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Abstract

One of the phenomena associated with quantum integrable systems is the possibility of
persistent currents, i.e. currents which do not decay away entirely, but have some portion
that continues to flow undiminished and indefinitely. These residual currents are shown
to be the conserved part of the current operator, and calculable from the conservation
laws of the system.

In a particular system, previous attempts to calculate a known residual current from
the conservation laws have failed. A numerical investigation is undertaken, and this
disparity with the formal results is resolved by the inclusion of a previously overlooked
conservation law. An important corollary to these results is that requiring the mutual
commutativity of the conservation laws of a quantum integrable system, previously as-
sumed by analogy with the classical case, is an unnecessary and potentially disastrous
restriction.

Methods of generating the local conservation laws of a quantum integrable system are
investigated, and the current method of using a Boost operator is shown to be subtly
flawed. The method is discovered to implicitly require additional knowledge in the form
of Hamiltonian identities in order to avoid otherwise unphysical terms.

A new method is proposed based on the idea that the logarithm of the Transfer matrix
of a system generates these local conservation laws. The method is applicable to a wide
class of systems whose Lax operator obeys a certain condition, and the majority of the
work required to generate the local conservation laws is entirely general and thus only
needs to be done once.

This new method is then applied to two quite different spin-chain Hamiltonians, the
XXZ and Hubbard models, and shown to successfully generate all of the known local
conservation laws of these models and some new ones.
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Chapter 1

Introduction

Generally when a current is started in a system it is expected to decay away with time and

eventually vanish. There is a class of systems however, described as being as integrable,

where this is not necessarily the case. In systems such as these it has been shown [1] that

some portion of the current may continue flowing indefinitely, even at finite temperatures.

It has been shown formally that this long-time residual should be calculable from, and

indeed interpreted as one of, the conservation laws of the system [2]. For one particular

system however, a certain current has a known, non-vanishing residual [3], but it can

be shown by symmetry arguments that none of the conservation laws can contribute

anything towards this residual [1].

Spurred on by a desire to resolve the above inconsistency, this thesis starts as an

investigation into the concept of quantum integrability as it relates to the conservation

laws of a system; calculating residual currents from conservation laws (using the ideas of

Suzuki [2]); and Mazur’s inequality [4], which is a crucial part of Suzuki’s arguments.

Following the resolution of this conundrum, the focus of the thesis shifts entirely to

the conservation laws of a quantum integrable system. Specifically, the idea of generating

the local conservation laws, used previously to calculate the residual current via Mazur’s

inequality, is investigated. The current method of generating these conservation laws

using a Boost operator [5] is found wanting, and a new method is developed and tested
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1.1. Classical Integrability

on some well known integrable systems.

Firstly however, the introduction will consist of a brief tour of the ideas and methods

of solving integrable systems.

Investigations into quantum integrable systems have only really taken off in the last

thirty or so years. The ideas of the famous Bethe Ansatz and the classical Inverse Scatter-

ing method were combined and adapted to create the Quantum Inverse Scattering method

and the Algebraic Bethe Ansatz. When introducing and explaining these methods, it is

necessary to decide where should one start and what level of detail is appropriate. Given

that none of these methods are actually used, this chapter gives only a brief account of

them to provide some context, pausing where necessary to give extra details on the major

ideas which serve as the starting point for the work that follows.

1.1 Classical Integrability

The first and most widely used definition of integrability for a classical system was pro-

vided by Liouville in the nineteenth century, as one where the equations of motion are

“solvable by quadrature” [6]. It is pretty much standard now that when a system is de-

scribed as integrable, what is actually meant is Liouville-integrable, as defined fully below,

and henceforth the same meaning will be implied here.

A system with a 2n-dimensional phase space is integrable in the Liouville sense if

it has n independent integrals of motion (implying a conserved quantity, or constant of

motion) all in involution. A constant of motion is a quantity whose Poisson bracket with

the Hamiltonian vanishes, and to be in involution means that the Poisson brackets of the

other n − 11 constants with each other also vanish. More formally, there are a set of n

quantities {Cα(qi, pi)} such that

Ċα =
{

H,Cα

}

= 0 and
{

Cα, Cβ

}

= 0, (1.1.1)

1Since the Hamiltonian automatically qualifies as a constant of motion.

2



1.1. Classical Integrability

in terms of the standard Poisson bracket

{

F,G
}

=
∑

i

∂F

∂pi

∂G

∂qi
− ∂F

∂qi

∂G

∂pi

. (1.1.2)

Note that it is not necessary to know the form of these constants, integrability requires

only that they exist. Furthermore, the problem need not be fully separable, but it should

be possible to reduce the equation down to quadratures (i.e. integrals).

Each of these constants of motion reduces the dimension of phase space, down to an

n-dimensional subspace in the integrable case. Assuming periodic motion, this subspace

has the topology of an n-torus2, with the possible trajectories cycling around the handles.

If one were to perform a canonical transformation from the original physical variables

of the system, pi and qi, to a new set, Ii and ψi, such that the Hamiltonian becomes

independent of the canonical coordinates (i.e. H = H(ψi), a function of the conjugate

momenta only), then the momenta Ii are constants of motion. These new variables Ii and

ψi are known as the action-angle variables, and it should be clear that the momenta Ii

will be linear combinations of the conserved quantities {Cα} above. The constant action

variables can be found in terms of the original variables pi and qi (or indeed any canonical

set of variables) as

Ik =

∮

k

∑

i

pi dqi, (1.1.3)

where the integral is over a single period of the motion [7]3. In terms of these variables,

the time evolution becomes very simple: the coordinate variable ψi just increases linearly

with time, i.e. ψi(t) = ψi(0) + αit, for some constant αi = ψ̇i. Having a time evolution

of this form, which does not exhibit chaotic features [8], can be used as an alternate (but

equivalent) definition of integrability.

Although integrability can be demonstrated by showing the existence of these n con-

2This is due to the wonderfully named “hairy ball” theorem [7].
3or equivalently, around the handle of the torus.
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1.1. Classical Integrability

stants of motion, there still remains the (generally highly non-trivial) task of determining

the explicit forms of these action-angle variables (or equivalently solving the original

equations of motion).

1.1.1 The Inverse Scattering Method

A general method for solving linear partial differential equations (PDEs) given the initial

condition is to use Fourier transforms. This is a three stage process of transforming the

initial condition into Fourier space; finding the time evolution and then using the inverse

transform to return to the (real) space of the original equations. For example, using the

standard inverse and Fourier transform

u(x, t) =
1√
2π

∫ ∞

−∞
û(k, t)eikxdk, and û(k, t) =

1√
2π

∫ ∞

−∞
u(x, t)e−ikxdx, (1.1.4)

the linear PDE ∂tu = −c ∂xu with the initial condition u(x, 0) becomes (in Fourier

space) the linear ordinary differential equation (ODE)

dû

dt
= −ikcû. (1.1.5)

This of course has the general solution

û(k, t) = û(k, 0) exp (−ikct) , where û(k, 0) =
1√
2π

∫ ∞

−∞
u(x, 0)e−ikxdx, (1.1.6)

and putting this back into the inverse transform gives

u(x, t) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
u(x, 0)e−ikxdx exp (ik[x− ct]) dk. (1.1.7)

Unfortunately, there are many physical problems which are modelled by nonlinear

PDEs, and the Fourier transform method is no longer of any use. In 1967 however,

Gardner, Greene, Kruskal and Miura [9] developed a method of solving one particular

4



1.1. Classical Integrability

nonlinear PDE, the well known Korteweg-de Vries equation

∂tu+ 6u∂xu+ ∂3
xu = 0, (1.1.8)

by relating it to the time-independent Schrödinger scattering problem

Lv = ∂2
xv + u(x, t)v = λv. (1.1.9)

The idea is that the field u(x, t) of equation (1.1.8) plays the role of the potential in

equation (1.1.9), and t is just treated as a parameter. Usually, the scattering data S(λ, t),

which depends on the potential u(x, t), can be determined from the eigenvalues and eigen-

functions of equation (1.1.9). This mapping of the potential into the scattering data is

known as the direct scattering problem. The inverse scattering problem therefore is to

obtain the potential given the scattering data.

This Inverse Scattering Method is essentially analogous to the above use of Fourier

transforms on linear PDEs [10]: a nonlinear PDE of u(x, t) is rewritten in the form of a

scattering problem, where u becomes the potential. The direct scattering problem is solved

(the scattering data being the equivalent to the Fourier transform in this analogy), and

then given S(λ, 0) (the scattering data at initial time, from u(x, 0)) the time evolution can

be determined to obtain S(λ, t). This is where the analogy ends as (unlike simply applying

the inverse Fourier transform) the final step, solving the inverse scattering problem by

reconstructing u(x, t) from S(λ, t), is extremely difficult.

The crucial idea of the Inverse Scattering method is that the nonlinear evolution

equations that it solves are integrable Hamiltonian systems4 [10] (the Hamiltonian form

of equation (1.1.8), for example, can be found in [11], among others). In this form, the

process of inverse scattering can be thought of as a canonical transform from the original

physical variables, qi, pi, to the action-angle variables of the system.

4with infinite dimension.
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1.1. Classical Integrability

1.1.2 The Lax Formalism

Shortly after the work of Gardner et al, Lax [12] produced a general method of associating

nonlinear evolution equations with a pair of linear operators in such a manner that the

eigenvalues of these linear operators are constants of motion of the nonlinear equation.

To do this, Lax formulated the problem in the following manner [10]: first define two

matrices L and M , which have some dependence (to be defined shortly) on the canonical

coordinates of the system (the qi and pi of the Hamiltonian form). The matrix M is

assumed to govern the time evolution of the eigenfunctions of the eigenvalue problem

involving L, like so

Lv = λv, (1.1.10a)

dv

dt
= Mv. (1.1.10b)

Differentiating equation (1.1.10a) with respect to time and then substituting in equation

(1.1.10b) gives 5

Ltv + Lvt = λt + λvt

Ltv + LMv = λt + λMv

= λt +MLv,

and requiring that the eigenvalues be independent of time, i.e. λt = 0, means that (for

nontrivial eigenfunctions v), L and M must satisfy

dL

dt
= [M,L] , (1.1.11)

the Lax evolution equation. To link these matrices to the desired system, the qi, pi depen-

dence of the matrices L and M must be such that the above equation for L̇ recreates the

equations of motion of said system (or alternatively, L and M are differential operators

5where the subscript t denotes differentiation with respect to time.
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1.1. Classical Integrability

such that equation (1.1.11) is the original nonlinear evolution equation).

A set of matrices which satisfy all the above conditions for a given system are known as

a Lax pair. Note that this pair is not unique; a new matrix L̃ = ULU−1, for an arbitrary

invertible U and appropriately chosen M , will also satisfy equation (1.1.11) and recreate

the same equations of motion6 [8]. Irrespective of which L is used, the eigenvalues will be

functions of the canonical variables qi, pi, and (by definition) are independent of time, and

are therefore equivalent to the constants of motion of the original system. This hugely

important result means that any system whose equations of motion can be written in this

Lax form is therefore necessarily an integrable system. The downside however, is that

there is no general way of showing if a system has a Lax representation, or if it is known

to be integrable, what the explicit form of L and M might be.

In addition to using the eigenvalues, there are two other methods which can be used

to generate alternate (but equivalent) sets of constants of motion from L [8]. The first

is to take the traces of increasing powers of L, the results of which can be shown to be

conserved as follows: from equation (1.1.11), it can be proved by induction that, for any

power k

dLk

dt
=

[

M,Lk
]

, (1.1.12)

and it is then simple to show that the trace of any power of L is a conserved quantity [13]

d

dt
tr
(

Lk
)

= tr

(

dLk

dt

)

= tr
([

M,Lk
])

= tr
(

MLk
)

− tr
(

LkM
)

= 0, (1.1.13)

since tr(XY ) = tr(Y X) for two arbitrary n x n matrices X and Y . This result is briefly

revisited in Chapter 6, where it is seen that the conserved quantities generated in this

6This is shown in detail for the case where U is a unitary transform in Chapter 6.
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1.2. Quantum Integrable Systems

fashion from the classical Lax matrix of the Toda lattice are also the local conservation

laws of the quantum system. The second method involves evaluating the following deter-

minant, which generates a polynomial in the eigenvalue λ, the coefficients of which are

another equivalent set of constants of motion

det [λ− L] = λN +
N
∑

n=1

λN−nJn. (1.1.14)

This determinant will also be seen again in Chapter 6, when it is used to link the classical

and quantum Toda lattices, and its logarithm is seen to provide the local conservation

laws of that system.

1.2 Quantum Integrable Systems

Unlike the classical case, the definition of a Quantum integrable system is much less clear

cut. When making the transition from a classical to a quantum system, the standard idea

is that Poisson brackets become commutators. The equivalent of the classical integral of

motion whose Poisson bracket with the Hamiltonian vanishes therefore, is the (quantum

mechanical) conserved quantity which commutes with the Hamiltonian, i.e.

{

H,Cα

}

= 0 →
[

Ĥ, Ĉα

]

= Ĥ Ĉα − Ĉα Ĥ = 0. (1.2.1)

Similarly the requirement that the Poisson bracket between two integrals of motion van-

ishes would become the restriction that any two of the conserved quantities Ĉα must

commute. The quantum analogue of Liouville’s definition of classical integrability would

therefore be a system with n mutually commuting conserved quantities (which includes

the Hamiltonian), where n is now the number of states of the system.

This is the most generally accepted description of quantum integrability, but it is by no

means ideal. The reduction of phase space by the constants of motion does not have any

equivalent in the above definition of quantum integrability. Furthermore, as is discussed

8



1.2. Quantum Integrable Systems

in detail in Chapter 2, any power of a conserved quantity (including the Hamiltonian) is

also a (distinct) conserved quantity, and so the entire required set of mutually commuting

operators could in theory be generated from a single conservation law, or indeed just from

the Hamiltonian. Obviously, just having the Hamiltonian and its powers is not enough, or

every system would be integrable! The solution to this, again described fully in Chapter

2, is to use the projection operator equivalent to a conserved quantity, since a projection

operator to any power just returns the same operator.

The idea of using projection operators, which are a restriction to a particular eigenvalue

subspace of the system in question, suggests an analogous idea to that of the reduced phase

space in classical integrable systems. Consider the matrix representing the Hamiltonian:

when attempting to diagonalise, the result is in general a series of blocks along the leading

diagonal, each representing a different eigenvalue subspace. Since a conservation law

commutes with the Hamiltonian, it is simultaneously diagonalisable and can potentially

be used to reduce the degeneracy in a given subspace. The analogue to reducing classical

phase space down to an N -torus is therefore to use conservation laws to fully diagonalise

the Hamiltonian. Note that unlike the classical case this does not necessarily require all

of the conservation laws of the system, nor does it mean the conservation laws themselves

will be fully diagonalised: it all depends on the degeneracies of the system.

1.2.1 The Bethe Ansatz

In 1931, Hans Bethe [14] submitted a paper in which he determined the energy eigenstates

of the one-dimensional Heisenberg model. It outlines a method (nowadays referred to as

the “Coordinate Bethe Ansatz”, to avoid confusion with the variants developed later), for

constructing the many-particle wavefunction which diagonalises the Hamiltonian [15].

The German word “ansatz” roughly translates as “beginning”, which is appropriate

as the method used by Bethe marks the starting point for the solutions to quantum

integrable systems. In the mathematical sense that it is used here however, it describes

the proposal of (the form of) a solution, which is then proved to be correct. In this case,

9



1.2. Quantum Integrable Systems

Bethe posited that the wavefunctions of the model were superpositions of plane waves

[16], as is described below, and then used linear combinations of these wavefunctions as

the eigenstates of the system. Using these states in the eigenvalue equation Ĥ|ψ〉 = E|ψ〉

provides a series of equations (the “Bethe Ansatz equations”), each solution of which

represents an eigenvector of the Hamiltonian (with the originally chosen form) and it’s

associated eigen-energy [17].

The one-dimensional Heisenberg magnet Bethe considered consists of an array of quan-

tum mechanical spin- 1
2

particles at fixed, equidistant points on a chain (1D lattice) [16].

The Hamiltonian for this model can be written as [18]

Ĥ =
J

2

N
∑

j=1

(σ̂j · σ̂j+1 + 1)

= J

N
∑

j=1

(

σ̂+
j σ̂

−
j+1 + σ̂−

j σ̂
+
j+1 +

1

2
σ̂z

j σ̂
z
j+1 +

1

2

)

, (1.2.2)

where σj = (σ̂x
j , σ̂

y
j , σ̂

z
j ) are the Pauli pin matrices at site j, and σ̂±

j = σ̂x
j ± iσ̂y

j , with

the periodic boundary condition j + N = j. The constant J can be used to control the

style of magnetism: when J is negative (positive) the model is (anti)ferromagnetic, i.e.

(anti)parallel spins are energetically preferred [16].

The above Hamiltonian remains unchanged under a rotation about the z-axis, which

implies that the total spin Ŝz
Total = 1

2

N
∑

n=1

σ̂z
n is conserved [17]. This suggest the grouping

of basis states by their (increasing) z-component of spin, which will block diagonalise the

Hamiltonian matrix. The first block will then consist solely of the state with all spins

pointing up, the ground state of the ferromagnetic model consider by Bethe [17].

The remaining blocks consist of CN
r states, r being the number of down spins which

defines the group of states in that block. Each block can then be fully diagonalised by

writing the eigenstates as a linear combination of its basis states

|ψr〉 =
∑

a(x1, · · · , xr)|x1, · · · , xr〉, (1.2.3)

10



1.2. Quantum Integrable Systems

where |x1, · · · , xr〉 is the state where the r spins x1 > · · · > xr are pointing down, and

the sum is over all CN
r states in the block. Bethe’s ansatz was to assume the coefficients

in the above linear combination took the form

a(x1, · · · , xr) =
∑

P

AP exp

(

r
∑

j=1

ikPj
xj

)

, (1.2.4)

where the P being summed over are the r! permutations of the labels {1, 2, · · · , r} [16, 17,

18]. Substituting these hypothesised eigenvectors into the eigenvalue equation Ĥ|ψr〉 =

E|ψr〉, Bethe was able to calculate the final part of the above coefficients, AP , in terms

of a two-body interaction

AP = ǫP
∏

1≤i<j≤n

sPiPj
, where sij = 1 − 2 exp (ikj) + exp (iki + ikj) , (1.2.5)

and ǫP is the signature of the permutation. The wavenumbers kj must also satisfy the r

conditions

exp (ikjN) = (−1)r−1
∏

i6=j

sji

sij

, for j = 1, · · · , r, (1.2.6)

which are known as the Bethe Ansatz equations. The final task is then to solve these

equations for the wavenumbers kj , which (from the eigenvalue equation) give the energy

eigenvalues in the form

Er = JN + J
r
∑

j=1

(2 cos kj − 2) . (1.2.7)

with the associated eigenstates (1.2.3), whose coefficients come from substituting the kj

back into (1.2.4). There are N + 1 classes of eigenvalues Er (including the ground state)

with CN
r (r = 0, · · · , N) associated eigenvalues, which gives a total of 2N eigenstates7.

Since 2N is the total number of eigenstates of the N -site Heisenberg chain, this represents

7As, from the binomial expansion,
N
∑

r=0
CN

r =
N
∑

r=0

N !
(N−r)!r! = (1 + 1)N .
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1.2. Quantum Integrable Systems

the complete eigenspectrum of the problem [16].

1.2.2 Quantum Inverse Scattering

To completely solve any given quantum-mechanical problem, two things are needed.

Firstly, it is necessary to solve the eigenvalue problem Ĥ|ψ〉 = E|ψ〉 and obtain the

complete eigenspectrum of the Hamiltonian. The second requirement is the ability to cal-

culate the correlation functions of the various operators Ô, corresponding to the physical

observables of the problem, i.e. to be able to (numerically or analytically) compute the

thermal average

〈Ô〉 =
tr
(

Ôe−βĤ
)

tre−βĤ
. (1.2.8)

In the years following Bethe’s publication, his ansatz for the Heisenberg chain was

adapted and used to obtain the eigenspectrum of several (1+1)-dimensional8 models,

such as the one-dimensional Bose gas and the massive Thirring and Hubbard models

[19]. The method was not generally applicable however, and not much use for calculating

correlation functions due to the complicated form of the eigenvectors it produced [20].

After the introduction of the Classical Inverse Scattering Method however, investiga-

tions began into a quantum equivalent. At the same time, the Bethe Ansatz was also

being used on 2D classical statistical models such as the six-vertex, or ice model. The

discovery of a relationship between the 2D classical models and 1D quantum spin chains

[21, 22] was used in conjunction with the classical methods and the Bethe Ansatz, and

the ideas of Quantum Inverse Scattering theory were born [23].

While continuous models can also be considered [19], the following ideas were devel-

oped from quantum Heisenberg-like and classical vertex models, and are in a way tailor

made for discrete systems [15]. Since all systems considered later on will be lattice models,

the methods that follow will relate purely to models defined on a periodic chain of sites.

8i.e. one spatial dimension and time.
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1.2. Quantum Integrable Systems

The construction of the main tools of the quantum inverse problem begins with the

quantisation of the classical L matrix to obtain the quantum Lax operator L̂, whose

elements are naturally now quantum mechanical operators, which do not necessarily com-

mute. The classical L matrix comes from a more generalised (and discrete) version of

equation (1.1.10a) [10, 23]

Ψn+1 = Ln(λ)Ψn, (1.2.9)

where n is a site index signifying position on the lattice and λ is known as the spectral

parameter. Following suit, the equivalent Lax operator L̂ can therefore be thought of as

representing transport along the lattice, suggesting the introduction of an operator which

describes transport along the entire length of the lattice9 [24]

M̂(λ) =
(

L̃N (λ) · · · L̃2(λ)L̃1(λ)
)

=

x
∏

n

L̃n(λ). (1.2.10)

This is known as the Monodromy matrix, and from it one can construct the Transfer

matrix, which is defined as its trace

T̂ (λ) = tr M̂(λ). (1.2.11)

This matrix will later be seen to be the generator of the conservation laws of a system, and

in Chapter 3 its construction from the Lax operator will be central to the development of

a new method for calculating a set of these conservation laws.

These objects form the core of Quantum Inverse Scattering theory, alongside one

final operator and the identity it is required to satisfy: the R-matrix and the celebrated

Yang-Baxter equations, which are used to define the commutation relations of the above

operators.

9Or equivalently given the periodic boundary conditions, once around the chain.
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1.2. Quantum Integrable Systems

The Yang-Baxter Equation

The Transfer matrices just defined are of course the same as those used in calculating

the partition functions of the two-dimensional classical statistical models. These matrices

have been shown to generate, and commute with, the Hamiltonians of quantum one-

dimensional lattice systems [21, 22, 25].

Since it commutes with the Hamiltonian, T̂ must represent a conservation law of the

associated system. The Transfer matrix is, in fact, a generator of the conserved quantities

of the related Hamiltonian [26]. Furthermore it can be shown that Transfer matrices with

different values of λ commute, as will now be demonstrated.

The Fundamental Commutation Relations [24] below define the commutation relations

between the various (operator) elements of the Lax operator L̂n

R(λ, µ)
(

L̂n(λ) ⊗ L̂n(µ)
)

=
(

L̂n(µ) ⊗ L̂n(λ)
)

R(λ, µ), (1.2.12)

where R is some invertible complex matrix. If the Lax operators for different sites com-

mute, a similar relation can be constructed for the Monodromy matrix

R(λ, µ)
(

M̂(λ) ⊗ M̂(µ)
)

=
(

M̂(µ) ⊗ M̂(λ)
)

R(λ, µ). (1.2.13)

Alternatively, this can be written as

R12(λ, µ)M̂1(λ)M̂2(µ) = M̂2(µ)M̂1(λ)R12(λ, µ), (1.2.14)

where the subscripts denote the subspaces the operators act in, with

M̂1(λ) = M̂(λ) ⊗ ÎN , and M̂2(µ) = ÎN ⊗ M̂(µ), (1.2.15)

ÎN being the N x N identity matrix. Taking the trace of both sides of equation (1.2.13),

it is then easy to show that relations of the above form for the Lax operators and Mon-
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1.2. Quantum Integrable Systems

odromy matrix imply that any two Transfer matrices with different values of the spectral

parameter commute, i.e.

[

T̂ (λ), T̂ (λ′)
]

= 0. (1.2.16)

For this commutation to hold however, an appropriate R-matrix is required. It was shown

by Baxter [27] that, for equation (1.2.12) to be satisfied, the R-matrix must also satisfy

the relation

R̂12(µ)R̂13(λ)R̂23(λ, µ) = R̂23(λ, µ)R̂13(λ)R̂12(µ), (1.2.17)

the famous Yang-Baxter equation.

This equation is central to the inverse scattering problem, and indeed to integrable

systems as a whole. For any given Hamiltonian, an R-matrix which satisfies the Yang-

Baxter equation can be used to generate a Lax pair, and is sufficient proof of integrability

of the associated system [26]. It also leads to equation (1.2.16), which proves that the

Transfer matrix gives a mutually commuting set of conserved quantities. Moreover, any

of those conserved quantities could be considered a Hamiltonian, and so in fact one has

an entire family of quantum integrable systems.

The solution to the Quantum Inverse Scattering problem however, revolves around

the Transfer matrix. As well as using it to generate the commuting conserved quantities,

it is also needed to find the eigenvectors of the Hamiltonian (related to its own since

commuting matrices are simultaneously diagonalisable). These conserved quantities and

eigenvectors can be considered as the quantum analogues of the action and angle variables

respectively [23].

Algebraic Bethe Ansatz

Often used synonymously with the Quantum Inverse Scattering Method, the Algebraic

Bethe Anstaz is a generalisation of the original (coordinate) version, centered around the
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1.2. Quantum Integrable Systems

idea of creating the eigenfunctions of the Hamiltonian using creation and annihilation

operators on a pseudovacuum [19]. These operators stem from the matrix elements of

the Monodromy matrix, while the eigenfunctions of the Transfer matrix determine the

eigenfunctions of the Hamiltonian, since the two commute10.

These ideas will be briefly described by once again considering the one-dimensional

Heisenberg magnet. The Monodromy matrix for this system can be written as the 2 x 2

matrix [15, 19, 20, 23, 24, 28]

M̂(λ) =







Â(λ) B̂(λ)

Ĉ(λ) D̂(λ)






. (1.2.18)

The four elements of the above matrix are the operators that will be used to construct

the eigenfunctions of the Hamiltonian. The pseudovacuum (also known as the generating

vector) |0〉 in this case is the same as the reference state used for the Coordinate Bethe

Ansatz, i.e. the ferromagnetic state with all spins pointing up11. It is an important

requirement that |0〉 obeys the relations

Â(λ)|0〉 = a(λ)|0〉; (1.2.19a)

D̂(λ)|0〉 = d(λ)|0〉; (1.2.19b)

Ĉ(λ)|0〉 = 0. (1.2.19c)

Here Ĉ(λ) acts like an annihilation operator (B̂(λ) will later be used as a kind of creation

operator), while the pseudovacuum is an eigenvector of Â(λ) and D̂(λ) with “vacuum

eigenvalues” a(λ) and d(λ) respectively. With the Monodromy matrix in the above form,

the Transfer matrix becomes the sum of the two operators on the diagonal

T̂ (λ) = Â(λ) + D̂(λ), (1.2.20)

10Not just the Hamiltonian, of course, but all the mutually commuting conservation laws too.
11Although the state with all spins pointing down could also be used [19], in which case the operators

B̂(λ) and Ĉ(λ) swap roles.
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1.2. Quantum Integrable Systems

and so |0〉 is clearly also an eigenvector of T̂ (λ), and therefore also of the Hamiltonian.

