. The sample used in the investigations was lightly twinned (stoi-
chiometric) YBayCusO7, which is over-doped relative to the optimum-7; doping (which
is seen in YBaoCusOg.94). Consequently, a significant degree of basal plane anisotropy
was expected compared to samples with lower oxygen doping (e.g. the one used by
Johnson et al., 1999). From a series of measurements at the relatively low field of 1T,
the ratio of basal-plane penetration depths was determined to be 74, = 1.28(1), which
is accordingly larger than values found in samples containing less oxygen.

The estimation of v, relies on the validity of the anisotropic London model. In the
London model, the vortices are approximated by singular zeroes of the order parameter
(see section 2) and the anisotropy in the circulating super-current arises simply from
the anisotropy in the effective electron mass in the plane perpendicular to the vortex.
An important role fulfilled by the low field measurements was the verification of the
validity of the London model in the low-field regime. It was found that the vortex
structure observed at 1T — namely distorted triangular vortex lattices — coincided
well with the corresponding structure calculated both by numerically minimising the
London free energy and by a simple scaling argument, if allowance is made for the
twin planes, which are parallel to the crystal {110} direction and pin the orientation
of the otherwise degenerate vortex lattice. The twin planes have the additional effect
of dividing the crystal into small domains of interchanged basal plane axes and hence
interchanged anisotropy. Therefore, a total of four degenerate domains (with overall
four-fold symmetry) are observed because there are two orientations of twin planes
separating the two crystallographic domains.

Given the large energy density involved in twin-plane pinning (of order the con-
densation energy density), it is most probable that the twin planes exert control over
the orientation of the vortex lattice over all the field (applied parallel to the c-axis)
and temperature range accessible to SANS. The experiments indicate that this is in-
deed the case: strong diffraction peaks due to vortex planes parallel to the twin planes
are observed to the highest available field (11 T). However, the structure of the vor-

tex lattice is not independent of field. Even at 4T there is a subtle coalescence of
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spots that evolves with increasing field until the four-fold symmetric structure of four
distorted triangular domains is replaced with what appears within resolution to be a
single square vortex lattice domain (section 23). Measurements taken with the field
applied at 5° to the c-axis show evidence for a slight distortion (0.972(5)); thus the
high-field configuration is actually rectangular as expected from the symmetry of the

crystallographic domains.

Whilst the twin planes favour lines of vortices aligned along {110}, their role in the
high-field square configuration was discounted (section 24). Instead, anisotropy in the
vortex-vortex interaction induced by non-local effects arising from either Fermi surface
anisotropy or d-wave effects were proposed as likely candidates. In YBasCusO7, both
effects are expected to give rise to the same qualitative effect, i.e. a tendency for square-
coordinated vortices with nearest-neighbours along {110}. It has not been possible to
determine definitively to which anisotropy (Fermi surface or gap) the high-field vortex
lattice structure owes its existence. In this regard, there is need for a theoretical study
similar to the work on LuNisBoC by Nakai et al. (2002), but using realistic parameters
for YBasCusO7. From an experimental point of view, more detailed measurements on
the form-factor would be desirable. Present estimates of the form-factor (section 23)
are consistent with d-wave theory, but no strong conclusion can be drawn because of
the lack of knowledge about parameters needed for a non-local London calculation and

the incompleteness of the experimental data.

The temperature dependence provides more compelling evidence that the high-
field square vortex lattice arises from an intrinsic anisotropy rather than just twin-plane
pinning. With increasing temperature, a continuous transition back to a distorted tri-
angular arrangement is found to occur, although at high fields the vortex lattice was
found never to return to exactly the low-field configuration, even at the highest temper-
atures for which the signal from neutron scattering was detectable. From these data, a
phase diagram was constructed that showed the mid-point of this continuous transition
bending upwards with increasing temperature. The prevalence of the triangular vortex
lattice at high temperatures is indicative of thermal fluctuations “smearing out” the
anisotropy responsible for the square configuration. Both non-local London theory and

d-wave theory predict the same qualitative behaviour, but as is the case with the field
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dependence, distinguishing between the two theories based on the experimental data

would require more detailed calculations.

Since the field-induced anisotropy occurs in the basal plane, it was expected that
changing the angle of the applied field away from parallel to the c-axis would result
in suppression of the high-field square lattice. Measurements have verified that this
is indeed the case, but during the angle-dependence investigations a veritable zoo of
vortex structures was observed. With a modest field of 5T applied at 10° to the crystal
c-axis (rotated about {100} such that none of the twin plane directions was along the
induction), two fairly isotropic (¢ = 1.14(2) and € = 1.229(6)) triangular lattices are
observed with their nearest neighbour directions along the crystal a-direction (or its
projection onto the plane perpendicular to the applied field) that presumably populate
the two different types of crystal domain available in the sample. (Similar structures
to these were observed by Johnson et al. (1999) at lower fields (3.3 T) and larger angles
of rotation (33°).) Anisotropic London theory is not able to account for either of these
vortex lattice structures and the lower values of London distortion may reflect the basal
plane anisotropy being to some extent cancelled by the anisotropy that prefers square
coordination. Interestingly, neither triangular domain undegoes a continuous deforma-
tion to the high-field square lattice. Instead, weak scattering parallel to the crystal
{110} directions, that appears to have a triangular g-value at low fields, gradually gets
stronger at the expense of the two triangular vortex lattices. It eventually evolves into
a square lattice at high fields very similar to that seen with B parallel to the c-axis.
(The more anisotropic triangular lattice disappears first, followed by the more isotropic
one, which is still just visible at 9 T. Neither of the strong triangular patterns seen at
5T undergoes much change during this first-order transition. ) At intermediate fields
there is a coexistence in their respective crystal domains of the a-oriented vortex lat-
tices with the vortex domain that eventually becomes square. Temperature dependent
measurements suggest that pinning is responsible for the coexistence of the triangular
vortex lattices (preferred at high temperatures and low fields) with the square structure

(preferred at low temperatures and high fields).

The mechanism that gives rise to the a-oriented triangular vortex lattices is at

present unknown, but is clearly associated to the properties of the basal plane. At 5T

132



applied at 30° to the c-axis, only the vortex lattice domain occupying the crystal domain
whose a-axis remains perpendicular to the field after rotation is observed. However, it
is now very nearly isotropic due to the coupling of the large c-axis effective mass into
the basal plane which cancels some of the anisotropy of the latter. The other is replaced
by two highly distorted triangular structures similar to those seen by Yethiraj et al.
(1993b) at much lower fields (0.8 T). These occupy the other type of crystal domain,
which has its basal plane anisotropy enhanced by the coupling of the c-axis effective
mass. The distortion of these two domains is in good agreement with the anisotropic
London prediction at this angle (e = 1.41), but their orientation is not understood. It
cannot be due to the intersection of twin planes with the CuQOs planes as suggested by
Yethiraj et al. (1993b) so is possibly intrinsic in nature.

The field evolution of the two eccentric triangular domains seen at 5T applied
30° to ¢ is not very different from that of the nearly isotropic one (found at smaller
field angles) that they replace. However, as already suggested, the field at which the
transition to square occurs is larger. There is also an increase in the distortion of the
high-field square vortex lattice expected from the coupling of the c-axis effective mass,
but it is found to be significantly smaller than that predicted by anisotropic London
theory. This is another example of the non-scalable anisotropy in the vortex-vortex
interaction at high fields acting in opposition to the scalable effective mass anisotropy,
giving rise to a structure that is apparently more isotropic than expected from simple

London theory.
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CHAPTER IV

ADDITIONAL WORK

28. Introduction

The measurements and analyses presented in chapter III represent the principal
results of this thesis, but they are only part of a broader programme at Birming-
ham whose aim is to study condensed matter systems (particularly superconductors)
using neutrons, muons and X-rays. Common to each of these techniques is their abil-
ity to probe microscopic correlations making them ideal complementary partners to
traditional lab-based experiments, which normally measure macroscopic and thermo-
dynamic properties.

In this chapter is presented a brief tour through three other large-facility experi-
ments in which this author has had an active role. The first two are SANS studies of
the vortex lattice in Ndy_,Ce, CuO4 and detwinned YBCO samples of different doping
to the one studied in chapter III. Both of these are intimately related to the main
work of this thesis, i.e. the study of unconventional vortex structures in d-wave su-
perconductors. The third — the measurement of spin fluctuations in SrgRusO; — is
well off the beaten track of SANS measurements of the vortex lattice. Nevertheless, it
is congruent with a broader theme: the study of strongly interacting systems. Many
new oxide materials (including YBasCu3zO7_s, Ndy_,Ce, CuO,4 and SrsRuyO7 amongst
very many others) are characterised by their very strongly-interacting electrons, which
exhibit radically different behaviour from the idealised Fermi liquid. Unconventional
superconductivity and quantum-critical metamagnetism are two examples of the kind

of emergent behaviour seen in complex condensed matter systems.
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29. Square vortex lattice in NCCO

In this section are presented SANS measurements of the vortex lattice in the
electron-doped high-T;. superconductor Nd; g5Ceqy.15CuO4 (Gilardi et al., 2004), which
were performed in close collaboration with R. Gilardi and J. Mesot of the Laboratory
for Neutron Scattering, ETH Ziirich. The work summarised here was published in
Physical Review Letters in 2004 (Gilardi et al., 2004).

In a similar fashion to their hole-doped counterparts, electron-doped high-7. ma-
terials emerge from their antiferromagnetic parent compound (Nd2CuOy in the case
of Ndy_,Ce,CuOy4) by doping with charge carriers. However, as their name suggests,
electron-doped superconductors are doped to have more free electrons per unit cell than
the parent compound (Takagi et al., 1989), which conspires to make the properties of
electron-doped materials somewhat different from hole-doped varieties. For example,
electron-doped materials tend to have comparatively low critical temperatures and up-
per critical fields (for Ndj g5Cep.15CuQOy, Tc =~ 20K and Bey ~ 8T; ¢f. T, ~ 90K
and B.o ~ 100T in YBayCu3O7). Also, it has been shown by the inelastic neutron-
scattering experiments performed by Yamada et al. (2003) that antiferromagnetism
coexists with superconductivity in electron-doped cuprate superconductors.

Since both the electron- and hole-doped cuprates share similar crystal structures
based on CuQO, layers, it is inevitable that there are similarities between them too. In
hole-doped systems, the CuO; planes play a crucial role in determining the symmetry of
the superconducting order parameter for which there is substantial evidence favouring
the d-wave picture (see section 19). In the electron-doped materials, many measure-
ments gave indication of s-wave pairing, but more recent phase-sensitive measurements
based on the half-flux-quantum effect (Tsuei & Kirtley, 2000b), which is probably the
most reliable technique for determining the order parameter symmetry, were found to
be consistent with d-wave pairing.

Interest in both hole- and electron-doped cuprates has been stimulated by the
d-wave symmetry of the superconducting order parameters (see section 8), which can
give rise to unconventional vortex lattice structures. Measurements showing the effects
of the d-wave order parameter on the vortex lattice have already been reported in some

hole-doped systems including La; g7Cag.17CuOy4 (Gilardi et al., 2002) and YBay;CuzO7
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(see Brown et al., 2004; Brown et al., 2005; and this thesis); but there is a lack of
equivalent data for electron-doped compounds like Ndy_,Ce, CuOy, and thus there is

motivation for an experiment.

The data presented here represent the first SANS measurements of the vortex
lattice in the electron-doped material Nd; g5Ceg.15CuQ,4. The experiments were car-
ried out on the small-angle diffractometer D22 at Institut Laue-Langevin, Grenoble,
France. Two samples were used, both grown in a mirror furnace and then annealed
to give T, ~ 25K (Kurahashi et al., 2002). The first was a bi-crystal cylinder of
5mm diameter whose domains’ c-axes were misaligned by a relative rotation of 7°.
The second sample consisted of thin (=~ 1.5mm) plates cut from a single-crystal cylin-
der using a diamond-blade circular saw and was intended to be used when scattering
long-wavelength neutrons where attenuation becomes an issue. (Nd is quite a strong
absorber of neutrons.) During the experiments, the samples were mounted in a cryostat
in a similar arrangement to that discussed in section 21 (with the field parallel to the
crystal c-axis (or bisecting the two c-axes in the bi-crystal). As before, the measure-
ments were taken at low temperatures (7' = 2 K) and a background taken above T, was

subtracted.

In figure 4.1 are shown diffraction patterns at various magnetic inductions applied
parallel to the c-axis. Despite the relatively large value of B.o in NCCO, it was found
that in the samples used here, the neutron signal from the vortex lattice was immea-
surably small above about 400 mT. This point will be returned to later, but for now
the structure of the vortex lattice at fields of 200 mT and below will be examined. In
taking the data displayed in figure 4.1, measurements were made difficult at “high”
fields due to the weakness of scattering. At the low end of the field range they were
equally tricky due to the extremely low-q of the vortex lattice signal, which although
stronger than the scattering at high fields, was swamped by a very large background
signal that varies as ¢~". Of further concern was the change in background scattering
between the low-temperature foreground scans and the high-temperature background
scans caused by thermal expansion of the sample stick, which moved the sample verti-
cally very slightly. To overcome this, a background shift was employed, which involved

shifting the background pixel array relative to the foreground before subtraction. The
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shift was calculated by a least-squares fitting algorithm that minimised according to the
amount of shift the sum of residuals over an annulus around the detector centre in the
background-corrected data. It might be thought that taking a zero-field background
at low temperatures would be a better option, but in NCCO a field-dependence in the
magnetic scattering is expected due to the tendency of anti-ferromagnetic ordering of

both the Cu?* moments and, at low temperatures, the Nd3>* moments (Yamada et al.,

2003).

100 mT 200 mT

Fig. 4.1: (From Gilardi et al., 2004.) Diffraction patterns of the vortex lattice
in Nd; g5Cep.15CuOy taken at 20mT (top-left), 50mT (top-right), 100 mT
(bottom-left) and 200 mT (bottom-right). The crystallographic {100} direc-

tions are horizontal/vertical in this figure.

Figure 4.1 shows that the configuration adopted by the vortices at 50 mT, 100 mT
and 200mT is square with the vortex nearest-neigbour direction along {110}. The
orientation coincides with both the nodes of the d-wave superconducting order param-
eter and the Fermi velocity minima, hence this configuration is anticipated by both
d-wave (section 8) and non-local (section 7) theories of the vortex lattice. At 20mT
the pattern is ring-like and can be attributed to an orientationally disordered vortex

phase, which is expected in the low field regime where the vortices are widely spaced
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(~ 300nm at 20mT). However, a tangential sum as a function of the radial g-value of
these data shows (figure 4.2) that the inter-vortex spacing as measured by the peak in
the g-value is consistent with a square lattice, not triangular coordination. Magnetisa-
tion measurements show that at low fields the trapped flux is equal to within 1% to the
value expected from the applied field. The difference in g-values between triangular
and square configurations is roughly 7%, so any systematic error from this cause in

discerning between the two can be ruled out.
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Fig. 4.2: (From Gilardi et al., 2004.) Plots of the intensity as a function of
the radial ¢g-value calculated by summing the diffraction patterns tangentially.
The inset shows a plot of the structure-dependent factor o = sin(«), where
« is the angle between reciprocal-lattice basis vectors using the convention
that a € [0,90°] and assuming an isotropic lattice (equal-length vectors).
The factor a determines the length of the reciprocal lattice vectors via flux
quantisation (¢ = 271/B/c®). For a triangular lattice, o = v/3/2, whereas

for square coordination, o = 1.

It is a remarkable observation that the structure of the equlibrium vortex lattice in
Nd; g5Ceq.15Cu0y4 is square and remains so down to such low fields. This is in contrast
to all of the other d-wave compounds in which a similar transition occurs at rather
higher fractions of H.o, and it also contrary to theories predicting the field scale of
the the transition: d-wave theory predicts (Ichioka et al., 1999) a transition field of
0.15H. ~ 1.2T and a similar order of magnitude would be expected from non-local

London theory. (The details would require detailed knowledge of the Fermi surface
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— see Kogan et al., 1997; the experimental evidence suggests that the Fermi surface
in Nd; g5Ce(.15CuQy4 is an almost isotropic hole-like surface similar to YBCO (Dar-
mascelli et al., 2003)). It therefore seems that whatever drives vortices to assume a
square arrangement is beyond the “simple” d-wave and non-local theories and could
possibly have origins in the anti-ferromagnetic correlations present in the CuOq planes
in Ndy_,Ce, CuQy4. In fact, the characteristic wave-vector of these correlations is along
{110} (Yamada et al., 2003), which coincides with the vortex nearest-neighbour direc-

tion.

Even more astonishing than the existence of the low-field square lattice is the fact
that at 20mT the vortex lattice has local square coordination, but appears to have no
long-range orientational order. Degeneracy in orientation is a well-known feature in the
isotropic London and Abrikosov theories (see sections 2 and 5) and can even occur in
anisotropic London theory when the field is applied along a principal crystal direction
(see section 3). However, every source of anisotropy that supports an unconventional
square morphology — be it Fermi surface anisotropy or nodes in the superconducting
order parameters — is coupled to the underlying crystal structure. So it is extremely
surprising given the single/bi-crystal nature of the samples used (as verified by neutron
Laue diffraction patterns) that the vortices should be so irresolute towards their relative

orientation.

Another puzzle uncovered by these measurements is the rapid decay of the scat-
tered intensity from the vortex lattice, which is graphed in figure 4.3. Strictly speaking,
the integrated intensity should be calculated by integrating over the rocking curve, but
that is impossible in these samples because the scattered intensity of the diffraction
peaks shown in figure 4.1 was, within experimental errors, constant over a +4° range
of rocking angles. Therefore, with the measurement of complete rocking curves deemed
impracticable, the integrated intensity as a function of field was represented by the

intensity at a fixed angle, which gave the data of which figure 4.3 is comprised.

The “integrated” intensity shown in figure 4.3 exhibits a very rapid drop-off with
increasing field that is not well described by an intrinsic decrease. Visually, a power
law with exponent —2 gives a satisfying account of the data. The plain London theory

patently fails to account correctly for the observed collapse of the intensity. In London
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theory, the field diverges at each vortex core, thus there is no loss in magnetic contrast
with increasing field and the only field dependence is the rather slow B ~2 whose origin
is in the geometry of reciprocal space (see sections 2 and 11). It might be argued
that correcting for the finite core size would improve matters, but this only generates
Gaussian or exponential prefactors to the integrated intensity via the form factor (see
section 2). Clearly, no amount of fiddling of coefficients can bring agreement of such

expressions with the observed power law on the log-log plot of figure 4.3.
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Fig. 4.3: (From Gilardi et al., 2004.) The scattered intensity from the vortex
lattice taken at T = 2.5 K. Also shown are theoretical predictions given by
London theory (varying oc B~3: see section 11) and London theory with
corrections for the vortex cores and the field-depedence of the penetration
depth (see Gilardi et al. (2004) for details). Clearly neither of the dashed

theoretical curves is able to reproduce the B~2 power law given by the data.