The commutation relations for the four operator elements of M̂(λ) are of course given by

equation (1.2.13) where the R-matrix in this particular case takes the form

R̂(λ, µ) =



















r(λ, µ) 0 0 0

0 s(λ, µ) 1 0

0 1 s(λ, µ) 0

0 0 0 r(λ, µ)



















, (1.2.21)

where the diagonal elements are

r(λ, µ) = 1 +
ic

µ− λ
, and s(λ, µ) =

ic

µ− λ
. (1.2.22)

Without going into the full details (see e.g. [19, 23]), the sixteen sets of commutation

relations provided by the Yang-Baxter equation (1.2.13) are used to find the effect of the

operators Â(µ) and D̂(µ) on the state |ΨM〉 =
n
∏

i

B̂(λi)|0〉. Taking the resulting equations

and requiring that |ΨM〉 be an eigenvector of Â(λ) and D̂(λ), leads to the set of equations

a(λn)

d(λn)

M
∏

i6=n

r(λi, λn)

r(λn, λi)
= 1, n = 1, · · · ,M. (1.2.23)

If these equations are satisfied then the |ΨM〉 must be eigenvectors of the Transfer matrix

T̂ (λ), and so from the eigenvalue equation T̂ (µ)|ΨM〉 = E(µ, {λj})|ΨM〉, their correspond-

ing eigenvalues are

E(µ, {λj}) = a(µ)

M
∏

j=1

r(λj, µ) + d(µ)

M
∏

j=1

r(µ, λj). (1.2.24)

Finally, the vacuum eigenvalues of the one-dimensional Heisenberg model are

a(λn) =
(

λ− i
c

2

)M

, and d(λn) =
(

λ+ i
c

2

)M

, (1.2.25)
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and substituting these into equation (1.2.23) and using the reparameterisation

exp ikj =
2λj + ic

2λj − ic
, (1.2.26)

one finds that these equations are in fact the original Bethe Ansatz equations (1.2.6).

There are many subtleties, even in this simple example, which will not be covered

here12. The aim of this section was only to show roughly how the new formulation

of quantum inverse scattering was used, as it will not appear or be mentioned again.

Hopefully this whistle-stop tour of quantum integrability will provide a suitable context, as

we now consider the key ideas which form the starting point from which the investigations

of the following chapters began.

1.3 Local Conservation Laws and Correlation Func-

tions

Earlier it was shown how different values of the spectral parameter could be used in the

Transfer matrix to provide a set of conserved quantities. In practise however, actually

using this method to generate conservation laws is a subtle issue as there is not a one-

to-one correspondence between values of the spectral parameter and conservation laws.

Furthermore, the conserved quantities produced in this way are in the form of matrices

which commute with the Hamiltonian, and are generally analytically intractable. It would

be highly preferable therefore, to have a method of analytically generating the conserved

quantities of the system.

Fortunately such a method exists, although it has it’s own subtleties which will be

considered in detail in Chapter 3. It was shown by Tetelman [29] that the conservation

laws of a one-dimensional (integrable) spin system could be constructed iteratively by

12The actual eigenvectors of the Hamiltonian, for example, still need to be found. This is achieved by
using trace identities which can be found in [19], among others.
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using the relation

Ĉn+1 =
[

B̂, Ĉn

]

. (1.3.1)

The series starts with the Hamiltonian of the system, i.e. Ĉ0 = Ĥ, and then commutation

with the Boost operator13 B̂ generates the first conserved quantity, which is commuted

with the Boost operator to provide the second conserved quantity, and so on. These

conservation laws form a mutually commuting set, and a Boost operator for any integrable

system can be derived from the Yang-Baxter equation (1.2.17) [5, 30]. As an example, for

fundamental models (i.e. models whose R-matrix and Lax operator coincide [19]) such

as the Heisenberg chain, this Boost operator has the form

B̂ =
∑

n

n ĥn,n+1, where Ĥ =
∑

n

ĥn,n+1. (1.3.2)

An important feature of the conservation laws generated by the Boost operator is their

locality : an interaction involving some number of sites vanishes as the distance between

them increases [5]. In the case of the conservation laws produced above, Ĉm represents

an interaction which spans no more than m+ 2 sites.

It should also be noted that the above example uses a nearest-neighbour Hamiltonian,

i.e. one that operates only on two sites, which are next to each other on the lattice. This

property is necessary for the functioning of the Boost operator method [31], and for the

new method detailed in Chapter 3, and so henceforth only Hamiltonians of this type will

be considered.

Given their aforementioned role as generators of the conserved quantities of the associ-

ated Hamiltonian, one might hope to more directly link the Transfer matrix to these local

conservation laws. As well as using different values of the spectral parameter, one could

also expand out the Transfer matrix as a power series in the spectral parameter. The

coefficients of each power of lambda in this series form a family of mutually commuting

13Also known as a ladder operator.
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operators [20]. These are conservation laws of the system since the second (the coefficient

of the λ term) is related to the Hamiltonian via [32]

Ĥ = − T̂ (0)−1 d

dλ
T̂ (λ)

∣

∣

∣

∣

λ=0

. (1.3.3)

The Hamiltonian is a local conservation law, but the other coefficients are in general not.

Up to a sign, the left hand side of equation (1.3.3) corresponds to the first derivative of

the logarithm of the Transfer matrix (with λ then set to 0) [32]. It can then be shown

that the higher derivatives of this logarithm all commute, and so form a set of conserved

quantities [5, 32]. These quantities are the same local conservation laws described above,

formally generated via

ln
(

T̂ (λ)T̂ (0)−1
)

=

∞
∑

n=1

λn

n!
C̃n−1. (1.3.4)

It is not at all obvious why taking the logarithm should return local conservation laws,

but the locality of these Ĉm has been shown [33], and since Ĉ0 is again the Hamiltonian,

the coefficients of the above expansion form a mutually commuting set of conservation

laws.

This idea of taking the logarithm of the Transfer matrix forms the basis of the method

developed in Chapter 3. A new representation of the Lax operator will be used to al-

low for a straightforward evaluation of this logarithm which iteratively returns the local

conservation laws.

1.3.1 Persistent Currents

One of the more actively studied properties of integrable systems is the non-standard

decay of current operators: once started, a current will usually decay away with time

and eventually vanish, but in integrable systems this is not necessarily the case. In these

systems a current will decay some extent, but it is possible to have a non-trivial long-time

residual current, i.e. a portion of the current which will continue to flow undiminished

and indefinitely [3].
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The time average of a correlation function has been shown to be expressible in terms

of canonical averages involving the conserved quantities of the system [2]. As described

in Chapter 2, the long-time residual current is calculable in this manner, and there is

an implied suggestion that it should be thought of as the conserved part of the current

operator.

An important corollary to the work by Suzuki [2] is the rederivation of Mazur’s inequal-

ity [4], which can be used to obtain a lower bound for the time average of a correlation

function of hermitian operators

lim
t→∞

1

t

∫ t

0

〈

X̂(t)X̂(0)
〉

dt ≥

〈

X̂(0)Ĉa

〉〈

Ĉ†
aX̂(0)

〉

〈

Ĉ†
aĈa

〉 . (1.3.5)

The important point, as Mazur himself notes, is that this lower bound may be found

without solving the dynamics of the system. In the case of the long-time residual current,

the above inequality can be used as a test: if any one conservation law (Ĉa) returns a

non-trivial value, that is sufficient to prove the existence of a persistent current (although

obviously if it does return a vanishing contribution, this is not enough to show the residual

current does not exist).

In combining Suzuki’s idea with Mazur’s inequality one arrives at the following rela-

tionship between conservation laws and persistent currents: given all of the conservation

laws of an integrable system, the sum of the result of using each one in the above in-

equality should be equal to the long-time residual current. This should be obviously and

trivially true since this residual current can be shown to be one of these conservation laws,

and yet in the following example this result appears to fail.

A Residual Current in the XXZ Model

In the process of showing the relationship between correlation functions and the conserved

quantities of a system, it was assumed by Suzuki [2] that these conservation laws should

form a complete mutually commuting set. This obviously matches nicely with the ideas of
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quantum integrability made in analogy to the classical case earlier. However, this idea of

mutual commutativity of the conserved quantities has been the cause of some confusion:

the XXZ, or anisotropic Heisenberg, model has a known and non-vanishing long-time

residual current [3]. It can also be shown however, that all of the conservation laws must

contribute nothing when used in Mazur’s inequality [1].

This lack of agreement between the formal results and a particular example needs to

be resolved: is the restriction to a complete mutually commuting set of conservation laws

an unnecessary extra condition which causes some, and in this case the vital, conservation

laws to be missed? Has a mistake been made in the treatment of the XXZ model, whereby

the crucial conservation laws have somehow been missed out, or is there some other more

subtle effect at work?

1.4 Overview of Thesis

This thesis is an attempt to investigate the nature of conservation laws in quantum inte-

grable systems, and is split into two distinct projects.

In Chapter 2 the ideas of persistent currents and how they relate to conservation

laws are considered. This starts with a general (i.e. independent of model and current)

analysis of the conserved part of the current operator, showing that it must itself be a

conservation law, and how thinking of it as a sum of an arbitrary set of conservation laws

lead to Mazur’s inequality. Projection operators are then introduced as a natural way to

represent conservation laws in a quantum system, and their use with Mazur’s inequality

to obtain estimates for the residual current in terms of the (still general) current operator

is described. This section concludes with a short discussion of the ideas of Suzuki, the

Mazur inequality and calculating a persistent current given a set of conservation laws. The

chapter is then completed by a numerical investigation of a specific example. The system

considered is the XXZ model, where the long-time residual of a particular current has

been calculated, but all Mazur based estimates of this residual vanish as it can be shown
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that none of the local conservation laws contribute anything to the conserved current.

The final four chapters then cover the main focus of the thesis: generating the local

conservation laws of an integrable system. Chapter 3 starts with a discussion and critique

of the Boost operator method of generating the local conservation laws of a system, using

the XXZ model as an example to show how detailed knowledge of the model in question

is necessary for the method to work. Following on from the construction of the Transfer

matrix just presented, a new and far more general approach is described. An alternate

representation of the quantum Lax operator leads to the logarithm of the Transfer matrix

taking the form of a well known mathematical formula, that of Campbell, Baker and

Hausdorff. Use of the Campbell-Baker-Hausdorff expansion is then described and general

expressions for the local conservation laws in terms of commutators of the (model specific)

operator V̂ij are obtained.

Chapters 4 and 5 are then used to demonstrate the new method of Chapter 3 for the

XXZ and Hubbard models respectively. In each case, a material is first introduced and

shown to be described by the model in question, to provide a physical context for its

study. The Lax operator is rewritten into its preferred form, and then the operator V̂ij

calculated for the model concerned. This is then substituted into the expressions at the

end of Chapter3 to obtain the local conservation laws of the model, which are in both

cases seen to coincide with their previous calculation. Chapter 4 then concludes with a

discussion of Reshetikhin’s condition, which is vital when using the Boost method, and is

shown to be a natural consequence of the Yang-Baxter equation, with the Lax operator

written in the preferred form. Chapter 5 meanwhile, finishes with an attempt to extract

the local conservation laws of the Heisenberg model from those of the Hubbard model,

but finds it to be more calculationally taxing than just using the method of Chapter 3.

As a continuation of Chapter 4, Appendix B contains what is believed to be the first

attempt to write down the explicit form of the sixth local conservation law of the XXZ

model.

Chapter 6 then looks at a markedly different system: the Toda Lattice. Despite

23



1.4. Overview of Thesis

the approach of Chapter 3 being inapplicable, due to the nature of the quantum Lax

operator, a set of conservation laws are found which match those of the classical system.

Investigating the classical system via the Lax pair formalism, a new classical Lax matrix

is constructed which has a simple relation to the trace of the Monodromy matrix in the

quantum problem. This matrix is then used to generate the local conservation laws of the

(quantum and classical) system as the trace of it to increasing powers, as seen earlier.

Finally, Chapter 7 summarises and briefly discusses the conclusions and important

ideas that should be taken should be taken from this work, and suggests avenues of

further study.
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Chapter 2

Residual Current in the XXZ Model

In this chapter the relationship between persistent currents and the conservation laws of a

system are investigated. This starts with the derivation of an expression for the residual

current in terms of the elements of the matrix representing the current operator. The

conserved part of a general operator is then considered, and correlation functions of an

operator split into conserved and non-conserved parts are compared with the expression

for the long-time residual current. By considering the conserved part of the current oper-

ator as a linear combination of conservation laws and some non-conserved part, Mazur’s

inequality [4] is rederived. This inequality is then used to generate expressions for the

contribution to the residual current from the Hamiltonian, and from some unspecified set

of conservation laws. These quantities and the idea that a quantum integrable systems

conservation laws should form a mutually commuting set are considered and discussed,

and the mutual commutativity requirement shown to be unnecessary and potentially

catastrophic.

The final section then highlights these issues by considering the specific example where

the formal ideas appear to fail. The anisotropic Heisenberg or XXZ model has already

received a lot of attention [1, 3, 34, 35, 36, 37], and has been the source of some confusion.

At half-filling the long-time residual of the standard current is a known, non-trivial quan-

tity, but the contribution to this residual from the conserved quantities has been shown
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to vanish.

Utilising Mazur’s identity [4] as a test here fails since all of the conservation laws

have been shown to contribute nothing to the conserved current, however Suzuki’s ideas

[2] imply that the conservation laws should be sufficient to calculate the entire long-time

residual. This section looks at this model in terms of the ideas of the first part of the

chapter, and then resolves the issue with a numerical investigation into whether or not the

conserved quantities are indeed sufficient to calculate the residual, or if there is something

more subtle going on.

2.1 Calculating the Long-time Residual

As described in the previous chapter, these persistent or residual currents are a feature

associated with integrable systems. One would normally expect a current to decay over

time and eventually vanish, but in integrable systems this is not necessarily the case, and

some residual part of the current may continue flowing indefinitely. The long-time limit of

a (decaying) current in an integrable system can be calculated using the following thermal

average

I∞ = 〈 ̂(∞) ̂(0) 〉 ≡ lim
T→∞

1

T

∫ T

0

dt 〈 ̂(t) ̂(0) 〉 . (2.1.1)

Note that this quantity is trivially related to the charge stiffness (also known as the

Drude weight) by an additional coefficient of
(

β

2L

)

, and if non-zero it implies an ideally

conducting system [1]. Writing the current operator in the Heisenberg representation,

and working in a basis which diagonalises the Hamiltonian, i.e.

Ĥ |n,m〉 = ǫn |n,m〉 , (2.1.2)
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where m is an arbitrary degeneracy label, the integrand of equation (2.1.1) becomes

〈 ̂(t) ̂(0) 〉 =
tr
(

e−βĤ ̂(t)̂(0)
)

tr
(

e−βĤ

)

=
1

Z

∑

n

e−βǫn

∑

m

〈n,m| ̂(t)̂(0) |n,m〉

=
1

Z

∑

n

e−βǫn

∑

m

〈n,m| eiĤt̂e−iĤt̂ |n,m〉

=
1

Z

∑

nm

e−βǫn

∑

n′m′

eiǫnt 〈n,m| ̂e−iĤt |n′, m′〉 〈n′, m′| ̂ |n,m〉

=
1

Z

∑

nm

e−βǫn

∑

n′m′

ei(ǫn−ǫn′ )t 〈n,m| ̂ |n′, m′〉 〈n′, m′| ̂ |n,m〉 , (2.1.3)

where Z is the partition function

Z =
∑

n

Mn e
−βǫn, (2.1.4)

and Mn is the degeneracy in n. First setting t = 0 to find an expression for what will

be referred to throughout as the initial current 1 (though current susceptibility would be

more accurate)

I0 =
1

Z

∑

nm

e−βǫn

∑

n′m′

〈n,m| ̂ |n′, m′〉 〈n′, m′| ̂ |n,m〉 , (2.1.5)

and then looking at just the time dependent part of equation (2.1.3) in equation (2.1.1)

finds

1

T

∫ T

0

ei(ǫn−ǫn′)tdt =
1

T

1

i(ǫn − ǫn′)

(

ei(ǫn−ǫn′ )T − 1
)

→ 0 as T → ∞,

1In equilibrium of course, one would not generally expect there to be a current flowing (i.e. 〈j〉 = 0).
The quantities considered here are the response to some impulse which has started a current flowing in
the system, I0 being the initial response of the system and I∞ the response the system relaxes to a long
time later.

27
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except in the case where ǫn = ǫn′ , in which case the time dependent exponent vanishes,

leaving

I∞ =
1

Z

∑

nm

e−βǫn

∑

m′

〈n,m| ̂ |n,m′〉 〈n,m′| ̂ |n,m〉 . (2.1.6)

Clearly for there to be a long-time residual the current operator must have a non zero

part which is diagonal in energy. This diagonal part of the current operator must also

be large in comparison to the rest of the operator, since this component only represents

N out of the N2 elements (where N itself scales up as 2n, n being the number of sites),

i.e. it is expected to be one N th of the total operator, which clearly vanishes in the

thermodynamic limit.

2.2 Conservation Laws

In this section the infinite-time correlation functions of an operator split into its conserved

and non-conserved parts are considered. The conserved part is then thought of in terms

of a sum of conservation laws, and projection operators are introduced as the natural

way to represent those conservation laws. The amount of the long-time residual current

calculable from various sets of conservation laws is considered, and the idea of the mutual

commutativity of a set of conservation laws is discussed.

2.2.1 The Conserved Part of a General Operator

Conservation laws stem from the symmetries of a system, and have the defining property

that the operator representing a conserved quantity commutes with the Hamiltonian, i.e.

[

Ĥ, Ĉ
]

= 0.
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A general operator can be represented as

Ô =
∑

nn′

∑

mm′

|n,m〉Omm′

nn′ 〈n′, m′| , (2.2.1)

in which form the Hamiltonian becomes

Ĥ =
∑

nm

|n,m〉 ǫn 〈n,m| . (2.2.2)

The commutator of the two is then

[

Ô, Ĥ
]

= ÔĤ − ĤÔ

=
∑

nm

∑

n′m′

∑

ñm̃

|n,m〉Omm̃
nñ 〈ñ, m̃ |n′, m′〉 ǫn′ 〈n′, m′|

−
∑

nm

∑

n′m′

∑

ñm̃

|n,m〉 ǫn 〈n,m |ñ, m̃〉Om̃m′

ñn′ 〈n′, m′|

=
∑

nm

∑

n′m′

(

|n,m〉Omm′

nn′ ǫn′ 〈n′, m′| − |n,m〉 ǫnOmm′

nn′ 〈n′, m′|
)

=
∑

nm

∑

n′m′

|n,m〉Omm′

nn′ (ǫn′ − ǫn) 〈n′, m′| , (2.2.3)

and so for the operator Ô to commute with the Hamiltonian we (again) have the condition

that ǫn′ = ǫn. This suggests the splitting of an operator into conserved and non-conserved

parts, like so

Ô = Ôc + Ôc̄

=
∑

n

∑

mm′

|n,m〉Omm′

nn 〈n,m′| +
∑

nn′

n′ 6=n

∑

mm′

|n,m〉Omm′

nn′ 〈n′, m′| . (2.2.4)

Splitting the current operator in the original thermal average (equation (2.1.1)) in this

manner

〈 ̂(∞) ̂(0) 〉 =
〈(

̂c(∞) + ̂c̄(∞)
)(

̂c(0) + ̂c̄(0)
)〉

= 〈 ̂c ̂c 〉 + 〈 ̂c ̂c̄(0) 〉 + 〈 ̂c̄(∞) ̂c 〉 + 〈 ̂c̄(∞) ̂c̄(0) 〉 ,
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using the idea that ̂c(∞) = ̂c(0) = ̂c(t) = ̂c, since the conserved part of the operator is

independent of time. The second and third terms will vanish, because they involve taking

the trace of something that is off diagonal, i.e.

〈 ̂c ̂c̄(0) 〉 =
1

Z

∑

n

∑

mm′

e−βǫn(Jc)
mm′

nn (Jc̄)
m′m
nn = 0,

〈 ̂c̄(∞) ̂c 〉 =
1

Z

∑

n

∑

mm′

e−βǫn(Jc̄)
mm′

nn (Jc)
m′m
nn = 0,

since all the diagonal elements of jc̄ are zero by definition. The fourth term is

〈 ̂c̄(t) ̂c̄ 〉 =
1

Z

∑

n 6=n′

∑

mm′

e−βǫneit[ǫn−ǫn′ ]Jmm′

nn′ Jm′m
n′n ,

and since n′ 6= n, this vanishes in the long-time limit, as was shown previously. This

leaves just the first term

〈 ̂(∞) ̂(0) 〉 = 〈 ̂c ̂c 〉

=
1

Z

∑

n

e−βǫn

∑

mm′

Jmm′

nn Jm′m
nn ,

which is the same as the previous result for the long-time residual, equation (2.1.6), being

diagonal in energy and therefore due to the conserved part of the current operator. It is

clear therefore that, as suggested by Suzuki, the long-time residual is a conservation law,

and that conservation law can be represented as the above operator ̂c.

One should note at this point that, thus far, everything has been kept entirely general,

i.e. no knowledge of model, current or basis has been used or assumed. Since Mazur’s

inequality [4] involves finding the overlap between some observable operator and the

conserved quantities of the system, it would seems sensible to try to describe that operator

in terms of some set of those conserved quantities.

With this in mind, the conserved part of the operator is represented in terms of some

arbitrary, linearly independent collection of conservation laws, {Ĉa}, in the following
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manner

̂c ≡
∑

a

αaĈa + ∆̂c, (2.2.5)

where ∆̂c is a catch-all term containing all of ̂c that cannot be written as a linear combi-

nation of the conservation laws considered, and the coefficients αa need to be determined.

Then, by considering the Ĉas to be an orthogonal set of conservation laws, i.e.

〈

Ĉ†
aĈa′

〉

= δaa′

〈

Ĉ†
aĈa

〉

, (2.2.6)

and since (by definition) there is no overlap between these conservation laws and ∆̂c, we

have

〈

Ĉ†
a∆̂c

〉

= 0 ⇒
〈

Ĉ†
a̂c

〉

=

〈

Ĉ†
a

(

∑

a′

αa′Ĉa′ + ∆̂c

)

〉

=
∑

a′

αa′

〈

Ĉ†
aĈa′

〉

+
〈

Ĉ†
a∆̂c

〉

= αa

〈

Ĉ†
aĈa

〉

⇒ αa =

〈

Ĉ†
a̂c

〉

〈

Ĉ†
aĈa

〉 =

〈

Ĉ†
a̂(0)

〉

〈

Ĉ†
aĈa

〉 . (2.2.7)

Alternatively, considering the quantity

〈

∆̂†c∆̂c
〉

= 〈̂c̂c〉 −
∑

a

α†
a

〈

Ĉ†
a̂c

〉

−
∑

b

〈

̂†cĈb

〉

αb +
∑

ab

α†
a

〈

Ĉ†
aĈb

〉

αb, (2.2.8)

and minimising the right hand side with respect to α†
a or αb gives

〈

Ĉ†
a̂c

〉

=
∑

b

〈

Ĉ†
aĈb

〉

αb, (2.2.9a)

or
〈

̂†cĈb

〉

=
∑

a

α†
a

〈

Ĉ†
aĈb

〉

, (2.2.9b)
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respectively. These are consistent and find the coefficients of equation (2.2.5) to be

αd =
∑

a

[ 〈

Ĉ†Ĉ
〉 ]−1

da

〈

Ĉ†
a̂c

〉

, (2.2.10)

where [ ]−1 signifies a matrix inverse. Note that this second method does not require

mutual commutativity of the Ĉas. Using this expression for the coefficients yields

〈

∆̂†c∆̂c
〉

= 〈 ̂c̂c〉 −
∑

ab

〈

̂†cĈa

〉 [〈

Ĉ†
aĈb

〉]−1

ab

〈

Ĉ†
a̂c

〉

. (2.2.11)

As one might expect, the coefficients (2.2.10) are the same as those from equation (2.2.7)

if the conservation laws under consideration are indeed orthogonal. In this case the above

equation leads to the form of Mazur’s inequality [4] used by Suzuki [2], namely

〈̂(∞)̂(0)〉 ≥
∑

a

〈

̂(0)Ĉa

〉〈

Ĉ†
a̂(0)

〉

〈

Ĉ†
aĈa

〉 , (2.2.12)

where the right hand side is the total contribution to the residual current from a linear

combination of the set of conservation laws {Ĉa}, with the two sides being equal when

〈̂(0)∆̂c〉 ≡
〈

∆̂†c∆̂c
〉

= 0. (2.2.13)

Since the above is positive definite, this requires ∆̂c = 0, and so the two sides of equation

(2.2.12) are equal when the conserved part of the current operator can be written entirely

as a linear combination of the conservation laws (though in general this is not something

we should expect). This quantity ∆̂c is the crux of the entire matter: if it is indeed zero

then Suzuki is correct and the Mazur estimate will generate the full long-time residual,

but if ∆̂c is non-trivial then the set of conservation laws will only partially describe the

conserved part of the current, if at all.

As was mentioned previously, Suzuki required the set of conservation laws, which
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include the Hamiltonian, to be mutually commuting, i.e.

[

Ĉa, Ĉb
]

= 0 where Ĉ0 = Ĥ,

but we have not yet given thought as to how these conservation laws will be generated.

It is advisable, therefore, to proceed with the assumption that we will only have a limited

set of the available laws, and see what effect this has on our calculation of the long-time

residual.

2.2.2 Conservation from the Hamiltonian

The first step is to consider the set of conservation laws consisting of the Hamiltonian and

its powers (since powers of the Hamiltonian clearly commute with the Hamiltonian and

each other, and are also distinct conservation laws). The best way to examine conservation

laws of this form is via projection operators, mathematically defined as

P̂ 2 = P̂ ⇔ P̂
(

P̂ − 1
)

= 0, (2.2.14)

which have the eigenvalues one or zero. From this, 1 − P̂ can also be shown to be a

projection operator, with the same eigenvalues. The operator P̂ will project onto the

states for which its eigenvalue is one, while 1 − P̂ will project away from these states.

These ideas can be extended to a complete, orthogonal set of projection operators, i.e.

P̂nP̂m = δnmP̂n with
∑

n

P̂n = 1. (2.2.15)

These projection operators can then be used to enforce a restriction to a certain subset

of states. For example, the operator

P̂n ≡
∏

n′ 6=n

[Ĥ − ǫn′ ]

[ǫn − ǫn′ ]
, (2.2.16)
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will project states onto the subspace for which Ĥ has the eigenvalue ǫn. Writing this in

the notation previously used for operators, P̂n becomes

P̂n ≡
∑

m

|n,m〉 〈n,m| , (2.2.17)

and so equation (2.2.2) can be rewritten as

Ĥ ≡
∑

n

ǫn P̂n. (2.2.18)

As the projection operators can be created from the Hamiltonian and vice versa, the two

are essentially equivalent, and since any power of a particular projection operator will

clearly just return the same projection operator again, these operators give all of the

conservation due to the Hamiltonian.

If these projection operators are now used as the set of conservation laws Ĉa in equation

(2.2.12), then the numerator and denominator respectively become

〈

P̂n̂c

〉

=
1

Z

∑

n′m′

e−βǫn′ 〈n′, m′|
∑

m

|n,m〉 〈n,m|
∑

n̄

∑

m̄ṁ

|n̄, m̄〉 Jm̄ṁ
n̄n̄ 〈n̄, ṁ |n′, m′〉

=
1

Z

∑

n′m′

e−βǫn′

∑

nn̄

∑

m̄ṁ

δn′nδm′mδnn̄δmm̄J
m̄ṁ
n̄n̄ δn̄n′δṁm′

=
1

Z
e−βǫn

∑

m′

Jm′m′

nn ,

〈

P̂nP̂n

〉

=
〈

P̂n

〉

=
1

Z

∑

n′m

e−βǫn′ 〈n′, m|
∑

m′

|n,m′〉 〈n,m′ |n′, m〉

=
1

Z

∑

n′

e−βǫn′

∑

mm′

δn′nδmm′δnn′δm′m

=
1

Z
e−βǫn

∑

m

1

=
1

Z
e−βǫnMn.

Substituting these results back into equation (2.2.12), the contribution to the long-time
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residual due to the conservation laws generated from the Hamiltonian is

IH =
∑

n

〈

P̂n̂c

〉〈

̂cP̂n

〉

〈

P̂n

〉

=
∑

n

1
1
Z
e−βǫnMn

(

1

Z
e−βǫn

∑

m′

Jm′m′

nn

)2

=
1

Z

∑

n

e−βǫn
1

Mn

∑

mm′

Jmm
nn Jm′m′

nn .

At this stage the importance of degeneracy to the problem is clear: in the completely

non-degenerate case (i.e. ignoring degeneracy labels) the above quantity is equal to the

long-time residual current, i.e. IH = I∞, and only the Hamiltonian is required to find

the long-time residual. Not only is the conserved part of the current related solely to the

Hamiltonian, but in fact all conservation laws can be generated by it, and as described

in the previous chapter, the system should not be thought of as integrable in the classical

sense.

2.2.3 A General Set of Conservation Laws

Next consider some general set of mutually commuting conservation laws which, as with

any group of commuting Hermitian operators, may be simultaneously diagonalised. This

prompts us to use the basis |n, l,m〉, in which case

Ĉa |n, l,m〉 = ǫanl |n, l,m〉 , with ǫ0nl ≡ ǫn,

and for every pair of basis states with the same n but different ls there is an a such that

ǫanl 6= ǫanl′ i.e. given n, for any two values of l there is a conservation law where the states

are non-degenerate. Writing the conservation laws in terms of projection operators, as
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with the purely Hamiltonian case, gives

P̂ a
nl ≡

∏

n′,l′

ǫa
n′l′

6=ǫa
nl

[Ĉa − ǫan′l′]

[ǫanl − ǫan′l′]
, with Ĉa ≡

∑

nlm

|n, l,m〉 ǫanl 〈n, l,m| , (2.2.19)

and so the following operator projects onto the subspace with eigenvalues ǫanl

P̂nl =
∏

a

P̂ a
nl =

∑

m

|n, l,m〉 〈n, l,m| . (2.2.20)

These can be used as a set of conservation laws, in exactly the same way as before, in the

elements of the left hand side of equation (2.2.12)

〈

P̂nl̂c

〉

=
1

Z

∑

n′

e−βǫn′

∑

ml

〈n′, l, m|
∑

m′

|n, l′, m′〉 〈n, l′, m′|

×
∑

n̄l̄

∑

m̄ṁ

∣

∣n̄, l̄, m̄
〉

Jm̄ṁ
n̄l̄n̄l̄

〈

n̄, l̄, ṁ |n′, l, m〉

=
1

Z

∑

n′n̄

e−βǫn′

∑

ll̄

∑

mm′

∑

m̄ṁ

δn′nδll′δmm′δnn̄δl′ l̄δm′m̄J
m̄ṁ
n̄l̄n̄l̄

δn̄n′δl̄lδṁm

=
1

Z
e−βǫn

∑

m

Jmm
nlnl ,

〈

P̂nlP̂nl

〉

=
〈

P̂nl

〉

=
1

Z

∑

n′

e−βǫn′

∑

mm′

∑

l

〈n′, l, m |n, l′, m′〉

× 〈n, l′, m′|
∑

m̄

∣

∣n̄, l̄, m′〉 〈n̄, l̄, m′ |n′, l, m〉

=
1

Z

∑

n′

e−βǫn′

∑

ml

∑

m′m̄

δn′nδll′δmm̄δnn̄δl′ l̄δm̄m′δn̄n′δl̄lδm′m

=
1

Z
e−βǫn

∑

m

1

=
1

Z
e−βǫnMnl.

Once again, substituting these into equation (2.2.12) leads to the following equation for

the contribution to the long-time residual due to a general set of commuting conservation
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laws

IM =
∑

nl

〈

P̂nl̂c

〉〈

̂cP̂nl

〉

〈

P̂nl

〉

=
∑

nl

1
1
Z
e−βǫnMnl

(

1

Z
e−βǫn

∑

m′

Jm′m′

nlnl

)2

=
1

Z

∑

nl

e−βǫn
1

Mnl

∑

mm′

Jmm
nlnlJ

m′m′

nlnl .

Comparing these two Mazur contributions (IM and IH) with the expressions for the

initial and residual current (grouped together in equation (2.2.21) for reference), we see

that they involve only the diagonal elements of the current operator. The contribution

from many conservation laws, IM , involves the average over the degeneracy label m, while

the Hamiltonian based Mazur estimate, IH , is a sum of the averages of all the elements in

each energy subspace. These two quantities have lost the detailed information provided

by the degeneracy, and so can only be equal to the residual current I∞ if the current

operator is proportional to the identity in each energy subspace(n), or a basis can be

found in which it has this proportionality..

2.2.4 Discussion

Thus far the following four quantities have been calculated, corresponding respectively to

the initial current, the residual current (after infinite time), and the Mazur (general set

of conservation law) and Hamiltonian contributions to this residual

I0 =
1

Z

∑

nm

e−βǫn

∑

n′m′

∑

ll′

Jmm′

nln′l′J
m′m
n′l′nl, (2.2.21a)

I∞ =
1

Z

∑

n

e−βǫn

∑

mm′

∑

ll′

Jmm′

nlnl′J
m′m
nl′nl , (2.2.21b)

IM =
1

Z

∑

nl

e−βǫn
1

Mnl

∑

mm′

Jmm
nlnlJ

m′m′

nlnl , (2.2.21c)

IH =
1

Z

∑

n

e−βǫn
1

Mn

∑

mm′

∑

ll′

Jmm
nlnlJ

m′m′

nl′nl′ . (2.2.21d)
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Using the following identity for degenerate Hermitian matrices

∑

xx′

[

Hxx′ − δxx′

1

Nx

∑

y

Hyy

][

Hx′x − δx′x

1

Nx

∑

y

Hyy

]

=
∑

xx′

Hxx′Hx′x −
∑

xx′

HxxHx′x′

Nx

≥ 0, (2.2.22)

the difference between, for example, equations (2.2.21b) and (2.2.21c) can be found

I∞ − IM =
1

Z

∑

n

e−βǫn

∑

mm′

∑

ll′

(

Jmm′

nlnl′J
m′m
nl′nl − δll′

1

Mnl

Jmm
nlnlJ

m′m′

nlnl

)

=
1

Z

∑

n

e−βǫn

∑

mm′

∑

ll′

[

Jmm′

nlnl′ − δll′δmm′

∑

ok

Jo o
nknk

Mnl

][

Jm′m
nl′nl − δll′δmm′

∑

ok

Jo o
nknk

Mnl

]

≥ 0,

and it can therefore be shown that the above four quantities are ordered as follows

I0 ≥ I∞ ≥ IM ≥ IH . (2.2.23)

Clearly the initial current, I0, will be the largest of these quantities, with the others

being equal to it only if the current does not decay away at all. Comparing I0 and I∞ it is

obvious that, for the two to be equal it is necessary for the current operator to be diagonal

in energy, which is the same as saying that ̂ = ̂c, i.e. the current operator has only a

conserved part. The real issue however, is how much of I∞ can be found from calculating

IM : are Suzuki’s ideas correct, and a complete mutually commuting set of conservation

laws used in Mazur’s inequality will give the full residual current, i.e. IM = I∞, or is it

possible to have such a set of conservation laws and still not be able to obtain the full

residual (IM < I∞)?

IM is different to the other three quantities in that it depends upon the basis be-

ing used, which in turn depends upon the particular conservation laws in our mutually

commuting set (since the basis which simultaneously diagonalises all these laws is being

used), whereas I0 depends only on the current, while I∞ and IH are purely Hamiltonian
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dependent. The most interesting cases for this quantity are those where both the contri-

bution from the Hamiltonian is zero, and some (but not all) of the current decays away,

i.e I0 > I∞ > IH = 0.

As mentioned above, IM depends entirely on the set of conservation laws used to

calculate it. If, for example, the set contains ̂c itself, then it will clearly be possible to

obtain the full residual. The other extreme, of course, is the possibility that there could

be a set of mutually commuting conservation laws (including the Hamiltonian) which are

all orthogonal to ̂c. In this instance it should be clear that it will not be possible to find

any of the long-time residual, as our conservation laws contain none of the conserved part

of the current operator. Therefore, given some set of mutually commuting conservation

laws, it is not possible to say what fraction of the long-time residual can be obtained from

IM without knowing what those conservation laws are, even if the set of conservation laws

is complete (that is, there are no more conservation laws we could add and still have a

mutually commuting set).

This ties in with our understanding of a quantum integrable system. In the classical

case there are 2N degrees of freedom, and each conservation law removes a degree of

freedom. An integrable system therefore being one where there are N conservation laws

which reduce the problem down toN independent degrees of freedom (an N -torus in phase

space, with trajectories cycling around the handles). The quantum analogue to this is a

set of eigenstates with degenerate eigenvalue subspaces, where the degeneracy represents

the residual freedom of the system. Having fixed the eigenvalue and restricted the system

to its associated subspace, additional conservation laws can be used to further reduce the

subspace we’ve restricted ourselves to. The equivalent of a classical integrable system is

then one where it is possible to simultaneously diagonalise all of the conservation laws to

obtain a single, unique basis. Clearly it is this unique basis which would ideally be used

when calculating IM , though any basis which diagonalises the set of conservation laws

provided will be sufficient.

It is important to consider the possibility that the conserved part of the current op-
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erator consists solely of terms off-diagonal in the basis which diagonalises the available

conservation laws. Since the Hamiltonian is diagonal in an eigenvalue subspace, and all

elements have the same value (the eigenvalue for that subspace), it acts much like the

identity. The conservation laws must also be given as the diagonal elements, in which case

they will contribute nothing to the long-time residual. Here it is the requirement that the

conservation laws are mutually commuting that has denied access to the conserved part of

the current; with the full set of conservation laws there would be no problem calculating

the long-time residual. This can be shown with a simple example of just four conservation

laws

|1〉 〈1| |2〉 〈2| |1〉 〈2| |2〉 〈1| .

Here the first two form a ‘complete’ mutually commuting set, but they will miss any

contribution from the other two conservation laws. Being a complete mutually commuting

set is not necessarily enough to give the full contribution to the long-time residual from all

conservation laws; here it is imposing the condition of mutual commutativity that causes

the problem, as simply including all the conservation laws would give everything. If the

current operator were to connect states at the same energy but with different values of

the other conservation laws, then using a mutually commuting set of conservation laws

could cause us to miss some of this contribution to the long-time residual.

These ideas are now investigated in the context of the XXZ model, where all of the

conservation laws are known (and are mutually commuting), but have been shown to

generate none of the (non-trivial) residual current, i.e. I∞ > IM = 0. The dangers of

restricting to a mutually commuting set are seen when considering their compatibility

with the current operator, but this is shown not to be the problem in this case: a single,

vital conservation law had been overlooked, and its inclusion resolves the issue and leads

to a Mazur estimate equal to the full long-time residual.

40



2.3. The XXZ Model

2.3 The XXZ Model

Having looked at this problem formally, the specific example of the XXZ model is now

considered. The Hamiltonian for this model can be written as

Ĥ = J
∑

i

[

Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + ∆Ŝz

i Ŝ
z
i+1

]

, (2.3.1)

where ∆ is some measure of anisotropy. Using the following (spinless) Jordan-Wigner

transformation to write the spin operators in terms of fermionic creation and annihilation

operators

Ŝ+
l = f̂+

l exp

(

iπ
∑

j<l

n̂j

)

; Ŝ−
l = exp

(

−iπ
∑

j<l

n̂j

)

f̂l; Ŝz
l = n̂l − 1

2
; (2.3.2)

with n̂l = f̂+
l f̂l the usual number operator; the Hamiltonian (2.3.1) becomes

Ĥ = t
∑

i

(

f̂+
i f̂i+1 + f̂+

i+1f̂i

)

+ V
∑

i

(

f̂+
i f̂i −

1

2

)(

f̂+
i+1f̂i+1 −

1

2

)

, (2.3.3)

where t = J
2

and V = J∆. This is the fermionic form of the one-dimensional Heisenberg

model, known as the ‘t−V model’ [1]. The Heisenberg states of spin up or down are now

the presence or absence of a fermion, of which there can of course only be one per site.

In this context the meaning of the previously used phrase ‘half-filling’ becomes clear: the

system has half as many fermions as there are sites. The equivalent Heisenberg subspace

is then clearly that of Ŝz
total = 0, i.e. an equal number of up and down spins, which

includes the antiferromagnetic groundstate.

The aforementioned ‘standard’ current operator of the Heisenberg model is

̂ = 2
∑

n

Ŝy
nŜ

x
n+1 − Ŝx

nŜ
y
n+1

= (−i)
∑

n

Ŝ+
n Ŝ

−
n+1 − Ŝ−

n Ŝ
+
n+1, (2.3.4)
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which represents the spin current due to the conservation of Ŝz.2 Using the Jordan-Wigner

transformation, the equivalent current for the t− V model is

̂ = (−i)
∑

n

[

f̂+
n f̂n+1 − f̂+

n+1f̂n

]

, (2.3.5)

which then clearly corresponds to the current produced by electrons hopping one site

along the chain. Using the matrix form of this current operator the initial and residual

current can be calculated using the expressions for I0 and I∞ from equations (2.2.21a)

and (2.2.21b), and the target inconsistency can now be investigated.

For small, finite systems, it is possible to generate all of the conservation laws, using

which it should be possible to calculate the full long-time residual. Indeed, any one giving

a non-zero Mazur estimate of this residual would be enough to show its existence. For

this particular model however, it can be shown that none of the conservation laws give a

non-zero contribution to the long-time residual.

Consider a simple rotation of π about the x-axis, causing Ŝy and Ŝz to become −Ŝy

and −Ŝz respectively. Under this rotation, the Hamiltonian (2.3.1) remains unchanged,

while the current operator (2.3.4) has the opposite sign. This rotation is equivalent to

the operator

Û = exp

(

iπ
∑

j

Ŝx
j

)

, (2.3.6)

and in the basis where the matrices representing Ĥ and Û are both diagonal, the matrix

representing ̂ is off-diagonal, and so there can be no contribution to the residual current

from the Hamiltonian. This is true not just for the Hamiltonian, but for all of the conser-

vation laws generated using the Boost operator, so there can be no Mazur contribution

since the expectation value of the current and any combination of these conservation laws

will be zero.

2All conservation laws have an associated current, which can be found as the solution to putting that
particular conservation law into the continuity equation.
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This is all true of the XXZ model at ‘half-filling’ (again: the subspace where Ŝz = 0),

so an extra term is added to the Hamiltonian, relating to an external magnetic field

Ĥ = Ĥ0 − B
∑

i

Ŝz
i . (2.3.7)

Note that the extra term commutes with both the Hamiltonian and all of the conservation

laws, but not with Û . The purpose of this natural extension to the model is that it grants

control over Ŝz; by varying the value of B we can move away from half filling to get

a non-zero contribution to long-time residual from the conservation laws, and analyse

whether or not half filling is a special case. This extension may seem slightly artificial,

but under the previously described transformation to the t-V model it becomes clear that

this addition corresponds to a term in the chemical potential, and that varying B allows

one to change the doping of the system (and so move away from half filling).

Before continuing we should first address the issue of the operator Û and its effect

on the compatibility of the current operator ̂ with our conservation laws. As long as

the Hamiltonian and conservation laws commute with Û , they will remain diagonal and

have zero overlap with the off-diagonal current operator. This means that if, for exam-

ple, we had chosen to study the XXX model (∆ = 1) and added on a term involving

the x-component of spin instead of the z-component, Û would still commute with the

conservation laws, which would therefore contribute nothing to the Mazur estimate of the

long-time residual. This is an extreme version of the example at the end of the previous

section. There is a ‘complete’ mutually commuting set of conservation laws, which misses

the contribution to the long-time residual (all of it!) from other conservation laws, which

do not form part of the ‘complete’ set. The current operator is not compatible with our

‘complete’ set of mutually commuting conservation laws. As noted above, Û does not

commute with Ŝz and the current operator is compatible with the conservation laws in

the case we are investigating, though the contribution from the Hamiltonian is still zero,

which can be shown using spatial inversion symmetry.
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Mentioned briefly in the Introduction, the Boost operator and Transfer matrix are

properly introduced in the following chapter as methods of generating the conservation

laws of an integrable system. The Boost operator is of no use here since finite systems

are being considered and the associated periodic boundary conditions will not allow for

its use. Instead, the Transfer matrix is used, as described in the next chapter, to generate

the necessary number of conservation laws.

For a system comprising a chain of length N sites, N linearly independent conservation

laws are generated. Unfortunately, the required number of conservation laws scales as the

number of states, and the state-space increases exponentially with system size; an N -site

system will have 2N states, a number which grows inconveniently large all too quickly.

To investigate the problem at hand, the initial N conservation laws are used to calculate

the first (henceforth: linear) Mazur estimate of the residual current. Since a product of

conservation laws is itself a conserved quantity, the N(N + 1)/2 possible combinations of

products of two of the original set of conservation laws are then used, combined with the

original ones, to form a new set of conserved quantities, from which a second (quadratic)

Mazur estimate is obtained. A third and final (cubic) Mazur estimate of the residual

is then found from a set of conservation laws comprising of all those created so far and

a further N(N + 1)(N + 2)/6 conservation laws, which are the product of any three of

the original N . For larger systems this process can be carried on to a quartic estimate

or higher as necessary, to ensure the final set has more than the 2N conservation laws

required.

The results of these calculations for two values of ∆ (corresponding to a metal and

an insulator) are shown in figure 2.1, which demonstrate clearly the conundrum under

consideration: for a finite system all of the available conservation laws have been generated

and used, and yet the Mazur estimate of the residual current falls and smoothly vanishes

at zero field.

Fortunately the solution to this problem is trivial: not all of the conservation laws were

generated! The z-component of spin, Ŝz, is clearly a conserved quantity, but was missed
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Figure 2.1: The Initial current, the long-time residual and three Mazur estimates using
the conservation laws as described, for a system with N = 6, β = 1 and ∆ > 1 on the
left, ∆ < 1 on the right.

out because the methods of generating conservation laws start with a two-site operator

(the Hamiltonian) and then produce more laws of increasing complexity. Furthermore,

Ŝz represents a very different style of conservation law to the local ones generated. As

well as being non-local, it is what should be considered a fundamental conservation law

that exists separately to the integrability of the model: if a second nearest neighbour

interaction were added, the integrability and local conservation laws would be lost, but

Ŝz will still be a conservation law.

This extra conservation law can easily be incorporated into the calculations, by using

the product of Ŝz with each of the N original conserved quantities as a new starting set

from which a linear Mazur estimate can be obtained, and then creating more conservation

laws and quadratic and cubic estimates as before. Figure 2.2 shows the Mazur estimates

for the original Ŝz-less sets of conservation laws, and the new estimates obtained when

Ŝz is included in the calculations. The problems at half-filling are gone and so in these

finite systems, using all the conservation laws does indeed give a Mazur estimate equal to

the long-time residual current.
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Figure 2.2: The Initial current, the long-time residual and three Mazur estimates using
the conservation laws as described, both with and without Ŝz, for a system with N = 6,
β = 1 and ∆ > 1 on the left, ∆ < 1 on the right. The second and third Ŝz calculations
generate the full long-time residual for all values of Field.

When moving from the finite systems studied thus far to consider the thermodynamic

limit, the long-time residual is seen to behave in an odd manner [3, 36] (see figure 2.3).

In the metallic regime (∆ < 1) there is a non-trivial long-time residual which falls

smoothly to zero as ∆ approaches 1. There is a transition when we reach the Heisenberg

case (∆ = 1) and there is then no residual in the insulating case (∆ > 1).

The non-analytic nature of the residual is a problem, as one of the local conserva-

tion laws will struggle to show this kind of behaviour. Some combination / function of

conservation laws is required whose Taylor expansion exists for 0 < ∆ < 1 but vanishes

for all ∆ > 1, a complicated dependence on the anisotropy parameter that will require

conservation laws which are non-analytic in nature.

2.4 Summary

The idea that integrable systems allow for currents which do not decay away entirely but

have a finite residual which continues to flow indefinitely has been investigated. Specifi-
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I∞

∆0

Figure 2.3: Behaviour of the residual current against the anisotropy of the XXZ model,
in the thermodynamic limit.

cally, the relationship between these undiminishing currents and subsets of the conserva-

tion laws of the system are considered. It has been shown that this residual current is the

conserved part of the current operator, and that it is possible to calculate it given all the

conservation laws of a system by summing their contributions from Mazur’s inequality.

As a part of this result, it has also been shown that restricting the set of conservation

laws to only those which mutually commute can cause some of these Mazur contributions

to be missed, and in extreme cases generate none of the residual current.

With these ideas in mind, attention was turned to the XXZ model where the resid-

ual current had a known non-trivial value, but a complete set of mutually commuting

conservation laws gave nothing. The problem with the mutual commutativity of the

conservation laws was demonstrated by considering their compatibility with the current

operator. This was seen not to be the cause of the issues with this model however, as

there was a previously overlooked conservation law, the product of which with the already

known mutually commuting operators were used with Mazur’s inequality, and shown to

generate the full residual current.

Finally, thought was briefly given to the thermodynamic limit, where the residual

current displays some rather exotic behaviour as the anisotropy parameter is varied. It is

apparent that the local operators used in the finite calculations will not suffice and that

more complicated, non-local conservation laws are required. The combination of Ŝz with

the local conservation laws, which resolved the problems at half-filling on the finite chain,
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are non-local however. Further investigation is required to see if these combinations will

have the structure required to provide a Mazur contribution in the thermodynamic limit

and prove the existence of a long-time residual there.

In the following chapter, the methods of generating the analytic forms of the local

conservation laws of a system are considered. The Boost operator method is analysed in

detail, using the XXZ model to demonstrate how it works and show that there are hidden

requirements, making it more subtle than it might first appear. A second method is then

proposed which allows for a relatively simple evaluation of the logarithm of the Transfer

matrix, and the iterative generation of the local conservation laws.
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Chapter 3

Analytic Generation of Local

Conservation Laws

In this chapter methods of deriving the exact form of the local conservation laws are

investigated. The first method, involving the Boost operator introduced in Chapter 1,

is used to generate the first three non-trivial local conservation laws of the XXZ model.

During the course of these calculations, this Boost operator method is shown to have

hidden requirements of knowledge about the structure of the Hamiltonian of the system

being considered. Without this knowledge the unphysical terms produced by the Boost

method cannot be shown to cancel, and so the local conservation laws cannot be found.

Having detailed the failings of the Boost operator method, we return to the idea of

generating the local conservation laws by taking the logarithm of the Transfer matrix.

As described in the first chapter, the result of taking this logarithm can be expressed as

an infinite polynomial in the spectral parameter, the coefficients of which are the local

conservation laws of the system. First removing the permutation part, and noting how

this relates to the statistics of a model, the Lax operator is then written as an exponential.

Following the definitions of the Monodromy and Transfer matrices, the problem becomes

that of taking the logarithm of a product of exponentials, a well known mathematical

problem solved in terms of a Campbell-Baker-Hausdorff expansion. This results in a
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series of recurrence relations, which are increasing long-winded and arduous to solve. Once

solved however, they can be applied to any system whose Lax operator can be written

in the permutationless form which initiated the method. The Lax operators can then be

written as the exponential of a second operator, which is substituted into the solutions

to the recurrence relations and the local conservation laws obtained. This process will be

described in detail in Chapters 4 and 5 for the XXZ and Hubbard models respectively,

but the XXZ results are included at the end of this chapter for comparison with the Boost

result.

3.1 The Boost Operator Method

In the previous chapters the use of a ladder or ‘Boost’ operator was described as a way

of iteratively generating the local conservation laws of the XXZ model. This appears to

be the only viable method for generating the analytic form of these local conservation

laws, but it is an increasingly cumbersome process: after relatively few iterations the

calculation by its very nature becomes impossibly lengthy, even with the aid of algebraic

manipulation software [5]. This Boost method and the reason for the growing difficulty in

the calculation of each term is easily demonstrated. The Hamiltonian (equation (2.3.1))

is written in the form

Ĥ =
∑

n

Σ̂n,n+1 + (∆ − 1)P̂n,n+1 =
∑

n

ĥn,n+1, (3.1.1)

where

Σ̂n,n+1 =
1

2
+ 2 Ŝn.Ŝn+1, (3.1.2)

is the permutation operator, switching the spins on two neighbouring sites, and

P̂n,n+1 =
1

2
+ 2 Ŝz

nŜ
z
n+1, (3.1.3)
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is the spin-projection operator, projecting onto the basis for Ŝz
total. The Boost operator

can be derived from the Yang-Baxter equation (equation (1.2.17)) [30] and, assuming

periodic boundary conditions, the Boost operator corresponding to models such as this

has been found to be [5, 30]

B̂ =
∑

m

mĥm,m+1. (3.1.4)

A series of conservation laws can be constructed by repeatedly commuting each new

conservation law with the above operator, i.e.

Ĉn+1 =
[

B̂, Ĉn

]

, (3.1.5)

and each new conservation laws range of interaction is increased by one site (with the

choice of Ĉ0 below, Ĉm represents the interactions of up to m+ 2 neighbouring sites).

Starting with Ĉ0 ≡ Ĥ, the first conservation law can now be calculated trivially

Ĉ1 =

[

∑

m

mĥm,m+1,
∑

n

ĥn,n+1

]

=
∑

n

n
( [

ĥn,n+1, ĥn−1,n

]

+
[

ĥn,n+1, ĥn+1,n+2

])

= −
∑

n

[

ĥn,n+1, ĥn+1,n+2

]

, (3.1.6)

where the first step relies upon the fact that operators at long range (i.e. which do

not share a site index) commute, and the second involves shifting the summation index

n→ n+ 1 for the first term, and then cancelling terms with an n-dependent coefficient.

Adopting the notation ĥn ≡ ĥn,n+1 for the sake of brevity, the second conservation law

requires only a little more effort than the first

Ĉ2 =

[

∑

m

mĥm,−
∑

n

[

ĥn, ĥn+1

]

]

= −
∑

n

n
( [

ĥn,
[

ĥn−2, ĥn−1

]]

+
[

ĥn,
[

ĥn−1, ĥn

]]
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+
[

ĥn,
[

ĥn, ĥn+1

]]

+
[

ĥn,
[

ĥn+1, ĥn+2

]])

=
∑

n

2
[

ĥn,
[

ĥn+1, ĥn+2

]]

+ n
( [

ĥn,
[

ĥn, ĥn−1

]]

−
[

ĥn,
[

ĥn, ĥn+1

]] )

. (3.1.7)

However, it has now become clear that the Boost operator is creating terms whose co-

efficients depend on the site index being summed over. This is highly unphysical as it

leads to terms which increase with distance along the chain and therefore fail to satisfy

the (periodic) boundary conditions. Since it can be shown [5] that the Boost operator

does indeed create a series of conservation laws we would expect that (as in the first

case) these terms can be expanded, the summations shifted and the n-dependent parts

will cancel. This is indeed possible, and in fact necessary for every conservation law, but

the process of cancelling these terms and gathering up the remainder becomes extremely

time-consuming after just a few iterations.

In the case of this second conservation law, the final step requires that the following

reduction identities be used

[

ĥn,
[

ĥn, ĥn+1

]]

= (1 + ∆2)ĥn+1 + ∆(1 − ∆2)P̂n+1,n+2 − 2∆Σ̂n,n+2, (3.1.8a)
[[

ĥn, ĥn+1

]

, ĥn+1

]

= (1 + ∆2)ĥn + ∆(1 − ∆2)P̂n,n+1 − 2∆Σ̂n,n+2. (3.1.8b)

Shifting the summation index on the second term of equation (3.1.7) and substituting in

the above identities, the terms with n-dependent coefficients cancel trivially, leaving the

second local conservation law

Ĉ2 = 2
∑

n

[

ĥn, ĥn+1, ĥn+2

]

+ (1 + ∆2)ĥn + ∆(1 − ∆2)P̂n,n+1 − ∆Σ̂n,n+2. (3.1.9)

Note that for the first term of this new conservation law a new notation has been

adopted. A set of N operators written as such implies an (N-1)-tuple nested commutator

of those operators (in the written order), where all non-trivial orderings (i.e. orderings

where the commutator vanishes) of the internal commutators lead to the same result, in
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this case

[

ĥn, ĥn+1, ĥn+2

]

=
[

ĥn,
[

ĥn+1, ĥn+2

]]

=
[[

ĥn, ĥn+1

]

, ĥn+2

]

. (3.1.10)

As is shown at the end of the next chapter, the difference of the identities (3.1.8a)

and (3.1.8b) yields the Reshetikhin condition for this model [30, 31, 38], which in turn

stems from the Yang-Baxter equation. They could of course just be calculated directly

given the Hamiltonian, but either way the Boost operator alone is not enough to find the

conservation laws, as this additional knowledge of the Hamiltonian is also required for

cancelling the n in the coefficients.

Calculating the third conservation law, for example, is already much more challenging

Ĉ3 = 2

[

∑

m

mĥm,
∑

n

[

ĥn, ĥn+1, ĥn+2

]

]

+ 2 (1 + ∆2)

[

∑

m

mĥm,
∑

n

ĥn

]

+2∆(1 − ∆2)

[

∑

m

mĥm,
∑

n

P̂n+1,n+2

]

− 2∆

[

∑

m

mĥm,
∑

n

Σ̂n,n+2

]

= 2
∑

n

{

− 3
[

ĥn, ĥn+1, ĥn+2, ĥn+2

]

+ n
[

ĥn,
[

ĥn, ĥn+1, ĥn+2

]]

+(n+ 1)
[

ĥn+1,
[

ĥn, ĥn+1, ĥn+2

]]

+ (n + 2)
[

ĥn+2,
[

ĥn, ĥn+1, ĥn+2

]]

+n∆(1 − ∆2)
( [

ĥn, P̂n+1,n+2

]

+
[

ĥn, P̂n−1,n

] )

+ ∆
[

Σ̂n,n+2, ĥn+1

]

−n∆
( [

ĥn, Σ̂n+1,n+3

]

+
[

ĥn, Σ̂n,n+2

])}

+ 2(1 + ∆2)Ĉ1.