Another intrinsic source considered by Gilardi et al.(2004) as a candidate for the
decrease in scattered intensity is the field dependence of the magnetic penetration
depth. In a fully-gapped s-wave superconductor, the change in quasi-particle popu-
lation from its ground state induced by the application of a field (via the resulting
supercurrent flow) may often be neglected. An obvious exception occurs in the mixed
state in the vicinity of a vortex core where the order parameter is suppressed; the vortex
core corrections proposed above arise from this. However, the picture is much different

in a d-wave superconductor whose order parameter nodes ensure that the quasi-particle
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population will be affected by supercurrent flow even far from the vortex cores (Amin
et al., 1998). One way of looking at this is in terms of enhanced non-locality near the
nodal directions (see section 8). There is evidence from puSR measurements (Sonier et
al., 1997) that the penetration depth varies linearly with field in the way predicted by
Yip & Saul (1992):

A B

— :l—i—ﬁB—O, (29.1)
where By = ®¢/(72)¢) is of the order of the thermodynamic critical field, B, ~ 0.3T,
and the coefficent 3 was taken to be 7 x 1072 (the value appropriate for YBCO)
after Sonier et al. (1997). Like the finite-core correction, the correction due to the
field-dependence of the penetration depth can be worked into the integrated intensity
via the London form factor. The integrated intensity (equation 11.6) is proportional to
A~%, therefore equation 29.1 cannot account for the data of figure 4.3. In addition, with
3 =7 %1072, the correction at 200 mT to the plain London integrated intensity is only
in the region of 20%. A value of (3 close to unity would be needed to get convergence of
theory and data and it is not expected that this factor, which was measured in YBCO,
should be vastly different for NCCO.

Having ruled out field-dependence of the vortex form factor as a probable cause,
attention now turns to the effects of disorder on the structure factor (see section 9).
First, it should be noted that a cross-over from three dimensions to two dimensions, such
as that responsible for melting of the vortex lattice in Biy 15511 95CaCusOg4, (Cubitt,
1993), is unlikely in the field range of figure 4.3. (In fact, in Nd; g5Ceg.15CuQy, the cross-
over is expected at Bap ~ 13T > By (Gilardi et al., 2004)). Instead, a transition to a
three-dimensional vortex glass state like that observed in Laj 9Srg.1CuQOy4 (Divakar et
al., 2004) seems more plausible. A similar rapid drop in integrated intensity has been
observed in the vortex lattice of (K,Ba)BiO3 (Joumard et al., 1999 and Klein et al.,
2001). In those experiments, the peak of the rocking curve decreased with increasing
magnetic field, but the width remained constant. Klein et al. (2001) attribute this to
the Bragg glass state where the full-width at half maximum of the rocking curve is
controlled by the constant experimental resolution. The peak height is determined by
power laws in both the experimental resolution and the correlation length of the vortex

lattice, which decreases with increasing field giving the observed decrease in intensity.
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(Essentially, this occurs due to the form of the structure factor, which is a power law in ¢
with a divergent peak and long tails — see Klein et al. (2001), Giamarchi & Le Doussal
(1997) and Giamarchi & Bhattacharya (2001) for details.) The present data (figure 4.3
is only really comparable with the high end of the field range in the (K,Ba)BiO3 studies
where a transition from Bragg-glass behaviour to a more disordered state is seen. (At
lower fields, the measurements of Klein et al. (2001) are resolution limited, which is a
vastly different state of affairs than the vortex lattice reported here, whose width is in
excess of 10°.)

In summary, the results presented here give firm evidence of a square vortex lattice
in single-crystal Nd; g5Ceg.15Cu0y4 at unprecedentedly low fields. As is the case with
YBayCusO7, it is not possible to distinguish whether the origin of this is due to d-wave
or non-local effects as both of these predict the observed configuration. Equally, neither
theory can explain the adoption of the square configuration at such small fractions of
H. and it remains an outstanding issue that may possibly require a theory taking into
account the anti-ferromagnetic correlations in this material. Another unresolved point
is the observation at 20 mT of an apparently square vortex lattice with no orientational
order. Unconventional square lattices arise due to coupling between the vortices and the
crystal lattice, which inherently impose a favoured orientation on the vortex lattice. If
the term in the free energy favouring a square lattice oriented along {110} is frustrated
by a much stronger disorder term, then why should the lattice keep a square g value
rather than reverting to the triangular one?

Only a very small low-field range of the phase diagram has been explored so far
and it goes without saying that further work at higher fields is desirable. The high-field
SANS facility at PSI provides the possibility of measuring right up to Heo(T' = 0), allow-
ing the entire phase diagram to be explored unlike in YBayCuzO7_s and Las_5SrsCuQO4
whose large upper critical field prohibit this. Before that can be achieved, an improve-
ment in sample quality is necessary. The present sample presumably contains many
pinning centres that are responsible for the very low field transition to a disordered

vortex glass state.
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30. SANS measurements on detwinned YBCO

The measurements presented in chapter III provide convincing evidence of a tri-
angular to square transition in the vortex lattice structure in YBay;CusO7, which may
be understood in terms of either the non-local London theory or d-wave theory. Both
those theories predict that the vortex nearest-neighbour direction lies along the {110}
direction. This is indeed observed, however the presence of twin planes in that sample,
which prefer orientation along {110}, somewhat undermines the direct relationship be-
tween the vortex lattice configuration and sources of intrinsic anisotropy. In addition,
the twinned nature of the sample produced significant difficulty in accurately deter-
mining the vortex lattice structure as a function of field. It was in part to address
these issues that further measurements on the vortex lattice in YBaysCuzO; have been
carried out on a set of detwinned samples. However, a greater motivation to perform
more experiments was to extend the measurements: new samples have been grown
with different hole dopings, which will add another dimension to the triangular to
square phase diagram. In this section a glimpse of some of the next-generation SANS
measurements on YBCO are presented. These measurements have been done in close
collaboration with V. Hinkov and B. Keimer, who provided the samples and initiated
the experiments. Since the investigations are still being actively pursued, only a small
selection of the data will be presented; a complete fully-analysed account will be the
subject of a future Physical Review Letter (Hinkov et al., 2006a) and will form part of
the Ph.D. thesis of V. Hinkov (Hinkov, 2006b).

The first detwinned sample used was of YBasCuszQOg.99, which should have com-
parable electronic properties to the twinned YBayCu3zO7 crystal used previously. Due
to the difficulty in detwinning large single crystals, the sample was actually composed
of ten small crystals (each ~ 20mg) mounted in a well-aligned mosaic. The sample
was mounted in the same cryomagnet used in the studies of the twinned sample with
the field applied parallel to the crystal c-axis and the a-axis vertical relative to the
detector. The diffraction pattern obtained from the vortex lattice in this sample at
the relatively low field of 1T is shown in figure 4.4. The pattern is hexagonal with the
distortion expected from the basal plane electron effective-mass anisotropy. Each of

the six spots has significant tangential width and moreover, some structure is evident,
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indicating that the spots are in fact composed of multiple diffraction peaks. There are
most probably a small number of residual twin planes that support distorted triangular
vortex lattice domains pinned along the twin planes. (Recall that in the London regime
the vortex lattice is orientationally degenerate thus even a very small number of twin
planes can affect the orientation.) This is a similar situation to that depicted in figure
3.4, but with only two vortex lattice domains corresponding to the one dominant orien-
tation of anisotropy. The pattern is also consistent with scattering from a vortex lattice
domain with nearest-neighbours along the crystal b-direction, though it is difficult to
resolve it. Rotating the c-axis by 10° away from the applied field direction to remove
the influence of the twin planes does give clearly a b-oriented domain (Hinkov et al.,
2006a & 2006b). Johnson et al. (1999) observed a similar pattern at 0.517T, but in
that study there was another domain with nearest-neighbour aligned along the crystal
a-axis. It is unknown whether that domain is suppressed here at 1T, or whether its
absence reflects the higher degree of oxygen doping in the present sample. It should
also be pointed out that since this sample and the twinned sample of chapter III are
very similar in doping, the b-oriented vortex lattice domain is the one preferred in the
latter sample at low fields (although it is masked by twin plane pinning).

As the applied field is increased, the structure of the vortex lattice in the sample
of YBayCuz0Og.99 undergoes a transition to square similar to that seen in the twinned
sample (section 23). Figure 4.5 shows the diffraction pattern taken at 9T. Here, the
vortex lattice has a clear square structure with the vortex nearest-neighbour direction
along the {110} direction in accordance with the predictions of d-wave theory and non-
local London theory, as well as the experimental data on the twinned sample. These
data provide satisying confirmation of the assertion in section 24 that the transition to
a high field square vortex lattice has nothing to do with the presence of twin planes

since there is expected to be a far smaller number of twin planes in the present sample.
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Fig. 4.4: Linear plot of the diffraction pattern obtained from the mosaic of
YBasCu3Og.g9 crystals with a field of 1T applied. The a-axis is vertical rela-
tive to the detector. The white lines superimposed on the pattern are parallel
to the {100} and {110} crystal directions. The black hexagons represented

distorted hexagonal vortex lattices pinned to a twin plane direction along

{110}.
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Fig. 4.5: Linear plot of the diffraction pattern obtained from the mosaic of
YBasCuzOg.99 at 9T. The white lines are parallel to the crystal {110} direc-

tions.
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Another sample used in the new studies consisted of small detwinned single crystals
of calcium-doped YBay;CuzO7. Ca2t ions are roughly the same size as Y3t ions and
therefore simply substitute yttrium in the crystal structure to form Y;_,Ca,BasCuzO7.
Since they are only bivalent, calcium ions donate one fewer electron than trivalent yt-
trium, therefore doping with calcium effectively adds holes, which increases the number
charge carriers in YBayCu3zO7. The effect of this on the YBasCu3O7 Fermi surface
shown in figure 3.2 is to increase the cross-sectional area of the hole surface, which

given the band structure will result in a more distorted square-shaped surface.
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Fig. 4.6: Linear plot of the diffraction pattern obtained from the mosaic of
Y;_,Ca,BasCuszO7 at 1 T. The red lines lie roughly along the crystal {110}

and the sample is mounted with the crystal a-axis vertical in the picture.

The diffraction pattern at 1T obtained from the vortex lattice in the mosaic of
single crystals of Y;_,Ca,BayCu3s07 is shown in figure 4.6. The scattering lies on an
ellipse oriented as expected from the basal plane anisotropy. Four strong spots lie on
the ellipse along the {110} direction, which might arise from some kind of intrinsic
ordering, but are most probably due to residual twin plane pinning. Some structure
is discernible along the ring of scattering and bears resemblence to the two distorted

triangular domains seen in the detwinned sample of YBayCu3zOg.g9 (see figure 4.4).
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However, figure 4.6 demonstrates that doping with calcium introduces more disorder
than expected from the simple-minded view of calcium ions substituting yttrium ions.

Figure 4.7 shows the diffraction pattern from Y;_,Ca,Ba;CuzO7 at 4T. In this
pattern, much of the scattered intensity distributed around an ellipse at 1T is dimin-
ished and the features along {110} are more pronounced. At 7T (figure 4.8) all that
remains is the four spots along the diagonals, which imply a square vortex lattice struc-
ture. The field evolution of the data displays the classic signatures of a triangular to
square transition and in many respects is the same as in the detwinned YBasCu3Og. 99
mosaic and the twinned YBayCu3zOr7 crystal. What is surprising and different is that
the transition appears to start and complete at significantly lower fields than in the
other samples. Since the other two samples have very similar oxygen doping, this is
presumably due to an effect of the increased carrier density and the enhanced Fermi
surface distortion expected, which should give a greater propensity for a square {110}-
oriented vortex lattice via the non-local London theory.

The work presented here represents only a small fraction of the data obtained so
far and an even smaller fraction of the data in prospect. Further analysis is currently
under way, which it is hoped will lead to a refinement of the conclusions presented in
chapter III of this thesis. The detwinned samples have already yielded data comparable
with the twinned sample. Unfortunately, residual twin planes in the detwinned samples
will probably make measurements of the integrated intensity of individual reflections
just as difficult as in the twinned sample. However, the range of differently doped
samples becoming available will allow advances to be made, particularly with regards

to the effect of Fermi surface morphology on the triangular to square transition.
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Fig. 4.7: Linear plot of the diffraction pattern obtained from the mosaic of
Yi_,Ca,BayCuszO7 at 4T. The red lines lie roughly along the crystal {110}

and the crystal a-axis is vertical in the picture.
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Fig. 4.8: Linear plot of the diffraction pattern obtained from the mosaic of
Y;_,Ca,BasCuszO7 at 7T. The red lines lie roughly along the crystal {110}

and the crystal a-axis is vertical in the picture.
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31. Spin fluctuations in strontium ruthenate

The bi-layer ruthenate Sr3RusO7 is the n = 2 member of the so-called Ruddleson-
Popper series of materials given by Sr,,+1Ru,,O3,41. This family includes ferromagnetic
SrRuO3 (n — oo) and the p-wave spin-triplet superconductor SroRuOy4 (n = 1), which
has stirred great interest (MacKenzie & Maeno, 2003). It is because of SrgRusO7’s
relationship to superconducting SroRuQO,4 and, to a greater degree, the observation
of metamagnetism in SrsRusO7 (Perry et al., 2001), which is believed to be related
to a quantum-critical end-point (Grigera et al., 2001), that SrsRusO7 has become so
widely studied. As a result, there already exists a large body of measurements on
Sr3Rus 07, including heat capacity, magnetisation and transport measurements, some
of which are summarised below. The aim here is to complement the existing work,
which is predominantly macroscopic in nature, with direct measurements of the spin
fluctuations via inelastic neutron-scattering (INS). INS measures both the spatial and
temporal dependence of the spin correlations, whose Fourier transform is related to the

differential cross-section for scattering (Lovesey, 1987):

d?)gE > % /<S(q7 t)S(—q)) exp(iwt)dt, (31.1)

where S(q,t) is the spin density function. The function S(q,t) is of intrinsic interest

because of its relation to the imaginary part of the susceptibility:

1

o [ 15ta S (-a) explivtidt « = Vigw).  (312)

exp (4

The INS measurements on SrgRusO7 has involved a collaboration led by E.M.
Forgan of the University of Birmingham with assistance from the group of S. Hayden
(University of Bristol) and samples from R. Perry and Y. Maeno (Kyoto University).
Measurements of the spin fluctuations in zero field (in which this author played a role)
have already been published (Capogna et al., 2003). Further experimental data taken
in an applied field is presented here. The analysis of these data is as yet only cursory;
a fuller description will be published in the near future (Ramos et al., 2006).

Before attempting to explain the properties of SrsRusO7 and various measure-

ments thereof, it is worth examining the crystal structure from which they derive. In
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figure 4.9 is shown the distinctive perovskite-like structure of Sr3RusO7. Important to
this structure are the RuOg octahedra that form the bi-layers, which in analogy with
the CuO layers in high-7. materials, are crucial in determining the electronic prop-
erties. In fact, only a portion of the true unit cell is shown in figure 4.9. At room
temperature, SrsRuyO7 is face-centred orthorhombic — not body-centred tetragonal
as implied by figure 4.9 — due to the freezing-out of a rotational mode of the RuOg oc-
tahedra as shown in figure 4.10 (Shaked et al., 2000). In the face-centred orthorhombic
phase, each RuOg octahedron is rotated by 7° with nearest-neighbours rotated in the
opposite sense to one another. Despite the rotation, the basal plane lattice constants
are still equal within experimental error, but the unit cell is v/2 x /2 larger and rotated

by 45° relative to the undistorted unit cell.

RuOq &
SrO z g z
RUOQ o<
SrO
SrO
RuO,
SrO
RuO,
SrO
SrO
RuOy
SrO
RuO,

Fig. 4.9: The crystal structure of the bi-layered ruthenate SrsRusO7. Shown
here is a pseudo unit-cell extended vertically to make the bi-layers clear. The
bi-layers are composed of ruthenium-oxide octahedra (RuQOg), which are ar-
ranged in a body-centred fashion with SrO spacer layers. Due to the rotation
of the RuOg octahedra, the unit cell is actually face-centred orthorhombic
with equal basal plane lattice parameters (see text and figure 4.10). In the
body-centred tetragonal unit cell depicted here (and used throughout) the
basal plane lattice parameters (i.e. Ru-O-Ru distance) are both 3.87 A and
the c-axis lattice parameter is 20.7 A, which is the same as in the true or-

thorhombic lattice.
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Although the distortion of the RuOg octahedra affects the electronic properties (for
example, it ought to reduce the Ru-O-Ru hopping matrix element (Capogna, 2003 and
Singh & Mazin, 2001)), the basal plane is still square and it is therefore more convenient
to use the undistorted body-centred tetragonal cell when describing the INS data. It
is also more appropriate from a physical perspective because it was shown by Capogna
et al. (2003) that the basic fluctuating units are the bi-layers. Therefore, henceforth
the reciprocal lattice of SrgRusO7 will be referred to with respect to the reciprocal
lattice of the undistorted bi-layers. In this notation, Bragg peaks with h 4+ k£ odd are
systematically absent due to the structure factor of the face-centred arrangement (see

figure 4.11).

Fig. 4.10: Distortion of a ruthenium-oxide bi-layer shown from above due to
the frozen rotational mode, which induces a 7° rotation of the octahedra al-
ternating in sense between nearest-neighbours. (Ruthenium ions are denoted
by @ and oxygen ions by @.) This distortion makes the unit cell face-centred
orthorhombic. The true unit cell is oriented at 45° relative to the undis-
torted unit cell used conventionally here and is V2 x /2 times larger (dashed
squares). Note that the undistorted unit cell is still the basic unit of repetition

of a single two-dimensional bi-layer.

The impetus to study SrsRu,O7 has been provided by its interesting electronic and
magnetic properties. Early work in this field was confused by various erroneous reports

(e.g. low-temperature ferromagnetism) due to poor-quality samples often contaminated
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with crucible elements or other strontium-ruthenate phases (e.g. St RuOg3). The success
of Ikeda et al. (1999) in growing sufficiently pure single-crystals (with in-plane residual
resistivities of 3 — 4 pu2em) has helped clear matters considerably. The work presented

here and the references cited are all derived from samples of this purity or better.

Tangential ()
(010) (110)

Radial . 2D point

@ 2D and 3D point

O (100)
Fig. 4.11: A schematic of the (hk0) slice through reciprocal space in SrgRusO7,
drawn in terms of the reciprocal lattice vectors of the two-dimensional bi-
layers. Only reciprocal space points with h + k even are reciprocal lattice
vectors of the distorted three-dimensional face-centred structure. The arrows

around (010) define a naming convention for scan direction in terms of their

direction relative to (010).

At high temperatures Sr3RusO7 is an itinerant paramagnetic non-Fermi liquid,
but rather than ordering magnetically at low temperatures, the low-field (0.3 7T) sus-
ceptibility peaks at roughly 16 K (Ikeda et al., 2000) then rapidly decreases at lower
temperatures. Accompanying this is a gradual tendency towards Fermi liquid behaviour
at low temperatures and zero field as measured by transport measurements (Grigera et
al., 2001). The previous zero-field INS measurements (Capogna, 2003) have provided
insight into these observations. At high temperatures the spin fluctuations consist of
a single broad ferromagnetic peak located at the (100) point (see figure 4.12). As
the temperature is decreased the ferromagnetic peak evolves into two incommensurate
peaks, which each disperse into a further two peaks at lower energy (figure 4.13). These
were interpreted by Capogna et al. (2003) as arising from an enhanced susceptibility

due to Fermi surface nesting at those wavevectors (see also Singh & Mazin, 2001).
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Fig. 4.12: (From Capogna et al., 2003.) Spin fluctuations at 150K, 15K and
1.5K in Sr3RusO7 at zero field. The energy transfer was 3.1 meV and the

scan was performed around the (100) position.
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Fig. 4.13: (From Capogna et al., 2003.) Dispersion at T" =1.5K of the two

incommensurate peaks of figure 4.12.
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Although interesting, the low field properties are not the motivation for study-
ing SrsRusO7; instead, it is the high-field metamagnetic transition that provides the
stimulus. The metamagnetic transition (a sudden super-linear rise in magnetisation) in
SrsRuyO7 occurs at low temperatures for applied fields ranging from 5.5 T (field applied
in the basal plane) to 8 T (field applied parallel to the c-axis) (Perry et al., 2001)*. A
wholesale change in the electronic properties accompanies the metamagnetic transition.
On approaching the metamagnetic transition from below, the resistivity changes from
a T2 dependence to a linear T dependence, signalling the departure from Fermi liquid
behaviour (Perry et al., 2001). At the same time, the electronic heat capacity divided
by temperature (Ce/T'), which is a measure of the quasi-particle mass, diverges. All

of these signatures of metamagnetism become sharper at lower temperatures.