To remove the factors of n from the coefficients of the above terms it is necessary to first

reorder the triple commutators, so that the reduction identities (3.1.8a) and (3.1.8b) can

be used to rewrite them as several single commutators, which then cancel with the other

n-dependent terms, leaving

Ĉ3 = 2
∑

n

{

− 3
[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

+ ∆
[

Σ̂n,n+2, ĥn+1

]

−2∆(1 − ∆2)
( [

ĥn, P̂n+1,n+2

]

+
[

P̂n+1,n+2, ĥn+2

] )

+3∆
( [

ĥn, Σ̂n+1,n+3

]

+
[

Σ̂n,n+2, ĥn+2

] )}

+ 8(1 + ∆2)Ĉ1
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= −6
∑

n

{[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

− ∆
[

Σ̂n,n+2, ĥn+1

]

−∆
( [

ĥn, Σ̂n+1,n+3

]

+
[

Σ̂n,n+2, ĥn+2

] )}

+ (8 + 4∆2)Ĉ1, (3.1.11)

where the final step employs the relation

∑

n

(1 − ∆2)
( [

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

+
[

Σ̂n,n+2, ĥn+1

]

= ∆Ĉ1. (3.1.12)

The calculation of Ĉ4 involves quadruple commutators, and though the identities

(3.1.8a) and (3.1.8b) can be used to reduce them down to double commutators, these

then involve not just the Hamiltonian but also the permutation and spin-projection op-

erators, and so further identities and relations are required (see Appendix B), and the

effort required to eradicate site dependency from the coefficients is quite considerable.

Clearly using the method of the Boost operator to generate the local conservation

laws of a system entails a lot more work than one might initially suspect. Worse still,

the same level of work will be needed again and again, for each new system considered.

Consider, for example, the most productive (in terms of conservation laws produced)

investigation into integrable spin chains [5]. Rather than repetitive commutation with the

Boost operator, the XYZ Hamiltonian is studied to determine the structure of the terms

that result from such a commutation. The unphysical coefficients are then circumvented

as the Hamiltonian structure is used to detemine the terms that make up each successive

conservation law, and recurrence relations found that will generate the correct coefficients.

While this does eventually provide the conservation laws of the system1, it proves to be

of little use when a new model (the Hubbard model) is investigated.

In the following sections a more general method will be formulated which gives the

local conservation laws as the coefficients of a power expansion. These coefficients are

commutators of an operator which, for a given Hamiltonian, can be found with relative

ease. Unlike the Boost method therefore, the majority of the work is done once in gen-

1And in fairness, some useful insight into the structure of the higher order conservation laws of the
XYZ and related models.
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erating general expressions for the coefficients / conservation laws, and then finding the

specific expressions given a particular system requires only a little further work.

The development of this new method starts with a reintroduction to some of the main

ideas and operators of quantum inverse scattering.

3.2 Lax, Monodromy and Transfer Matrices

The Lax operator comes from an early method of proving integrability, based on the ideas

of classical integrable systems, as described in Chapter 1. Restating the formulation in

terms of a quantum spin chain: if Ŝi is a spin-like variable defined at site i on the quantum

chain, then the Lax operators L̃ij and K̃i define the linear system

Ŝj = L̃ijŜi,
dŜi

dt
= K̃iŜi, (3.2.1)

i.e. L̃ij controls transport along the chain and K̃i governs the time evolution of the

system. Differentiating the first equation with respect to time and substituting in the

second generates the following compatibility condition for the above system, known as

the Lax equation

dL̃ij

dt
= K̃jL̃ij − L̃ijK̃i, (3.2.2)

and a system is considered completely integrable if this equation is equivalent to the

equations of motion of that system. It has since been shown that the Lax operator can

be obtained from the Yang-Baxter equation [26], and that a models R-matrix can be

normalised such that

R̂ij(λ, µ = 0) = L̃ij(λ). (3.2.3)
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This is automatically true for fundamental models such as the Heisenberg model [19] as

their R-matrices obey the difference property

R̂ij(λ, µ) = R̂ij(λ− µ), (3.2.4)

and furthermore

R̂ij(λ, µ = 0) = R̂ij(λ) = L̃ij(λ), (3.2.5)

i.e. for these models the R-matrix and Lax operator are one and the same. In either case,

the Yang-Baxter equation can be written as

L̃ki(µ)L̃kj(λ)R̂ij(λ, µ) = R̂ij(λ, µ)L̃kj(λ)L̃ki(µ), (3.2.6)

which is equivalent to the Fundamental Commutation Relations (1.2.12).

If the system is extended to include a zeroth site with a dummy spin, Ŝ0, the Mon-

odromy matrix is constructed by taking the product of the Lax matrices of this zeroth

site with each of the other sites in sequence, like so

M̂(λ) =
(

L̃01(λ)L̃02(λ) · · · L̃0N (λ)
)

=
∏

n

L̃0n(λ), (3.2.7)

and the Transfer matrix, T̂ is just the trace of the Monodromy matrix, over the zeroth

site [5], i.e.

T̂ (λ) = tr0 M̂(λ). (3.2.8)

This zeroth site is a mysterious addition, and the reasons for its inclusion have never

been made entirely clear. It will be shown later in this chapter however, that its function

is purely to maintain the periodic boundary conditions imposed upon the system. As

described in Chapter 1, this Transfer matrix is central to the generation of the conservation
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laws of a system. Following on from an alteration to the above Lax operator, it will be

the dominant object of the method develpoed in the next section.

It can be inferred from equation (3.2.6) that any two of these Transfer matrices with

different values of the spectral parameter λ will commute [27], i.e.

[

T̂ [λ], T̂ [λ′]
]

= 0. (3.2.9)

It is this result which tells us that operators generated by this matrix will be linearly

independent, and so using a variety of values will give a mutually commuting set of con-

served quantities (indeed, this is how the conservation laws were created for the previous

chapter’s numerical work). These conserved quantities are rather intractable however,

due to their non-locality, and a more useful set of operators to consider are the local con-

servation laws of the system, which as per Chapter 1 can be found as the coefficients of

the expansion

ln
(

T̂ (λ)T̂ (0)−1
)

=
∞
∑

n=1

λn

n!
C̃n−1, (3.2.10)

and as with the Boost operator method C̃0 ≡ Ĥ . Taking the logarithm ensures locality

[33] as C̃n does not involve interactions between spins more than (n + 1) sites apart.

Why this logarithm should create purely local operators is not clear, but the fact it does

allows for the following method of generating the above expansion and calculating the

local conservation laws.

3.3 An Alternative Approach

In this section the major result of the thesis is derived: a new and potentially much simpler

method of calculating the local conservation laws of a wide range of integrable systems.

The permutation operator is separated out from the Lax operator, and therefore from

the Monodromy and Transfer matrices, and eventually shown to vanish from the problem

entirely, along with the associated issue of statistics. The Lax operator meanwhile, is
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rewritten as the exponential of a new operator, V̂ij . Taking the logarithm of the resultant

Transfer matrix leads to a series of recurrence relations which need to be solved order by

order to generate expressions for the local conservation laws in terms of V̂ij . Finding this

operator for a specific system and substituting it into these expressions will then return

the local conservation laws for that system.

3.3.1 Rewriting the Lax Operator

An important feature of the Lax operator is that, when a value of zero is used for the

spectral parameter, it becomes the permutation operator for whichever model is being

considered, i.e.

L̃ij [0] = Σ̂ij , (3.3.1)

with

Σ̂ijL̃jk[λ]Σ̂ij = L̃ik[λ]. (3.3.2)

Another property which will be useful later is that, if one has the permutation operator

between the zeroth site and any other, the trace of this operator over the site-zero subspace

is unity

tr0

(

Σ̂0α

)

= 1. (3.3.3)

The first step towards evaluating the logarithm in equation (3.2.10) is to extract out

the permutation component of the Lax operator to give a new ‘permutationless’ Lax

operator

L̂ij[λ] = L̃ij [λ]Σ̂ij ⇔ L̃ij [λ] = L̂ij [λ]Σ̂ij , (3.3.4)
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where this new operator becomes the identity when λ is set to zero

L̂ij [0] = Î . (3.3.5)

This separating out of the permutation aspect of the Lax operator represents a subtle

issue which needs to be addressed: that of the statistics of the models being considered.

The ‘loss’ of statistics when transforming from the (fermionic) Hubbard model (equation

(5.2.1)) to the (bosonic) coupled-spin model (equation (5.2.4)), for example, has long been

a concern [39, 40]. As the following steps show, rewriting the Lax operator in the above

manner removes almost all of the permutation from the argument of the left hand side

of equation (3.2.10), leaving only that between the ends of the lattice / chain. This final

permutation term is then seen to care only about preserving the boundary conditions (and

thus be irrelevant in the infinite lattice / chain). One might therefore suspect that the

local conservation laws are independent of the statistics, a suspicion which is confirmed

by the results of fermionic calculations matching the original bosonic ones (under the

Jordan-Wigner transformation) [41].

In terms of this new Lax operator the Transfer matrix becomes

T̂ [λ] = tr0

(

L̂01[λ]Σ̂01L̂02[λ]Σ̂02 · · · L̂0N [λ]Σ̂0N

)

. (3.3.6)

Taking the first (leftmost) permutation operator and permuting it with each other oper-

ator, all the way to the right, gives

T̂ [λ] = tr0

(

L̂01[λ]L̂12[λ]Σ̂12 · · · L̂1N [λ]Σ̂⋆
1N Σ̂01

)

, (3.3.7)

and then repeating the process with each successive permutation operator, permuting

the leftmost one right past each other operator, but stopping after the Σ̂α,N permutation

operator, marked with a ⋆ above (i.e. leaving the permutation operators in reverse order),
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leads to

T̂ [λ] = tr0

(

L̂01[λ]L̂12[λ] · · · L̂N−1,N [λ]Σ̂N−1,N · · · Σ̂23Σ̂12Σ̂01

)

. (3.3.8)

The final (rightmost) permutation operator can now be carefully permuted back through

all the others, which can then be taken outside the trace

T̂ [λ] = tr0

(

L̂01[λ]L̂12[λ] · · · L̂N−1,N [λ]Σ̂0N

)

Σ̂N−1,N · · · Σ̂23Σ̂12. (3.3.9)

Using the properties (3.3.3) and (3.3.5) it is trivial to show that

T̂ [0] = Σ̂N−1,N · · · Σ̂23Σ̂12, (3.3.10)

and so the expression we are taking the logarithm of in equation (3.2.10) becomes

T̂ [λ]T̂ [0]−1 = tr0

(

L̂01[λ]L̂12[λ] · · · L̂N−1,N [λ]Σ̂0N

)

. (3.3.11)

The key choice, and the only (but for complicated models very) mathematically taxing

step when applying the method, is to now write this permutationless Lax operator as

L̂ij [λ] = e µV̂ij [µ], (3.3.12)

where µ and the original spectral parameter λ are related by some (analytic) functions

λ = µf(µ) ⇔ µ = λF (λ).

In the following chapter on the XXZ model for example, the two parameters are chosen

to be related as

µ =
1

2
ln

(

sin δ + sin λδ
2

sin δ − sin λδ
2

)
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=
[ δ

2 sin δ

]

λ+
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

λ3 +
[ δ

2 sin δ

]5[sin4 δ

5!
− sin2 δ

3!
+

1

5

]

λ5 + · · · .

Note that this choice is by no means arbitrary, but is made to ensure that to first order

in µ, V̂ij[µ] is equal to the Hamiltonian of the system2. This choice ensures that the first

conservation law generated will be the Hamiltonian.

If an expansion in one parameter is written in terms of the other, the coefficients of

the new expansion will be a linear combination of the coefficients of the original one, and

so equation (3.2.10) becomes

ln
(

T̂ [µ]T̂ [0]−1
)

=

∞
∑

n=1

µn

n!
L̂n−1 + g(µ). (3.3.13)

Discarding the irrelevant g(µ), this will give a transformed set of conservation laws, equiv-

alent to the originals but each containing a linear superposition of the lower order con-

servation laws. Substituting in this exponential form of the Lax operator, the Transfer

Matrix becomes

T̂ [µ]T̂ [0]−1 = tr0

(

eµV̂01[µ]eµV̂12[µ] · · · eµV̂N−1,N [µ]Σ̂0N

)

. (3.3.14)

The next issues to address is that of the dummy site, which, though vital for ensuring

order with finite periodic boundary conditions, can be shown to be unimportant in the

limit of the infinite chain. When considering a conservation law whose order is n lower

than the length of the chain, any combination of n of the Lax operators may be replaced

by unity (this is the same as calculating the final conservation law of a chain with n

fewer sites). If we now employ the restriction that only ‘neighbouring’ operators do not

commute

[

V̂m,m+1, V̂n,n+1

]

= 0 unless |m− n| = 1, (3.3.15)

2And for the isotropic case (XXX or pure Heisenberg model), V̂ij [µ] is exactly the Hamiltonian.
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and look for the conservation law of order one lower than that of the chain then, removing

the V̂r,r+1 term from equation (3.3.14), the block of operators that were to the left of that

term can be permuted to the right of the permutation operator (maintaining the order of

the block). At this point all of the exponentials can be taken outside of the trace which

can then be performed trivially, leaving an ordered product of exponentials

T̂ [µ]T̂ [0]−1 = tr0

(

eµV̂01[µ]eµV̂12[µ] · · · eµV̂r−1,r [µ]eµV̂r+1,r+2[µ] · · · eµV̂N−1,N [µ]Σ̂0N

)

= eµV̂r+1,r+2[µ] · · · eµV̂N−1,N [µ]eµV̂N1[µ]eµV̂12[µ] · · · eµV̂r−1,r [µ]. (3.3.16)

It is clear at this point that the only purpose of the dummy site is to enforce the periodic

boundary conditions for the ordering of terms in the conservation laws, and can therefore

be safely ignored in the infinite system: the N th conservation law can be found by con-

sidering an N site section of a longer chain with all the other V̂ operators removed, and

then the trace is handled simply in the above manner, leaving just the exponential terms

T̂ [µ]T̂ [0]−1 = eµV̂12[µ]eµV̂23[µ] · · · eµV̂N−1,N [µ]. (3.3.17)

While the above expression is sufficient for the infinite chain, it is not properly correct

for the finite periodic chain: the result must be periodised. This is necessary for the

generation of expressions which run past the end of the chain and back to the start, i.e.

which involve the term eµV̂N1[µ], as in equation (3.3.16). The dummy site therefore (in the

form of the Σ̂0N term) is absolutely necessary for the periodisation of the above result for

finite chains.

3.3.2 Expanding the Logarithm

The final step is to take the logarithm of equation (3.3.17) and write it as an expansion

in powers of µ, and as in equation (3.3.13) the coefficient of each term will be a new local

conservation law plus a linear combination of the previous ones. The above product of
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exponentials can be written as

eX̂n+1 =

n+1
∏

m=1

eµV̂m , (3.3.18)

again using the simplified notation V̂m ≡ V̂m,m+1[µ] and setting X̂0 = 0. The local

conservation laws can then be generated order by order by using the Campbell-Baker-

Hausdorff identity (see Appendix A) to iteratively solve

X̂n+1 = ln
(

eX̂neµV̂n+1

)

, (3.3.19)

to find the coefficients of the expansion

X̂n =

∞
∑

p=1

µp

p!
X̂(p)

n [µ] where X̂(p) = O(V̂ p).

The final subtlety is that these coefficients are also functions of the parameter µ, and so

each will also contribute terms to both its own and higher order conservation laws.

Employing the Campbell-Baker-Hausdorff expansion to expand the right hand side of

equation (3.3.19) in terms of commutators of X̂n and V̂n gives

X̂n+1 = X̂n+µV̂n+1+
1

2!

[

X̂n, µV̂n+1

]

+
1

3!

1

2

([

X̂n,
[

X̂n, µV̂n+1

]]

+
[[

X̂n, µV̂n+1

]

, µV̂n+1

])

+
1

4!

[

X̂n,
[[

X̂n, µV̂n+1

]

, µV̂n+1

]]

+
1

5!

{[

X̂n,
[

X̂n,
[[

X̂n, µV̂n+1

]

, µV̂n+1

]]]

+
[[

X̂n,
[[

X̂n, µV̂n+1

]

, µV̂n+1

]]

, µV̂n+1

]

− 1

3

([[

X̂n,
[

X̂n,
[

X̂n, µV̂n+1

]]]

, µV̂n+1

]

+
[

X̂n,
[[[

X̂n, µV̂n+1

]

, µV̂n+1

]

, µV̂n+1

]])

− 1

6

([

X̂n,
[

X̂n,
[

X̂n,
[

X̂n, µV̂n+1

]]]]

+
[[[[

X̂n, µV̂n+1

]

, µV̂n+1

]

, µV̂n+1

]

, µV̂n+1

])}

+ · · · (3.3.20)

Writing each instance of X̂α as its expansion in powers of µ and equating the terms on

each side of this expression with the same order in V̂n gives a series of recurrence relations

X̂
(1)
n+1 = X̂(1)

n + V̂n+1,
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X̂
(2)
n+1 = X̂(2)

n +
[

X̂(1)
n , V̂n+1

]

,

X̂
(3)
n+1 = X̂(3)

n +
3

2

[

X̂(2)
n , V̂n+1

]

+
1

2

[

X̂(1)
n ,
[

X̂(1)
n , V̂n+1

]]

+
1

2

[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]

,

X̂
(4)
n+1 = X̂(4)

n + 2
[

X̂(3)
n , V̂n+1

]

+
[

X̂(2)
n ,
[

X̂(1)
n , V̂n+1

]]

+
[

X̂(1)
n ,
[

X̂(2)
n , V̂n+1

]]

+
[[

X̂(2)
n , V̂n+1

]

, V̂n+1

]

+
[

X̂(1)
n ,
[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]]

,

X̂
(5)
n+1 = X̂(5)

n +
5

2

[

X̂(4)
n , V̂n+1

]

+
5

3

[

X̂(3)
n ,
[

X̂(1)
n , V̂n+1

]]

+
5

3

[

X̂(1)
n ,
[

X̂(3)
n , V̂n+1

]]

+
5

2

[

X̂(2)
n ,
[

X̂(2)
n , V̂n+1

]]

+
5

3

[[

X̂(3)
n , V̂n+1

]

, V̂n+1

]

+
5

2

[

X̂(2)
n ,
[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]]

+
5

2

[

X̂(1)
n ,
[[

X̂(2)
n , V̂n+1

]

, V̂n+1

]]

+
[

X̂(1)
n ,
[

X̂(1)
n ,
[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]]]

+
[[

X̂(1)
n ,
[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]]

, V̂ n + 1
]

− 1

3

[[

X̂(1)
n ,
[

X̂(1)
n ,
[

X̂(1)
n , V̂n+1

]]]

, V̂n+1

]

−1

3

[

X̂(1)
n ,
[[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]

, V̂n+1

]]

− 1

6

[

X̂(1)
n ,
[

X̂(1)
n ,
[

X̂(1)
n ,
[

X̂(1)
n , V̂n+1

]]]]

−1

6

[[[[

X̂(1)
n , V̂n+1

]

, V̂n+1

]

, V̂n+1

]

, V̂n+1

]

.

These equations need to be solved order by order to give the terms which make up the

local conservation laws. For example the equation for the first coefficient, involving terms

O(V̂ ), can be solved trivially to give

X̂
(1)
M =

M
∑

n=0

V̂n. (3.3.21)

The solution to the next equation (terms O(V̂ 2)) requires the previous result, as well as

the previously imposed restriction on the commutation relations of V̂m (equation(3.3.15))

X̂
(2)
n+1 − X̂(2)

n =
[

X̂(1)
n , V̂n

]

=
n−1
∑

m=0

[

V̂m, V̂n

]

=
[

V̂n−1, V̂n

]

,

which finds the second coefficient to be

X̂
(2)
M =

M
∑

n=0

[

V̂n−1, V̂n

]

. (3.3.22)
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Both of these are now needed to solve at the next order, and so on, each equation need-

ing the solutions for all previous coefficients and giving a series of increasingly lengthy

expressions in commutators of V̂m

X̂
(3)
M =

M
∑

n=0

2
[

V̂n−2, V̂n−1, V̂n

]

+
1

2

[

V̂n−1,
[

V̂n−1, V̂n

]]

+
1

2

[[

V̂n−1, V̂n

]

, V̂n

]

(3.3.23)

X̂
(4)
M =

M
∑

n=0

6
[

V̂n−3, V̂n−2, V̂n−1, V̂n

]

+ 2
([[

V̂n−2, V̂n−1

]

,
[

V̂n−1, V̂n

]]

+
[

V̂n−2, V̂n−1, V̂n, V̂n

]

+
[

V̂n−2, V̂n−2, V̂n−1, V̂n

])

+
[

V̂n−1, V̂n−1, V̂n, V̂n

]

(3.3.24)

X̂
(5)
M =

M
∑

n=0

24
[

V̂n−4, V̂n−3, V̂n−2, V̂n−1, V̂n

]

+ 9
[

Ŵn−2, V̂n−1, V̂n

]

+ 9
[

V̂n−3, V̂n−2, Ûn

]

+6
[[

V̂n−3, Ŵn−1

]

, V̂n

]

+ 3
[[

Ûn−2, V̂n−1

]

, V̂n

]

+ 6
[

V̂n−3,
[

Ûn−1, V̂n

]]

+3
[

V̂n−3,
[

V̂n−2, Ŵn

]]

+ 4
[

V̂n−2,
[

V̂n−2, Ûn

]]

+ 4
[

V̂n−2,
[

Ûn−1, V̂n

]]

+
[

V̂n−2,
[

V̂n−2, Ŵn

]]

−
[

Ŵn−1,
[

V̂n−1, V̂n

]]

+ 4
[[

V̂n−2, Ŵn

]

, V̂n

]

+
[[

Ûn−1, V̂n

]

, V̂n

]

−
[[

V̂n−2, V̂n−1

]

, Ûn

]

+
[[

V̂n−2, V̂n−1

]

, Ŵn

]

+
[

Ûn−1,
[

V̂n−1, V̂n

]]

− 2

3

[[

Ûn−1, V̂n−1

]

, V̂n

]

− 2

3

[

V̂n−2,
[

V̂n−1, Ŵn

]]

+
[

V̂n−1,
[

V̂n−1, Ûn

]]

− 1

3

[[

V̂n−1, Ŵn

]

, V̂n

]

+
[[

V̂n−1, Ûn

]

, V̂n

]

−1

3

[

V̂n−1,
[

Ûn, V̂n

]]

+
2

3

[

V̂n−2,
[

Ûn, V̂n

]]

+
2

3

[

V̂n−2,
[

Ŵn−1, V̂n

]]

−1

6

[

V̂n−1,
[

V̂n−1, Ŵn

]]

− 1

6

[[

Ûn, V̂n

]

, V̂n

]

, (3.3.25)

where

Ûn =
[[

V̂n−1, V̂n

]

, V̂n

]

and Ŵn =
[

V̂n−1,
[

V̂n−1, V̂n

]]

. (3.3.26)

Thus far the steps taken have been entirely general and apply to any Lax integrable

system3, not just fundamental ones such as the Heisenberg-like models. Though the calcu-

lations are again becoming incredibly long winded (the sixth coefficient is still achievable

in a reasonable time, but higher orders will require computational aid), this generality

3where L̂ can be written in the permutationless form.
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3.3. An Alternative Approach

means that the coefficients need only be found once, and can then be used for any suitable

model.

As was said earlier, for a given model the only non-trivial task is finding the operator

V̂n[µ], the log of the Lax operator for the system in question (and which obeys the com-

mutations in equation (3.3.15)). Assuming this can be done, then this operator can be

substituted into the above coefficients of X̂n and then terms which are the same order in

µ can be grouped together and the coefficients of these groups are the local conservation

laws and can simply be read off.

The following chapter demonstrates this method in full by finding the appropriate

V̂n[µ] for the XXZ model to be

V̂n[µ] = ĥn + ∆(1 − ∆2)P̂n,n+1

(

µ2

3!
+
µ4

5!
(1 − 9∆2) + · · ·

)

+ O(µ6), (3.3.27)

and calculating and simplifying the first few local conservation laws. For comparison

purposes the first four conservation laws generated are

L̂1 =
∑

n

ĥn = Ĉ0, (3.3.28a)

L̂2 =
∑

n

[

ĥn, ĥn+1

]

= −Ĉ1, (3.3.28b)

L̂3 =
∑

n

2
[

ĥn, ĥn+1, ĥn+2

]

+
1

2

[

ĥn,
[

ĥn, ĥn+1

]]

+
1

2

[[

ĥn, ĥn+1

]

, ĥn+1

]

+∆(1 − ∆2)P̂n,n+1

= Ĉ2 − (1 + ∆2) Ĉ0, (3.3.28c)

L̂4 =
∑

n

6
[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

+ 2
[[

ĥn, ĥn+1

]

,
[

ĥn+2, ĥn+3

]]

+2
[

ĥn, ĥn+1, ĥn+2, ĥn+2

]

+ 2
[

ĥn, ĥn, ĥn+1, ĥn+2

]

+
[

ĥn, ĥn, ĥn+1, ĥn+1

]

+
1

2
∆(1 − ∆2)

([

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

= − Ĉ3 + 4(1 + ∆2) Ĉ1. (3.3.28d)

In each case the local conservation law (L̂) generated by the new method has also been
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written as a linear combination of those generated by using the Boost operator method

(Ĉ), as calculated earlier in the chapter and in [5, 33, 42, 43]. Up to an irrelevant minus

sign, and the predicted additional linear combination of lower order laws, the new methods

generates exactly the same the same conservation laws as the Boost method.

3.4 Summary

This chapter started with an analysis of the Boost operator method of generating the local

conservation laws, by attempting to use it for the XXZ model. It has been shown that,

while the local conservation laws can be found using this method, there are subtleties.

Specifically, additional knowledge of the Hamiltonian in the form of identities such as

equations (3.1.8a) and (3.1.8b) is necessary to show the cancellation of unphysical terms.

Without this extra information the terms with the site dependent coefficients remain

and the local conservation laws cannot be found. Furthermore, this knowledge and the

cancellation process is necessary for every model one wishes to find the local conservation

laws of.

Using the idea that the local conservation laws of a system can also be generated from

the logarithm of the Transfer matrix of that system, a new method has been developed.

The starting point is to remove the permutation aspect from the Lax, Monodromy and

Transfer operators. As a side effect, this ends up showing the local conservation laws

produced to be independent of the statistics of a model. The logarithm of the Lax

operator is then taken to give the new operator V̂ij [µ], and the Transfer matrix can then

be written as a product of exponentials. Taking the logarithm of such a product is a well

known problem, whose iterative solution leads to a series of recurrence relations, which

in turn give the coefficients of the expansion of the logarithm as commutators in V̂ij[µ].

Substituting this operator into the coefficients and collecting terms of the same order in

µ then gives the local conservation laws.

This new method has two major advantages over the Boost operator. Firstly, though
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3.4. Summary

the local conservation laws produced can be simplified (increasingly so at higher orders),

there is no requirement to cancel any terms or otherwise fix something first. The second

advantage is that essentially, all of the hard work of the method has already been done.

Although, finding the V̂ij [µ] operator for a model is not always trivial, it should not

involve any major calculations. So, for any model where this operator can be found, the

local conservation laws can be generated almost effortlessly by substituting it into the X̂

coefficients. The only difficulty now is to continue the method and find the higher order

coefficients, though this will require a truly Herculean effort. It would be no more work

than finding the next order conservation law of the XXZ model though, and drastically

less work if one also wished to then calculate conservation laws of the same order for the

Hubbard and other models.

This will now be demonstrated in the following two chapters, where the local conser-

vation laws of the XXZ and Hubbard models are calculated.
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Chapter 4

Local Conservation Laws of the XXZ

Model

In this chapter, the previously outlined method is demonstrated fully via the full calcula-

tion of the first five local conservation laws of the XXZ model. The preferred version of the

Lax operator is found and its logarithm calculated to give the operator V̂ij , as described

in the last chapter. This is then substituted into equations (3.3.21) to (3.3.25) and the

resulting terms are collected together at each order in µ and used to generate the first five

local conservation laws. First, however, a well known one-dimensional antiferromagnet is

considered and shown to be described by the Heisenberg model.

4.1 KCuF3

Potassium Copper Fluoride has received a lot of attention in recent years [44, 45, 46,

47, 48] and is an excellent realisation of a one-dimensional system. The compound has

a pseudocubic perovskite structure as shown in figure 4.1, which is distorted due to a

cooperative Jahn-Teller effect [48]. The Cu ions form a simple cubic lattice with a F

ion at the midpoint of each nearest neighbour pair, forming a series of corner sharing

octahedra with a Cu ion at the centre of each octahedron. The large remaining spaces

are occupied by K ions such that they also form a simple cubic lattice with each K at the
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4.1. KCuF3

Figure 4.1: Atomic arrangement of KCuF3: Potassium is shown in grey, Copper in white
and Fluorine in black.

centre of a cube of F ions.

Each K donates an electron, while each F gains one, leaving both with a filled outer

shell. Since there are three F ions for each K, there is a shortfall in electrons which is

made up by the Cu, each of which donates two electrons to become Cu2+. These Cu ions

now have nine electrons in the 3d orbitals, which is one short of full. It is equivalent (and

conventional) to think of this as there being a single hole in the 3d orbitals, and the orbital

and magnetic ordering of the compound are determined by the dynamics of this hole. The

d-shell has five orbitals; the threefold t2g states are all filled, leaving the hole to reside

in the twofold eg group [45]. This final orbital degeneracy is broken by the Jahn-Teller

effect, leading to alternate orbital occupation of the sites on the ab plane. Along the

c-axis, planes are stacked such that they are either the same or alternate, corresponding

to the experimentally observed a and d polytypes respectively [44]. The hopping of the

hole between Cu ions is thus restricted in plane and occurs only along the c-axis, which

is why the material can be modelled as a one-dimensional system.

The archetypal model for studying strong correlations in electron systems is the Hub-
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4.1. KCuF3

bard model

Ĥ = −t
∑

<i,j>

∑

σ

Ĉ+
iσĈjσ + U

∑

i

Ĉ+
i↑Ĉi↑Ĉ

+
i↓Ĉi↓, (4.1.1)

over some lattice of sites i, where < i, j > denotes a nearest neighbour pair. In this

particular case the operators represent the creation and annihilation of holes rather than

electrons, and since KCuF3 has exactly one hole for each Cu ion, it is said to be half-

filled. The cost of having a doubly occupied site is very much greater than the hopping

energy, i.e. U >> t, and so the ground state requires this penalty be avoided by only ever

having one spin (hole) per site. This leads to a highly degenerate ground state however,

as all configurations with one spin per site are equally viable. Going to second order in

perturbation theory, which represents a virtual hopping onto neighbouring sites1, lifts the

degeneracy and provides an effective Hamiltonian

Ĥeff =
∑

<i,j>

(

−t
∑

σ

Ĉ+
iσĈjσ

)

−1

U

(

−t
∑

τ

Ĉ+
jτ Ĉiτ

)

=
−t2
U

∑

<i,j>

∑

στ

Ĉ+
iσĈjσĈ

+
jτ Ĉiτ

=
−t2
U

∑

<i,j>

∑

στ

Ĉ+
iσĈiτ

(

δστ − Ĉ+
jτ Ĉjσ

)

=
−t2
U

∑

<i,j>

(

1 −
∑

στ

Ĉ+
iσĈiτ Ĉ

+
jτ Ĉjσ

)

.

By using the following associations to switch from creation and annihilation to spin op-

erators

Ĉ+
l↑Ĉl↑ =

1

2
+ Ŝz

l , Ĉ+
l↑Ĉl↓ = Ŝ+

l = Ŝx
l + iŜy

l ,

Ĉ+
l↓Ĉl↓ =

1

2
− Ŝz

l , Ĉ+
l↓Ĉl↑ = Ŝ−

l = Ŝx
l − iŜy

l , (4.1.2)

1Where a hop takes the system out of a ground state, an energy penalty is paid for the double
occupancy, and a second hop returns the system to a ground state.
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4.2. Rewriting the Lax Operator

the effective Hamiltonian becomes

Ĥeff =
t2

U

∑

<i,j>

(

−1 +
[1

2
+ Ŝz

i

][1

2
+ Ŝz

j

]

+
[1

2
− Ŝz

i

][1

2
− Ŝz

j

]

+ Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j

)

=
t2

U

∑

<i,j>

(

Ŝ+
i Ŝ

−
j + Ŝ−

i Ŝ
+
j + 2Ŝz

i Ŝ
z
j − 1

2

)

.

The derivation thus far has been independent of lattice or dimension. Since the problem

under consideration has been reduced to a one-dimensional chain of sites, the sum over

nearest neighbour pairs becomes the sum over the site index i, and j → i+ 1. Including

a factor of two to avoid double counting, this gives

Ĥeff =
2t2

U

∑

i

(

Ŝ+
i Ŝ

−
i+1 + Ŝ−

i Ŝ
+
i+1 + 2Ŝz

i Ŝ
z
i+1 −

1

2

)

=
4t2

U

∑

i

(

Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + Ŝz

i Ŝ
z
i+1 −

1

4

)

. (4.1.3)

Ignoring the constant term, this is equation (2.3.1) with exchange constant J = 4t2

U
and

∆ = 1, i.e. the one-dimensional Heisenberg model, theoretical solutions of which fit very

well with experimental data [49, 50].

4.2 Rewriting the Lax Operator

Over the next few sections the method developed in the last chapter will be applied to

the XXZ model. This process starts by determining a ‘new’ Lax operator of the model,

which is the product of the original Lax operator and the Permutation operator.

As in the previous chapter the Hamiltonian can be rewritten as

Ĥ = 2
∑

i

(

Ŝx
i Ŝ

x
i+1 + Ŝy

i Ŝ
y
i+1 + ∆Ŝz

i Ŝ
z
i+1 −

∆

4

)

=
∑

i

Σ̂i,i+1 + (∆ − 1)P̂i,i+1.

This is a fundamental model [19] and so, as stated in the previous chapter, the Lax
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4.2. Rewriting the Lax Operator

operator is the same as its R-matrix, which has been shown to be [34, 35]

L̃ij [λ] =
S(λ)

2
+ 2

(

Ŝx
i Ŝ

x
j + Ŝy

i Ŝ
y
j + C(λ)Ŝz

i Ŝ
z
j

)

= Σ̂ij +
(

C(λ) − 1
)

P̂ij +
1

2

(

S(λ) − C(λ)
)

, (4.2.1)

where the functions S(λ) and C(λ) depend upon the anisotropy parameter ∆ (itself

parameterised by δ) as follows

∆ = cos δ ≤ 1 S(λ) =
sin δ

2
(1 + λ)

sin δ
2

C(λ) =
cos δ

2
(1 + λ)

cos δ
2

∆ = 1 S(λ) = 1 + λ C(λ) = 1

∆ = cosh δ ≥ 1 S(λ) =
sinh δ

2
(1 + λ)

sinh δ
2

C(λ) =
cosh δ

2
(1 + λ)

cosh δ
2

.

The following calculations will assume the trigonometric representation, although this will

eventually be irrelevant as the final result will only involve ∆ (see equation (4.3.15)).

The first task is to take the above Lax operator and extract from it the permutation

aspect i.e. to find the operator suggested in equation (3.3.4) which, when producted with

the Permutation operator, returns the original Lax operator

L̂ij [λ] = L̃ij [λ]Σ̂ij

= 1 +
(cos δ

2
(1 + λ)

cos δ
2

− 1
)

P̂ij +
1

2

(sin δ
2
(1 + λ)

sin δ
2

− cos δ
2
(1 + λ)

cos δ
2

)

Σ̂ij

= 1 +
(

cos
λδ

2
− sin δ

2
sin λδ

2

cos δ
2

− 1
)

P̂ij +
1

2

(sin λδ
2

cos δ
2

sin δ
2

+
sin λδ

2
sin δ

2

cos δ
2

)

Σ̂ij

= 1 +
(

cos
λδ

2
− 1 +

sin λδ
2

sin δ
(cos δ − 1)

)

P̂ij +
sin λδ

2

sin δ
Σ̂ij , (4.2.2)

where the idea that the Permutation operator squared is unity has been used, along with

the fact that

P̂ij Σ̂ij = P̂ij . (4.2.3)

73



4.3. Calculating V̂ij

Writing L̂ij [λ] in terms of the Hamiltonian instead of the permutation operator then gives

L̂ij [λ] = 1 +
sin λδ

2

sin δ
ĥij +

(

cos
λδ

2
− 1
)

P̂ij . (4.2.4)

4.3 Calculating V̂ij

The next step is to write this new version of the Lax operator as an exponential i.e. to

find the operator V̂ij such that

µV̂ij[µ] = ln(L̂ij). (4.3.1)

This can be done by writing the logarithm of L̂ij as an expansion in powers of the Hamil-

tonian, and employing the identities

ĥ2
ij = 1 + (∆2 − 1)P̂ij, (4.3.2)

which follows directly from the definitions of the Hamiltonian (3.1.1), the projection and

permutation operators, and the property (4.2.3); and

(

ĥij + 1
)(

ĥij − 1
)(

ĥij − ∆
)

= 0, (4.3.3)

which can be deduced from the characteristic polynomial of ĥij . Equation (4.3.3) implies

that the expansion can be truncated at the ĥ2
ij term, as it can be rearranged to write

terms cubic in the Hamiltonian as a quadratic (and thus repeated use will reduce higher

order terms down to a quadratic as well). Using equation (4.3.2), the ĥ2
ij term can instead

be written using P̂ij and so the logarithm of the Lax operator can be written as

ln

(

1 +
sin λδ

2

sin δ
ĥij +

(

cos
λδ

2
− 1
)

P̂ij

)

= α + βĥij + γP̂ij = µV̂ij[µ]. (4.3.4)
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The three coefficients α, β and γ are functions of λ which need to be found and then

rewritten in terms of µ, once the relation between the two parameters has been decided

upon. Setting ĥij = ±1 in equation (4.3.2) gives P̂ij = 0 and so equation (4.3.4) becomes

ln

(

1 ± sin λδ
2

sin δ

)

= α± β, (4.3.5)

and the sum and difference of these two equations give α and β respectively, i.e.

2α = ln

(

1 +
sin λδ

2

sin δ

)

+ ln

(

1 − sin λδ
2

sin δ

)

, (4.3.6)

2β = ln

(

1 +
sin λδ

2

sin δ

)

− ln

(

1 − sin λδ
2

sin δ

)

. (4.3.7)

Similarly finding γ requires setting ĥij = ∆, in which case P̂ij = Î and so equation (4.3.4)

becomes

ln

(

1 +
sin λδ

2

sin δ
∆ +

[

cos
λδ

2
− 1
]

)

= α + β∆ + γ. (4.3.8)

Substituting in the above results for α and β and rearranging slightly, γ is found to be

γ = ln
(

cos
λδ

2
+ ∆

sin λδ
2

sin δ

)

− 1

2
ln
(

1 − sin2 λδ
2

sin2 δ

)

− ∆

2
ln
(sin δ + sin λδ

2

sin δ − sin λδ
2

)

, (4.3.9)

and putting all three coefficients back into equation (4.3.4) gives

µV̂ij [µ] =
1

2
ln

(

1 − sin2 λδ
2

sin2 δ

)

+
1

2
ln

(

sin δ + sin λδ
2

sin δ − sin λδ
2

)

ĥij (4.3.10)

+

[

ln
(

cos
λδ

2
+ ∆

sin λδ
2

sin δ

)

− 1

2
ln
([

1 +
sin λδ

2

sin δ

]1+∆[

1 − sin λδ
2

sin δ

]1−∆)
]

P̂ij.

The final step is to define µ in terms of λ, with the obvious choice being to set it to
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be the coefficient of the Hamiltonian, i.e.

µ =
1

2
ln

(

sin δ + sin λδ
2

sin δ − sin λδ
2

)

. (4.3.11)

This choice is convenient as it will guarantee that the first conservation law generated by

putting this V̂ij [µ] into the coefficients at the end of the previous chapter will be exactly

the Hamiltonian. The constant and coefficient of P̂ij now need to be rearranged so that

they are functions of µ instead of λ. From equation (4.3.11) it can be shown that

coshµ =

[

sin2 δ

sin2 δ − sin2 λδ
2

]
1
2

, sinh µ =

[

sin2 λδ
2

sin2 δ − sin2 λδ
2

]
1
2

, (4.3.12)

and then the constant α trivially becomes

α =
1

2
ln

(

1 − sin2 λδ
2

sin2 δ

)

= ln

(

sin2 δ − sin2 λδ
2

sin2 δ

)
1
2

= − ln (cosh µ) . (4.3.13)

Working from equation (4.3.9) and remembering that cos δ = ∆, the coefficient of P̂ij can

be rewritten as

γ = ln

(

[ cos2 λδ
2

sin2 δ

sin2 δ − sin2 λδ
2

]
1
2

+ ∆
[ sin2 λδ

2

sin2 δ − sin2 λδ
2

]
1
2

)

− ∆µ

= ln

(

∆ sinh µ+
[(1 − sin2 δ) sin2 λδ

2

sin2 δ − sin2 λδ
2

+ 1
]

)

− ∆µ

= ln

(

∆ sinhµ+
[

∆2 sinh2 µ+ 1
] 1

2

)

− ∆µ

= sinh−1 (∆ sinh µ) − ∆µ, (4.3.14)

and the complicated δ dependence has now vanished, leaving just the original anisotropy

parameter. Substituting these coefficients back into equation (4.3.11) gives

µV̂ij [µ] = − ln(coshµ) + µĥij +
(

sinh−1
[

∆ sinhµ
]

− ∆µ
)

P̂ij, (4.3.15)
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and writing the above as an expansion in powers of µ and ignoring the irrelevant constant

V̂ij [µ] = ĥij + ∆(1 − ∆2)P̂ij

(

µ2

3!
+
µ4

5!
(1 − 9∆2) + O(µ6)

)

. (4.3.16)

Note that removing the anisotropy by setting ∆ = 1 (the pure Heisenberg model) returns

the surprisingly simple result V̂ij = ĥij , and the coefficients of equation (3.3.2) are already

the local conservation laws.

At this stage the relative ease of this method becomes clear, since all of the necessary

calculations have already been done, and all that remains is to substitute the above form

of V̂ij into the X̂(i) from the previous chapter. The local conservation laws are then easily

read off, as is shown in the next section.

4.4 Generating the Local Conservation Laws

Putting equation (4.3.16) into the coefficients (3.3.21) to (3.3.25) and looking at X̂[µ], at

each order in µ a new local conservation law is found. Once again adopting ĥn ≡ ĥn,n+1,

the first coefficient is just the operator V̂ij summed over all sites

X̂(1) =
∑

n

ĥn + P̂n,n+1

(

∆(1 − ∆2)
µ2

3!
+ ∆(1 − ∆2)(1 − 9∆2)

µ4

5!

)

+ O(µ6), (4.4.1)

whilst the next three coefficients, up to the order necessary to calculate the fourth local

conservation law, are

X̂(2) =
∑

n

[

ĥn−1, ĥn

]

+
[

P̂n−1,n

(

∆(1 − ∆2)
µ2

3!
+ ∆(1 − ∆2)(1 − 9∆2)

µ4

5!

)

, ĥn

]

+
[

ĥn−1, P̂n,n+1

(

∆(1 − ∆2)
µ2

3!
+ ∆(1 − ∆2)(1 − 9∆2)

µ4

5!

)

]

+
[

P̂n−1,n∆(1 − ∆2)
µ2

3!
, P̂n,n+1∆(1 − ∆2)

µ2

3!

]

+ O(µ6), (4.4.2)

X̂(3) =
∑

n

2
[

ĥn−2, ĥn−1, ĥn

]

+
1

2

[

ĥn−1,
[

ĥn−1, ĥn

]]

+
1

2

[[

ĥn−1, ĥn

]

, ĥn

]

+ ∆(1 − ∆2) ·

·µ
2

3!

(

2
[

P̂n−2,n−1, ĥn−1, ĥn

]

+ 2
[

ĥn−2, P̂n−1,n, ĥn

]

+ 2
[

ĥn−2, ĥn−1, P̂n,n+1

]

77



4.4. Generating the Local Conservation Laws

+
1

2

[

P̂n−1,n,
[

ĥn−1, ĥn

]]

+
1

2

[

ĥn−1,
[

P̂n−1,n, ĥn

]]

+
1

2

[

ĥn−1,
[

ĥn−1, P̂n,n+1

]]

+
1

2

[[

P̂n−1,n, ĥn,
]

ĥn

]

+
1

2

[[

ĥn−1, P̂n,n+1,
]

ĥn

]

+
1

2

[[

ĥn−1, ĥn,
]

P̂n,n+1

]

)

+O(µ4), (4.4.3)

and

X̂(4) =
∑

n

6
[

ĥn−3, ĥn−2, ĥn−1, ĥn

]

+ 2
([[

ĥn−2, ĥn−1

]

,
[

ĥn−1, ĥn

]]

+
[

ĥn−2, ĥn−1, ĥn, ĥn

]

+
[

ĥn−2, ĥn−2, ĥn−1, ĥn

])

+
[

ĥn−1, ĥn−1, ĥn, ĥn

]

+ O(µ2). (4.4.4)

Using the above coefficients in equation (3.3.2), there is only one term at O(µ), from

the first coefficient, and so the first local conservation law is just

L̂1 =
∑

n

ĥn, (4.4.5)

i.e. the Hamiltonian, which is not surprising given the choice of µ. Similarly, there is

only one term of O(µ2), stemming from the second coefficient, and so the second local

conservation law is simply

L̂2 =
∑

n

[

ĥn, ĥn+1

]

. (4.4.6)

Expanding the commutator and writing out the terms explicitly

L̂2 = i
∑

n

ǫαβγ∆α∆βŜβ
n Ŝ

γ
n+1Ŝ

α
n+2

= i
∑

n

{

Ŝx
nŜ

z
n+1Ŝ

y
n+2 − Ŝy

nŜ
z
n+1Ŝ

x
n+2

+∆

(

Ŝy
nŜ

x
n+1Ŝ

z
n+2 + Ŝz

nŜ
y
n+1Ŝ

x
n+2 − Ŝx

nŜ
y
n+1Ŝ

z
n+2 − Ŝz

nŜ
x
n+1Ŝ

y
n+2

)}

, (4.4.7)

= 2i
∑

n

{

Ŝ+
n Ŝ

z
n+1Ŝ

−
n+2 − Ŝ−

n Ŝ
z
n+1Ŝ

+
n+2
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−∆

(

Ŝz
n

[

Ŝ+
n+1Ŝ

−
n+2 − Ŝ−

n+1Ŝ
+
n+2

]

+
[

Ŝ+
n Ŝ

−
n+1 − Ŝ−

n Ŝ
+
n+1

]

Ŝz
n+2

)}

, (4.4.8)

which matches all the previous attempts to calculate this first non-trivial conservation

law [5, 33, 42, 43]. Clearly, with almost as many different ways of representing these

conservation laws as there have been attempts to calculate them, a decision needs to be

made as to which one should be used. Whilst the final of the above forms is the clearest

in terms of the what the conservation laws actually do (to a state), and that used in [5]

looks to be the most concise, the preference here is to leave the conservation laws in the

commutator form that falls naturally from this method, since it is reasonably compact

while still giving some insight into its effects.

For the third local conservation law there are contributions from the third and first

coefficients. In fact, given that V̂ij is an expansion only in even powers of µ, the coefficients

will only have terms that are either odd or even in µ, and will therefore only contribute

terms to the even or odd numbered conservation laws (respectively). Using the reduction

identities (3.1.8a) and (3.1.8b), this third conservation law becomes

L̂3 =
∑

n

2
[

ĥn, ĥn+1, ĥn+2

]

+
1

2

[

ĥn,
[

ĥn, ĥn+1

]]

+
1

2

[[

ĥn, ĥn+1

]

, ĥn+1

]

+∆(1 − ∆2)P̂n,n+1

=
∑

n

2
[

ĥn, ĥn+1, ĥn+2

]

+ (1 + ∆2)ĥn + 2∆(1 − ∆2)P̂n,n+1 − 2∆Σ̂n,n+2. (4.4.9)

Using these reduction identities again on the contribution from the fourth coefficient to

the next local conservation law, plus the contribution from the second coefficient, yields

L̂4 =
∑

n

6
[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

+ 2
[[

ĥn, ĥn+1

]

,
[

ĥn+2, ĥn+3

]]

+2
[

ĥn, ĥn+1, ĥn+2, ĥn+2

]

+ 2
[

ĥn, ĥn, ĥn+1, ĥn+2

]

+
[

ĥn, ĥn, ĥn+1, ĥn+1

]

+
1

2
∆(1 − ∆2)

([

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

=
∑

n

6
[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

+ 6∆
[

Σ̂n,n+2, ĥn+2

]

+ 6∆
[

ĥn, Σ̂n+1,n+3

]
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+2∆
[

Σ̂n,n+2, ĥn+1

]

− 4∆(1 − ∆2)
([

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

−4(1 + ∆2)
[

ĥn, ĥn+1

]

, (4.4.10)

and then using the relation (3.1.12) to simplify this gives

L̂4 =
∑

n

{

6
[

ĥn, ĥn+1, ĥn+2, ĥn+3

]

+ 6∆
[

Σ̂n,n+2, ĥn+2

]

+ 6∆
[

ĥn, Σ̂n+1,n+3

]

+6∆
[

Σ̂n,n+2, ĥn+1

]

}

− 4L̂2. (4.4.11)

Calculating the fifth local conservation law requires the lowest order contribution from

equation (3.3.25)

X̂(5) =
∑

n=0

24
[

ĥn, ĥn+1, ĥn+2, ĥn+3, ĥn+4

]

+ 9
[

ĝn, ĥn+2, ĥn+3

]

+ 9
[

ĥn, ĥn+1, k̂n+2

]

+6
[[

ĥn, ĝn+1

]

, ĥn+3

]

+ 3
[[

k̂n, ĥn+2

]

, ĥn+3

]

+ 6
[

ĥn,
[

k̂n+1, ĥn+3

]]

+3
[

ĥn,
[

ĥn+1, ĝn+2

]]

+ 4
[

ĥn,
[

ĥn, k̂n+1

]]

+ 4
[

ĥn,
[

k̂n, ĥn+2

]]

+
[

ĥn,
[

ĥn, ĝn+1

]]

−
[

ĝn,
[

ĥn+1, ĥn+2

]]

+ 4
[[

ĥn, ĝn+1

]

, ĥn+2

]

+
[[

k̂n, ĥn+2

]

, ĥn+2

]

−
[[

ĥn, ĥn+1

]

, k̂n+1

]

+
[[

ĥn, ĥn+1

]

, ĝn+1

]

+
[

k̂n,
[

ĥn+1, ĥn+2

]]

− 2

3

[[

k̂n, ĥn+1

]

, ĥn+2

]

− 2

3

[

ĥn,
[

ĥn+1, ĝn+1

]]

+
[

ĥn,
[

ĥn, k̂n

]]

− 1

3

[[

ĥn, ĝn

]

, ĥn+1

]

+
[[

ĥn, k̂n

]

, ĥn+1

]

−1

3

[

ĥn,
[

k̂n, ĥn+1

]]

+
2

3

[

ĥn,
[

k̂n+1, ĥn+2

]]

+
2

3

[

ĥn,
[

ĝn, ĥn+2

]]

−1

6

[

ĥn,
[

ĥn, ĝn

]]

− 1

6

[[

k̂n, ĥn+1

]

, ĥn+1

]

+ O(µ2), (4.4.12)

using the simplifications

k̂n =
[[

ĥn, ĥn+1

]

, ĥn+1

]

and ĝn =
[

ĥn,
[

ĥn, ĥn+1

]]

, (4.4.13)
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plus the following contributions from the third and first coefficients respectively

10

3

∑

n=0

2∆(1 − ∆2)
([

ĥn, ĥn+1, P̂n+2,n+3

]

+
[

ĥn, P̂n+1,n+2, ĥn+2

]

+
[

P̂n,n+1, ĥn+1, ĥn+2

])

+
1

2
∆(1 − ∆2)

([

ĥn,
[

ĥn, P̂n+1,n+2

]]

+
[

ĥn,
[

P̂n,n+1, ĥn+1

]]

+
[

P̂n,n+1,
[

ĥn, ĥn+1

]]

+
[[

ĥn, ĥn+1

]

, P̂n+1,n+2

]

+
[[

ĥn, P̂n+1,n+1

]

, ĥn+1

]

+
[[

P̂n,n+1, ĥn+1

]

, ĥn+1

])

+
∑

n=0

∆(1 − ∆2)(1 − 9∆2)P̂n,n+1. (4.4.14)

The double commutators ĝn and k̂n are just the left hand sides of the reduction identities

(3.1.8a) and (3.1.8b), and replacing them with their corresponding right hand sides leaves

in each case another double commutator. Combining the above three contributions then

finds

L̂5 =
∑

n

24
[

ĥn, ĥn+1, ĥn+2, ĥn+3, ĥn+4

]

+20
[

ĥn, ĥn+1, ĥn+2

]

−24∆
[[

Σ̂n,n+2, ĥn+2

]

, ĥn+3

]

+
25

3
∆(1 − ∆2)

[[

P̂n,n+1, ĥn+1

]

, ĥn+2

]

+ 15∆(1 − ∆2)
[

ĥn,
[

ĥn+1, P̂n+2,n+3

]]

−2

3
∆
[

ĥn,
[

ĥn+1, Σ̂n,n+2

]]

− 12∆
[[

ĥn, Σ̂n+1,n+3

]

, ĥn+3

]

− 10∆
[

ĥn,
[

ĥn, Σ̂n+1,n+3

]]

−24∆
[

ĥn,
[

ĥn+1, Σ̂n+2,n+4

]]

−28

3
∆
[[

ĥn, Σ̂n+1,n+3

]

, ĥn+2

]

−2∆
[[

Σ̂n,n+2, ĥn+2

]

, ĥn+2

]

+
4

3
∆
[[

Σ̂n,n+2, ĥn+1

]

, ĥn+2

]

+
4

3
∆
[

ĥn,
[

ĥn+1, Σ̂n+1,n+3

]]

− 28

3
∆
[

ĥn,
[

Σ̂n,n+2, ĥn+2

]]

−5

3
∆
[

ĥn,
[

ĥn, Σ̂n,n+2

]]

− 4

3
∆
[[

ĥn, Σ̂n,n+2

]

, ĥn+1

]

+
1

3
∆
[[

Σ̂n,n+2, ĥn+1

]

, ĥn+1

]

+8∆(1 − ∆2)
[

ĥn,
[

P̂n+1,n+2, ĥn+2

]]

+
23

3
∆(1 − ∆2)

[

P̂n,n+1,
[

ĥn+1, ĥn+2

]]

+
33

6
∆(1 − ∆2)

[

ĥn,
[

ĥn, P̂n+1,n+2

]]

+
4

3
∆(1 − ∆2)

[

ĥn,
[

P̂n,n+1, ĥn+1

]]

+
5

2
(1 + ∆2)ĝn

+∆(1 − ∆2)
[[

ĥn, ĥn+1

]

, P̂n+2,n+3

]

+
2

3
∆(1 − ∆2)

[

P̂n,n+1,
[

ĥn, ĥn+1

]]

−3

2
(1 + ∆2)k̂n

+
2

3
∆(1 − ∆2)

[[

ĥn, ĥn+1

]

, P̂n+1,n+2

]

+
4

3
∆(1 − ∆2)

[[

ĥn, P̂n+1,n+2

]

ĥn+1

]

+
3

2
∆(1 − ∆2)

[[

P̂n,n+1, ĥn+1

]

, ĥn+1

]

+ ∆(1 − ∆2)(1 − 9∆2)P̂n,n+1. (4.4.15)

Some of these new double commutators reduce further, while the rest can be rearranged
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and combined2 to eventually give

L̂5 = 24
∑

n

{[

ĥn, ĥn+1, ĥn+2, ĥn+3, ĥn+4

]

− ∆
[[

Σ̂n,n+2, ĥn+2

]

, ĥn+3

]

−∆
[

ĥn+1, Σ̂n+1,n+3, ĥn+3

]

− ∆
[

ĥn,
[

ĥn+1, Σ̂n+2,n+4

]]

+∆(1 − ∆2)
([[

P̂n,n+1, ĥn+1

]

, ĥn+2

]

+
[

ĥn,
[

ĥn+1, P̂n+2,n+3

]]

+
[

ĥn,
[

P̂n+1,n+2, ĥn+2

]])

+ ∆2Σ̂n,n+3 − ∆(∆ − 1)P̂n,n+3 + ∆3Σ̂n,n+2

+∆(∆2 − 1)P̂n,n+2 − ∆3(∆ + 1)Σ̂n,n+1 + ∆3(∆2 − 1)P̂n,n+1

}

+(10 + 18∆2) L̂3 + (−9 − 18∆2 + 24∆3 + 3∆4) L̂1. (4.4.16)

All of these results are in agreement with those previously calculated [5, 43], but have been

found without the aid of a computer, without major difficulty and in a reasonable time.