Perry et al. (2001) and Grigera et al. (2001) have intepreted these phenomena and
their temperature dependence as resulting from the proximity of a quantum-critical
end-point (QCEP — see figure 4.14). A QCEP may be created by depressing to zero
using some physical parameter such as pressure (Chiao et al., 2002) the temperature,
T*(H), of a critical end-point of a line of first-order phase transitions, which in the
case of SrgRu,0Oy is a line of Stoner-like instabilities in the Fermi surface. This process
radically alters the nature of the transition because rather than being thermal, the
critical fluctuations are now quantum in nature. Even when SrgRusO7 is tuned slightly
away from a QCEP, the effects of quantum criticality may still be felt over a large
region of phase space as is demonstrated by the “funnel” of non-Fermi-liquid behaviour
emanating from the QCEP in the resistivity data of Perry et al. (2001). The observation
by Borzi et al. (2004) of de Haas-van Alphen oscillations in ultra-pure crystals (less
than 1 uQem) supports this view. They have observed clear quantum oscillations either
side of the transition and noticed that the principal frequency peaks at low fields split
and shift slightly when going through the metamagnetic transition, in agreement with
a Stoner-like picture. One of the advantages of de Haas-van Alphen oscillations is that

they provide a measurement of the quasi-particle mass associated with each piece of

* It should be noted that there is in fact a second metamagnetic field at around
13.5T for B parallel to the crystal c-axis (Ohmichi et al., 2003), but this has not been

associated with any quantum-critical behaviour and so has attracted less attention.
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Fermi surface. Rather large values of quasi-particle mass were calculated from the
quantum oscillations and were seen to diverge in the vicinity of the non-Fermi-liquid
region around the metamagnetic transition. This is consistent with a quantum critical
interpretation in which the quasi-particle mass is strongly renormalised by quantum-

critical fluctuations near to the metamagnetic field.
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Fig. 4.14: The metamagnetic transition described in the text occurs above
a line of first order phase transitions, which is terminated by a second-order
critical end-point (CEP) at finite temperature. By tuning a physical param-
eter other than magnetic field (e.g. pressure) it may be possible to depress
the temperature of the CEP to zero forming a quantum-critical end-point

(QCEP).

More recent measurements (Perry et al., 2004 and Grigera et al., 2004) on the
purest samples (at the time of writing) with residual resistivities below 1 uf2cm have
revealed an even richer phase diagram near to the quantum critical point. Below 0.8 K,
two first-order phase transitions are observed around the metamagnetic field, creating
a region of a new type of ordered state. The nature of this state and why it forms are
as yet not totally clear, but it is believed that a so-called Pomeranchuk distortion of
the Fermi surface (Grigera et al., 2004) is involved. The divergent susceptibility at the
quantum-critical point is probably responsible for the phase transitions, which mask
quantum-critical behaviour.

To complement the existing zero-field investigations of the spin fluctuations in
Sr3RusO7, similar measurements have been performed in applied fields in a range
around the metamagnetic field (7.95T when applied parallel to the c-axis in the sam-

ples used here). The measurements were performed on the cold-neutron triple-axis
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spectrometer IN14 at ILL, Grenoble, France (see figure 4.15). Using a specially con-
structed cryomagnet, IN14 has the facility for high-field measurements up to 15T,
which easily encompasses the interesting range around the metamagnetic transition.
Unfortunately, at the time of writing there did not exist a dilution refrigerator insert
for the cryomagnet, which precluded measurements within the new phase found by
Perry et al. (2004) and Grigera et al. (2004). However, the measurements presented
here are still of great interest because they constitute the first investigation of the

change in spin fluctuations in going through the metamagnetic transition.

{k}

Monochromator (A1)

Detector

Fig. 4.15: Schematic of the triple-axis spectrometer IN14 showing the path
of the neutrons of interest through the instrument (solid line). The principal
degrees of freedom are the six angles, three of which are “take-off” angles (A2,
A4 and A6) and the others are the orientations of the monochromator, sample
and analyser crystal (A1, A3 and A5 respectively). The cold-neutron source
produces a distribution of wavevectors denoted {k}. A single wavevector,
k, is selected by Bragg diffraction off the crystal monochromator (for the
appropriate value of Al = %A2). The wavevector is then scattered off the
sample giving a distribution of outgoing wavevectors {k’(q,w)} according to
the sample’s response and its orientation (angle A3). The intensity of each
of the outgoing wavevectors may be deduced by analysing the outgoing beam
by Bragg diffraction off the analyser crystal. This requires the appropriate
setting of A4, and A5 = %AG. The detector functions in the same way as the
neutron multi-detectors described in section 12, but it consists of only a single

element.
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The sample used in these experiments is a mosaic of single crystals grown by
R. Perry at Kyoto University. Each element of the mosaic had a flat facet nearly
perpendicular to the c-axis and was mounted on a pure aluminium plate (two or three
samples per plate). The basal plane axes of the samples were aligned with respect to
each other using a neutron diffractometer and the orientation of each sample was fixed
with a very small amount of glue between the facet and plate. Most of the mechanical
strength was provided by an aluminium brace across all the samples on a single plate
(the brace was held in position by small brass bolts). Four plates containing ten
samples in total were stacked up vertically and held together with three threaded pure
aluminium rods screwed into an aluminium block, which could be affixed to the end of
a sample stick. The sample stick was inserted into the variable-temperature insert of
the cryostat with the c-axis of the mosaic vertical and the basal plane in the scattering
plane (see figure 4.15).

In figure 4.16 are shown a series of radial scans through (010) (see figure 4.11)
taken at low temperatures with the metamagnetic field applied. These plots show a
marked departure from the behaviour of the spin fluctuations at zero field. Compare
the data of figure 4.16 at 2meV energy transfer with the equivalent zero-field data
shown in figure 4.13. In the latter data, the spin fluctuations consist of two types of
incommensurate response, but in the data taken at the metamagnetic field only a single
type antiferromagnetic peak is observed (at roughly 0.25 reciprocal lattice units). The
biggest change between the two data sets is the emergence of a ferromagnetic response at
the metamagnetic field, which is confined to low energies (< 2meV). The appearance of
a peak at finite energy transfer at the commensurate position is interesting because the
excitement of these fluctuations does not conserve spin, which could imply significant
spin-orbit coupling or leakage from the bi-layers. At higher energies (~ 4meV) two
incommensurate peaks dominate the response, but it is not clear whether these are
resurgent antiferromagnetic peaks or whether the ferromagnetic response has spread
out from the commensurate position. If the latter is true then the dispersion of the

peaks (about 2km-s~!) is unusual because it is far smaller than the Fermi velocity.
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Fig. 4.16: Radial scans taken at 2K with the metamagnetic field (7.95T)
applied. Scans at 0.5meV (top), 2meV (middle) and 4meV (bottom) are

shown. The lines drawn through the data are guides to the eye.
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Scans transverse to the (010) reciprocal lattice vector have also been undertaken.
Although this direction in reciprocal space is related by the tetragonal symmetry of
the bi-layers to the radial scan direction, the mechanics of inelastic neutron scattering
mean that doing both sets of scans is not necessarily redundant. Figure 4.17 shows
a set of transverse scans at more-or-less equal energies to those of the radial scans
shown in figure 4.13. It can be seen that the strong antiferromagnetic signal observed
in the radial scan at 0.5 meV is completely absent in the 0.5 meV transverse scan. This
anisotropy is due to a moment orientation effect. To illustrate the moment orientation
effect, consider the two sets of static spins in figure 4.18. Each of these spin systems,
whose basic repeat distances are equal, is being probed by the scattering triangle given
by kin, kout and q, which corresponds to scattering from horizontally oriented planes
spaced by the inter-spin distance. Naively, it might be thought that both situations
would give rise to magnetic Bragg diffraction from the Fourier coefficients shown due to
the visually “obvious” vertical periodicity. However, only the diagram on the right of
figure 4.18 gives rise to scattering. Maxwell’s second equation (the magnetic flux law)

for a periodic system of spins may be written in terms of reciprocal space quantities as:
G- -Bg =0. (31.3)

This expression prohibits any Fourier coefficient, Bg, from having a component parallel
to the reciprocal lattice vector G. Therefore no scattering arises from the scenario
depicted in the left-hand of the figure.

Although the explanation of the moment orientation given above is confined to
the static case, the same effect applies to inelastic scattering from fluctuating moments
because equation 31.3 is time independent. In the scattering matrix element there is a
term proportional to q X (8; X q), where §; is the spin operator of an electron indexed
by i, that is responsible for the moment-orientation effect (Lovesey, 1987). Since this
term is proportional to sin 8, where 6 is the angle between the scattering vector and the
spin orientation, the partial differential cross-section for spin only scattering depends

upon sin’ @, which gives the expected moment orientation effect for dynamic moments.
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Fig. 4.17: Tangential scans taken at 2 K with the metamagnetic field (7.95T)
applied. Scans at 0.5meV (top), 1.5 meV (middle) and 4meV (bottom) are
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Fig. 4.18: The static moment-orientation effect. Two hypothetical static spin
systems are shown, which are being investigated by scattering by the same
g-vector. In reciprocal space Maxwell’s magnetic flux equation, G - Bg = 0,
implies that the Fourier coefficient, Bg, corresponding to q = G must be
identically zero for the spin system on the left, but is allowed to be non-zero
for the right-hand system. This may appear counter-intuitive, but in the left
diagram the contribution of the dipole fields over an infinite lattice will lead

to no variation of B (anti)-parallel to the local spin direction.

(000) (010)

Fig. 4.19: Schematic explanation of the moment orientation effect observed in
figures 4.16 and 4.17. To explain the effect, the spin fluctuations must firstly
be perpendicular to the reciprocal lattice vector, k, (taking (010) as the origin)
and secondly, must also lie in-plane. In this scenario, the scattering vector, q,
for the transverse scan is nearly parallel to the orientation of the magnetisation
vector, mgy, of the fluctuation and so gives very little scattering, but in the

radial scan the g-vector is always perpendicular to the magnetisation.

161



The moment orientation effect provides a convincing explanation of the anisotropy
in scattering observed between the radial and transverse scans. Figure 4.19 demon-
strates that if the fluctuating moments lie within the basal plane and are oriented
perpendicular to the reciprocal lattice vector k, then the resulting anisotropy of scat-
tering is consistent with the observations of figures 4.13 and 4.17. It can be seen that
the fluctuating moments are perpendicular to the g-vector for the radial scans, but
nearly parallel for the tangential ones. Furthermore, none of the other possible ori-
entations of fluctuations — either out-of-plane or parallel to K — gives the observed
anisotropy.

Measurements were also taken well beyond the metamagnetic field at 11 T (but well
below the second metamagnetic transition). In figure 4.20 are shown some representa-
tive scans at this field. It seems that the qualitative behaviour at 11T is the same as
that at the metamagnetic field. The ferromagnetic response seen at the metamagnetic
field (figure 4.13) at 1 meV energy transfer is also present at 11T and at higher energy
transfers disperses similarly. A moment orientation effect is observed too (compare the
radial scan at 1 meV transfer with the transverse scan at 1.5meV in figure 4.20).

In conclusion, measurements of the spin fluctuations at the metamagnetic field in
Sr3RusO7 reveal a striking change from the zero-field behaviour observed by Capogna
et al. (2003). The principal result is the appearance at the (010) position of a ferromag-
netic peak that seems to disperse very slowly (2km-s™!< vp). At low energy there is
also a single type of anti-ferromagnetic peak located at roughly (0.25,1,0), compared
with two types of peak at zero field. Given the association of the latter with Fermi
surface nesting vectors, the difference may be a result of the change in Fermi surface
topology at the metamagnetic field (Borzi et al., 2004). Another effect of the appli-
cation of the metamagnetic field along the c-axis is that it inhibits anti-ferromagnetic
fluctuations out of the basal plane, which is manifested in the observation of a moment

orientation effect.
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CONCLUSION

In this thesis convincing evidence has been provided for the existence of uncon-
ventional square and rectangular vortex lattice structures in d-wave superconductors.
Two families of superconductors were investigated (YBCO and NCCO) and the results
have been published or are pending publication (Brown et al., 2004; Gilardi et al.,
2004; Brown et al., 2005 and Hinkov et al., 2006). In each case, SANS was employed
to determine the configuration of the vortex lattice. During the course of these in-
vestigations, SANS has demonstrated itself to be a unique and indispensible tool for
determining the vortex lattice structure over a wide range of temperatures (2.5-90 K)
and with fields up to 11T applied along various crystal directions. This flexibility has
yielded a wealth of information from the systems studied.

The principal results of this thesis were obtained using a twinned sample of stoi-
chiometric YBasCusO7 in which a field-cooled vortex lattice was formed by applying a
magnetic field parallel to the crystal c-axis. At low fields (<1 T), the anisotropic Lon-
don model serves well in describing the distorted triangular vortex lattice structure,
but as the field is increased, a continuous distortion of the vortex lattice occurs and
it becomes rectangular at high fields (11T). It was found that the rectangular vortex
lattice domain was suppressed by increasing temperature or applying the field at an
angle to the crystal c-axis.

That the transition to square is an intrinsic effect is beyond reasonable doubt
since it was shown in section 30 that detwinned samples of YBayCu3O7 exhibit sim-
ilar phenomena, but exactly what mechanism causes it is not certain. It is definitely
unconventional in nature and cannot be accounted for by anisotropic London theory
for at least two inextricably related reasons: firstly, the observed square vortex lattice
does not minimise the London free energy; secondly, an anisotropy of the second-rank
tensor type can be built into London theory, but this ought to be static with field
and only a field-dependent higher-rank anisotropy could cause the observed transi-

tion to square. Two possible origins of higher-rank field-dependent anisotropy were
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discussed (see section 24): Fermi surface anisotropy in non-local London theory and
the anisotropy due to the d-wave symmetry of the superconducting order parameter.
Unlike other high-T, superconductors (e.g. Lag_,Sr,CuQy), it is not possible to distin-
guish immediately between the two proposed effects because both predict within the
experimentally observed field range the formation of a high-field square vortex lattice
with the nearest-neighbour direction along {110}. (In some sense it is meaningless
to decouple completely the two effects since the symmetries of the superconductivity
and band structure are intimately related.) Although the temperature dependence of
the vortex lattice structure, and the field dependence of the structure and ratio of
form-factors were determined, none gave a definitive answer as to which anisotropy is
responsible for the high-field square lattice. There is a lot of scope for further work
here: better measurements of the form-factors than those presented here will be needed
and a detailed theoretical study (within the experimentally accessible part of the phase
diagram) of the type performed by Nakai et al. (2002) will be required for comparison.
In pursuance of the former requirement, a new generation of detwinned samples are
available (in addition to the old twinned one), which already have shown some promise.
On the theoretical side, naive expectation would favour d-wave effects as the principal
source of unconventional anisotropy because the order parameter anisotropy is “100%”
(i.e. the order parameter is zero along the nodal directions) whereas the Fermi surface
in YBayCu3Oy is less anisotropic (the Fermi surface of YBagCusOy is considerably less
anisotropic than that of Las_,Sr,CuQy, for example). A proper calculation to verify
(or otherwise) this hypothesis would require detailed information on the superconduct-
ing gap and the moments of the Fermi surface velocity, some of which are not as yet

available.

Although there is more work to do, YBayCusO7 fits nicely with the emerging
consensual picture of unconventional vortex lattices, which sees transitions to uncon-
ventional structures in terms of the increased effects of the finite core-size or, in other
words, increasing non-locality due to core overlap. Part of the reason that it is difficult
to differentiate between Fermi surface and order parameter anisotropies is that they
are both non-local effects and therefore exhibit qualitatively similar field dependence

for a given superconductor (as defined by ). The measurements on Nd; g5Ceq 15CuQOy
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disagree completely with this picture (see section 29). Nd; g5Cey.15CuQOy is an electron-
doped high-T,. superconductor with an upper critical field of 8 T. Non-locality should
become important at around 1T in this material, but astonishingly a square vortex
lattice is observed at inductions as low as 20mT. Moreover, at 20mT the vortex lat-
tice appears to have very poor orientational order, which is hard to reconcile with the
intrinsic aligning effects of the higher-order anisotropy usually associated with uncon-
ventional vortex lattices. Clearly, more work is needed to resolve this issue. However,
the present samples of Nd; g5Ce(.15CuQy4 suffer from a far greater degree of point disor-
der than any of the YBCO samples, thus restricting the accessible field range to below
about 0.5 T. Therefore, the next break-through in understanding the intrinsic behaviour
of the vortex lattice in NCCO is likely to come only after significant improvements in
crystal quality. If better crystals were available, the benefits to the study of uncon-
ventional vortex lattices in the cuprates would be immense. NCCO has a number of
advantages over other systems such as YBCO: it is tetragonal (and thus twin free) and
perhaps most importantly, has a sufficiently low value of H., to make the entire vortex

lattice phase diagram accessible with the present apparatus.

In the near term, before much improved samples of NCCO are produced, most
developments in the field will probably come from cleaner tried-and-tested materials
such as YBCO. Some early progress in a new research programme utilising detwinned
crystals was shown in section 30. The objective of the new programme is to expand on
the measurements performed on the twinned YBa,CusO7 samples. In the first instance,
more data on the effects of angle of applied field would be useful to complement the
vortex “zoo” found in the twinned sample. A very rich variety of angle-dependent
vortex lattice structures was observed in the twinned sample and it would be of interest
to investigate these further. There are various holes in the present data, particularly
at low fields. It would be of great interest to see from what type of low-field structure
the hexagonal domains seen at low temperatures with 5T applied at 10° to the crystal
c-axis evolve. Additionally, it remains to be seen how the high-field form-factors are

affected by the field rotation.

Further angle dependent studies could be performed using either the twinned sam-

ple or the new detwinned ones, but the detwinned samples are unique in that they are
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available with various different dopings. In section 30, data taken using a calcium-doped
sample was presented. The familiar triangular to square transition was observed, but
it occured at lower fields (it appears complete at 7'T). Although it is not yet clear what
relation this has to the underlying physics, it is obvious that the electronic properties
are affected by doping and it may be possible to tune the anisotropy of the Fermi
surface and study its effect relative to the order parameter anisotropy. Therefore,
charge-carrier concentration is set to become the next dimension of the unconventional
vortex lattice phase diagram.

The measurements of the spin fluctuations in SrgRusO7 are not so well related to
the main topic of this thesis, but they do illustrate another successful exploitation of the
sensitivity of low-energy neutrons to magnetic scattering. These measurements show
for the first time the effect of the metamagnetic field on the spin correlations in this
itinerant system. At the metamagnetic field, other measurements (see section 31 and
references therein) have determined that the enhancement in susceptibility is accom-
panied by a strong deviation from Fermi liquid theory as the Fermi surface undergoes
an apparent instability. The spin fluctuations seem to concur. A strong ferromagnetic
response was observed that was absent at zero field. In addition, the incommensurate
fluctuations, which were attributed by Capogna et al. (2003) to Fermi surface nest-
ing, change in nature. Another result of the application of the metamangetic field is
the manifestation of a moment orientation effect in the incommensurate fluctuations,
which are found to be in-plane and perpendicular to the reciprocal lattice vector at low
energies. So far, measurements have been restricted to relatively high temperatures
(>1.5K). In the future, it would be interesting to repeat the measurements at lower
temperature using a dilution refrigerator. Until recently, it was assumed that Sr3Ru,O7
was close to a quantum-critical end-point. This in itself would provide motivation for a
low-temperature study, but Grigera et al. (2004) have published evidence in favour of
an unusual electronic phase (involving a so-called Pomerunchuk instability of the Fermi
surface) replacing the quantum-critical end-point and bounded by lines of first-order
phase transitions. An inelastic neutron study of the spin fluctuations in this region
would bring considerable insight into the behaviour inferred from thermodynamic and

transport measurements.
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APPENDIX A

SANS RESOLUTION FUNCTION

In this appendix is calculated the resolution function for SANS. The resolution
function describes the projection onto the detector of a single point in reciprocal space
and specifies the distribution of scattering angles, 26,, and 20, relative to the nominal
beam direction. The instrumental factors relevant to this calculation are wavelength
spread and beam divergence; they are assumed to be Gaussian-distributed quantities:

P()\) o exp (-%) , P(a) x exp (_%) , P(B) x exp (-%) . (31.1)

20 s 3

For a full explanation of the concepts underpinning this derivation the reader is referred
to the section on resolution in the main text (section 14).

Consider some wavevector with wavelength \ present in the beam distribution that
is parallel to the nominal beam direction. In general the Ewald circle corresponding
to this wavelength for the rocking angles w and ¢ will not be rocked onto the q-
vector of interest (see the dashed line of figure A.1) and hence will not give rise to
scattering. However, at this wavelength there will be present in the beam a wavevector
at (&(\), B(N)) relative to the nominal beam that is “perfectly” rocked on, i.e. not only
does it satisfy the Bragg condition, but it is rocked on such that the g-vector spans
the diameter of the Ewald circle (solid line of figure A.1). The perfect wavevector
will be scattered by the Bragg angles (20p ,()),20p ,(\)) defined in equation 13.3,
but these are measured relative to the wavevector at (&(\), 3(\)), not the nominal
beam direction. Therefore to get the absolute scattering angles, the angle between the

wavevector and the nominal beam must be subtracted:

)\47? (31.2)
29y _ 29B,y<)‘> _ 5()\) = 98,@/()‘) + (b = %;_/ + (b?
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where use has been made of the definitions &(\) = g »(\) —w and B()\) = 0B,y (\) — ¢.
To allow for the case where the beam divergence angles o and 3 are non-zero, the beam

divergence angles must be added to 26, and 26, respectively:
20, =20 4, (\) — () + a,

. (31.3)
20, = 20B,(A) — B(A) + 5,

This follows from the geometry shown in figure 2.10 in section 14. (Essentially, adding «
to the rocking angle increases the scattering angle by 2« in the frame of the wavevector,
but relative to the nominal beam (at an angle a to the wavevector) the scattering
angle is only increased by «.) Note that due to the Bragg condition only particular

combinations of « and (8 will give rise to scattering — this will be built into the model

presently.
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Fig. A.1: Scattering geometry in reciprocal space. The dashed line corre-
sponds to the Ewald sphere for some wavevector with wavelength A rocked
by the angles w and ¢. This does not give rise to scattering, in general,
but the Bragg condition may be satisfied by another wavevector of the same
wavelength at (&(\), 3(\)) to the nominal beam (solid line).

It is convenient to redefine the beam divergence coordinate system relative to the

paradigm wavevector (&()), B(\)):

el — exp(_i)ﬁexp(_w),

202 202 (31.4)
n 31.4
;o A 3 (8" = BN))?

Henceforth, the primes on o’ and 3’ will be dropped. Matters are simplified even further

if another coordinate transformation is made to the “diagonal” system in which beam
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divergence and scattering angles are measured parallel to the g-vector and at a tangent
to it. Denoting the radial component of beam divergence as d and the tangential
component as 7 the transformation is given by:
a = cosqy —ysingy
{5=5Sin%+7008qg, (315)

where ¢y is the polar angle of the g-vector q(g,,qg). An equivalent relationship holds
between the scattering vector (6,,6,) in the old frame and (6s,6,) in the diagonal
system.

Examining the form of the Bragg condition and the scattering angles demonstrates
the benefit of the diagonal reference system. The scattering angles are given by:
Agr

47 (31.6)
20, = ¢ cosqy —wsings + 7.

205 =

As might be anticipated 26, is A-independent and the tangential smear is determined

entirely by the beam divergence. The Bragg condition is even simpler:
0=20 (31.7)

Therefore, for a given A the radial angle is fixed to the “perfectly”-rocked value, but
the value of the tangential angle is unconstrained. This is a natural result of the
two-dimensional Bragg condition (equation 13.3). As a concrete example, consider
a g-vector with g9 = 0. The Bragg condition will be satisfied for some value of w
independent of the value of ¢.

The resolution function may be written in terms of delta functions constructed

from equation 31.6:

295,29 O(/ /exp( 2 )eXp (——2 |:—/)/Slnq0_w+w:| )
o3 20, 4
0 —oo
1 Agesings | |
Xexp|—z—5 |YCOSqg — ——— + ¢ § (20, — [y + ¢ cos gy —wsinggl) dy
20[3 47

S
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Performing this intergration gives:
1 [4rm . ?
R(265,20~) x exp ~ 552 — (205 —wcosqg — psingg — )

2
0% Lar

1
X exp <_F [—295 cos gg — 20, sin gy + 2w cos? gg + 2¢ cos gg sin qe} 2) (31.9)
(0%
1 , L .2
X exp 5,7 [—295 sin gg + 20 cos gp + 2¢ sin” gp + 2w cos gp sin q@} .
B

Given the Cartesian geometry of SANS multi-detectors it is more useful to express

equation 31.9 in Cartesian coordinates using the inverse of equation 31.4:
1 [4n 2
R(26,,26,) x exp (—2—2 {— (26, cos gg + 26, sin gy — wcos g — psingy) — )\n} )
o5 Lar

1
X exp (——2 [QQC(sin2 qo — cos® qg) — 260, cos g sin g + w cos® gg + ¢ cos gg sin qe] 2
O-Oé

1 ) ) ) ) 2
X exp (—U—% [Gy(cos2 g9 — sin” gg) — 20, cos gg sin gy + ¢ sin” gg + w cos gg sin qg} ) )

(31.10)

Converting from (26,,26,) to a coordinate on the detector is achieved (in the small-

angle limit) by multiplying by the sample-detector distance, Sqet-
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APPENDIX B

RECIPROCAL-SPACE SAMPLING FUNCTION

In appendix A the principal resolution function for SANS (equation 31.10) was
calculated. This function maps a point in reciprocal space to a set of points on the
detector and is sometimes called the point-spread function. In this appendix, a different
type of resolution function Sy, w¢(¢s,qy) is calculated: for a given set of instrument
parameters — i.e. wavelength, rocking angles, and distributions of wavelength, beam
divergence and mosaic spread — this resolution function is a measure of the amount
by which a given point in reciprocal space is sampled (hence its name). Put differently,
such a resolution function describes how sensitive the instrument is to each part of
the two-dimensional reciprocal space, which is useful information even only in the
qualitative sense because it enables the experimentalist to visualise what the experiment
is measuring.

The model of Sy, w¢(gz,qy) is based on the following assumtions, which are ex-
plained more fully and justified in sections 14 and 15: firstly, the vortex lattice is
assumed to be a pseudo two-dimensional structure consisting of two-dimensional crys-
tallites with a distribution in orientation; and secondly, the instrument parameters are
also distributed about their nominal values. For concreteness, all of these distributions
are assumed to be Gaussian in each of the five variables A (wavelength), a (horizon-
tal beam-divergence), [ (vertical beam-divergence), § (horizontal mosaic-spread) and

e (vertical mosaic-spread):

2
20j

P(j) o exp (—M> ; (31.1)

where j = {\, @, 3,0, ¢}, o, are the widths of the distributions and m; are the mean
values, all of which are zero expect where j = A in which case my = \,. These five

distributions may be reduced to three effective distributions because mosaic spread
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has the same effect in reciprocal space as beam divergence, i.e. an effective rotation
of the beam relative to the sample*. The effective beam divergence/mosaic spread

distributions are obtained by the following convolutions:
P(C) = Pla)® P(3) and P(y) = P(8)® P(e), (31.2)

where ¢ and 7n are the effective angles of rotation in the horizontal and vertical planes
respectively. The widths o and o, are formed by adding in quadrature o, and oy,
and oz and o, respectively.

The strategy to calculate Sy, we(¢z,qy) from the assumptions above is depicted in
figure B.1. As demonstrated in section 13, the intersection of the Ewald sphere with

the vortex lattice plane is a circle, defined by A, w, ¢, ¢ and 7:

(@ —20)2 + (y —yo) =12 where 1o — (”;0)) - 27” (Zig) . (31.3)
/ r=(r0)
Yo = 3 (o +1n) ______@{o:yo)

l‘oZQTﬂ(w-f‘C) v

Fig. B.1: Geometry in reciprocal space for calculating Sy, w¢(¢s,qy). For
a given set of rocking angles, (w, ), and distribution variables (X, (,7n) the
intersection of the Ewald sphere with the vortex lattice plane is a circle centred

on ro = (o, yo) = 3% (w + ¢, ¢ + 1) with a radius |ro|.
Evaluating the sampled weight of a point r involves integrating over the distri-
butions in A, ¢ and 7, which is most easily performed in polar coordinates. In this

coordinate system, the Bragg condition (equation 31.3) can be recast as:

r= %[(wj%) cost + (¢ + n)sin ] . (31.4)

* This is not true in the detector space, which of course can distinguish between mo-
saic spread and beam divergence because the detector knows the nominal (undiffracted)

beam direction.
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The resolution function Sy, .¢(¢z,q,) may be written as an integral over the three

distributions with a delta function whose argument is equation 31.4:

400 00 oo

— A)? ¢ n?
2
S)\nw¢ T, 9 o( / / /)\ exp< i >6X|) (——2 g> exp (——2 %

A (31.5)

X 8 (r — 4% [(w+¢)cosb + (¢ +n) sin0]> d\d¢dn

Note the factor of A\? in this integral: this is inserted to account for the small correction
due to the density of states on the surface of the Ewald sphere. The delta function
in Sx,we(r,8) is a one-dimensional delta function in r with 6 as a parameter. The
conversion to a two-dimensional distribution is described at the end of calculation.

Integrating equation 31.5 involves copious amounts of tedious algebra; below are
listed some intermediate stages.

1. The integral in ¢ is done trivially via the delta function, which for this

rA
47 cos O

purpose may be rewritten (X [R—w—(—(¢+n)t]), where R =

and t = tanf. This results in the expression:

|0080| //AgeXp( Azai>)

2
R—w—(¢+n)t 2
X exp (— [ 202 } exp —% dAdn

S)\ wd)(r 9

n

2. To perform the integral in 7, terms containing 7 in the arguments of
the exponentials are factorised into the form —A(n + £)2 + %, where
A= 202 + 5 207 and B = ?(gth +wt — Rt). The term % is n-independent
and may be rernoved from the integral leaving just a Gaussian integral,

which just gives an ignorable constant of proportionality (1/7). This leaves

only the A integral

S)\nw (r,&)
¢ | cos |\/_
[ (A=Y 1 B?
x/)\ exp( 202 exp 202(}% 2Rw — 2R¢t) | exp 1A dA
0
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3. The last integral in A is done in the same manner as the one above.
First some factorisation is needed, resulting in an integral of a Gaussian

multiplied by a polynomial:

1 1 A2
Sy we(r,0) x ——————exp [ —=— (w? + 20wt + $*t?) | ex (— n)

X L(¢2t4+2¢ 3 4+ w?t?) D 7»”’ —clr- 2 2 dX
exp 1 AO’? w w exp 1C exp 2°C ,

0

where the constants D and C' are defined in equation 31.6 below.

4. Recalling that A = @R, the last intergral may be performed using the
substitution z = v/C(R — %) Note that converting the range of integra-
tion from X € [0,00) gives either x € [—%,oo) or x € (—oo, —20%]

because cosf can assume both positive and negative values. These cases
have to be considered separately, as does the case cos# = 0, which needs
to be handled by taking the appropriate limit.

5. The last step is to convert Sy, u(r, #) to Cartesian form. Strictly speaking,
the delta function in equation 31.5 gives a one-dimensional distribution
in r with 6 as a parameter. To use it as a two-dimensional distribution,

\ws (T 0), Tequires correct handling of the differential area element at

(r,0). Let S _4(r,0) be the two-dimensional reciprocal-space sampling

function in polar coordinates such that S} . (r,0)drdf is the sampled

weight of the region of reciprocal space near (r,6). To convert Sy, ,(r,0),
which is a one-dimensional slice, into S} ¢(r, 0)drd6 requires taking into
account the scale factor for 6 when converting the linear differential ele-

ment into an areal one:
S e (T, 0)drdl = Sy e (r, 0)rdodr.

(Put more intuitively, the one-dimensional slice of linear elements dr
needs to be converted into a wedge of area elements rdfdr.) To convert

A\we (T 0) into a Cartesian distribution it should be divided by the Jaco-
bian J = r, thus the factor r gained above is lost and the Cartesian dis-

tribution is obtained simply by substituting (z,y) for (r,0) in Sx,we(r, 8).
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The final result of this analysis is shown in equation 31.6. Note that no effort
has been made to find the correct limit for § = +7/2. That labour has been avoided
because all that is required of this calculation is a plot and this pathalogical case can
be avoided by sensible choice of grid when evaluating S\, w¢(z,y). The grid chosen is
such that the origin lies at the corner of a pixel and therefore there is no pixel whose
centre is at # = £m/2. No useful information is lost by this cheat because the correct
limit will be visually obvious.

A plot of equation 31.6 for a set of reasonable parameters is shown in figure B.2.
In accordance with expectation (see discussion in sections 14 and 15) the region of
reciprocal space that is sampled is crescent-shaped. The apparent absence of sampling
weight near the origin is an artefact of plotting: at the origin the Ewald spheres all
coincide causing Si,we(z,y) to vary very rapidly there. A cut of these data is shown
in figure B.3. This shows that the cross-section of the crescent has a roughly Gaussian
shape as would be expected from the Gaussian nature of the distributions from which
it is derived. Owing to the A? density-of-states factor in equation 31.5 this curve
peaks slightly lower than the 19.7 mA ™ expected from Bragg’s law for w = 0.9° and
An = 10 A. However, the corresponding curve with o = 0 (dashed curve in figure B.3)

does peak at the Bragg q.
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Fig. B.2: A colour plot (arbitrary units) of equation 31.6 for the following
parameters: w = 0.9°, ¢ = 0°, A = 10A, o) = 1A and o¢c = 0.2° = 0o,. The
function was evaluated over a 150 x 150 grid. The grid axes are in mA~—".
(Note that ¢ = 19.7mA ™" for # = 0.9° and A = 10A.)

12- q

10

Fig. B.3: A graph showing the cut through # = 0 of the data presented in
figure B.2 (continuous line). The dashed curve shows the same cut, but for
data computed with oy = 0. (Note that for presentation purposes the peak

of the dashed line has been normalised to the peak of the continuous line.)
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APPENDIX C

NUMERICAL EVALUATION OF THE LONDON FREE ENERGY

In this appendix is listed the code used to evaluate the London free energy for an
anisotropic vortex lattice. This is achieved by calculating the free energy (equation 3.6)
over a set of test parameters and locating the minimum. There are three parameters
required to define uniquely the vortex lattice structure given the vortex direction: the
ratio of the reciprocal lattice vectors, the angle between the reciprocal lattice vectors
and the orientation of the vortex lattice about the induction (relative to the crystal
axes or their projection onto the plane perpendicular to the vortex lattice). However,
the single crystal used in these investigations contained twin planes, which are known
to enforce the orientation of the vortex lattice along the {110} direction. Therefore in
the code presented below the loop over vortex lattice orientations has been disabled
and the orientation fixed appropriately. (It would be easy to modify the programme
to handle crystals without twin planes.)

As explained in section 2, the divergent nature of the London free energy neces-
sitates a cut-off at wavevectors larger than roughly £¢~!. This was performed using
a Gaussian as suggested in the text. Hence, although the induction is normally not
needed to calculate the London free energy (it simply scales with it) it has been in-
cluded in order to fix the inter-vortex distance, which becomes relevant if finite-core
effects are to be taken into account. The London penetration depth also needs to be
specified since although it is a degenerate parameter in the bare London free energy,
once the free energy is dressed with the Gaussian cut-off it serves to set the value of
k. (Mathematically, it is important because there are two dimensionless length-scales
in the free energy sum: a magnetic one, A,G, and one associated with the cores, {G.)

The final ingredient is the mass tensor. In this implementation an orthorhombic
crystal is assumed and in the programme the diagonal elements are entered. Since the

coordinates are measured in the frame of the vortices, the mass tensor is rotated first
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about the z-axis (the variable alpha in the programme) and then about the new y-axis
(the variable beta); the rotation is calculated automatically by the programme just

after the declaration of the mass tensor and the transformation to the vortex frame.

The programme to evaluate the free energy minimum is shown below. By and
large it is rather ad hoc and all the necessary parameters are hard-wired, hence the
programme requires recompiling before each new calculation. This lack of ease of use
is justified by the numerical efficiency of the programme. Since Fourier sums can,
depending on the conditions, take some time, the programme was written in ANSI
C++, rather than an interpreted language like Matlab. The choice of C++ over plain C
(and indeed Matlab) enables the benefits of object-oriented programming to be reaped.
Since the free energy equation is a messy expression involving vector products and the
contraction of tensors with vectors, a straightforward translation of the expression
into a computer language would be a tedious and error-prone affair. Therefore classes
implementing vectors and tensors have been provided. These classes are deliberately
limited in function. The vector class provides a container for an ordinary three-vector
(with an obvious constructor) and the simple operations associated with these, namely
addition, subtraction, negation, multiplication by a scalar (both integer and floating
point), the vector (outer) product and the scalar (inner) product. The tensor class
is an extremely limited helper class that supports only second rank tensors in three
dimensions (stored as three column vectors); the only operation supported for the
tensor class is contraction with a vector to the tensor’s right. All of these operations
have been declared as inline to suggest to the compiler to insert a copy of the function
whereever it is used in the hope that this will avoid an expensive function call. (In
ANSI C++ compilers this is at the compiler’s discretion, but since these are all simple
arithmetical operations requiring presumably few registers most compilers should be
able to follow the suggestion.) The function to evaluate a term in the free energy has
also been declared inline and is only separated for ease of reading. In this function, use
has been made of auxilliary variables to avoid uselessly repeating sub-calculations and
the constants have been declared static to prevent the compiler generating instructions

to define them in the innermost loop.
The ANSI C++ code to the programme described is listed on the following pages.
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There are two files: the main programme file, london.C, and a header file that defines
the vector and tensor classes, london maths.h. These programmes should compile
on a standard ANSI C++ compiler. For example, it will compile on the GNU C++
compiler, g++ (GCC), which is available on many platforms. Here the programme was
compiled using version 3.3.3 of this compiler. The target platform was GNU/Linux
(SuSE 9.1, kernel version 2.6) running on a 32-bit 2.8 GHz Intel Pentium-4 processor.
Compilation and linking was achieved by running the command:
g++ -02 -o london london.C.
This invokes the project GNU C++ compiler and compiles the programme with full

time optimisation.
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Programme code: london.C

london.C' - Minimises london free energy

Compilation:
g++ -02 -0 london london.C

Comments:
london.C: calculates the london free energy for the
fully anisotropic case using the equation in
Burlachkov, Furo. Phys. Lett., 8 (7), 1989. Uses a
Gaussian cutoff to force convergence.