Calculation of the sixth local conservation law is also possible3 but beyond that further

progress will require algebraic manipulation software or some other form of computational

aid, or some other means of keeping the ever growing (in both size and number of) terms

under control.

In fairness it should be stated that the identities used to simplify the form of the local

conservation laws in this section are the same as would be used to cancel the unphysical

terms from the Boost operator method. The difference of course, is that here they just

make the conservation laws produced more manageable, as opposed to being necessary

for the method to work at all. An unexpected byproduct of this method is that, for

fundamental models such as the one considered here, it can be used with the Yang-Baxter

equation to generate (at the very least) the first and most well known of these identities.

2See Appendix B for a full list of the identities and relations used.
3See Appendix B.
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4.5 The Reshetikhin Condition

Having an R-matrix which satisfies the Yang-Baxter equation implies severe constraints

on the Hamiltonian [38]. One such constraint is the previously described condition derived

by Reshetikhin. Essentially, the Yang-Baxter equation is expanded in powers of λ and µ,

and a power series form of the R-matrix is then used to show that double commutators

of the Hamiltonian reduce to some linear combination of two site operators. It has since

been shown that the sum of these commutators over all site indices vanishing provides a

sufficient test for the integrability of a model [31], and a generalised form of the condition

has been found which applies to non-fundamental models too [30]. The original condition

is now rederived from the Yang-Baxter equation using the ideas of the previous chapter,

including the exact form of the two-site operators, for the XXZ model.

As was stated in the previous chapter, for fundamental models such as the XXZ the

R-matrix and the Lax operator are one and the same, and so the Yang-Baxter equation

(3.2.6) becomes

L̃ki(u)L̃kj(v)L̃ij(v − u) = L̃ij(v − u)L̃kj(v)L̃ki(u), (4.5.1)

which, in terms of ’new’ Lax operators from equation (3.3.4), is

L̂ki(u)Σ̂kiL̂kj(v)Σ̂kjL̂ij(v − u)Σ̂ij = L̂ij(v − u)Σ̂ijL̂kj(v)Σ̂kjL̂ki(u)Σ̂ki. (4.5.2)

Moving each permutation operator to the right and then reordering them on one side to

match and cancel with the other leaves

L̂ki(u)L̂ij(v)L̂ki(v − u) = L̂ij(v − u)L̂ki(v)L̂ij(u), (4.5.3)

and writing these in the exponential form suggested in the previous chapter (equation
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(3.3.12)) yields

exp
{

µuV̂ki(µu)
}

exp
{

µvV̂ij(µv)
}

exp
{

µv−uV̂ki(µv−u)
}

= exp
{

µv−uV̂ij(µv−u)
}

exp
{

µvV̂ki(µv)
}

exp
{

µuV̂ij(µu)
}

, (4.5.4)

where there are three styles of the new spectral parameter µ, defined earlier in the chapter,

but they are no longer trivially related as u, v and v − u were.

Once again the Campbell-Baker-Hausdorff expansion can be used to write each side

as a sum of the exponents and increasingly complicated commutators of them (Appendix

A), and up to the cubic terms, this is

µuV̂ki(µu) + µvV̂ij(µv) + µv−uV̂ki(µv−u)

+
1

2

(

µuµv

[

V̂ki(µu), V̂ij(µv)
]

+ µvµv−u

[

V̂ij(µv), V̂ki(µv−u)
]

+ µuµv−u

[

V̂ki(µu), V̂ki(µv−u)
])

+
1

6
µuµvµv−u

([

V̂ki(µu),
[

V̂ij(µv), V̂ki(µv−u)
]]

+
[[

V̂ki(µu), V̂ij(µv)
]

, V̂ki(µv−u)
])

+
1

12

(

µ2
uµv

[

V̂ki(µu),
[

V̂ki(µu), V̂ij(µv)
]]

+ µ2
uµv−u

[

V̂ki(µu),
[

V̂ki(µu), V̂ki(µv−u)
]]

+ µ2
vµv−u

[

V̂ij(µu),
[

V̂ij(µu), V̂ki(µv−u)
]]

+ µuµ
2
v

[[

V̂ki(µu), V̂ij(µv)
]

, V̂ij(µv)
]

+ µuµ
2
v−u

[[

V̂ki(µu), V̂ki(µv−u)
]

, V̂ki(µv−u)
]

+ µvµ
2
v−u

[[

V̂ij(µv), V̂ki(µv−u)
]

, V̂ki(µv−u)
])

= µv−uV̂ij(µv−u) + µvV̂ki(µv) + µuV̂ij(µu)

+
1

2

(

µv−uµv

[

V̂ij(µv−u), V̂ki(µv)
]

+ µvµu

[

V̂ki(µv), V̂ij(µu)
]

+ µv−uµu

[

V̂ij(µv−u), V̂ij(µu)
])

+
1

6
µuµvµv−u

([

V̂ij(µv−u),
[

V̂ki(µv), V̂ij(µU)
]]

+
[[

V̂ij(µv−u), V̂ki(µv)
]

, V̂ij(µu)
])

+
1

12

(

µvµ
2
v−u

[

V̂ij(µv−u),
[

V̂ij(µv−u), V̂ki(µu)
]]

+ µuµ
2
v

[

V̂ki(µv),
[

V̂ki(µv), V̂ij(µu)
]]

+ µuµ
2
v−u

[

V̂ij(µv−u),
[

V̂ij(µv−u), V̂ij(µu)
]]

+ µ2
vµv−u

[[

V̂ij(µv−u), V̂ki(µv)
]

, V̂ki(µv)
]

+ µ2
uµv−u

[[

V̂ij(µv−u), V̂ij(µu)
]

, V̂ij(µu)
]

+ µ2
uµv

[[

V̂ki(µv), V̂ij(µu)
]

, V̂ij(µu)
])

. (4.5.5)

Expanding out the right hand side of equation (4.3.11) to find

µλ =
[ δ

2 sin δ

]

λ+
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

λ3 +
[ δ

2 sin δ

]5[sin4 δ

5!
− sin2 δ

3!
+

1

5

]

λ5 + · · · .
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4.5. The Reshetikhin Condition

and substituting this and equation (4.3.16) back into equation (4.5.5), each side of the

Yang-Baxter equation can be written as an expansion in the original spectral parameters

u and v

(

[ δ

2 sin δ

]

u+
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

u3

)

ĥki +

(

[ δ

2 sin δ

]

v +
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

v3

)

ĥij

+

(

[ δ

2 sin δ

]

(v − u) +
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

(v − u)3

)

ĥki

+ ∆(1 − ∆2)
1

3!

[ δ

2 sin δ

]3 (

u3P̂ki + v3P̂ij + (v − u)3P̂ki

)

+
1

2

[ δ

2 sin δ

]2 (

uv
[

ĥki, ĥij

]

+ v(v − u)
[

ĥij , ĥki

]

+ u(v − u)
[

ĥki, ĥki

])

+
1

6
uv(v − u)

[ δ

2 sin δ

]3 ([

ĥki,
[

ĥij , ĥki

]]

+
[[

ĥki, ĥij

]

, ĥki

])

+
1

12

[ δ

2 sin δ

]3(

u2v
[

ĥki,
[

ĥki, ĥij

]]

+ u2(v − u)
[

ĥki,
[

ĥki, ĥki

]]

+ v2(v − u)
[

ĥij ,
[

ĥij , ĥki

]]

+ uv2
[[

ĥki, ĥij

]

, ĥij

]

+ u(v − u)2
[[

ĥki, ĥki

]

, ĥki

]

+ v(v − u)2
[[

ĥij , ĥki

]

, ĥki

])

+ O(u4)

=

(

[ δ

2 sin δ

]

(v − u) +
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

(v − u)3

)

ĥij

+

(

[ δ

2 sin δ

]

v +
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

v3

)

ĥki +

(

[ δ

2 sin δ

]

u+
[ δ

2 sin δ

]3[1

3
− sin2 δ

3!

]

u3

)

ĥij

+ ∆(1 − ∆2)
1

3!

[ δ

2 sin δ

]3 (

(v − u)3P̂ij + v3P̂ki + u3P̂ij

)

+
1

2

[ δ

2 sin δ

]2 (

v(v − u)
[

ĥij , ĥki

]

+ vu
[

ĥki, ĥij

]

+ u(v − u)
[

ĥij , ĥij

])

+
1

6
uv(v − u)

[ δ

2 sin δ

]3 ([

ĥij,
[

ĥki, ĥij

]]

+
[[

ĥij, ĥki

]

, ĥij

])

+
1

12

[ δ

2 sin δ

]3(

v(v − u)2
[

ĥij,
[

ĥij , ĥki

]]

+ u(v − u)2
[

ĥij,
[

ĥij , ĥij

]]

+ uv2
[

ĥki,
[

ĥki, ĥij

]]

+ v2(v − u)
[[

ĥij , ĥki

]

, ĥki

]

+ u2(v − u)
[[

ĥij, ĥij

]

, ĥij

]

+ u2v
[[

ĥki, ĥij

]

, ĥij

])

+ O(u4). (4.5.6)

The first and second order terms cancel trivially, as do the u3 and v3 terms, and noting

that

[

1

3
− sin2 δ

3!

]

=

[

2

3!
− (1 − cos2 δ)

3!

]

=
1

3!

[

1 + ∆2
]

, (4.5.7)
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4.5. The Reshetikhin Condition

then the remaining cubic terms of equation (4.5.6) can be rearranged to give

3(u2v − uv2)
(

[

1 + ∆2
] (

ĥki − ĥij

)

+ ∆(1 − ∆2)
(

P̂ki − P̂ij

)

−
[

ĥij ,
[

ĥij , ĥki

]]

+
[[

ĥij , ĥki

]

, ĥki

])

= 0. (4.5.8)

Assuming û 6= v̂ (the trivial solution to the Yang-Baxter equations), this leaves an expres-

sion that the ĥ and P̂ operators must satisfy: the Reshetikhin condition for this model.

Note that with the choice i = n + 1, j = n + 2, k = n, this expression becomes the

difference of the identities (3.1.8a) and (3.1.8b) from the previous chapter.

Whilst it is useful to show how the suggested new form for the Lax operator can be

used to generate this well known identity, it is the necessity of such identities to the Boost

method that is important. Though expansion of the Yang-Baxter equations in the above

manner or knowledge of the Hamiltonian and it’s structure have been used to find iden-

tities which simplify the form of the conservation laws found in this chapter, these same

identities are essential for removing the unphysical terms in the results created using the

Boost operator.

In the following chapter a non-fundamental model, the Hubbard model, is considered.

The method of Chapter 3 is shown to generate the local conservation laws of the model in

a manner identical to the treatment of the XXZ model in this chapter. The non-abelian

nature of the terms which make up the Hamiltonian however, mean the calculations and

the final form of the conservation laws are much more complicated. Since the Heisenberg

model can be derived from the Hubbard model, one might expect that the Heisenberg

conservation laws could be obtained as a limit of the Hubbard ones. This possibility is

investigated in the final section.
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Chapter 5

Local Conservation Laws of the

Hubbard model

The work of the previous chapter is now repeated for the Hubbard model, and the first

four local conservation laws are calculated. Unlike the XXZ model the Hubbard model is

not fundamental, and although it is still possible to construct a Boost operator [30], it is

non-trivial and the subsequent calculation of the conservation laws is much more taxing

than the XXZ case. As before, an example of a material which can be described by this

model is presented and then the method of Chapter 3 is followed in an identical manner.

5.1 YBa2Cu3O7 and YBa2Cu4O8

These materials are among the most famous and well studied high-temperature super-

conductors. It is generally agreed that superconductivity stems from the CuO2 planes,

and the Hubbard model has been shown to reproduce observed properties [51, 52]. The

CuO layers meanwhile, have been shown to be highly one-dimensional [53], and again

the Hubbard model has been shown to reproduce important features of both materials

[51, 54].

YBa2Cu3O7(Y123) and YBa2Cu4O8(Y124) have the layered structures depicted in

figure 5.1 [55, 56, 57]. The two have an identical basic structure, but Y124 has a double
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5.1. YBa2Cu3O7 and YBa2Cu4O8

(a) YBa2Cu3O7:
The 1D CuO layers
are at the top and
bottom.

Normal Y123 Structure

Normal Y123 Structure

(b) YBa2Cu4O8: The 1D CuO
layers are directly above and
below the offset.

Figure 5.1: Layered structure of YBa2Cu3O7 and YBa2Cu4O8. Large white circles denote
Yttrium, grey are Barium, black are Copper and small white circles represent Oxygen.

(rather than single) layer of CuO chains. Rather than lining up with the first however,

this second layer is shifted along one site in the direction of the chain, as shown in figure

5.1b. The normal Y123 structure then continues from there until the next pair of CuO

layers, where there is another shift of one site along the chains putting layers back in phase

with the first set, and so on, with a shift at each pair of chains so that the subsequent

layers are aligned with either the first or second set.

In both materials, each Y donates five electrons and the Ba each donate two electrons

(a total of nine electrons donated), while every O gains two electrons. This means that

the average charge of the Cu ions in Y123 and Y124 is 5
3

and 7
4

respectively. There is a

non-stochiometric aspect to these materials that was not an issue with KCuF3, each site

has on average between one and two particles on it, i.e. a site can now be either singly or

doubly occupied (with Y124 having slightly more doubly occupied sites than Y123), and

so the Hubbard model is the appropriate model for these materials.

Measurements of the properties of the CuO chains must be taken indirectly by looking
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5.2. Rewriting the Lax Operator

at the difference between results along the a and b axes, so as to eliminate contributions

from the CuO2 planes [58, 59], but even so, it should be possible to experimentally test

the transport properties of a one-dimensional Hubbard system using these materials.

5.2 Rewriting the Lax Operator

The next few sections now follow the same path as those of the last chapter, as the

method of Chapter 3 is now applied to the Hubbard model. As before the Lax operator

is written in its permutationless form, then in the next section its logarithm is taken and

the resultant operator V̂ij found. This new operator is the used in the penultimate section

of this chapter to create the local conservation laws of the Hubbard model by substituting

it into the coefficients from the end of Chapter 3.

The one-dimensional Hubbard Hamiltonian can be written in the following form [60]

Ĥ = −
∑

i,σ

(

Ĉ+
i+1,σĈi,σ + Ĉ+

i,σĈi+1,σ

)

+ U
∑

i

(

n̂i,↑ −
1

2

)(

n̂i,↓ −
1

2

)

, (5.2.1)

in terms of the standard fermionic creation and annihilation, and number operators. Using

a Jordan-Wigner transformation

Ĉj,↑ = exp

(

iπ

j−1
∑

m=1

Ŝ+
mŜ

−
m

)

Ŝ−
j , (5.2.2)

Ĉj,↓ = exp

(

iπ
N
∑

m=1

Ŝ+
mŜ

−
m

)

exp

(

iπ

j−1
∑

m=1

T̂+
m T̂

−
m

)

T̂−
j , (5.2.3)

to re-write the problem in terms of the usual spin raising and lowering operators gives

the associated coupled-spin model [40]

Ĥ =
∑

<ij>

Ĥij =
∑

<ij>

TH
ij + g

(

Ûi + Ûj

)

, (5.2.4)
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5.2. Rewriting the Lax Operator

where < ij > are nearest neighbours; g = 1
4
U parameterises the interaction;

Ûi = 2 Ŝz
i T̂

z
i (5.2.5)

controls it, and the kinetic / hopping term is

TH
ij = Ŝ+

i Ŝ
−
j + Ŝ−

i Ŝ
+
j + T̂+

i T̂
−
j + T̂−

i T̂
+
j . (5.2.6)

Note the use of two spin operators per site, one for each flavour of spin, where spin

up(down) indicates the (non)existence of that style of spin on a particular site. The Lax

operator for this model has been found to be [60]

L̃ij [λ] = eλÛi S̃ij T̃ij e
λÛi , (5.2.7)

where the central two operators have the form

Õij =
1

2

[

1 + sinh κ
2

cosh κ
2

]

+ 2

[

Ôx
i Ô

x
j + Ôy

i Ô
y
j +

(

1 − sinh κ
2

cosh κ
2

)

Ôz
i Ô

z
j

]

. (5.2.8)

which is very similar to the Lax operator of the Heisenberg-like models of the previous

chapter. The interaction strength can be written in the form [60]

g =
U

4
=

sinh 2λ

2

cosh2
(

κ
2

)

sinh
(

κ
2

) , (5.2.9)

and so as λ → 0, this reduces to 2λ = gκ, which implies that κ ∝ λ and therefore when

λ = κ = 0, equation (5.2.7) becomes

L̃ij [0] =

(

1

2
+ 2Ŝi.Ŝi

)(

1

2
+ 2T̂i.T̂i

)

= Σ̂xxz
ij Σ̂xxz

ij

= Σ̂hub
ij , (5.2.10)
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5.2. Rewriting the Lax Operator

i.e. the permutation operator for this representation of the Hubbard model.

As before, the first step is to extract this permutation operator from the Lax oper-

ator. This is a slightly more complicated process than with the XXZ model, where the

permutation operator already appeared explicitly in the Lax operator, but the similarities

in form suggest starting by splitting the Õij into permutation and spin projection parts

Õij =
1

2

[

1 + sinh κ
2

cosh κ
2

]

+ 2

[

Ôx
i Ô

x
j + Ôy

i Ô
y
j +

(

1 − sinh κ
2

cosh κ
2

)

Ôz
i Ô

z
j

]

=
1

2

[

1 + sinh κ
2

cosh κ
2

]

+ 2Ôi.Ôj + 2

[

1 − sinh κ
2

cosh κ
2

− 1

]

Ôz
i Ô

z
j

=

(

1

2
+ 2Ôi.Ôj

)

− 1

2
+

1

2

[

1 + sinh κ
2

cosh κ
2

]

− 2

[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

Ôz
i Ô

z
j

= Σ̂xxz
ij(o) −

[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

](

1

2
+ 2Ôz

i Ô
z
j

)

− 1

2

+
1

2

[

1 + sinh κ
2

cosh κ
2

]

+
1

2

[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

= Σ̂xxz
ij(o) −

[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

P̂ xxz
ij(o) +

sinh κ
2

cosh κ
2

=

(

1 −
[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

P̂ xxz
ij(o) +

sinh κ
2

cosh κ
2

Σ̂xxz
ij(o)

)

Σ̂xxz
ij(o). (5.2.11)

Along with the fact that

Σ̂hub
ij Ûi = Ûj Σ̂hub

ij , (5.2.12)

this allows for a simple rewriting of the Lax operator

L̃ij [λ] = eλÛi S̃ij T̃ij e
λÛi

= eλÛi Ŝij Σ̂xxz
ij↑ T̂ij Σ̂xxz

ij↓ eλÛi

= eλÛi Ŝij T̂ij Σ̂hub
ij eλÛi

= eλÛi Ŝij T̂ij e
λÛj Σ̂hub

ij , (5.2.13)
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and so the desired operator is just

L̂ij [λ] = eλÛi Ŝij T̂ij e
λÛj , (5.2.14)

in terms of the new operators Ôij which, from equation (5.2.11), are

Ôij = 1 −
[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

P̂ xxz
ij(o) +

sinh κ
2

cosh κ
2

Σ̂xxz
ij(o). (5.2.15)

5.3 Calculating V̂ij

Finding the exponential form of the Lax operator requires first obtaining the exponential

form of the operators Ôij. This process closely mirrors that of taking the logarithm of the

Lax operator for the XXZ model, which is not surprising given their very similar forms,

with the equivalent of equation (4.3.4) being

ln

(

1 −
[

cosh κ
2

+ sinh κ
2
− 1

cosh κ
2

]

P̂ xxz
ij(o) +

sinh κ
2

cosh κ
2

Σ̂xxz
ij(o)

)

= α + βP̂ xxz
ij(o).+ γΣ̂xxz

ij(o). (5.3.1)

The coefficients on the left hand side of the above equation can then again be found from

the three cases P̂ xxz
ij(o) = 0 , Σ̂xxz

ij(o) = ± Î and P̂ xxz
ij(o) = Î , Σ̂xxz

ij(o) = Î. The first of these

reduces equation (5.3.1) down to

α± γ = ln

[

1 ± sinh κ
2

cosh κ
2

]

= e±
κ
2

1

cosh κ
2

⇒ eα =
1

cosh κ
2

and γ =
κ

2
, (5.3.2)

and using these and the second case, equation (5.3.1) returns

ln
1

cosh κ
2

= α + β + γ = ln
( 1

cosh κ
2

)

+ β +
κ

2

⇒ β =
κ

2
, (5.3.3)
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and then putting these three coefficients into the left hand side of equation (5.3.1) gives

Ôij =
1

cosh κ
2

e
κ
2

(

Σ̂xxz
ij(o)

−P̂ xxz
ij(o)

)

=
1

cosh κ
2

e
κ
2

(

Ô+
i Ô−

j +Ô−

i Ô+
j

)

. (5.3.4)

Putting the exponential forms of Ŝij and T̂ij into equation (5.2.14) and combining them

so that the exponent becomes the hopping operator TH
ij

L̂ij [λ] = eλÛi
1

cosh κ
2

e
κ
2

(

Ŝ+
i Ŝ−

j +Ŝ−

i Ŝ+
j

)

1

cosh κ
2

e
κ
2

(

T̂+
i T̂−

j +T̂−

i T̂+
j

)

eλÛj

=
1

cosh2 κ
2

eλÛie
κ
2
T̂ H

ij eλÛj , (5.3.5)

which now needs to be found as the exponent of a single operator.

Ignoring the coefficient, which merely contributes a constant, the operator V̂ij can

be found as a Campbell-Baker-Hausdorff expansion, specifically, by using the identity

(A.0.10) it becomes

µV̂ij[µ] = ln eλÛie
κ
2
T̂ H

ij eλÛj

= λÛi +
κ

2
T̂H

ij + λÛj +
1

2

([

λÛi,
κ

2
T̂H

ij

]

+
[

λÛi, λÛj

]

+
[κ

2
T̂H

ij , λÛj

])

+
1

6

([

λÛi,
[κ

2
T̂H

ij , λÛj

]]

+
[[

λÛi,
κ

2
T̂H

ij

]

, λÛj

])

+
1

12

([

λÛi,
[

λÛi,
κ

2
T̂H

ij

]]

+
[

λÛi,
[

λÛi, λÛj

]]

+
[κ

2
T̂H

ij ,
[κ

2
T̂H

ij , λÛj

]]

(5.3.6)

+
[[

λÛi,
κ

2
T̂H

ij

]

,
κ

2
T̂H

ij

]

+
[[

λÛi, λÛj

]

λÛj

]

+
[[κ

2
T̂H

ij , λÛj

]

, λÛi

])

+ · · ·

Whilst this method is perfectly reasonable for finding the lower order coefficients (of V̂ij

as an expansion in µ), it becomes increasingly difficult to find the higher order terms, and

further reduction identities are necessary to control the ever lengthening commutators

that appear. It is better therefore, to seek the exact solution for V̂ij . This can be achieved

by listing all the states for a two site system and calculating the matrix that represents L̂ij

in this basis, splitting it up into the subspaces of differing particle number and calculating

the logarithm of each of these subspace-matrices. Constructing the matrices represent-
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5.3. Calculating V̂ij

ing the hopping and potential operators (T̂H
ij , Ûi and Ûj) in the same basis and then

finding their various commutators by simple matrix multiplication, until the logarithm of

L̂ij can be written as a linear combination of these operators and commutators, which

completes the calculation. The full details can be found in Appendix C, and, using the

reparameterisation

cosh ν = cosh λ cosh κ, (5.3.7)

finds the operator V̂ij to be

µV̂ij[µ] = λ
(

Ûi + Ûj

)

+
κ

4
sinhλ

(

[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûi

]

)

+
κ

4
cosh λ

{

T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

}

+
1

16

{

ν

sinh ν
sinhλ cosh κ− λ

}

(

[

Ûi, T̂
H
ij , T̂

H
ij

]

+
[

T̂H
ij , T̂

H
ij , Ûj

]

)

+
1

4

ν sinhκ

sinh ν

(

T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

)

= λ
(

Ûi + Ûj

)

+
1

4

{

κ cosh ν

cosh κ
+
ν sinh κ

sinh ν

}

T̂H
ij +

κ

4
sinhλ

(

[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûi

]

)

+
1

16

{

ν sinh λ cosh ν

sinh ν cosh λ
− λ

}

(

[

Ûi, T̂
H
ij , T̂

H
ij

]

+
[

T̂H
ij , T̂

H
ij , Ûj

]

)

+
1

4

{

κ cosh ν

cosh κ
− ν sinhκ

sinh ν

}

[

Ûi, T̂
H
ij , Ûj

]

. (5.3.8)

Rearranging this to be in terms of the Hamiltonian rather than the hopping operator finds

µV̂ij[µ] = Ĥij

(

1

4

{

κ cosh ν

cosh κ
+
ν sinh κ

sinh ν

}

+
g

8

{

ν sinhλ cosh ν

sinh ν coshλ
− λ

})

+
(

Ûi + Ûj

)

(

λ− g

4

{

κ cosh ν

cosh κ
+
ν sinhκ

sinh ν

}

− g2

8

{

ν sinh λ cosh ν

sinh ν coshλ
− λ

})

+
κ

4
sinh λ

(

[

Ûi, Ĥij

]

+
[

Ĥij, Ûi

]

)

+
1

16

{

ν sinhλ cosh ν

sinh ν coshλ
− λ

}

(

[

Ûi, Ĥij, Ĥij

]

+
[

Ĥij, Ĥij, Ûj

]

)

+
[

Ûi, Ĥij, Ûj

]

(

1

4

{

κ cosh ν

cosh κ
− ν sinh κ

sinh ν

}

− g

8

{

ν sinhλ cosh ν

sinh ν coshλ
− λ

})

.(5.3.9)

Once again µ is chosen to be the coefficient of the Hamiltonian, and the other coef-
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5.3. Calculating V̂ij

ficients need to be rearranged as functions of it. This is a more challenging task than

before though, as they are functions of three parameters, the relationships between which

are known and must be used in order to obtain each as a function of a single parameter,

which is then written in terms of µ. Firstly, λ can be found as an expansion in κ using

equation (5.2.9)

g =
sinh 2λ

2

cosh2
(

κ
2

)

sinh
(

κ
2

) ≈ 1

2

(

2λ+
8λ3

6

)

(

1 + κ2

8

)2

(

κ
2

+ κ3

48

) =

(

λ+
2λ3

3

)

(

1 + κ2

4

)

κ
2

(

1 + κ2

24

)

⇒ λ+
2λ3

3
≈ gκ

2

(

1 +
κ2

24

)(

1 +
κ2

4

)−1

=
gκ

2

(

1 +
κ2

24
− κ

4

)

=
gκ

2

(

1 − 5κ2

24

)

, (5.3.10)

and then by writing λ as an expansion in powers of κ, putting it into the left hand side

of the above equation and matching the coefficients

λ =
κg

2
− κ3

12

(

5g

4
+ g3

)

+ O(κ5). (5.3.11)

Equation (5.3.7) can be used to obtain ν as a power expansion in κ in the same way

cosh ν = cosh λ cosh κ,

⇒ 1 +
ν2

2
≈

(

1 +
λ2

2

)(

1 +
κ2

2

)

= 1 +
κ2

2

(

1 +
g2

4

)

,

⇒ ν2 ≈ κ2

(

1 +
g2

4

)

, (5.3.12)

and finally the above choice of µ (as the coefficient of Ĥ in equation (5.3.9)) can be used

so that it too is written as an expansion in powers of κ

µ =
1

4

{

κ cosh ν

cosh κ
+
ν sinhκ

sinh ν

}

+
g

8

{

ν sinh λ cosh ν

sinh ν cosh λ
− λ

}
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≈ 1

4

{

κ

(

1 +
λ2

2

)

+ ν
κ+ κ3

6

ν + ν3

6

}

+
g

8

{(

λ+
λ3

6

)(

1 − ν2

6

)(

1 +
κ2

2

)

− λ

}

=
1

4

{

κ

(

1 +
g2κ2

8

)

+

(

κ+
κ3

6

)

(

1 +
κ2(1 + g2

4
)

6

)−1
}

+
g

8

{

λ

(

1 +
λ2

6
− ν2

6
+
κ2

2

)

− λ

}

=
1

4

{

2κ+
κ3g2

12

}

+
g

8

{

κg

2

(

κ2g2

24
− κ2(1 + g2

4
)

6
+
κ2

2

)

}

=
1

4

{

2κ+
κ3g2

6

}

+ O(κ5). (5.3.13)

Rearranging this to have κ (and hence λ and ν) as an expansion in µ

κ = 2µ+
2

3
g2µ3 + O(µ5), (5.3.14)

and then rewriting each of the coefficients in equation (5.3.9) solely in terms of µ gives

V̂n = Ĥn − g

6

(

5 + 6g2
)

µ2
(

Ûn + Ûn+1

)

+
{gµ

2
− g

12

(

5 + 7g2
)

µ3
}([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

+
gµ2

12

(

2g
[

Ûn, Ĥn, Ûn+1

]

+
[

Ûn, Ĥn, Ĥn

]

+
[

Ĥn, Ĥn, Ûn+1

])

+O(µ4), (5.3.15)

with the usual notation Ôn = Ôn,n+1 for Ĥ and V̂ .

5.4 Generating the Local Conservation Laws

As before, finding the local conservation laws is merely a matter of substituting the above

operator in to equations (3.3.21) to (3.3.25), and then using those in equation (3.3.2) and

collecting together the terms at each order in µ. Writing this out explicitly up to O(µ3)

gives

X̂ =
∞
∑

n=0

µ

(

Ĥn − g

6

(

5 + 6g2
)

µ2
(

Ûn + Ûn+1

)

+
gµ

2

([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])
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+
gµ2

12

(

2g
[

Ûn, Ĥn, Ûn+1

]

+
[

Ûn, Ĥn, Ĥn

]

+
[

Ĥn, Ĥn, Ûn+1

])

+ · · ·
)

+
µ2

2!

(

[

Ĥn, Ĥn+1

]

+
[gµ

2

([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

, Ĥn+1

]

+
[

Ĥn,
gµ

2

([

Ûn+1, Ĥn+1

]

+
[

Ĥn+1, Ûn+2

]) ]]

+ · · ·
)

+
µ3

3!

(

2
[

Ĥn, Ĥn+1, Ĥn+2

]

+
1

2

[

Ĥn,
[

Ĥn, Ĥn+1

]]

+
1

2

[[

Ĥn, Ĥn+1

]

, Ĥn+1

]

+ · · ·
)

+ O(µ4). (5.4.1)

Clearly there is again only one term that contributes at order µ, the lowest order term

of X̂1, and so the first local conservation law is trivially

L̂1 =
∑

n

Ĥn, (5.4.2)

i.e. the Hamiltonian, as would be expected. At order µ2 there is a contribution from both

X̂2 (it’s lowest order term) and also from the first order terms of X̂1

L̂2 =
1

2!

∑

n

[

Ĥn, Ĥn+1

]

+
g

2

∑

n

[

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

]

=
∑

n

[

Ĥn, Ĥn+1

]

+ g
([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

. (5.4.3)

Writing out the operators explicitly and performing the commutations, this second local

conservation law becomes

L̂2 = −2
∑

n

{

Ŝz
n+1

(

Ŝ+
n Ŝ

−
n+2 − Ŝ−

n Ŝ
+
n+2

)

+ T̂ z
n+1

(

T̂+
n T̂

−
n+2 − T̂−

n T̂
+
n+2

)

}

+U
∑

n

{

(

Ŝ+
n Ŝ

−
n+1 − Ŝ−

n Ŝ
+
n+1

)(

T̂ z
n + T̂ z

n+1

)

+
(

T̂+
n T̂

−
n+1 − T̂−

n T̂
+
n+1

)(

Ŝz
n + Ŝz

n+1

)

}

= 4i
∑

n

{

Ŝz
n+1

(

Ŝx
nŜ

y
n+2 − Ŝy

nŜ
x
n+2

)

−1

2
U
(

Ŝx
nŜ

y
n+1 − Ŝy

nŜ
x
n+1

)(

T̂ z
n + T̂ z

n+1

)

+
(

Ŝ ↔ T̂
)

}

, (5.4.4)
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and inverting the Jordan-Wigner transformation gives the fermionic form

L̂2 = −2
∑

n,σ

{

(

Ĉ+
n+2,σĈn,σ − Ĉ+

n,σĈn+2,σ

)

−U
(

Ĉ+
n+1,σĈn,σ − Ĉ+

n,σĈn+1,σ

)(

n̂n+1,σ′ + n̂n,σ′ − 1
)

}

, (5.4.5)

and these are consistent with the expressions obtained by Shastry [60] and others [5, 30,

41, 42].

There are contributions at order µ3 from each of the first three X̂n’s, which combine

to give

L̂3 =
1

3!

∑

n

2
[

Ĥn, Ĥn+1, Ĥn+2

]

+
1

2

[

Ĥn, Ĥn, Ĥn+1

]

+
1

2

[

Ĥn, Ĥn+1, Ĥn+1

]

+
1

2!

∑

n

g

2

([

Ĥn,
[

Ûn+1, Ĥn+1

]

+
[

Ĥn+1, Ûn+2

]]

+

[[

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

]

, Ĥn+1

])

−
∑

n

g

6

(

5 + 6g2
)

(

Ûn + Ûn+1

)

− g

12

(

2g
[

Ûn, Ĥn, Ûn+1

]

+
[

Ûn, Ĥn, Ĥn

]

+
[

Ĥn, Ĥn, Ûn+1

])

=
∑

n

2
[

Ĥn, Ĥn+1, Ĥn+2

]

+
1

2

[

Ĥn, Ĥn, Ĥn+1

]

+
1

2

[

Ĥn, Ĥn+1, Ĥn+1

]

+
3g

2

([

Ĥn,
[

Ûn+1, Ĥn+1

]]

+
[

Ĥn,
[

Ĥn+1, Ûn+2

]]

+
[[

Ûn, Ĥn

]

Ĥn+1

]

+
[[

Ĥn, Ûn+1

]

, Ĥn+1

])

+
g

2

([

Ûn, Ĥn, Ĥn

]

+
[

Ĥn, Ĥn, Ûn+1

])

+g2
[

Ûn, Ĥn, Ûn+1

]

− g
(

5 + 6g2
)

(

Ûn + Ûn+1

)

, (5.4.6)

and using the relations

∑

n

([

Ĥn−1, Ĥn−1, Ĥn

]

+ g2
[

Ûn, Ĥn, Ûn+1

]

− Ĥn,n+1 + g
(

Ûn + Ûn+1

))

=
∑

n

g
([

Ĥn−1, Ûn, Ĥn

]

+
[

Ĥn, Ĥn, Ûn+1

]

+
[[

Ûn−1, Ĥn−1

]

, Ĥn

])

, (5.4.7)

∑

n

([

Ĥn−1, Ĥn, Ĥn

]

+ g2
[

Ûn, Ĥn, Ûn+1

]

− Ĥn,n+1 + g
(

Ûn + Ûn+1

))

=
∑

n

g
([

Ĥn−1, Ûn, Ĥn

]

+
[

Ûn, Ĥn, Ĥn

]

+
[

Ĥn−1

[

Ĥn, Ûn+1

]])

, (5.4.8)
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∑

n

([

Ĥn,
[

Ûn+1, Ĥn+1

]]

−
[[

Ĥn, Ûn+1

]

, Ĥn+1

])

=
∑

n

[

Ûn+1

[

Ĥn, Ĥn+1

]]

= 0, (5.4.9)

and

[

Ĥn,
[

Ĥn, Ûn+1

]]

=
[[

Ûn, Ĥn

]

, Ĥn

]

− 4 Ûn + 4 Ûn+1 (5.4.10)

⇒
∑

n

(

[

Ûn, Ĥn, Ĥn

]

−
[

Ĥn, Ĥn, Ûn+1

]

)

= 0,

equation (5.4.6) reduces to

L̂3 =
∑

n

2
[

Ĥn, Ĥn+1, Ĥn+2

]

+ 2
[

Ĥn, Ĥn, Ĥn+1

]

+ 2
[

Ĥn, Ĥn+1, Ĥn+1

]

−2g
[

Ûn, Ĥn, Ĥn

]

+ 4g2
[

Ûn, Ĥn, Ûn+1

]

− 3Ĥn − 2g(2 + 6g2)Ûn. (5.4.11)

At order µ4 there are significantly many more terms to deal with. This is due to

more complicated nature of V̂ij, which means that, unlike the XXZ model, there are

contributions to the nth conservation law from all of the coefficients up to and including

X̂n. Not only that, but the first n − 1 coefficients contribute more terms than in the

previous case too, and so the effort required in calculating these conservation laws is

increasing much more quickly than with the XXZ model. Thus collecting together the

contributions to the fourth local conservation law gives the somewhat ponderous

L̂4 =
1

4!

∑

n

6
[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+3

]

+ 2
[[

Ĥn, Ĥn+1

]

,
[

Ĥn+1, Ĥn+2

]]

+2
[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+2

]

+ 2
[

Ĥn, Ĥn, Ĥn+1, Ĥn+2

]

+
[

Ĥn, Ĥn, Ĥn+1, Ĥn+1

]

+
1

3!

∑

n

g
([[

Ûn, Ĥn

]

,
[

Ĥn+1, Ĥn+2

]]

+
[

Ĥn,
[[

Ûn+1, Ĥn+1

]

, Ĥn+2

]]

+
[

Ĥn,
[

Ĥn+1,
[

Ûn+2, Ĥn+2

]]]

+
[[

Ĥn, Ûn+1

]

,
[

Ĥn+1, Ĥn+2

]]

+
[

Ĥn,
[[

Ĥn+1, Ûn+2

]

, Ĥn+2

]]

+
[

Ĥn,
[

Ĥn+1,
[

Ĥn+2, Ûn++3

]]])

+
g

4

([[

Ûn, Ĥn

]

,
[

Ĥn, Ĥn+1

]]

+
[

Ĥn,
[[

Ûn, Ĥn

]

, Ĥn+1

]]

+
[

Ĥn,
[

Ĥn,
[

Ûn+1, Ĥn+1

]]]
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+
[[

Ĥn, Ûn+1

]

,
[

Ĥn, Ĥn+1

]]

+
[

Ĥn,
[[

Ĥn, Ûn+1

]

, Ĥn+1

]]

+
[

Ĥn,
[

Ĥn,
[

Ĥn+1, Ûn+2

]]]

+
[[[

Ûn, Ĥn

]

, Ĥn+1

]

, Ĥn+1

]

+
[[

Ĥn,
[

Ûn+1, Ĥn+1

]]

, Ĥn+1

]

+
[[

Ĥn, Ĥn+1

]

,
[

Ûn+1, Ĥn+1

]]

+
[[[

Ĥn, Ûn+1

]

, Ĥn+1

]

, Ĥn+1

]

+
[[

Ĥn,
[

Ĥn+1, Ûn+2

]]

, Ĥn+1

]

+
[[

Ĥn, Ĥn+1

]

,
[

Ĥn+1, Ûn+2

]])

+
1

2!

∑

n

−g
6

(5 + 6g2)

([

Ûn, Ĥn+1

]

+
[

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

]

+
[

Ĥn, Ûn+2

])

+
g2

6

([[

Ûn, Ĥn, Ûn+1

]

, Ĥn+1

]

+
[

Ĥn,
[

Ûn+1, Ĥn+1, Ûn+2

]])

+
g

12

([[

Ûn, Ĥn, Ĥn

]

, Ĥn+1

]

+
[

Ĥn,
[

Ûn+1, Ĥn+1, Ĥn+1

]]

+
[[

Ĥn, Ĥn, Ûn+1

]

, Ĥn+1

]

+
[

Ĥn

[

Ĥn+1, Ĥn+1, Ûn+2

]])

+
∑

n

−g
12

(5 + 7g2)
([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

.

Using the previous identities and those listed at the end of Appendix C, these terms can be

reduced and recombined to give the following expression for the fourth local conservation

law

L̂4 =
∑

n

6
[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+3

]

+ 6
[[

Ĥn, Ĥn+1

]

,
[

Ĥn+1, Ĥn+2

]]

+6
[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+2

]

+ 6
[

Ĥn, Ĥn, Ĥn+1, Ĥn+2

]

+3
[

Ĥn, Ĥn, Ĥn+1, Ĥn+1

]

+ 6g2
([[

Ûn, Ĥn, Ûn+1

]

, Ĥn+1

]

+
[

Ĥn,
[

Ûn+1, Ĥn+1, Ûn+2

]])

+ (−8 + 4g2)L̂2

−6g(1 + 6g2)
([

Ĥn, Ûn+1

]

+
[

Ûn, Ĥn

])

. (5.4.12)

The above form of the conservation law was initially chosen since it was the most

compact, but it might be more interesting to consider the form below i.e. to have the

conservation law written like an expansion in the interaction parameter, making it much

easier to see what happens to the conservation law when various limits of this parameter
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are taken

L̂4 =
∑

n

6
[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+3

]

+ 6g
([[[

Ûn, Ĥn

]

, Ĥn+1

]

, Ĥn+2

]

+
[

Ĥn,
[

Ĥn+1,
[

Ĥn+2, Ûn+3

]]]

+ 2
[[

Ĥn,
[

Ûn+1, Ĥn+1

]]

, Ĥn+2

]

+2
[

Ĥn,
[[

Ĥn+1, Ûn+2

]

, Ĥn+2

]]

+
[

Ĥn,
[[

Ĥn, Ûn+1

]

, Ĥn+1

]]

+
[[

Ĥn,
[

Ûn+1, Ĥn+1

]]

, Ĥn+1

])

+ 3g2
([[

Ĥn,
[

Ûn+1, Ĥn+1

]]

, Ûn+2

]

+
[

Ûn,
[[

Ĥn, Ûn+1

]

, Ĥn

]]

+
[[

Ûn, Ĥn

]

,
[

Ĥn+1, Ûn+2

]])

+(4 + 11g2)L̂2 − (30g + 9g3)
([

Ĥn, Ûn+1

]

+
[

Ûn, Ĥn

])

. (5.4.13)

As in the previous chapter, all of the conservation laws calculated here are in agreement

with those found by others [5, 42]. Note that this includes those found using a purely

fermionic formulation [41], which, in line with the expectations in Chapter 3, are the same

as the above bosonic versions converted back to fermionic form via the Jordan-Wigner

transformation.

5.5 Heisenberg Conservation Laws as a Limit of Hub-

bard Ones

In the previous chapter, the Heisenberg model was derived as a limit of the Hubbard

model. Following on from this, it should therefore be possible to generate the local

conservation laws of the Heisenberg model (i.e. those found in the previous chapter, with

∆ = 1) as a limit of the Hubbard ones found above.

Starting as before with the Hubbard model at half-filling and U >> t, so that there

is exactly one particle per site, it is clear that all terms which do not conserve particle

number on each site must be discarded. Unfortunately this covers all of the terms in the

first two local conservation laws, and it is only at the level of the third conservation law
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(rewritten here in terms of the hopping operator rather than the Hamiltonian)

L̂3 = 2
∑

n

[

T̂H
n , T̂

H
n+1, T̂

H
n+2

]

+ g
([

T̂H
n ,
[

T̂H
n , Ûn+1

]]

+ 2
[[

T̂H
n , T̂

H
n+1

]

, Ûn+2

]

+2
[[

Ûn+1, T̂
H
n+1

]

, T̂H
n+2

]

+ 2
[

T̂H
n ,
[

Ûn+1, T̂
H
n+1

]])

+ 4g2
[

Ûn, T̂
H
n , Ûn+1

]

+αL̂1 + βÛn, (5.5.1)

that suitable terms appear. The terms in question stem from the second commutator, the

only quantity thus far to involve the hopping operator for the same site twice, which is

necessary to maintain the one particle per site restriction. Expanding out this commutator

gives

[

T̂H
n ,
[

T̂H
n , Ûn+1

]]

= 4
(

T̂ z
n+1

(

Ŝz
n+1 − Ŝz

n

)

+ Ŝz
n+1

(

T̂ z
n+1 − T̂ z

n

)

= +
(

T̂+
n T̂

−
n+1 − T̂−

n T̂
+
n+1

)(

Ŝ+
n Ŝ

−
n+1 − Ŝ−

n Ŝ
+
n+1

))

. (5.5.2)

Ignoring the two terms which project away from single occupancy, and using

−T̂ z
n+1Ŝ

z
n − Ŝz

n+1T̂
z
n =

1

2

([

Ŝz
n − T̂ z

n

][

Ŝz
n+1 − T̂ z

n+1

]

−
[

Ŝz
n + T̂ z

n

][

Ŝz
n+1 + T̂ z

n+1

])

, (5.5.3)

the relevant terms become

4

(

− T̂+
n T̂

−
n+1Ŝ

−
n Ŝ

+
n+1 − T̂−

n T̂
+
n+1Ŝ

+
n Ŝ

−
n+1

+
1

2

([

Ŝz
n − T̂ z

n

][

Ŝz
n+1 − T̂ z

n+1

]

−
[

Ŝz
n + T̂ z

n

][

Ŝz
n+1 + T̂ z

n+1

])

− 1

2

)

(5.5.4)

where the idea that Ŝz
αT̂

z
α = −1

4
has also been used. This final identity stems from the fact

that, since the single occupancy of sites has been enforced so that there must be either

an up spin or a down spin on each site, Ŝz
α and T̂ z

α must have the opposite sign. The rest

of the terms in equation (5.5.4) can be considered in a similar manner.

First, a basis is needed of the possible states on the two sites (n and n+ 1) on which
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the operators of equation (5.5.4) act. There are four such states

| ↑↓ ; ↑↓ 〉 , (5.5.5a)

| ↑↓ ; ↓↑ 〉 , (5.5.5b)

| ↓↑ ; ↑↓ 〉 , (5.5.5c)

| ↓↑ ; ↓↑ 〉 , (5.5.5d)

where the first set of spins are for site n and the second for site n + 1. The first and

second spins in these sets then correspond to the flavours of spin acted upon by the Ŝ

and T̂ operators respectively. These are equivalent to the four states that make up the

two-site basis for the Heisenberg model

| ↑ ; ↑ 〉 , | ↑ ; ↓ 〉 , | ↓ ; ↑ 〉 , | ↓ ; ↓ 〉 , (5.5.6)

where the arrows now represent the spin of the actual particle on site n, then site n + 1.

We will denote the operators which act upon these states with a tilde, i.e. S̃+
n , S̃−

n and S̃Z
n .

Note that, in each case the actual spin on the site is identical to that of the flavour acted

upon by the Ŝ operators in the previous representation. As was noted above, T̂ z
α will have

the opposite sign to Ŝz
α, and so their sum will vanish, while their difference will be twice

the value of Ŝz
α. It is clear, therefore, that Ŝz

n − T̂ z
n will have the same effect on the states

of equation (5.5.5) as 2S̃Z
n will have on the states in (5.5.6). Finally we come to the terms

T̂+
n T̂

−
n+1Ŝ

−
n Ŝ

+
n+1 and T̂−

n T̂
+
n+1Ŝ

+
n Ŝ

−
n+1. The first turns state (5.5.5b) in to state (5.5.5c), and

returns zero when acted upon the other three states, exactly the same relationship S̃+
n

has with the states (5.5.6). Similarly the second term acted upon state (5.5.5c) returns

(5.5.5b), and zero when it acts upon the other three, which is equivalent to S̃−
n acting the

states (5.5.6).

In terms of S̃+
n , S̃−

n and S̃Z
n acting on the equivalent Heisenberg states (5.5.6) therefore,
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5.5. Heisenberg Conservation Laws as a Limit of Hubbard Ones

(5.5.4) becomes

4

(

−S̃+
n S̃

−
n+1 − S̃−

n S̃
+
n+1 + 2S̃z

nS̃
z
n+1 −

1

2

)

. (5.5.7)

Summed over n, this is the Heisenberg model, i.e. the XXZ model as defined previously in

Chapters 3 and 4, with a negative coefficient and ∆ = −1. While it may not be surprising

that the Heisenberg conservation laws can be found in this way, it is important to check

to show that the method and the conservation laws generated are consistent.

Repeating this procedure for higher order conservation laws of the Hubbard model

should yield higher order Hubbard ones. Unfortunately the only term from L̂4 which

contains an even number of each hopping operator (i.e. doesn’t project away from single

occupancy) vanishes, and so to proceed further would first require the calculation of the

fifth Hubbard conservation law. Evidently, attempting to calculate the Heisenberg con-

servation laws in this manner is impractical and should be done as in the previous chapter.

In the next chapter the local conservation laws of a third model, the Toda chain,

are generated. The model is not like the spin chains considered so far, and the method

of Chapter 3 is shown to be incompatible with it. Instead an alternative method of

evaluating the Transfer matrix is used to generate non-local conservation laws, which are

then shown to coincide with the conserved quantities of the classical system. After a

slight reformulation of the classical Lax operator, a direct link to the quantum Transfer

matrix is established.
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Chapter 6

Local Conservation Laws of the Toda

Chain

In this chapter a very different style of Hamiltonian is considered: the one-dimensional

Toda lattice, or Toda chain [61]. The method previously applied to the XXZ and Hubbard

models cannot be used here, and attempts to use the Monodromy matrix provide only the

well known non-local conserved quantities originally found by Hénon [62]. Calculation of

the integrals of motion via the classical Lax matrix is described since it can be shown [63]

that they are equivalent to the conserved quantities of the quantum model. Furthermore,

this matrix can be used to generate the local conservation laws of the system, in a way

that naturally incorporates the awkward combinatorics of their original construction [64].

A minor simplification to this process is made, and the relationship between the classical

L-matrix and the quantum Monodromy matrix is then shown.

In stark contrast to the previous spin models, the one-dimensional Toda lattice consists

of a chain of particles (of equal masses) which interact with their nearest neighbours via

an exponential potential. The Hamiltonian for an N -site system with periodic boundary

conditions (i.e. q̂N+1 = q̂1) is

Ĥ =
1

2

N
∑

j=1

p̂2
j +

N
∑

j=1

exp
(

q̂j − q̂j+1

)

, (6.0.1)
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=
N
∑

j=1

∂2

∂q̂2
j

+
N
∑

j=1

exp
(

q̂j − q̂j+1

)

, (6.0.2)

where p̂j is the momentum of the jth particle and q̂j is its displacement from its equilibrium

position. This model is somewhat of a rarity as both the classical (6.0.1) and quantum

mechanical (6.0.2) versions have been shown to be integrable [62, 65], and the conserved

quantities of each case can be shown to be the same.

Unlike the previous two models, there are no materials whose physical behaviour

suggests they can be modelled by the Toda Hamiltonian (6.0.2). This is not surprising

given the curious nature of the potential. This is more easily seen by considering a particles

absolute position (with respect to some origin, e.g. the first particle in the chain), i.e.

q̂i = x̂i − x̂
(e)
i , where x̂

(e)
i is the ith particles equilibrium position. The potential then

obviously vanishes for x̂j+1 ≫ x̂j , i.e. when the j + 1th particle is far to the right of the

jth, and increases rapidly when x̂j ≫ x̂j+1, i.e. when the j + 1th particle is far to the

left of the jth. The potential therefore abhors particles being positioned out of order, and

is minimised by having each particle as far to the right of the preceding one as possible.

Indeed it is only the periodic boundary conditions that keeps the particles together, not a

situation likely to be found in nature.1 This has not stopped the model from being studied

extensively [67, 68] however, and so the investigation of this model begins by considering

the quantum mechanical case.

6.1 The Quantum Lax Operator

In Chapters 4 and 5 the Lax operators of the XXZ and Hubbard models were rewritten

to make taking the logarithm of the transfer matrix easier, using the approach outlined

in Chapter 3. Despite having a markedly different style of Hamiltonian, as an integrable

system the Toda chain must still have a Lax operator which satisfies the Yang-Baxter

equation, from which the conserved quantities of the system can be constructed. The Lax

1Although the classical model is another story, see e.g. [66].
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operator in this case has been found to be [65]

L̂j [u] =







u− p̂j exp(q̂j)

− exp(−q̂j) 0






. (6.1.1)

Unlike the models dealt with in earlier chapters however, setting the spectral parameter to

zero in this case doesn’t return a permutation operator. Without this ability to re-express

the Lax operator as in the previous cases (equation (3.3.1)), it is impossible to proceed

along the same path towards writing the Monodromy matrix as a product of exponential

operators. As with the previous models, the Monodromy matrix for an N -site system is

still the product of the N Lax operators

M̂N [u] = L̂1L̂2 · · · L̂N , (6.1.2)

but rather than a matrix, the trace of this returns a polynomial in u, the coefficients of

which form a mutually commuting set of conserved operators. These operators are no

more or less than the original (non-local) conservation laws discovered by Hénon [62], as

will now be demonstrated.

The Lax operator (6.1.1) can be split up and rewritten in the following manner

L̂j [u] = Q̂−j

{

P̂j + Σ̂
}

Q̂j , (6.1.3)

in terms of the operators

Q̂±j =







1 0

0 ±e±q̂j






, P̂j =







u− P̂j 0

0 0






, and Σ̂ =







0 1

1 0






. (6.1.4)

Products of the operators Q̂±j and P̂i can be reduced since

P̂j Q̂±i = P̂j = Q̂±i P̂j, (6.1.5)

107



6.1. The Quantum Lax Operator

while Σ̂ acts much like a permutation operator when either side of another operator

Σ̂







a b

c d






Σ̂ =







d c

b a






. (6.1.6)

Employing the notation Q̂jQ̂−(j+1) = Q̂j,j+1, the product of two Lax matrices for neigh-

bouring sites becomes

L̂j [u]L̂j+1[u] = Q̂−j

{

P̂j + Σ̂
}

Q̂j,j+1

{

P̂j+1 + Σ̂
}

Q̂j+1

= Q̂−j P̂j Q̂j,j+1 P̂j+1 Q̂j+1 + Q̂−j P̂j Q̂j,j+1 Σ̂ Q̂j+1

+ Q̂−j Σ̂ Q̂j,j+1 P̂j+1 Q̂j+1 + Q̂−j Σ̂ Q̂j,j+1 Σ̂ Q̂j+1.(6.1.7)

The Q̂’s in the first term will cancel out, leaving P̂jP̂j+1, and since both the P̂ and Q̂ are

diagonal, the second and third terms will have only off-diagonal elements, which will be

irrelevant when the trace is taken.

Now consider the trace of the Monodromy matrix

T̂N [u] = tr
N
∏

i=1

L̂i[u]

= tr
(

Q̂−1

{

P̂1 + Σ̂
}

Q̂1,2

{

P̂2 + Σ̂
}

· · · Q̂l−1,l

{

P̂l + Σ̂
}

Q̂l,l+1

· · · Q̂N−1,N

{

P̂N + Σ̂
}

Q̂N

)

. (6.1.8)

As with the two Lax matrices example above, any term which contains an odd number of

Σ̂ operators will be off-diagonal and therefore contribute nothing when the trace is taken.