#include <iostream>
#include <math.h>
#include <stdlib.h>
#include "london_maths.h"

using namespace std;

/) #ERR05% GLOBAL VARIABLES **** ¥ ¥ XXX xssss sttt ook
// mass tensor: set in main(), used in F.

tensor m;

// 2*(cutoff-length) "2 in denominator of Gaussian.

double cutoffsq;

// penetration depth squared

double lambdasq;

/ KoK oK oK oK K oK K oK K oK KoK K K K K oK KK KK K K oK K oK K K oK KoK K oK oK K oK K oK oK K oK ok oK oK KoK KK KOk oK KOk KOk K

// Calculates a term in the Fourier sum of the London free

// energy
static inline double F(vctr k)

{
static const vctr 1(0,0,1); // direction of vortices
// Constant auzilliaries for efficiency
// contraction of mass tensor (twice) with vortex unit vector
static const double pre_lmlpart = lambdasqg*(1l*(m*1));
// contraction of mass tensor with vortex unit vec.
static const vctr ml = mx1;
// auxilliaries (used more than once).
double modksq = k.x*k.x + k.y*k.y + k.z*k.z; // k"2
double Ilmlpart = 1+modksq*pre_lmlpart;
vctr kcrossl = k71;
// free energy expression of Burlachkov with gaussian cutoff
return exp(-modksq/cutoffsq) * lmlpart / ( lmlpart*(l+lambdasq+*(kcrossl*(mxkcrossl)))
- lambdasqg*lambdasq*modksq*( (kcrossl*ml) * (kcrossl*ml) ));
}

// HAFHAAFFIAAFHIAAFHIAA A TIN FFHEAAFFAAA KA AFHAAFHAAFFHAAFFH

int main (int argc, char* argv[])
// ===== Maths/physics constants

const double pi = 3.141592654;
const double phiO = 2067.83461; // fluz quantum in (T.nm"2)
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Programme code: london.C (cont.)

// ===== Size of lattice to sum over
const int 1size=100;

// ===== Unit cell parameters
// direction of pinning
const double theta=45.0%pi/180.0;
// parameters to vary: length of one of the
// basis vectors and angle between them
double modg2, phi;
double phi_start = 40.0%pi/180.0, phi_end=80.0%*pi/180.0;
double modg2_start = 0.8, modg2_end = 1.2;
double modg2_step = 0.025, phi_step = 1.0%pi/180.0;
// Magnetic induction (Tesla)
double B=1;
double cellA = 4xpi*pi*B/phiO; // Unit cell area (nm"-2)
// measure vector lengths relative to undisorted lattice
double ktri = sqrt(2xcellA/(sqrt(3.0)));
// normalise vector-length range to reciprocal unit cell area
modg2_start *= ktri, modg2_end *= ktri, modg2_step *= ktri;

// ===== Physical paramters: B, mass tensor etc.
// coherence length and penetration depth
double xi=3,lambda=150;
// auxilliaries of above, used in F(k).
cutoffsq = 8*pi*pi/(xi*xi), lambdasq = lambdaxlambda;
// Effective masses (=gamma"2)
double ma=1.0,mb=1.64,mc=20.0, mGeoMean=ma*mb*mc;
// normalise to geometric mean.
ma /= mGeoMean, mb /= mGeoMean, mc /= mGeoMean;
// angles of rotation of mass tensor: alpha is about z-axis,
// beta is about y’ axis (new y-axis obtained from alpha rotation.
double alpha=0.0*pi/180.0,beta=0.0%pi/180.0;
// Elements of the (symmetric) mass tensor as rotated by alpha
// and beta (global variable used in F(k)).
m.x.x = cos(beta)*cos(beta)*( cos(alpha)*cos(alpha)*ma
+ sin(alpha)*sin(alpha)*mb ) + sin(beta)*sin(beta)*mc;
m.x.y = m.y.x = cos(beta)*sin(alpha)*cos(alpha)*(ma-mb) ;
.x.z = m.z.x = (mc - cos(alpha)*cos(alpha)*ma + sin(alpha)*sin(alpha)*mb)
* sin(beta)*cos(beta);
.y.y = sin(alpha)*sin(alpha)*ma + cos(alpha)*cos(alpha)*mb;

=]

B B

.y.z = m.z.y = sin(beta)*sin(alpha)*cos(alpha)*(mb-ma);
.z.z = sin(beta)*sin(beta)*( cos(alpha)*cos(alpha)*ma+sin(alpha)*sin(alpha)*mb )
+ cos(beta)*cos(beta)*mc;

=]

vetr gl, g2;// (avoid constructor call in loop)
double phimin=-666.0,modg2min=-666.0,modglmin=-666.0,Fmin=6e66;

// Loop over shape of reciprocal lattice: vary length of one vector and angle
// between them. (Lenght of other determined by flur quantisation).

for (phi=phi_start; phi<=phi_end; phi+=phi_step)

{
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Programme code: london.C (cont.)

for (modg2=modg2_start; modg2<modg2_end; modg2+=modg2_step)
{
// Work out basis vectors
g2.x = modg2*cos(theta), g2.y = modg2+*sin(theta);
// (flux quantisation)
double modgl = cellA/(sin(phi)*modg2) ;
gl.x = modgl*cos(theta+phi), gl.y = modgl*sin(theta+phi);

double Fsum=0;
// lattice sum
for (int h=-1lsize; h<=lsize; h++)
for (int k=-lsize; k<=lsize; k++)
Fsum += F(h*gl+k*g2);

cout << Fsum << " ";
if (Fmin > Fsum) // find minimum for info at end
Fmin=Fsum, phimin=phi, modg2min=modg2, modglmin=modgl;
}
cout << endl;
}
cerr.precision(10);
cerr << "Minimum F=" << Fmin << ” at phi=" << phiminx*180.0/pi << 7, g1="
<< modglmin/ktri << 7, g2=" << modg2min/ktri << endl;
return 0;
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Programme code: london _maths.h

london_maths.h: defines some simple classes to make
maths more readable

/) FFEEE yector class with simple operations **FFFxxFAAAAK
class vetr {
// All members public for ease
public:
double x,y,z;
// constructors
vetr() {x=0,y=0,z=0; }
vctr(double x, double _y, double _z) {x=x,y=_y,z==z; }
// operations
inline vctr operator” (const vctr& s)
{return vctr(y*s.z-z*s.y,z*s.Xx-X*s.z,X*s.y-y*s.x); }
inline vctr operator+ (const vctr& s)
{return vctr(x+s.x, y+s.y, z+s.z); }
inline vctr operator- (const vctr& s)
{return vctr(x-s.x, y-s.y, z-s.2); }
inline vctr operator- () {return vctr(-x,-y,-z); }

};

// declared outside class

inline double operator* (const vctr& f, const vctr& s)
{return f.x*s.x+f.y*s.y+f.zxs.z; }

inline vctr operator* (int f, const vctr& s)
{return vctr(f*s.x,f*s.y,f*s.z); }

inline vctr operator* (double f, const vctr& s)
{return vctr(f*s.x,f*s.y,f*s.z); }

/) 5% 2nd rank tensor class *FFEERERRAALLEEEFIIIIIIAAK
class tensor {
public:
// treat elements a 3 row vectors.
vctr X, y, Z;
// tensor contraction to the right with a vector
// (contraction to the left numerically awkward with
// this class, but only right is needed.)
inline vctr operator* (const vctr& s) {return vctr(xxs,y*s,z*s);}

};
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Observation of two-dimensional spin fluctuations in the bilayer ruthenate Sr;Ru,0O,
by inelastic neutron scattering

L. Capogna,’* E. M. Forgan," S. M. Hayden,? A. Wildes,® J. A. Duffy,2* A. P. Mackenzie,® R. S. Perry,1®
S. lkeda,%* Y. Maeno,®” and S. P. Brown®
school of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, United Kingdom
2H.H. Wills Physics Laboratory, University of Bristol, Bristol BS3 1TL, United Kingdom
3| nstitut Laue-Langevin, 6 Rue Jules Horowitz, F38042 Grenoble Cedex, France
4Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
®School of Physics and Astronomy, University of S. Andrews, S. Andrews KY16 9SS, United Kingdom
®Department of Physics, Kyoto University, Kyoto 606-8502, Japan
"CREST, Japan Science and Technology Corporation, Kawaguki, Saitama 332-0012, Japan
(Received 14 November 2002; published 31 January 2003)

We report an observation of two-dimensional incommensurate magnetic fluctuations in the layered metallic
perovskite Sr;Ru,0,. The wave vectors where the magnetic fluctuations are strongest are different from those
observed in the superconducting single layer ruthenate Sr,RuO, and appear to be determined by Fermi surface
nesting. No antiferromagnetic ordering is observed for temperatures down to 1.5 K. For temperatures T
=20 K, the fluctuations become predominately ferromagnetic. Our inelastic neutron scattering measurements
provide concrete evidence of the coexistence of competing interactions in Sr;Ru,0O; and of the low-energy

scale of the fluctuations.

DOI: 10.1103/PhysRevB.67.012504

The nature of magnetic correlations in layered oxide per-
ovskites such as cuprates, manganites, and ruthenates is at
the heart of theoretical and experimental challenges in con-
temporary solid state physics. In recent years, the discovery
of unconventional superconductivity in the single-layer ruth-
enate Sr,RuO, (Ref. 1) has generated great interest in this
and related ruthenates. The observation of low energy incom-
mensurate two-dimensional (2D) spin fluctuations in
Sr,RuQ, (Refs. 2—4) has raised the question of the relevance
of spin fluctuations to p-wave pairing in this material. The
closest relative of Sr,RuQ,, the bilayer SrzRu,0O, is a para-
magnet where ferromagnetic and antiferromagnetic correla-
tions may be in competition, and ferromagnetism can be in-
duced by pressure or impurities.>"'° At low temperatures,
high-quality single crystals of SrsRu,0- exhibit Fermi liquid
behavior, such as a T? temperature dependence of the
resistivity®!! and a linear electronic heat capacity with y
=110 mJ/(K? mol Ru).® However, a moderate magnetic
field (5.5-7.7 T, depending on field direction) induces a
metamagnetic transition, which is accompanied by a striking
deviation from Fermi liquid behavior.®'? Sr;Ru,0, appears
to be a strong candidate to exhibit a metamagnetic quantum
critical end-point, driven by the magnetic field and charac-
terized by the absence of spontaneous symmetry breaking.*?
In this paper we report observations in zero field of low-
energy spin fluctuations in SrsRu,0; as measured by inelas-
tic neutron scattering.

With respect to the conducting and magnetic properties of
Sr;Ru,05, the fundamental building blocks of its crystal
structure are the RuO, bilayers joined by an SrO layer. These
slabs are separated along the crystal ¢ direction by two rock
salt-type layers of SrO which decouple the slabs electroni-
cally and magnetically. In contrast to the single layer com-
pound Sr,RuQ,, the RuOg octahedra in SrzRu,O- are rotated
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around the c axis, by ~7°. This changes the unit cell from
body-centered tetragonal to a /2 2 larger face-centered
cell which is orthorhombic but has a and b equal within
experimental error.*® The rotation is expected to reduce the
in-plane Ru-Ru hopping, and hence increase the density of
states at the Fermi level,** which may enhance the magnetic
fluctuations.

Single crystals of SrzRu,0; were grown in a mirror fur-
nace, and were checked for homogeneity and purity by mag-
netic, resistive, and crystallographic measurements. All crys-
tals used in this study showed the characteristic peak in
susceptibility at T~ 17 K and no ferromagnetism. For the
inelastic neutron scattering experiments, three crystals were
mounted so that their axes coincided to form a mosaic
sample with total mass 0.9 g. This was mounted in a cryostat
on the cold neutron three-axis spectrometer IN14 at the ILL.
For simplicity, we describe our results using the tetragonal
cell of the compound, which has the a and b lattice param-
eters equal to the in-plane Ru-O-Ru distance 3.87 A. The ¢
axis is perpendicular to the RuO, planes and has the magni-
tude 20.7 A, which is twice the spacing of the RuO, bilayers,
reflecting the body-centred stacking of bilayers.'® Using this
unit cell, the main nuclear Bragg peaks of the 3D structure
occur at points (h,k,l) in reciprocal space with integer h, k,
and | and (h+k+1) even. The less intense ones, arising from
the rotations of the octahedra, occur at some of the points
where h and k are half-integral and | is an integer.

We performed extensive measurements with (h,k,0) as
the scattering plane and further measurements in the (h,0,1)
plane. Unlike Sr,Ru0Q,, magnetic fluctuations at our base
temperature of 1.5 K were not observed to peak along the
(h,h,0) direction from a reciprocal lattice point; instead they
were detected along (h,0,0). Figure 1 shows representative
scans along major symmetry directions at a constant energy

©2003 The American Physical Society
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FIG. 1. Inelastic neutron scattering at 1.5 K: intensity versus
wavevector along lines in the (h,k,0) plane, at a constant energy
transfer of 2 meV. Solid lines are a sum of Gaussians as a guide to
the eye. The fwhm Q resolution, calculated for the relaxed collima-
tion of our setup, is comparable to the width of the symbols. The
inset to (d) indicates schematically the Q positions where peaks are
observed. All measurements in this Letter, except those in Fig. 2,
were taken with a varying incident energy and constant final energy
of 4.97 meV, using PG (002) monochromator and analyser and a
cooled beryllium filter before the analyser to remove higher order
contamination.

transfer (from neutrons to the sample) of 2 meV. Figure 1(a)
shows a double set of peaks along the (h,0,0) direction at
the positions Q~(1+0.25,0,0) and (1+0.09,0,0). The in-
trinsic nature of such peaks was demonstrated by the obser-
vation of a signal of similar intensity around the symmetry-
related (0,1,0) point and the presence of four peaks in the
“perpendicular” scan through (1,0,0) shown in Fig. 1(b).
The variation of intensity within each set of peaks is quanti-
tatively consistent with the rapid falloff of the Ru magnetic
form factor with the magnitude of Q,*® providing strong evi-
dence for the magnetic nature of the excitations. Further-
more, as shown later, the intensity does not increase with
temperature as would be expected if the scattering were due
to lattice vibrations. The extent of the magnetic fluctuations
in the (h,k,0) plane of reciprocal space was established by
the scans shown in Figs. 1(c) and 1(d). These show that the
excitations give a broad peak centred on the (h,0,0) axis.
The results are summarized in the inset: the excitation inten-
sity peaks at two incommensurate wave vectors of the form
gs~1{0.25,0,0} and q.~{0.09,0,0}, distributed symmetrically
about (1,0,0). It is natural to assume that these arise from
peaks in the wave vector—dependent susceptibility at nesting
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FIG. 2. | dependence of inelastic scattering at 2 meV and h
=0.75, showing the effects of the bilayers. The solid line is the fit
described in the text, plus a constant background. These measure-
ments were performed at a constant incident energy of 14.67 meV,
with a PG higher order filter in the incident beam.

vectors of the Sr;Ru,0, Fermi surface. This is not yet
known experimentally, although it has been calculated.'**®
The coupling between the two halves of a bilayer splits each
of the three sheets observed in Sr,RuQ,. This, and the rota-
tion of the octahedra cause hybridization between the bands.
It appears from the calculations,® that compared with
Sr,RuQ,4, much of the nesting at the Fermi level is removed,
except between parts of the « sheets (Ru d,, and d, orbit-
als). The calculated sheets have nesting vectors along the
(tetragonal) {1,0,0} directions with values which are compa-
rable with (although not equal to) those we observe. It seems
reasonable to conclude that the differences of our results
from those on single-layer Sr,RuO, (Refs. 3,4) arise from
the effects of bilayers and octahedral rotation on the Fermi
surface in our system.

Measurements as a function of | allow us to determine the
fundamental fluctuating unit in SrsRu,O; in this energy
range. Figure 2 shows the variation along c* of the intensity
of the signal at qs;. The experimental data are well repre-
sented by 1o f(Q)?cos?(2mlz/c), where f(Q) is the Ru form
factor and 2z=0.194c is the distance between the RuO,
planes in a bilayer. This function corresponds to the two
halves of a bilayer fluctuating in phase with each other, but
with no correlation between bilayers, so that the fluctuations
are effectively two dimensional. A similar argument'’ was
used to demonstrate 2D fluctuations in YBCO, but with the
two halves of the bilayer in antiphase. We point out an im-
portant consequence of our results: since (1,0,0) is a recip-
rocal lattice point of a RuO, bilayer, the values of the g
vectors of excitations should be measured from this point,
rather than (0,0,0) or (1,0,1), which are the closest reciprocal
lattice points of the 3D crystal structure.

We now consider the energy dependence of these excita-
tions. Figure 3 shows four representative Q scans with en-
ergy transfers of 1, 2, 3, and 4 meV at T=1.5 K. The peaks
appear to disperse slightly, and merge at higher energies. We
have also performed a Q scan over this region at zero energy
transfer, which showed no evidence for static magnetic or-
dering near qs or g.. This result is in agreement with those
of Refs. 18,19. We conclude that at finite temperature only
finite frequency, short-range magnetic correlations exist.

Figure 4 shows the energy dependence of the signal at q.
To obtain a measure of the characteristic energy of these
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FIG. 3. Energy and Q dependence of scattering at 1.5 K. Scans
along (h,0,0) with energy transfers of 1, 2, 3, and 4 meV. We
believe that the sharp features at the ends of the scan at 4 meV are
due to optic phonons excited by second order contamination of the
incoming beam.

excitations, we have fitted the response to a simple Lorentz-
ian model for the susceptibility x"(Q,w)= x'(Q) X wI'(Q)/
[T2(Q)+ w?]. From the fit we obtain a value for the energy
width AI'=2.3£0.3 meV. This is much less than 9 meV
obtained by similar methods in the single layer compound
Sr,Ru0,.® The presence of dispersion on an energy scale
much smaller than eg and the small energy scale of the fluc-
tuations indicates the strong renormalising effects of electron
correlations in our compound. A rough estimate?® based on
our data indicates that the very large observed specific heat y
may be understood in terms of the spin degrees of freedom.

300 |
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FIG. 4. Energy dependence of magnetic scattering at Q
=(0.75,0,0), minus backgrounds taken at (1.48,0,0). The line rep-
resents a Lorentzian as described in the text. The ordinate has been
corrected by the Bose factor [n(w)+ 1] and the Ru form factor and
converted to absolute units (with an accuracy ~20%) by normal-
ization to the intensity of a transverse acoustic phonon, measured at
3.1 meV around (1,1,0) at 100 K.
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FIG. 5. Q dependence of scattering along (h,0,0) for an energy
transfer of 3.1 meV at three different temperatures, 1.5, 15, and 150
K. The peak near h=0.6 is believed to be spurious scattering.

We also note that the susceptibility is large, translating to
x'(Qs) of 1.6x10°2 emu/mol Ru. This indicates that
Sr;Ru,0; is much closer to magnetic order than its sister
compound.

M/H (107 emu/Ru mole)

e -1

0
. g Ap(2 tesla)/p (%)
O_ o
& 2
< 1
0
-1 l : . . X .
0 20 40 60 80 100 120 140
T(K)

FIG. 6. Temperature-dependence of magnetic response from
macroscopic and microscopic measurements (a) Static susceptibility
from Ref. 6. (b) Susceptibility, x"(Q,») (units: u2/eV/Ru) from
neutron scattering at Q=(0.95,0,0) and an energy transfer of 2
meV, minus a background at (0.55,0,0). (c) As for (b) at Qs
=(0.75,0,0). (d) Fractional magnetoresistance [p(2T)—p(0)]/
p(0) measured with current parallel to the magnetic field in the
basal plane (Refs. 8,21). The lines serve as guides to the eye.
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We have also followed the fluctuations as a function of
temperature at an energy transfer of 3.1 meV around Qg
=(0.75,0,0) (Fig. 5). At base temperature, the two peaks
associated with the incommensurate spin fluctuations are
well defined and intense. However, as the temperature is in-
creased, the intensity of the incommensurate peaks falls off,
and is replaced by a broad peak of similar intensity around
the 2D reciprocal lattice point (1,0,0). This position is not a
Bragg peak of either the tetragonal or the orthorhombic cell,
so does not give rise to a low-energy acoustic phonon. Hence
the peak at (1,0,0) is most likely of magnetic origin. We have
confirmed by measurements along c* that this signal also
arises from fluctuations of a bilayer unit. Our findings point
to a crossover in the nature of the low-energy magnetic cor-
relations in this material. At high temperatures, 2D ferromag-
netic fluctuations dominate the correlations; as the tempera-
ture is lowered, instead of converging to a long-lived
ferromagnetic state, the system is sidetracked to a different
behavior with antiferromagnetic finite frequency 2D excita-
tions.

In Fig. 6, we show that the change with temperature in the
nature of magnetic fluctuations is reflected in macroscopic
properties. At a temperature ~20 K, there is a peak in the
magnetic susceptibility (a), and also in the susceptibility
close to a ferromagnetic position measured by neutron scat-
tering (b). The antiferromagnetic fluctuations (c) fall away
rapidly with increasing temperature and this is reflected in
the change in sign of the longitudinal magnetoresistance (d).’

PHYSICAL REVIEW B 67, 012504 (2003)

It is not clear what causes this dramatic change in magnetic
correlations, but it may be related to a loss in c-axis elec-
tronic coherence, which reveals itself as a steep rise in the
c-axis resistivity in this temperature region.® It is of interest
that in the compound Ca,_,Sr,Ru0,,?>?® doping with Sr
drives the system from an insulating antiferromagnetic state,
through a phase with a ferromagnetic instability to a metallic
superconducting one. In contrast, in Sr;Ru,0O- the competing
interactions coexist in the same high-quality stoichiometric
samples. In manganite materials the nature of the magnetic
fluctuations can also change with temperature;>* however,
the cause in this case is a structural/magnetic transition.

In conclusion, we have observed strong 2D spin fluctua-
tions of the bilayers in Sr;Ru,0O- in zero field. At high tem-
peratures these fluctuations are predominantly ferromagnetic
in nature, and cross over to incommensurate ones at low
temperatures, with wavevectors close to those expected for
nesting vectors of the Fermi surface. The characteristic en-
ergy of these fluctuations is small (compared with the sister
compound Sr,RuQ,), and their ambivalent nature suggests
that they are implicated in and related to the metamagnetic
transition observed at low temperatures. We note that a
strong temperature dependence of the electronic properties
and magnetic excitations is also observed in high-T,
superconductors® and heavy fermion systems.?® Thus the be-
havior of SrsRu,0; may ultimately be related to its proxim-
ity to a quantum critical point.*2
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Germany; Email address: |.capogna@fkf.mpg.de
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We have used the technique of small-angle neutron scattering to observe magnetic flux lines directly
in a YBa,Cu;0; single crystal at fields higher than previously reported. For field directions close to
perpendicular to the CuO, planes, we find that the flux lattice structure changes smoothly from a
distorted triangular coordination to nearly perfectly square as the magnetic induction approaches 11 T.
The orientation of the square flux lattice is as expected from recent d-wave theories but is 45° from that

recently observed in La; g3Sry 17CuOy 5.

DOI: 10.1103/PhysRevLett.92.067004

The technique of small-angle neutron scattering
(SANS) from flux lines has a long and honorable record
in measuring the properties of flux lines in superconduc-
tors. However, it continues to bring new dividends, espe-
cially in unconventional superconductors, since important
information about the nature of the superconducting state
is often revealed by the flux line lattice (FLL) structure,
for example [1-4]. The diffraction pattern not only re-
veals the coordination and perfection of the FLL, and its
correlation with the crystal lattice, but also the absolute
intensity may be used to determine the actual spatial
variation of the magnetic field within the mixed state
and the values of the coherence length and penetration
depth [1,5,6]. In the simplest approximation, flux lines
would order in a regular triangular FLL; however, an-
isotropy of the Fermi surface or of the superconducting
order parameter can cause distortions of the triangular
lattice or transitions to other structures. The simplest
situation in a high-x material is anisotropy of the mag-
netic penetration depth associated with effective mass
anisotropy [7]; for example, the anisotropy in the ab
plane of YBa,Cuy;0;_5 (YBCO) leads at low values of
field to a corresponding distortion of triangular FLLs [8].
At lower values of «, “nonlocal” effects are expected [9]
and observed to give a variety of FLL distortions and
transitions in, e.g., the borocarbides [4,10] and V;Si
[11,12]. If the superconducting order parameter has a
different symmetry from that of the crystal, this can
again be revealed via its effects on the FLL structure, for
instance, in the p-wave superconductor Sr,RuO, [6,13].
In general in d-wave superconductors [14-16], there is
expected to be a tendency towards a square FLL as the
field is increased and the anisotropic flux line cores over-
lap. This may be the cause of the FLL phase transition re-
cently observed in overdoped La, g3Srj 17CuOy, 5 (LSCO)
at the comparatively low field of 0.4 T [2]. According to
[14,15], the FLL nearest-neighbor directions should lie
along the directions of the nodes of the order parameter,

067004-1 0031-9007/04 /92(6)/067004(4)$22.50
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which would be at 45° to the Cu-O bonds in the super-
conducting layers. This is not, however, the orientation of
the square FLL observed in LSCO [2]. The orientation
may instead be controlled by band structure effects [17],
even if the symmetry of the FLL is controlled by d-wave
effects. It has been suggested that a peak effect in mag-
netization measurements on overdoped YBCO may be a
signature of a continuous triangular-to-square FLL tran-
sition in this material at high fields [18]. However, others
have suggested that there is a glass transition in this
region [19]. Only by direct measurements may such sug-
gestions be tested and the correlation between FLL and
crystal lattice (or superconducting order parameter) be
determined.

Our experiments were performed on the SANS-I in-
strument at SINQ, Paul Scherrer Institut, Switzerland.
Cold neutrons (8 to 14 A, with a FWHM wavelength
spread of 10%) were collimated over distances from 4.5
to 15 m, depending on the field and hence g range re-
quired. The diffracted neutrons were registered on a
128 X 128 X 7.5 mm? multidetector, which was similarly
adjustable in distance from the sample. The undiffracted
main beam was intercepted by a cadmium beamstop. A
magnetic field of up to 11 Tapplied approximately parallel
to the neutron beam, was provided by a cryomagnet with
a field uniformity of 0.2% over a 1 cm sphere. A variable
temperature insert containing He heat exchange gas al-
lowed sample temperatures from 1.5 to 300 K. The sample
was a 40 mg low—twin-density (a fully detwinned crystal
of this size was not available) high-purity single crystal
of YBCO grown in a BaZrO; crucible [20] and oxygen-
ated close to O; by high-pressure oxygen treatment in
order to reduce pinning by oxygen vacancies in the Cu-O
chains [21]. It was therefore overdoped and had a T, of
86 K. It was initially mounted with its ¢ axis parallel to
the field direction. In order to satisfy the Bragg condition
for each diffraction spot in turn and hence establish
the FLL structure, the cryomagnet and sample together

© 2004 The American Physical Society 067004-1
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could be rotated or tilted to bring the FLL Bragg planes
to the appropriate small angles (~1°) to the incident
neutron beam.

In Fig. 1 is shown the FLL diffraction pattern obtained
at the low field of 1 T. The most obvious feature of this
pattern is its fourfold symmetry which reflects the aver-
age fourfold symmetry of the twinned orthorhombic
structure of our YBCO sample. However, the FLL struc-
ture itself has triangular coordination, and the symmetry
of Fig. 1 arises from four orientations of distorted trian-
gular FLLs, present in different domains in the sample, as
was first observed by Keimer et al. [22]. The diffraction
spots arising from these four triangular lattices are rep-
resented in Fig. 2. It appears that the distortion of the
individual lattices arises mainly from the a/b anisotropy
present in each orthorhombic domain in the crystal
[23,24]. This interpretation was confirmed by measure-
ments on an untwinned sample [8] which show diffrac-
tion spots distributed around an ellipse aligned with the a
and b axes. The ratio of the principal axes of the ellipse
should represent the anisotropy of the London penetration
depth for B,y < B < B, [7]. The value we observe
for the anisotropy ratio, vy,;,, in our sample is 1.28(1),
whereas many estimates of this quantity are rather larger
[25]. However, comparable values to ours were obtained
by measurements on a separate untwinned sample
using neutrons [8] and muons and torque magnetometry
[26]. Our results are also corroborated by recent surface-
sensitive measurements using a novel atomic-beam
magnetic-resonance technique [27]. It seems likely that

20 30 40 50 60 ] 80 a0 100

FIG. 1 (color). FLL diffraction pattern at 1 T. The figure
shows the counts on the SANS multidetector at 4 K (minus
backgrounds obtained above T,.) summed over a range of angles
between the field direction and the neutron beam. Noise at the
center of the picture has been masked. The cryostat was rocked
by *1° about horizontal and vertical axes, ensuring that all
spots in the diffraction pattern from the sample are detected.
The {110} directions, corresponding to twin plane directions,
are vertical and horizontal in this picture. In all cases, the FLL
was formed by applying the field above T, and cooling.

067004-2

the precise value of y,;, depends on the degree of perfec-
tion of the Cu-O chains along the b direction [28]. The
orientation of the triangular FLLs has been ascribed to
pinning of a pair of spots, and hence planes of flux lines,
to the twin planes [23,24]. However, results reported later
in this Letter also support the existence of a correlation
between the nearest-neighbor FLL directions and the
directions of zeros of the d-wave order parameter.

In Fig. 3, we show diffraction patterns taken at higher
fields. The data taken at 7 T show a distortion of the
triangular FLLs so that some of the weaker spots are
closer to the strong spots, and others have moved towards
the diagonals. There is clearly another source of distortion
than pure a/b anisotropy. Finally at 11 T, the FLL has
become almost exactly square, with the weak corner spots
now playing the role of second order {1, 1} spots of a
square FLL instead of first order spots from a distorted
triangular FLL. In order to investigate this steady change
in the FLL structure with field, we rotated the crystal
about the vertical axis in Fig. 3, so that the field was 5°
from the ¢ axis. This was done in order to break the
degeneracy between those FLL structures giving strong
vertical diffraction spots [Figs. 2(a) and 2(c)], and
those giving strong horizontal spots [Figs. 2(b) and
2(d)]. Within anisotropic London theory, this small angle
of rotation should make a negligible change to the FLL
distortion. As shown in Fig. 4, we found that at high
fields the FLL structures giving horizontal spots were
suppressed and instead only the structures depicted in
Figs. 2(a) and 2(c) were observed. The advantage of this

a
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e (a)

one of the one of the

FLL planes

vertical
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FLL planes @ -

horizontal .l ..
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FIG. 2 (color). Schematic of diffraction patterns from four
distorted triangular FLLs that together account for the pattern
in Fig. 1. In each orthorhombic domain in the twinned crystal,
there are two orientations of FLL [e.g., (a) and (b)], derived by
taking a regular hexagonal pattern and distorting it by the a/b
anisotropy [7]. The more intense pair of spots in each pattern is
aligned with one of the {110} directions. The center figure is the
superposition of the four FLL domains (a), (b), (c), and (d),
which gives rise to the pattern in Fig. 1. The angles between
reciprocal lattice vectors, a and (3, are defined for use in Fig. 5.
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(a)
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FIG. 3 (color).

il an &0 80 100 120

FLL diffraction patterns, as in Fig. 1 (but with a logarithmic intensity scale and smoothed to make the weaker

spots more clearly visible), (a) at B=7 T, (b) at B = 11 T, showing the change in position of the weaker spots as the field is

increased.

arrangement is that the pairs of spots near the horizontal
axis in Fig. 4 could be observed easily, without being
overlaid by the strong ones on the axis. This allowed us to
measure accurately the spot positions and hence the FLL
distortion. Nevertheless, at high field, this pair of spots
overlaps, but by assuming that the spot size is independent
of field, we may estimate the angle between them even
when they overlap. Further measurements of spot posi-
tions allow us to give a complete description of the FLL
distortions versus field in terms of the angles between the
FLL reciprocal lattice vectors. The results of this analysis
are shown in Fig. 5. It is clear that the low field structure
progressively changes with increase of field, although in
our available field range the FLL never exactly reaches a
perfectly square shape. This may partly be because the
phase transition is at the extreme of our available field
range, but it is also clearly a result of the orthorhombic
structure of YBCO. As depicted in the inset to Fig. 5, the
a/b anisotropy of each domain must, on symmetry
grounds, distort a square lattice to a rectangular one,
causing a slight splitting of the “square” spots from a
twinned crystal such as ours.

We have further investigated [29] the temperature de-
pendence of the FLL distortion shown in Fig. 5. We find

(a)”

4 & 60 70 B0 S0 100 140

FIG. 4 (color).
and (b) at B=10.8 T.
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that with increasing temperature, the FLL structure
changes more towards triangular. Thus the boundary
between square and triangular phases must curve up in
field as temperature is increased. We would expect this if
the triangular to square transition is due to d-wave ef-
fects, as the nature of the pairing becomes less important
as kgT becomes comparable with the magnitude of the
gap. The shape of the phase boundary is similar to that
seen in an overdoped sample by macroscopic measure-
ments [19], but not the same as that proposed in Ref. [18].
Unlike LSCO [2], the orientation of the FLL that we
observe is aligned as expected from d-wave theories
[15,16]. It may be argued that twin planes, which are
present in LSCO and YBCO are controlling the FLL
orientation. To rule this out, measurements were also
taken with the field at an angle to both sets of twin planes
in our sample and the shape and orientation of the FLL
was essentially unchanged. One should also note that
the predicted difference in free energy between the two
orientations of a square FLL is much larger than that be-
tween any triangular and the lower energy square orien-
tation [15]. We also note that a similar correlation between
FLL orientation and probable direction of d-wave nodes
has recently also been observed in CeColns [30]. Further

(b)

40 B0 B0 10N 120

FLL diffraction patterns with the field rotated 5° from the ¢ axis, to give only two FLL domains: (a)at B=7T
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FIG. 5. Field variation at 5 K of two of the angles between
reciprocal lattice vectors, a and S, depicted in Fig. 2. (Errors
are comparable with the marker size.) All data were obtained
with B parallel to the crystal ¢ axis except the data for a at
fields greater than 6 T, which were taken with B at 5° to ¢ in
order to resolve this angle more clearly (see text). A regular
hexagonal lattice would have a = 8 = 60°, and an exactly
square one « = 90° and B = 45°. Also marked by horizontal
lines are predictions of anisotropic London theory [7] for a and
[, using a basal plane anisotropy, v,, = 1.28, and assuming
that one pair of spots is tied to the {110} directions. In the inset
is shown the orthorhombic distortion from an exactly square
pattern (exaggerated for clarity), expected in the two ortho-
rhombic domains present in our crystal.

support of the d-wave origin of the triangular-square
transition in YBCO is the value of the transition field,
which is a similar order of magnitude to the predicted
0.15B, [15]. It should also be noted that a triangular to
square transition in the FLL is predicted by the nonlocal
London theory of Kogan et al [9], in which an isotropic
s-wave gap is assumed and is therefore not directly ap-
plicable to the FLL in YBCO. Furthermore, in a d-wave
superconductor s-wave components of the order parame-
ter are induced near the vortex core, resulting in a four-
lobe structure [31] that cannot be predicted from Fermi
surface anisotropy alone. Nevertheless, nonlocal and
d-wave origins of the triangular to square transition are
clearly related, since both result in core anisotropy, which
becomes more important for intervortex interactions with
increasing field. Finally, we note that our bulk observa-
tions of FLL structure are not in complete agreement with
surface measurements by STM techniques [32,33].

In conclusion, using small-angle neutron scattering, we
have directly observed a change from triangular to square
coordination of the flux line lattice as a function of
magnetic field in fully oxygenated YBa,Cu3;0O;. This
phase transition is most naturally interpreted as a conse-

067004-4

quence of the d-wave character of the order parameter,
which is expected to be more prominent at high magnetic
fields, where the flux line cores begin to overlap. The
orientation of the FLL, with nearest neighbors along
nodal directions is as expected from d-wave theory
[15,16], unlike that in LSCO [2]. It appears that further
investigation of these phenomena will allow stringent
tests of theories of the order parameter in the mixed state
of high-7, materials as a function of angle of field and
doping.
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We report here on the first direct observations of the vortex lattice in the bulk of electron-doped
Nd, g5Ce( 15Cu0, single crystals. Using small-angle neutron scattering, we have observed a square
vortex lattice with the nearest neighbors oriented at 45° from the Cu-O bond direction, which is
consistent with theories based on the d-wave superconducting gap. However, the square symmetry
persists down to unusually low magnetic fields. Moreover, the diffracted intensity from the vortex
lattice is found to decrease rapidly with increasing magnetic field.

DOI: 10.1103/PhysRevLett.93.217001

It is a matter for debate whether hole-doped and
electron-doped high-T, cuprate superconductors (HTSC)
can be described within a unified physical picture [1,2].
Indeed, electron-doped HTSC have markedly different
properties from hole-doped HTSC. For example,
electron-doped materials have comparatively low values
of the superconducting transition temperature, 7., and
much lower values of the upper critical field, B,,.
Furthermore, their normal-state resistivity varies as 72
as expected for a Fermi liquid [3,4], and the presence of a
pseudogap is still under discussion [5]. Electron-doped
HTSC also appear much closer to long-range antiferro-
magnetic (AF) order, which can in fact coexist with su-
perconductivity [6—9]. In hole-doped HTSC, the d-wave
nature of the order parameter is well established [10].
However, the evidence for the symmetry of the super-
conducting gap in electron-doped materials (which has
important implications for the pairing mechanism [2]) is
somewhat contradictory. Earlier measurements of the
penetration depth [11] and tunneling experiments [12]
supported s-wave symmetry, whereas a d-wave super-
conducting order parameter is indicated by more recent
phase-sensitive [13] and angle resolved photoemission
spectroscopy (ARPES) experiments [14,15]. The electron-
doped superconductors are of particular interest in this
respect, since they have a tetragonal structure (rather than
orthorhombic) and therefore should show pure d-wave
behavior, unaffected by admixture of an s-wave compo-
nent associated with the orthorhombicity [10].

Recently, there has been considerable interest in the
nature of the vortex lattice (VL) in unconventional super-
conductors. For instance, vortex cores in d-wave super-
conductors are predicted to have a distinctive fourfold
structure [16—20]. This leads to the expectation that a
square VL is formed at high magnetic field, with the
nearest-neighbor directions aligned with the nodes of

217001-1 0031-9007/04/93(21)/217001(4)$22.50
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the order parameter. These theoretical predictions are
consistent with the small-angle neutron scattering
(SANS) observation of a transition from an Abrikosov-
like hexagonal VL to a square VL in the hole-doped
HTSC YBa,Cu3;0; (YBCO) [21]. However, similar mea-
surements on overdoped La,_, Sr,CuO, (LSCO) [22]
show a square lattice with nearest neighbors oriented at
45° to the nodes of the superconducting order parameter.
The orientation of the nodal directions in the heavy-
fermion superconductor CeColns is at present uncertain
[23], so it is unclear if the recent SANS observations of
the VL in this material [24] confirm theoretical expecta-
tions. It is therefore of great interest to gain further
information from another class of superconductors, such
as the electron-doped HTSC. Moreover, these compounds
do not have twin planes present in orthorhombic systems
such as YBCO and LSCO. These planar defects with a
suppressed order parameter are capable of pinning the VL
[25]. Finally, the low values of the upper critical field
(B,, ~ 10T compared to B., ~100 T in hole-doped
HTSC) allow the investigation of the whole magnetic
phase diagram.

Only recently could large enough electron-doped
crystals be produced, and to our knowledge, a SANS
investigation of their VL has not yet been published.
We report here the first direct observation of a VL in
Nd, g5Ce 15Cu0, (NCCO). Our SANS experiments (see
Ref. [26] for a description of the technique) were per-
formed on the instrument D22 at the Institut Laue-
Langevin, France, using neutrons with a wavelength
A, = 620 A. Crystals of NCCO were grown in a mirror
furnace and annealed as described in Ref. [27] to give
an onset T, = 25 K (AT, = 3 K, 10%-90% criterion).
Samples with two shapes were investigated in applied
magnetic fields up to 0.4 T. In high fields, a cylinder of
5 mm diameter, consisting of two nearly aligned crystals,

© 2004 The American Physical Society 217001-1
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was mounted in a cryostat with the magnetic field direc-
tion bisecting the two ¢ directions and at 7° to each of
them. Single crystal plates of ~1.5 mm thickness were
used at low fields: this required a long neutron wavelength
and the smaller thickness reduced the effects of neutron
absorption in the sample. They were mounted so that the ¢
direction was within ~2° of the applied field, which was
approximately parallel to the incident beam. There were
no significant differences in the VL diffraction patterns
obtained from different samples in measurements at the
same field.

In Fig. 1 we show the VL diffraction patterns obtained
at various magnetic fields. A background measured above
T, has been subtracted because the VL signal is extremely
weak (~0.013% of the total detector counts at 50 mT).
For magnetic fields larger than 50 mT, the VL clearly has
square coordination. The nearest-neighbor directions are
parallel to the {110} crystal directions, which correspond
to the nodes of the superconducting order parameter, in
agreement with predictions for d-wave HTSC [16-20].
Further evidence for a square VL is given by the positions
of the Bragg spots in reciprocal space. For first-order
diffraction, the relationship between the magnitude ¢ of
the wave vector and the magnetic field B is given by flux

quantization:
/ B
q=2m P (1)
0

where o is equal to 1 or +/3/2 for square and hexagonal
lattices, respectively, and @ is the flux quantum. g can be
obtained by fitting the tangential sum of the neutron sig-
nal with a Gaussian, as shown in Fig. 2. As expected, the
position of the peak shifts to higher ¢ with increasing

20 mT

50 mT

FIG. 1 (color). SANS diffraction patterns measured at T =
2.5 K, after field cooling from 30 K in B = 20, 50, 100, and
200 mT. A background taken at 7 = 30 K has been subtracted.
The {100} directions, corresponding to the Cu-O bond direc-
tions in the CuO, planes, are oriented vertically or horizontally
in the pictures.

217001-2

magnetic field (confirming the VL origin of the neutron
signal), and the extracted values of o are consistent with a
square VL at all fields measured (see the inset to Fig. 2 for
the lower fields). We have confirmed by magnetization
measurements that the value of the trapped flux at low
fields is within ~1% of the applied field. Hence, flux ex-
pulsion has an insignificant effect on the value of the g
vector.

As shown in Fig. 1, the VL orientation is not perfect at
any field. However, the orientation becomes rather more
disordered as the field is decreased below 50 mT and at
20 mT the intensity distribution becomes ringlike. A
similar distribution of intensity at low magnetic fields
has been observed in LSCO [22] and was attributed to the
superposition of diffraction patterns from various domain
orientations of hexagonal coordination, since the value of
o at low fields was consistent with that of a hexagonal VL.
Moreover, by rotating the ¢ axis 10° away from the field
direction, the degeneracy of the VL system could be re-
duced, and the hexagonal coordination of the VL in LSCO
was confirmed. In NCCO, on the contrary, the values of &
at low magnetic fields are still consistent with that of a
square VL, and measurements at 20 mT with the ¢ axis
rotated away from the field direction caused little change
in the pattern. The effects of rotating of the field away
from the ¢ axis at 50 mTare shown in Fig. 3. At 20° little
change is observed, whereas at 30° the pattern becomes
rather disordered and the scattered intensity lies on an
ellipse as expected from the uniaxial anisotropy of the
crystal. However, the average value of ¢ is unchanged. It
is surprising that the vortex lattice maintains square
coordination without being aligned to the crystal lattice.

In addition to the d-wave scenario for square VL coor-
dination, one should also consider the effects of Fermi
surface anisotropy. An appropriate theory for large-«
materials well below B,, is London theory with nonlocal
corrections [28], which has been extensively used to
account for VL phase transitions in the borocarbides

30
1.1
25 #%
ST + Squard]
20 oo4 ~
hexagonal
154 0.8

T T
o 50 100 150

-
o
|

Magnetic field (mT)

a
|

Neutron counts (arb. units)

o

'
a

T T 1
2 4 6 8

q (1/A)

FIG. 2. Tangential sum of the neutron signal vs wave vector ¢
for B = 50 and 100 mTat T = 2.5 K. Inset: field dependence of
the coordination-dependent quantity o [see Eq. (1)] at low
fields; the horizontal lines indicate the expected values for
hexagonal and square VL.
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20 deg | 50 mT

FIG. 3 (color). SANS diffraction patterns at B = 50 mT
taken as in Fig. 1 but with the ¢ direction rotated about the
vertical axis by 20° and 30° to the field direction. The growth
direction and long axis of the sample lay 15° counterclockwise
to the vertical and may be associated with the stronger inten-
sity in these quadrants. The ellipses drawn have an axial ratio
of cos(30°).

[29,30]. If both these effects are present [31], we would
expect the strong angular variation of the d-wave gap to
dominate over the usually smaller variation of the Fermi
velocity. ARPES experiments together with band struc-
ture calculations [32] indicate that NCCO and YBCO
both have nearly isotropic holelike Fermi surfaces with
a slight fourfold distortion oriented so as to favor the
observed square VL orientation. In overdoped LSCO, on
the other hand, the Fermi surface is electronlike [33,34]
with a square shape oriented at 45° to that of the other
two compounds. Moreover LSCO exhibits a pronounced
anisotropy in the Fermi velocity. Both the shape of the
Fermi surface and the Fermi velocity anisotropy would
indicate (via nonlocal effects) the VL orientation actually
observed in LSCO [22].

However, both d-wave and nonlocal effects should be
important only at fields which are a substantial fraction of
B.,, when the intervortex spacing is comparable to the
coherence length. For instance, d-wave calculations in-
dicate that the square symmetry has lower free energy
than the hexagonal one at applied fields greater than
0.15B., = 1.2 T [19], or than B,,/k = 0.4 T [20] (taking
the values of B., = 8 T [35], penetration depth A; =
1250 A [36], and coherence length & = 60 A [35], there-
fore k = Ay /& = 20). Although the characteristic fields
in electron-doped HTSC are generally lower than in the
hole-doped materials, these estimates are too large to
explain our results. Hence, our observation of a square
VL in NCCO down to very low magnetic fields is rather
surprising, unless another source of anisotropy in the
CuO, planes is present. One candidate for this is the Cu
antiferromagnetic correlations, whose characteristic
wave vector [7] coincides in direction with the VL recip-
rocal lattice wave vector.

Another matter of great interest is the variation of the
diffracted intensity with field. The intensity I, of a single
(h, k) reflection (integrated over the rocking curve of the
VL) is given by [37]

M 2 V)‘gl 2 |Fhk|2
I = 2w¢(—) A e g
4 q’%‘]hk qhk

217001-3

where ¢ is the incident neutron flux, w is the neutron
magnetic moment, V is the sample volume, and g, is the
(h, k) reciprocal lattice vector. F, is the “form factor” of
the (h, k) reflection. It is a Fourier component of the
spatial variation of the magnetic field, and in the
London limit is related to the penetration length A; by
_ B

1+ (gmeAL)*
For B,; < B < B,,, the second term in the denominator
is dominant and this gives I, * g;;' « B™'/2. In our
NCCO samples, the rocking curves of the VL diffracted
intensity were found to be flat, over a range of *4°,
within experimental error. The expected width of the
rocking curves can be estimated using Egs. (2) and (3)
and the value of A; quoted in Ref. [36]. At 50 mT we
obtain a width larger than 10°, consistent with our ex-
perimental observations. We therefore measured the in-
tensity as a function of field at a fixed sample angle.
Assuming that the rocking curve width remains constant
with field, the measured intensity is proportional to the
integrated intensity. In contrast with the London predic-
tion, we observe a strong field dependence of the scattered
intensity (see Figs. 2 and 4), which becomes immeasur-
ably small above B = 0.4 T, which is well below B,,. If
represented by a power law, this variation has an exponent
of about —2. (If the rocking curve becomes narrower with
increasing field, then the field dependence of the VL
intensity becomes even more rapid and more difficult to
interpret. A broadening of the rocking curve as a function
of increasing field would be consistent with increasing
disorder as discussed below.)

We consider two possible intrinsic reasons for the
fast decrease of the VL intensity with field. One is the
effect of the finite size of the vortex core, which will
lead to deviations from the London predictions at large
values of the wave vector g. This effect can be modeled
by a calculation using Ginzburg-Landau theory [38],
giving an algebraic expression for the correction to the

Fpi 3)

T=25K

Ly

TS~

Lol

VL Intensity (arb. units)
=)
vl

-
o
sl

= = - London
b vortex core + A corrections
B —— Power law (exp = -2)
— T T T T~
2 3 456 2 3 456
10 100 1000
Magnetic field (mT)

FIG. 4. VL intensity measured at 7 = 2.5 K as a function of
magnetic field. The dotted line is the expected field dependence
taking into account core effects and field dependence of the
penetration depth (see the text).
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form factor: exp(—+/2¢g£), which may also be written as
exp[—2(7B/B,;)"/*]. In addition, there is expected to be a
specifically d-wave effect—an increase of the penetra-
tion depth with field [39]. Muon spin rotation (uSR)
measurements in YBCO indicate that the variation of A
with B is linear at low fields (B <2 T) [40]:

AB) _
A(0)

where (8 is a temperature-dependent coefficient that re-
mains finite at 7 = 0 K, and By, is a characteristic field on
the order of the thermodynamic critical field B.. If we
assume that a similar linear dependence of A(B) is valid
for NCCO, and include the core-size effects as well, we
can model the variation of the VL intensity with field:

B
1+BB—0: “4)

T~ B*‘/Z(l + B%>_4 expl—4(mB/B)2)  (5)

For NCCO we used 8 = 7 X 1072 (as for YBCO) and
By ~ B.,/~/2k = 0.28 T. As can be seen in Fig. 4, we
cannot represent the strong field dependence of our ex-
perimental data by these intrinsic effects. It may be that
an enhancement of AF correlations by the applied field
[6] is reducing the superfluid density. However, we find
that even doubling 8 and the exponential prefactor does
not reproduce our results. The rapid decrease of the VL
intensity is more likely to be due to a transition to a more
disordered vortex system, as has been predicted theoreti-
cally [41] and associated with a second peak in magne-
tization measurements [42]. SANS experiments in the
isotropic (K, Ba)BiO; system [43] revealed a similar
rapid loss of diffracted intensity near the second peak.
In hole-doped Bi, ;5511 95sCaCu,0Og.,, a strong decrease
of the VL intensity with increasing field was attributed to
a crossover from a 3D to a 2D vortex system [44]. In
NCCO, however, such a dimensional crossover is ex-
pected to occur at a much higher magnetic field B, =
®y/(ys)? ~ 13 T (>B,,), where s ~ 6 A is the distance
between CuO, planes and y ~ 21 [3] is the anisotropy. In
this respect, NCCO seems to be similar to underdoped
LSCO [45], in which #SR measurements have given clear
evidence of a field-induced crossover to a more disor-
dered, but still three-dimensional VL.

In conclusion, we have made the first direct observation
of the VL in the electron-doped NCCO, which is the first
tetragonal HTSC to be investigated by SANS. Contrary to
theoretical expectations, the VL remains square down to
very small fractions of B,. In addition, we have observed
an unusually fast decrease of the VL intensity with in-
creasing magnetic field, which is probably due to a cross-
over to a more disordered vortex state.

This work was supported by the Swiss National
Science Foundation, by the Engineering and Physical
Sciences Research Council of the U.K., and by the
Ministry of Education and Science of Japan.
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We present a detailed study of vortex motion in a type-II superconductor using the muon spin
rotation (uSR) technique. The vortices were set in motion by an alternating transport current. By
adjusting the frequency and amplitude of the driving force so that vortices ‘visible’ to the implanted
muons did not cross the sample boundaries, a uSR lineshape was obtained corresponding to almost
perfectly-ordered vortex motion. We also observed sidebands to the uSR lineshape which correspond
to the frequency at which vortices pass the implanted muon, and allow a direct measurement of the
vortex velocity. Both these features of the lineshape confirm numerical predictions reported in a
previous study (see Charalambous et al., Phys. Rev. B 66 (2002), art. no. 054506).

PACS numbers: 74.25.Qt, 74.25.Fy, 74.70.Ad, 76.75.4+1i

I. INTRODUCTION

It is well known that when a transport current is ap-
plied to a type-II superconductor in the mixed state, in-
dividual vortex lines experience a Lorentz force FI, per
unit volume given by [1]

F, =JANB, (1)

where J is the applied current density and B is the mag-
netic induction in the superconductor. The vortices are
normally pinned by quenched disorder (e.g. material de-
fects such as grain boundaries, dislocations, second phase
particles, roughness of the sample surfaces, etc) but when
F1, exceeds the pinning force, the vortex lines are set in
motion with an average velocity v. Moving vortices give
rise to an electric field [2]

E=vAB, (2)

and hence energy dissipation occurs. This is due to the
relaxation of the order parameter as well as due to normal
currents in the vortex core [3-5].

As an intriguing example of non-equilibrium physics,
systems of moving vortices have attracted much attention
from both experimentalists and theorists [6-13] . Their

*Present address: Department of Physics, Lancaster Univer-
sity, Lancaster LA1 4YB, U.K.; Electronic address: demetris.c@
physics.org

tPresent address: PR/PRL Editorial Offices, One Research Road,
Box 9000, Ridge, NY 11961-9000, USA

dynamic properties are governed by an interplay between
disorder, thermal fluctuations and driving force, as well
as applied magnetic field, temperature and dimensional-
ity. Furthermore, from a technological point of view, a
detailed understanding of vortex motion is crucial for the
design and manufacture of superconductors to be used in
various applications, since vortex motion-induced energy
dissipation is one of the main factors which limit the
range of applicability of these materials [14].

It is now well established that the moving vortex sys-
tem is more ordered than it is in the pinned state: theo-
retical and computational investigations predicted a va-
riety of dynamic phases [6-9, 15] all of which are consis-
tent with the moving vortex system exhibiting orienta-
tional ordering compared to the static, pinned case. Re-
cent small-angle neutron scattering (SANS) experiments
on low-temperature Pb-alloy superconductors [10-12, 16]
show the ordering of the vortex system in the flux flow
state, which manifests itself as six Bragg peaks in the
structure factor, arranged in a hexagonal pattern. The
vortex nearest-neighbor direction tends to lie parallel to
the direction of vortex motion; however, the moving vor-
tex system does not form a perfect crystal, as can be
seen by careful measurement of the transverse width of
the Bragg peaks.

In this paper is presented a detailed experimental and
theoretical investigation of vortex motion in type-II su-
perconductors using muon spin rotation (uSR). In a pre-
vious study [17], vortex motion was induced by the ap-
plication of a pulsed, unidirectional driving force and it
was found that the moving vortex system exhibited a
significant amount of disorder. In the present work, we
have studied the effects of an alternating driving force,
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and we find that this tends to cause a greater degree
of dynamic ordering of the vortex lines. The ordering
shows a dependence on the frequency and amplitude of
the alternating force, which suggests that a significant
part of the disordering observed in our previous unidi-
rectional study resulted from vortex lines crossing the
sample boundaries, and the disorder is therefore not an
intrinsic property of the moving vortex system. It is also
possible that the earlier results partly reflect the very
high frequencies represented by the pulsed driving force.

The experimental method and results are presented
in section II, followed by a detailed discussion in sec-
tion ITI. The conclusions from this work are presented in
section IV.

II. EXPERIMENTAL
A. Experimental method

The SR experiments were carried out using the Gen-
eral Purpose Surface muon facility (GPS) at the Paul
Scherrer Institut (PSI), Switzerland. The GPS spectrom-
eter has available a muon spin rotator which allows the
muon spin polarization to be rotated to about 60° from
the momentum direction [18]. The muons are implanted
individually in a sample placed in a magnetic field par-
allel to their incoming momentum. The perpendicular
component of the spin of each muon precesses about the
field axis (which will be referred to as the z-direction).
The frequency of precession is given by 7, B, where B, is
the local value of the magnetic field at the muon implan-
tation site, and v, is the gyromagnetic ratio of the muon
(yu/2m ~ 135.54 MHz T~'). When a muon decays (with
a lifetime 7, of 2.197 ps) the decay positron is emitted
preferentially along the muon spin direction. Scintilla-
tors around the sample detect the positrons; the counts
from typically 107 muons are recorded in histograms as
a function of time after muon implantation. From such
data, the time-evolution of the average muon polariza-
tion can be deduced, and hence the distribution of local
values of magnetic field.

In our experiments, the complex muon polarization
P*(t) = P, +iP, was obtained by utilizing a set of
positron detectors around the sample in the region of
the zy plane, with the magnetic field applied in the z
direction. The magnetic field probability density func-
tion p(B), which gives rise to the precession signal in the
zy plane, was obtained from the ©SR data by employing
a maximum-entropy—based inversion algorithm [19-22].
p(B) is related to P (t) according to the equations [17].

p(B) = Re{#ﬂ(o) 7P+(t) e_i"“‘Btdt}, (3)
0
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The brackets (- - - ), denote an average over all muon im-
plantation sites with position vector r, and v is the ve-
locity of the vortex lattice.

The sample used in the measurements was a platelet-
shaped, polycrystalline Pb-In alloy, measuring 15 x 15 x
0.5mm?® and prepared in the same way as in our previous
study [17]. It was placed with its flat surface perpendicu-
lar to the applied magnetic field and the incoming muon
beam (z-direction). The current leads consisted of cop-
per strips coated with Pb-Sn solder. At the temperatures
and magnetic fields used in our experiments, the solder
was superconducting and the leads had a critical current
much larger than that of the sample. The current leads
were soldered along two opposite edges of the sample,
providing a transport current in the horizontal (y) direc-
tion (that is, perpendicular to the incoming muons and
applied field). This geometry gives rise to vortex mo-
tion in the vertical (x) direction. A mylar shield, coated
with ~ 1 mm thick layer of antiferromagnetic FeoO3 was
placed symmetrically in front of the sample, exposing the
central area (10 x 10 mm?) to the incoming muons. The
strong atomic magnetic fields in Fe;O3 ensure that any
muons stopping outside the central region of the speci-
men do not contribute to the precession signal.

The superconducting specimen was placed inside a
continuous flow cryostat, which provided efficient helium
gas flow cooling of both the sample and the supercon-
ducting transport current leads connected to it. The
sample was cooled in an applied magnetic field to estab-
lish the equilibrium density of vortex lines in the speci-
men before each series of measurements.

Initially, a unidirectional pulsed transport current was
applied to the sample. As illustrated schematically in
Fig. 1, two routing signals (labeled “Data A” and “Data
B”) were also created. They were used to gate the data
acquisition electronics so that measurements could be
taken both with and without a current flowing through
the sample and stored in separate histograms. The cur-
rent pulse sequence had 1:1 mark-space ratio, with data
acquisition gated to the central 90% of each half-period.

Current

-
i i

FIG. 1: The current pulse sequence applied to the sample
relative to the data acquisition routing signals.




This gating allows any transients in the current pulse
to die away, and for vortex motion to reach steady state,
well before data-taking begins and also ensures that data-
taking ends well before the current changes again. The
current was provided by a superconducting magnet DC
power supply, the output of which was passed either
through the sample, or through a dummy load, using
a simple FET switching circuit, which in turn was driven
by a programmable function generator. The current was
switched typically at 10’s of Hz, so that if heating by
the current were important, the sample would remain
warm during the current-off period. Data taken during
the current-off period were used to confirm that the ob-
served effects on the uSR lineshape were due to vortex
motion and not due to heating.

A different FET switching circuit was subsequently
used to supply a square-wave alternating current to the
sample. The “Data A” (B) signals of Fig. 1 gated the ac-
quisition electronics to collect data during positive (neg-
ative) current flowing through the superconductor.

B. Experimental results

In Fig. 2 are shown the pSR spectra obtained at a
temperature of 2K and an applied field pgH, = 0.14T,
for a range of unidirectional pulsed transport currents.
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FIG. 2: uSR lineshapes obtained at 2K and poH, = 0.14T,
for a range of unidirectional transport currents applied at
10 Hz. For clarity, each curve is shifted vertically by 50 units
relative to the previous one.

It can be seen that p(B) is strongly modified from the
characteristic form for a static triangular vortex lattice.
As the current is increased, a peak develops at approx-
imately 0.139T, which corresponds to the average mag-
netic induction in the sample; for very large currents,
p(B) is said to be motionally narrowed, similar to the
results in [17].

The effect of current flow on p(B) cannot be due to
heating of the sample, since the p(B) obtained between
the current pulses, shown in Fig. 3, is almost identical to
that shown in Fig. 2 for a very small (below critical) ap-
plied current. The dramatic difference between ‘current
on’ and ‘current off’ results in Fig. 3 must therefore be
due to vortex motion.

120 T T
—— Data A
1001 M —©- DataB ||

0.138 0.14 0.142
B/T

FIG. 3: The 12 A lineshape shown in Fig. 2 (labelled Data
A) plotted along with the lineshape corresponding to data
collected between the current pulses (Data B).

The pSR spectra obtained when an alternating square-
wave current was applied to the sample are shown in
Fig. 4. These were obtained at 4.2 K, with puoH, =0.1T
and with current applied at a frequency of 25.9Hz. (The
data for both current flow directions were identical within
experimental error, so they were analyzed together to
give these results.) For low driving current amplitude,
these lineshapes are significantly different from those in
Fig. 2: full motional narrowing is not observed for cur-
rents up to 15 A. Instead, the lineshapes exhibit a charac-
teristic double-peak structure, similar to that predicted
theoretically in [17] for the case of ordered vortex motion
along a principal vortex lattice direction.

An important feature of the spectra in Fig. 4 is the
existence of small sidebands on either side of the main
p(B) distribution (see also Fig. 5). These sidebands also
exist in the lineshapes of Fig. 2 but they are broader
and less pronounced. In order to make the sidebands
more visible, the lineshapes of Fig. 4 are also plotted
individually with the vertical scale increased, in Fig. 5.

It should finally be noted that all these measurements
were taken at much higher fields than those presented
in [17]. This is mainly due to the finite time-width of
the muon pulses used in [17]; this reduces the amplitude
of the precession signal at high frequencies, and hence
limits the field value that can be used to observe muon
spin rotation. In the present work, the higher applied
magnetic field has the advantage that the flux flow state
can be attained at relatively low transport currents.
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FIG. 4: upSR lineshapes for a range of alternating transport
current amplitudes, obtained for poH, = 0.1 T at 4.2 K. The
frequency of the current pulses was 25.9 Hz.

IITI. DISCUSSION
A. Unidirectional driving force

The lineshapes obtained for unidirectional pulsed cur-
rent (see Fig. 2) are consistent with those obtained by
[17]. However, the present results refer to a much higher
applied field and simpler sample/field geometry. (That
is, the sample was placed at right angles to the applied
field as opposed to the 45° geometry, which was neces-
sarily employed in [17].)

It is clear that when the vortex lattice moves, the time-
averaged magnetic field at any point is more spatially
uniform than that for a static vortex lattice. Hence mo-
tional narrowing of the field distribution p(B) is to be ex-
pected at large driving currents. However, the numerical
calculations presented in [17] demonstrate that aligned
motion of the vortex lattice does not cause complete mo-
tional narrowing; however, when the vortex lattice moves
with a range of orientations, the field at the muons mo-
tionally averages to a single peak at large velocities. The
field distributions plotted in Fig. 2 are in good agree-
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FIG. 5: The puSR lineshapes of fig. 4, with the vertical scale
altered in order to make small sidebands more visible.

ment with the non-ordered simulations in [17], implying
that there is a significant amount of disorder in the ori-
entation of the moving vortex system. It is important
to note that the moving vortex system is not completely
disordered. As shown in [17], the vortex system exhibits
some degree of orientational order and moves, on average,
along a principal vortex lattice direction. This was con-
firmed by small-angle neutron scattering (SANS) mea-
surements, where the structure factor S(q) was found to
be anisotropic, consisting of six Bragg peaks arranged in
a hexagonal pattern. The transverse width of these peaks
was much larger than the radial width, implying a range
of vortex lattice orientations.

B. Spectral Shapes

A detailed analytical discussion of the expected line-
shapes is given in the Appendix. The first case consid-
ered is when the vortex velocity is not parallel to a Bragg
plane of the vortex lattice. For this case, we demon-
strate explicitly a complete motional narrowing of the
lineshape at large vortex velocities. Conversely, if the
vortex lattice moves in a direction exactly parallel to a
Bragg plane, then at large vortex velocities a characteris-
tic two-peaked lineshape is seen, with a shape described
by Eq. (14) which is plotted in Fig. 6. As discussed in
[17], this lineshape arises because the time averaged field
due to a rapidly moving orientationally-ordered vortex
lattice varies only in the direction perpendicular to the
vortex velocity. The field variation in this direction is
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FIG. 6: Magnetic field probability distribution corresponding
to vortex motion along a Bragg plane, for |v| — oco.

approximately sinusoidal, with a maximum value along
the lines traversed by the vortices and a minimum value
between these lines. The two peaks in p(B) at large
velocities are at the values of the maximum and mini-
mum time-averaged fields. At finite vortex lattice veloc-
ities, our analytical calculations predict the appearance
of small ‘sideband’ peaks, which are separated from the
main peaks by multiples of the vortex lattice ‘washboard
frequency’ vyp, which is the frequency at which vortex
lattice unit cells move past an implanted muon. Such
sidebands are visible in the experimental data shown in
Figs. 2, 4 and 5 and the numerical simulations in [17].
The existence of such features may be understood as aris-
ing from a modulation of the muon precession frequency
as the field maxima and minima of the vortex lattice
sweep past the implanted muon. As is well known in
telecommunications theory, such frequency modulation
gives rise to sidebands spaced from the carrier frequency
by multiples of the modulation frequency. The strength
of the sidebands increases with the amplitude of modu-
lation, which will be largest for those muons implanted
near the lines where the vortex centers pass. These re-
gions give rise to the higher-field peak of the pair seen
at large velocities. Thus the stronger sidebands will be
satellites of the higher-field peak.

These sidebands are of interest because they are a di-
rect consequence and measure of the local vortex lattice
velocity. Let Byp be the distance of the first sideband
peak from the rightmost satellite peak of the p(B) spec-
trum. The vortex lattice velocity v is related to the wash-
board frequency by

v
= Vwb = ﬁBva (5)

v

ao
where ayg is the equilibrium vortex line spacing. However,
from Eq. (2), the flux flow velocity v can also be expressed
in terms of the value of the voltage, Vi, across the sample
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FIG. 7: Flux flow - current characteristics, obtained from uSR
and transport measurements for poH, = 0.1 T and temper-
ature of 4.2 K. These both extrapolate to a zero flux flow
velocity at a critical current ~ 6A.

due to flux flow:

Vet
v ©)

where ¢ is the separation of the voltage contacts (equal
to 15mm in these measurements) and B is the average
magnetic induction. This allows a direct comparison of
microscopic and macroscopic measurements of this veloc-
ity.

Byp was estimated from the lineshapes of Fig. 5 and
converted to a flux flow velocity according to Eq. (5).
This pSR-determined flux flow velocity is plotted in
Fig. 7 along with that determined using a conventional
voltmeter connected across the sample. (The voltage
measurements were carried out at a factor ~ 100 lower
frequency to allow for the DC voltmeter settling time).

Fig. 7 indicates that there is reasonable agreement
between transport current - voltage measurements and
1SR, bearing in mind that, for a given applied current,
there exists a range of values of v as well as a range
of vortex lattice orientations. Both of these departures
from ideal behavior will broaden the sidebands and make
the calculation of v/aq difficult and relatively inaccurate.
Nevertheless, the agreement between transport and uSR
measurements further confirms the validity of the model
used to account for our results.

Analogous measurements were carried out on slid-
ing charge-density waves (CDWs) by Jdnossy et al [23].
They induced a drift velocity of the CDW in Rbg 3MoOs3
by passing a current, and measured the voltage and volt-
age noise and NMR spectrum as a function of the CDW
current. Weak sidebands were observed in the NMR
spectra, indicating a periodic temporal modulation of
the local field at a nucleus, due to the moving CDW.
The position of these sidebands was consistent with that
expected from other expressions for the CDW drift ve-
locity.
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C. Alternating driving force

If a square wave alternating transport current I of fre-
quency f is applied to the sample, the vortex lines will
experience an alternating force, causing them to move
forwards and backwards at a frequency f, provided that
the amplitude of the current exceeds the critical current,
I.. Assuming, for simplicity, that the mark-space ratio
of the current pulses is 1:1, then it is easy to see that
the vortex lines located more than a distance d from the
edges of the sample, where

d= ﬁ’ (7)

will not cross the sample boundaries during a current
cycle. Since the FeyOgs-coated mylar window symmetri-
cally covers a ‘strip’ of width 2.5 mm around the sam-
ple, then if v/(2f) < 2.5mm the vortex lines ‘visible’
to the implanted muons will not have passed through
the sample boundaries. For f = 25.9Hz, B = 0.1T,
¢ = 15mm and d = 2.5mm, inequality (7) is satisfied
provided that Vg < 2 x 1074 V. This corresponds to a
transport current amplitude of approximately 15 A, as
can be calculated from Fig. 7. For higher applied current
amplitudes, a certain fraction of the vortex lines ‘visi-
ble’ to the implanted muons will have passed through
the sample edges. For instance, for a current of 17 A,
Vi = 2.5 x 10* V. Hence, vortex lines move, on average,
a distance of 3.2 mm during a current cycle, correspond-
ing to 0.7 mm inside the mylar window. The visible frac-
tion is thus 2x0.7x10/(10%) = 0.14. In other words, 14%
of the vortex lines within the mylar window have inter-
acted with the sample boundaries. For a current of 20 A,
this fraction is 32% and 46% for 22.5 A. These results
are consistent with the lineshapes of Fig. 4: when the
fraction of vortex lines interacting with the sample edges
(and visible to the implanted muons) is small (less than
about 15%), the p(B) has a characteristic double-peak
structure, which corresponds to well-ordered vortex mo-
tion along a principal vortex lattice direction [17]. When
a larger fraction of vortex lines within the mylar window
interact with the sample boundaries, motional narrowing
is clearly observed.

Our observations are consistent with those of Xiao et
al [13]: by carrying out careful current-voltage (IV) mea-
surements on 2H-NbSe, crystals, they found that the
non-linear features in the measured IV characteristics
are due to edge currents which in turn depend on vor-
tices crossing the sample boundaries through a current-
dependent surface barrier. On the other hand, the bulk
IV characteristics were found to be linear, corresponding
to vortex motion in the bulk of the sample.

We now make a more detailed comparison between a
particular example of our results and a simulation of the
same situation. To discuss the latter, Charalambous et
al. [17] introduced a dimensionless measure of vortex ve-
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FIG. 8: The top p(B) plot was calculated using the method
developed by [17] for B=0.1T, R = 0.54 and 4, = 0. The
experimentally-determined p(B) (bottom) is identical to that
shown in fig. 4 for 15 A.

locity, R, given by
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where AB = max{B} — min{B} is the width of p(B)
corresponding to a stationary vortex system (a simi-
lar dimensionless quantity was also introduced by Del-
rieu [24]). For an applied current of 15A, Vi = 0.17mV
which corresponds to a vortex velocity of v = 0.11ms™!.
From the 0 A lineshape of Fig. 4, AB ~ 0.01 T. The equi-
librium vortex line spacing corresponding to B = 0.1 T
is ag = 1.5 x 10”7 m. Hence, R ~ 0.54.

Using this value of R, and representing the static vor-
tex lattice by a solution to the Ginzburg-Landau equa-
tions with a GL parameter of 5.2 (see [17] for more de-
tails), a theoretical p(B) was calculated. This is shown in
Fig. 8(top) along with the corresponding experimentally-
determined p(B) (bottom graph). It is important to
note that the calculated spectrum was obtained by as-
suming that the vortex lattice has the spatial variation
of field given by a solution to the GL equations, and
that it moves with a single orientation along a vortex
lattice principal direction. Clearly, the lineshapes shown
in Fig. 8 are in very good agreement. There are, however,
slight discrepancies which could be attributed to pinning
(disorder tends to smear the van Hove singularities: see
[25]), the existence of a small range of orientations of
the flowing vortex lattice and possibly a range of vortex
velocities.

IV. CONCLUSIONS

Our experimental results and calculations suggest that
the interaction of vortex lines with the sample bound-
aries is the main factor determining the amount of disor-
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der present in the moving vortex phase: for vortex lines
which are not allowed to interact with the sample edges,
the uSR spectrum exhibits a characteristic double-peak
structure, indicative of highly-ordered motion along a
principal vortex lattice vector. The speed of this mo-
tion is directly indicated by the position of ‘washboard
frequency’ sidebands in the spectrum. When vortices do
cross the sample edges, motional narrowing of the uSR
lineshape is observed, which is characteristic of motion
in which the vortex lattice is misaligned and probably
disordered.
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V. APPENDIX: ANALYTICAL DISCUSSION OF
LINESHAPES

An analytical expression for the muon precession fre-
quency distribution due to a moving vortex lattice may
be obtained as follows. We express the magnetic field
distribution in the sample as the Fourier series [24]

= Z Bgel?Tm, 9)

qeA
J

where A denotes the set of reciprocal lattice vectors g of
the vortex lattice, and Bgq is the corresponding Fourier
coefficient of the magnetic field distribution. Substitu-
tion of Eq. (9) into Eq. (4) gives P*(t), which can be
used to calculate p(B) by employing Eq. (3). We dis-
tinguish between two cases; firstly, when vortex motion
does not occur along a Bragg plane, i.e. when q-v # 0
for all g € A, it can be shown that

m-(SIE2)).

{nq} g€ A*

where {nq} is a set of integers defined by

-— Z ngq - 'v} (11)

{nq}z{nq:B:
Vu geA*

and A*={qg:q € Aq- U#Oq;éO} The function
Jp(z) denotes a Bessel function of the first kind of order
p and argument z.

Delrieu [24] obtained a similar expression for the ex-
pected NMR lineshape when the vortex velocity v sat-
isfies ¢ - v # 0 for all ¢ € A. However, his calculation
relates to the square of the magnitude of the NMR line-
shape, even though the final result is similar to the one
given above.

Alternatively, when vortex motion takes place along a
Bragg plane, then there exists a reciprocal lattice vector
q' € A such that ¢’ - v = 0. In fact there are infinitely
many such vectors of the form nqg’ (for integer n) which
are orthogonal to v but we will only consider a first or-
der (n = 1) reciprocal lattice vector for simplicity. In
the limit 7 — T, and (B) 2 0.5B.2 this approximation
is very good since By > Bpg. (This approximation
becomes less good as T' — 0; in this case, the Fourier
coefficients of the magnetic field decay much more slowly
with ¢.) Assuming a single reciprocal lattice vector q’
satisfying q’ - v = 0, it can be shown that

p(B) = Z{ II [Jmk(%?k)]} Z{ II [Jn"<q v)LﬂBq | \/ﬁ} (12)

{mg} “keA*

where

ST

K geAx

and my, are integers defined exactly as in Eq. (11). In
the limit |v| — oo, p(B) from Eq. (10) tends to a delta
function centered on the average field, (B). In the same
limit for Eq. (12), only terms with ng = 0 and my = 0

{nq} ~qEA*

contribute and p(B) tends to the function
1 1
| By 1 (B—(B>)2

By

p(B) = (14)

Eq. (14) gives a characteristic double-peak lineshape, as
shown in Fig. 6.

In the more general case of finite velocity described by
Eq. (12), the lineshape p(B) consists of a rather compli-
cated combination of lineshapes of similar mathematical
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form to that of Eq. (14). This combination of lineshapes
gives rise to the spectral sidebands, which look similar
to the main p(B) distribution but their shape appears
to be more strongly affected by the high-field end of the
main spectrum. This is due to the fact that the magnetic
field varies more strongly around the vortex core. The
position of the sidebands relative to the average field de-

pends, in general, on the velocity of the vortex lines as
well as on the direction of vortex motion relative to the
vortex lattice unit cell. However, the first side-band will
appear, to a good approximation, at a magnetic field
spacing from a main peak corresponding to the vortex
lattice ‘washboard frequency’.
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