The remaining terms can be understood by considering the sequence

· · · P̂j Q̂j,j+1

{

P̂j+1 + Σ̂
}

Q̂j+1,j+2

{

P̂j+2 + Σ̂
}

Q̂j+2,j+3P̂j+3 · · · . (6.1.9)

Assuming the rest of the sequence includes an even number of Σ̂’s, when expanded this
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will yield two off-diagonal terms which are ignored, and the following two terms

· · · P̂j Q̂j,j+1Σ̂Q̂j+1,j+2Σ̂Q̂j+2,j+3P̂j+3 · · ·

= · · ·







1 0

0 0






(u− p̂j)(− exp

(

q̂j+1 − q̂j+2

)

)(u− p̂j+3) · · · , (6.1.10)

and the term with no Σ̂’s

· · · P̂j Q̂j,j+1P̂j+1Q̂j+1,j+2P̂j+2Q̂j+2,j+3P̂j+3 · · ·

= · · ·







1 0

0 0






(u− p̂j)(u− p̂j+1)(u− p̂j+2)(u− p̂j+3) · · · . (6.1.11)

Note that each site index only appears once, and in both cases the only non-zero element

is the first one. In fact, comparing the right hand sides of the two equations, the sequence

of terms (6.1.10) can be obtained from (6.1.11) by left multiplying by the operator

− exp
(

q̂j+1 − q̂j+2

) ∂2

∂p̂j+1∂p̂j+2

. (6.1.12)

Using this operator the sequence (6.1.9) can be rewritten as

· · · P̂j Q̂j,j+1

{

P̂j+1 + Σ̂
}

Q̂j+1,j+2

{

P̂j+2 + Σ̂
}

Q̂j+2,j+3P̂j+3 · · ·

= · · · P̂j Q̂j

[

1 − exp
(

q̂j+1 − q̂j+2

) ∂2

∂p̂i+1∂p̂i+2

]

P̂j+1P̂j+2 Q̂−(j+3)P̂j+3 · · · , (6.1.13)

without affecting the trace. Due to the reduction property (6.1.5), each Q̂ must either

have a Σ̂ on each side or none neighbouring it, as in the above example, or the sequence

vanishes.

Going back to the Monodromy matrix and ordering the terms in (6.1.8) by increasing
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number of Σ operators, the first term will be the product

P̂i · · · P̂N =







1 0

0 0






(u− p̂1) · · · (u− p̂N). (6.1.14)

The next set of terms to contribute to the trace are the N combinations of this prod-

uct left multiplied by the operator (6.1.12); one term for each pair of neighbouring sites.

Subsequent sets of terms involve left multiplying by (6.1.12) again for each pair of neigh-

bouring sites, which did not appear in the first instance of its use, and then repeating

this process until there are one or no p̂ terms remaining (depending on whether N is odd

or even). In terms of this operator, the trace of the Monodromy matrix can therefore be

written as

T̂N [u] =
∏

i=1

[

1 − exp
(

q̂i − q̂i+1

) ∂2

∂p̂i+1∂p̂i+2

] N
∏

j=1

(

u− p̂j

)

, (6.1.15)

where the index of leftmost product increases in steps of two, up to N − 2 or N − 1 for

an odd or even number of sites respectively. This can then be expanded order by order

to provide a set of conserved quantities

T̂N [u] =
N
∑

m=0

Ĉmu
N−m, (6.1.16)

the first few of which can easily be extracted

Ĉ0 = 1, (6.1.17a)

Ĉ1 = −
N
∑

j

p̂j , (6.1.17b)

Ĉ2 =

N
∑

i>j

p̂ip̂j −
N
∑

j

exp(q̂j − q̂j+1), (6.1.17c)

Ĉ3 = −
N
∑

i>j>k

p̂ip̂j p̂k +

N
∑

i6=j,j+1

p̂i exp(q̂j − q̂j+1), (6.1.17d)
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and correspond exactly with the classical integrals of motion found by Hénon [62]. Given

that the quantum and classical conserved quantities are the same, the next logical step is

to consider a much more elegant method of generating them from the classical model.

6.2 The Classical Integrals of Motion

This section very briefly deals with Flaschka’s method of generating the integrals of motion

of the Toda chain via a Lax pair formalism [64]. The first step is to introduce a new set

of variables

ân = e−
1
2

(

q̂n−q̂n−1

)

, b̂n = −p̂n−1, (6.2.1)

where the periodic boundary conditions are still in effect, so that q̂0 = q̂N . Using the time

derivative of the Hamiltonian (6.0.1), it is then trivial to show that ân and b̂n satisfy the

equations

dân

dt
= ân(b̂n+1 − b̂n), and

db̂n
dt

= â2
n − â2

n−1. (6.2.2)

In terms of these variables, a pair of matrices can be defined

L =

























b̂1 â1 0 . . . âN

â1 b̂2 â2

0 â2 b̂3
...

. . . âN−1

âN âN−1 b̂N

























, B =

























0 â1 0 . . . −âN

−â1 0 â2

0 −â2 0

...
. . . âN−1

âN âN−1 0

























,(6.2.3)

where the commutator of the two matrices is equal to the time derivative of the first, i.e.

L̇ =
[

B,L
]

. (6.2.4)

111



6.2. The Classical Integrals of Motion

The above matrix relation recreates the equations (6.2.2), and so the matrices L and

B form a Lax pair for the system. As was seen in Chapter 1, this not only proves

the integrable nature of the model, but also provides several methods for generating the

conservation laws of the system.

Since the eigenvalues of the above Lax matrix L are conserved quantities (see Chapter

1), the coefficients of the characteristic polynomial

P (λ) = λN + I1λ
N−1 + I2λ

N−2 + · · · + IN , (6.2.5)

are also conserved. In fact, these coefficients In are the integrals of motion constructed

by Hénon [62, 64]

In =
∑

p̂i1 p̂i2 · · · p̂ik

(

− X̂j1

)(

− X̂j2

)

· · ·
(

− X̂jl

)

, where X̂j = â2
j . (6.2.6)

The sum is performed such that each of the site indices 1 through n appears exactly once

(either explicitly or implicitly in a factor of X̂) and terms which differ only in the order

of factors are considered the same, and so only one of them appears in the sum. Setting

n = 0, 1, 2, 3 and applying these rules for the summation, it is then simple to verify that

the first four integrals of motion are indeed the same as the conservation laws (6.1.17a)

to (6.1.17d) generated in the previous section.

When considering the infinite lattice, Hénon constructed a second set of integrals, sim-

ilar to the above In but with an additional sum involving some complicated combinatorics

which restrict the eventual integrals to the sum over a single site index [62]. These new

conserved quantities are the local conservation laws of the model which have a very simple

relationship with the classical L-matrix [64]

nĴn = (−2)n tr
{

Ln
}

for m < N, (6.2.7a)

NĴN = (−2)N tr
{

Ln
}

− 2N(−1)N . (6.2.7b)
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Whilst the above method is very elegant and efficient at generating the quantities In and

Ĵn, it unfortunately offers no insight as to the nature of these conserved quantities, and

the above relation between the matrix L and the local conservation laws is almost as

mysterious as the conservation laws themselves.

6.3 A Minor Improvement

In this final section, the previous method is made mildly easier by the introduction of

a slightly simpler initial matrix. Related to Flaschka’s L-matrix, this new matrix L̃N is

shown to generate the local conservation laws in an identical manner, and is then used to

create the trace of the Monodromy matrix (6.1.8).

Taking an identical form to L but with simpler off-diagonal terms, this new matrix is

L̃N =

























p̂1 eq̂1 0 . . . e−q̂1

e−q̂2 p̂2 eq̂2

0 e−q̂3 p̂3

...
. . . eq̂N−1

eq̂N e−q̂N p̂N

























, (6.3.1)

and is closely related to the classical L-matrix (6.2.3). To see this one needs first to

consider the effect of changing the sign of the variable b̂n, i.e. b̂n = p̂n−1. Keeping ân

the same, it then follows that the time derivatives of these variables, and by extension L̇,

also change sign. At this point, one should be concerned about the status of this new L

as part of a Lax pair, since L̇ has changed sign entirely while L has only changed down

the leading diagonal. It is elementary however, to show that satisfying the Lax relation

(6.2.4) with this new definition of L requires only that B → −B [68]. The proposed new
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Lax matrix LN is then related to this sign altered L by the transformation

























0 0 0 · · · α−1
1

α−1
2 0 0

0 α−1
3 0

...
. . .

0 α−1
N 0

























L̃N

























0 α2 0 · · · 0

0 0 α3

0 0 0

...
. . . αN

α1 0

























= L (6.3.2)

where the non-zero elements of the (unitary) transformation operators are given by

αi = e
1
2
q̂i−1

i−1
∏

j=1

e−q̂j for i ≥ 2, α1 = e
1
2
q̂N

N
∏

j=1

e−q̂j . (6.3.3)

Inverting the above transformation and writing it as L̃N = ULU−1, and then taking the

time derivative of both sides finds

∂t L̃N = U̇LU−1 + UL̇U−1 − ULU−2U̇

= U̇U−1L̃N + U{BL− LB}U−1 − L̃NU
−1U̇

=
[

U̇U−1, L̃N

]

+ UBU−1L̃N − L̃NUBU
−1

=
[

U̇U−1 + UBU−1, L̃N

]

, (6.3.4)

and so this new matrix L̃N forms a Lax pair with B̃N = U̇U−1 + UBU−1. Note that

this U need not be unitary, the above treatment works equally well for any invertible

matrix. Since it is also a Lax matrix for the model, L̃N will generate the same (or linear

combinations of) the conserved quantities calculated from L.

The trace of the Monodromy matrix T̂N [u] (equation (6.1.8)) can be calculated using

the matrix L̃N in the following manner

T̂N [u] ≡ det
[

u− L̃N

]

+
(

eq̂1+···+q̂N + e−q̂1−···−q̂N
)

, (6.3.5)
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where the first term should be recognisable as the final method of generating the classical

constants of motion given in Chapter 1. From this the local conservation laws of the

system can be found using the generating function

G[u] = ln
(

T̂∞[u]
)

= tr
(

ln
[

u− L̃∞

])

=

∞
∑

m=0

−1

m
u−mtr

[

L̃m
∞

]

, (6.3.6)

where the logarithm has been taken to ensure locality in an analogous way to the previous

models. The coefficients of the above expansion correspond directly to Flaschka’s Ĵn at

the end of the last section. Note the limit N → ∞ is not necessary as the mth conservation

law needs only N > m to be exact, i.e. there is a correction to the N th law, in a similar

manner to ĴN , stemming from the second term of equation (6.3.5), which is dropped in

the infinite limit.

Having shown how the local conservation laws stem from the matrix L̃N , this section is

rounded out with a proof of equation (6.3.5), which demonstrates the relationship between

the trace of the Monodromy matrix and the matrix L̃N . Central to establishing this result

is the determinant of the tridiagonal (n−m+ 1)-square matrix

D̂m,n ≡ det

























u− p̂m −eq̂m

−e−q̂m+1 u− p̂m+1

. . .

u− p̂n−1 −eq̂n−1

−e−q̂n u− p̂n

























. (6.3.7)
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6.3. A Minor Improvement

Expanding the first term in equation (6.3.5) in terms of this determinant finds

det
[

u− L̂N

]

=
(

u− P̂1

)

D̂2,N − eq̂1

(

e−q̂2D̂3,N + (−1)N−2eq̂N det













−eq̂2 0 · · ·

u− p̂3 −eq̂3

...
. . .













)

+ (−1)N−1e−q̂1

(

e−q̂2 det













−e−q̂3 u− p̂3 · · ·

0 −e−q̂4

...
. . .













+ (−1)N−2eq̂N D̂2,N−1

)

=
(

u− P̂1

)

D̂2,N − eq̂1−q̂2D̂3,N − (−1)N−2eq̂1+q̂N

N−1
∏

j=2

−eq̂j

+ (−1)N−1e−q̂1−q̂2

N
∏

j=3

−e−q̂j + (−1)N−1(−1)N−2e−q̂1+q̂N D̂2,N−1

= D̂1,N − eq̂N−q̂1D̂2,N−1 −
N
∏

j=1

eq̂j −
N
∏

j=1

e−q̂j , (6.3.8)

and so trace of the Monodromy matrix may be written as

T̂N = D̂1,N − eq̂N−q̂1D̂2,N−1. (6.3.9)

Expanding the determinant D̂m,n about its top row, so that it can be written in terms of

lower order determinants, yields the recurrence relation

D̂m,n =
(

u− p̂m

)

D̂m+1,n − eq̂m−q̂m+1D̂m+2,n, (6.3.10)

which can then be reformulated as the following matrix equation







D̂m,n

D̂m+1,n






=







u− p̂m −eq̂m−q̂m+1

1 0













D̂m+1,n

D̂m+2,n






= K̂m







D̂m+1,n

D̂m+2,n






, (6.3.11)

where the resultant matrix K̂m looks remarkably similar to the Lax operator L̂m defined

at the start of the chapter.
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6.3. A Minor Improvement

Expanding out the right-hand side of this matrix equation as a product of the K̂

matrices up to the final column vector, which can be thought of as







D̂n−1,n

D̂n,n






= K̂n−1







u− p̂n

1






= K̂n−1K̂n

[

1

0

]

, (6.3.12)

and remembering that q̂N+1 = q̂1, the recurrence relation can then be solved to find

D̂m,n ≡
[

1, 0
]

n
∏

r=m

K̂r

[

1

0

]

. (6.3.13)

Substituting this product form of D̂m,n back into equation (6.3.9), the trace of the

Monodromy matrix becomes

T̂N [u] =
[

1, 0
]

N
∏

r=1

K̂r

[

1

0

]

− eq̂N−q̂1
[

1, 0
]

N−1
∏

r=2

K̂r

[

1

0

]

=
[

1, 0
]

N
∏

r=1

K̂r

[

1

0

]

+
[

0, 1
]

K̂1

N−1
∏

r=2

K̂rK̂N

[

0

1

]

= tr

N
∏

r=1

K̂r, (6.3.14)

where rewriting the second term requires the use of the identities

[

0, 1
]

K̂1 =
[

0, 1
]







u− p̂1 −eq̂1−q̂2

1 0






=
[

1, 0
]

, (6.3.15)

at the front, and

K̂N

[

0

1

]

=







u− p̂N −eq̂N−q̂1

1 0







[

0

1

]

= −eq̂N−q̂1

[

0

1

]

, (6.3.16)

at the end. It is now a trivial matter to relate the matrix K̂m from equation (6.3.11) to
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6.4. Summary

the original Lax operator (6.1.1)

L̂m ≡







u− p̂m eq̂m

−e−q̂m 0






≡







1 0

0 −e−q̂m






K̂m







1 0

0 −eq̂m+1






. (6.3.17)

Due to the cyclic nature of the trace, rearranging the above relation for K̂m and substi-

tuting it back into equation (6.3.14) returns

T̂N [u] = tr
N
∏

r=1

K̂r = tr
N
∏

r=1

L̂r, (6.3.18)

i.e. the trace of the Monodromy matrix as defined in the previous chapter, meaning that

equation (6.3.5) and equation (6.1.8) are equivalent.

6.4 Summary

The Toda chain presents a very different type of model from those previously considered,

not just in its style of Hamiltonian, but in the methods used to construct its conserved

quantities and the relation of the quantum and classical systems. Since the quantum Lax

operator (6.1.1) does not have the property (3.3.1), the method used in Chapters 4 and 5

is no longer applicable. Instead a different treatment is used which involves splitting the

Lax operator into the sum of its diagonal (momentum operator) and off-diagonal (position

operator) components. It is shown that for the product of many such operators, the trace

is the same as the sum of the product of the diagonal components, with from zero up to a

half-N applications of the operator (6.1.12), where each application involves different site

indices. The coefficients of the resultant polynomial are the same as the well known non-

local conservation laws of the classical model. The classical model is then considered and

the previously calculated conservation laws are found from the characteristic polynomial

of the Lax matrix L. The local conservation laws are then noted as being equivalent to

the trace of different powers of L. Finally, an alternate Lax pair is formed and a relation
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6.4. Summary

given between the new Lax matrix L̃N and the trace of the Monodromy matrix which is

used to show the equivalence of the logarithm of this trace with the trace of the different

powers of L̃N (and by extension, L), thus establishing the locality of the conservation

laws produced.
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Chapter 7

Summary and Conclusions

Classically, an integrable system is defined as one which has an integral of motion for

each coordinate-momentum pair of degrees of freedom, all in involution. These integrals

of motion restrict the allowed trajectories in phase space down to the handles of an N -

torus (N being the number of integrals / half the number of degrees of freedom).

For a quantum integrable system, the analogue is to have a number of families of con-

servation laws (related by their projection operator) equal to the number of states of the

system. The analogue to the classical restriction of phase space is then to simultaneously

diagonalise enough of the conservation laws of the system, so that the Hamiltonian is fully

diagonalised.

The requirement that the conservation laws of the quantum system form a complete

mutually commuting set should not be included in the definition of integrability. This

fact was demonstrated during the investigation of persistent currents in Chapter 2. These

persistent (or long-time residual) currents are a phenomena associated with systems which

are integrable or close to integrable (e.g. could be transformed into an integrable system

by the tuning of some parameter): generally, if a current is started in a system, it would

be expected to decay over time until it eventually vanishes. In integrable systems however,

part of the current may indeed decay away, but it is possible to have a finite proportion

that will continue flowing indefinitely1 [1].

1In the case of systems close to integrability in parameter space, an anomalously slow decaying of
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It was shown by Suzuki [2] that the time average of a correlation function could be

expressed in terms of the canonical averages involving the conserved quantities of a system.

This implies that the long-time residual of a current can be thought of as the conserved

part of the current operator, which was shown to be true in Chapter 2. A major element

of Suzuki’s work was Mazur’s inequality [4], which provides a lower bound for the time

average of a correlation function. Since the long-time residual can be calculated in such

a manner, Mazur’s inequality can be used as a test: a single conservation law giving a

non-trivial minimum value is sufficient to prove the existence of a persistent current2.

Suzuki argues that it should be possible to calculate the long-time residual current in

terms of the conservation laws of the system. There is an assumption however, that these

conservation laws should form a complete mutually commuting set, and this assumption

has caused the conundrum considered in the second half of Chapter 2.

In the particular case of the anisotropic Heisenberg model with an external magnetic

field (or XXZh model), there is a current which has a calculable, non-trivial long-time

residual [3]. It can be shown however, that at zero field all of the conservation laws yield

a vanishing contribution to this residual current [1]. Whilst considering the ability of a

given set of conservation laws to generate the full residual current, it was discovered that it

was entirely feasible that the Hamiltonian and a set of mutually commuting conservation

laws could be simultaneously diagonalised by a basis in which the conserved part of the

current operator is off-diagonal. Essentially, it is possible for the relevant conservation

laws to be non-abelian, and thus for some portion, or indeed all, of the conserved part of

the current operator to be inaccessible to a mutually commuting set of conservation laws.

This was not the case in the system in question however, as it was then shown that

simply including the z-component of spin in combination with the existing conservation

laws was sufficient to generate the full long-time residual current. The above ideas could

be seen in action when considering the pure Heisenberg (XXX) model however, specifically

currents has been observed.
2Any one conservation law giving zero as a lower bound however, is not enough to show the residual

current does not exist.
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the compatibility of the current with the set of conservation laws. As with the anisotropic

case, including the z-component of spin will give the full conserved current, but if the

x-component were to be used instead then it becomes impossible to generate any of the

long-time residual. In this case the current operator is not compatible with the mutually

commuting set of conservation laws and they can generate none of the residual current,

i.e. the conservation laws corresponding to the persistent current are not part of the

mutually commuting set.

Having considered the relationship between conservation laws and the definition of

integrability, and their use in evaluating the time average of correlation functions, the

natural next step was to consider how to generate the analytic forms of these conservation

laws. First, the existing method of generating the local conservation laws of an integrable

system was described and evaluated, using the XXZ model as an example.

The Boost operator method constructs the local conservation laws iteratively by com-

muting the eponymous operator with the Hamiltonian and using the result as the first

conservation law. The Boost operator is then commuted with this new conservation law

and the result used as the second conservation law, and so on, the commutator of each

new conservation law and the Boost operator providing the next conservation law [5].

This appears to be a straightforward and simple process, but it is shown in Chapter 3

that knowledge of the structure of the Hamiltonian used to initiate the process is required

for the method to work.

The problem with the method is this: when commuted with each new conservation

law, the Boost method produces terms whose coefficient is the site index. As was describe

previously, these terms are extremely unphysical and do not form part of the desired

conservation laws. For each new conservation law, it is possible to show that these un-

physical terms cancel out, but to do so it necessary either to expand out commutators in

the Hamiltonian explicitly, or to have prior knowledge of identities involving these com-

mutators (the Reshetikhin condition for the model being the major one). An attempt

to use the Boost method for some general Hamiltonian would therefore fail before even
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producing the second conservation law, since one would not have sufficient knowledge to

cancel the unphysical terms. It would therefore be necessary to investigate a particular

model to discover its commutator properties and identities, and then go through the in-

creasingly long-winded process of using these identities to cancel these terms and find

each new conservation law. This would all then need repeating should one wish to find

the conservation laws of a different model.

In response to the failings of the Boost operator, a new method of generating the local

conservation laws of integrable systems has been developed. The method centres on the

idea of the Transfer matrix, which is found as the trace of a product of the Lax operators

which are associated with these systems. The logarithm of this matrix is known to provide

the local conservation laws of a model as the coefficients of a polynomial in the spectral

parameter, and the new method essentially involves a simple way to analytically evaluate

this logarithm.

The method works by removing the permutation aspect of the Lax operator and writ-

ing the remainder as an exponential of some function of the spectral parameter (essentially

the Hamiltonian plus some corrections). A side effect of separating off the permutation

part of the operators is that it effectively removes statistics from the problem, showing

that they do not affect the local conservation laws. The problem is reduced to taking the

logarithm of a product of exponentials, which can be handled in a straightforward man-

ner with the Campbell-Baker-Hausdorff identity. Though technically simple, this step is

where the majority of the work for this method is required. Separating out and solving

the various recurrence relations seen in Chapter 3 is simple for the first few orders, but

rapidly becomes arduous in the extreme, and to tackle orders higher than those included

here will required some clever and powerful computer programming. Whilst the effort

required at this stage cannot be overstressed, neither can the upside: the work up to this

stage was entirely general and thus only needs to be done once. When considering a spe-

cific model, it is necessary only calculate the exact form of the function the Lax operator

is written as an exponential of, and then substitute this back into the coefficients already
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found by solving the recurrence relations.

This is shown for two examples in Chapters 4 and 5 for the XXZ and Hubbard models

respectively. Each time, the Lax operator is rewritten and the model specific operator

(V̂ij) found. This operator and the coefficients from Chapter 3 are then combined to

almost trivially produce the first few conservation laws of each system, as far as (and

in agreement with) those previously calculated, but without having to deal with any

unphysical terms or worry about statistics. As a side note it is shown that with this new

exponential form of the Lax operator, the Reshetikhin condition appears as a natural

consequence of the Yang-Baxter equations (for fundamental models at least).

Finally, in an attempt to move away from spin systems and prove the methods total

generality, the Toda lattice was considered. This turned out to be a poor choice since

the form of the quantum Lax operator for model meant it was not compatible with

the treatment used in the previous chapters. This may have something to do with the

highly unusual fact that the conservation laws of the quantum system are the same as the

classical integrals of motion. This has been shown explicitly and in some sense explained

by demonstrating that the trace of the quantum Monodromy matrix can be generated

from the classical Lax matrix.

There are two natural, if somewhat uninspired, avenues for the continuation of this

investigation. Firstly, it may be of interest to continue the generating of the conservation

laws of the Heisenberg and Hubbard models. Calculation of the next two for the Hubbard

model will be a painfully long-winded process, but technically simple as the necessary

recurrence relations have already been solved and so all that is required is to substitute

in the operator V̂ij found in Chapter 5. Beyond this, further work (on either model)

necessitates looking into the possibility of using computer programs to generate and solve

the higher order recurrence relations, and to then deal with the multitude of commutators

which result from substituting in V̂ij. One would also have to consider the issue of how to

represent these new conservation laws as the number of terms involved is growing quite

rapidly, see for example the sixth conservation law of the XXZ model in Appendix B.
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The hope here is that creating more conservation laws will aid in identifying any patterns

that exist, either patterns that are common to all conservation laws or ones the emerge

later as the range of interaction of these conserved operators increases.

In a similar vein, the second logical extension is to widen the scope of the investi-

gation by considering more integrable models, and attempting to calculate their local

conservation laws with this new method. The aim here is not just to go from model to

model generating conservation laws, but to compare the models at every step: initial and

permutationless forms of their Lax operators; the form of the operator V̂ij in each case,

and of course the eventual conservation laws. The most interesting cases may well end

up being those where, as with the Toda lattice, the new method cannot be applied. It

may even be possible that by studying these systems one can construct an alternative

treatment which can be used when the method of Chapter 3 fails.
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Appendix A

The Campbell-Baker-Hausdorff

Expansion

A key element of this work is how to deal with the product of exponentials when the

exponents do not commute, i.e. to find Ẑ such that

Ẑ = ln
[

eÂeB̂
]

when
[

Â, B̂
]

6= 0. (A.0.1)

The solution of Ẑ as an infinite series of terms of increasingly higher orders of commuta-

tions of Â and B̂ is known as the Campbell-Baker-Hausdorff expansion, and this section

outlines one1 of the methods of generating it.

Introducing a scaling parameter, t (which will eventually be set to unity), so that

eẐ(t,Â,B̂) = etÂ etB̂, (A.0.2)

then the following three Lemmata are used to to write Ẑ as an expansion in powers of t,

where the coefficients are functions of commutators of Â and B̂.

1the second algorithm described in [69]
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Lemma 1

δeẐ =

∫ 1

0

ds e(1−s)Ẑ δẐ esẐ ,

for any non-commutative Ẑ, and some operator δ.

Lemma 2

eÂB̂e−Â = e [ÂB̂,

is a well known combinatoric identity, and by right multiplying both sides of lemma 1 by

e−Ẑ and using lemma 2

(

δeẐ
)

e−Ẑ =

(
∫ 1

0

ds e(1−s)Ẑ δẐ esẐ

)

e−Ẑ = eẐ

(
∫ 1

0

ds e−sẐ δẐ esẐ

)

e−Ẑ

= eẐ

(
∫ 1

0

ds e−s[Ẑ δẐ

)

e−Ẑ = eẐ

(

−1

[Ẑ
e−[Ẑ δẐ +

1

[Ẑ
δẐ

)

e−Ẑ

= eẐ

(

1 − e−[Ẑ

[Ẑ
δẐ

)

e−Ẑ = e [Ẑ 1 − e−[Ẑ

[Ẑ
δẐ,

which leads to

Lemma 3

(

δeẐ
)

e−Ẑ =
e[Ẑ − 1

[Ẑ
δẐ.

To generate the Campbell-Baker-Hausdorff expansion, use equation (A.0.2) and the choice

of operator δ = ∂t in the left hand side of lemma 3

(

∂te
tÂ etB̂

)(

tÂ etB̂
)−1

= ÂetÂ etB̂
(

etÂ etB̂
)−1

+ etÂB̂etB̂
(

etÂ etB̂
)−1

= Â+ etÂB̂e−tÂ,
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and then using lemma 2 gives

Â+ et [ÂB̂ =
e [Ẑ − 1

[Ẑ
δẐ. (A.0.3)

Writing Ẑ as an expansion in powers of the scaling parameter

Ẑ(t) ≡
∞
∑

n=1

tnZn, (A.0.4)

the Zn can be found by evaluating the coefficients of the powers of t on each side of

equation (A.0.3). Writing everything in power expansion form

Â+ B̂ +
∞
∑

n=1

tn

n!

([

Â,
)n

B̂
]n

=
∞
∑

m=0

1

(m+ 1)!

(

[

∞
∑

p=1

tpZp,

)m ∞
∑

q=1

qtq−1Zq

]m

(A.0.5)

which needs to be solved order by order as each new Zn will be a function of all the

previous ones. Note that solving at order tn will give the Zn+1th coefficient. Writing out

each side explicitly up to the quadratic terms

Â + B̂ +
[

Â, B̂
]

t+
1

2

[

Â,
[

Â, B̂
]]

t2

= Z1 + 2Z2t+ 3Z3t
2 + · · ·+ 1

2

([

Z1t+ Z2t
2 + · · · , Z1 + 2Z2t+ · · ·

])

+
1

3!

([

Z1t+ · · · ,
[

Z1t+ · · · , Z1 + · · ·
])

+O(t3)

= Z1 + t

(

2Z2 +
1

2

[

Z1, Z1

]

)

+ t2
(

3Z3 +
1

2

(

[

Z1, 2Z2

]

+
[

Z2, Z1

]

)

+
1

3!

[

Z1, Z1, Z1

]

)

.

The first three coefficients can be read off easily and so substituting them back into

equation (A.0.4)

Ẑ(t) = Â + B̂ +
1

2

[

Â, B̂
]

t+
1

12

([

Â,
[

Â, B̂
]]

+
[[

Â, B̂
]

, B̂
])

t2 + O(t3) (A.0.6)

and then setting t = 1, these are the first few terms of the Campbell-Baker-Hausdorff

expansion. For reference, the full expansion up to and including the quintuple commutator
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terms (the highest order used here) is

Ẑ = Â + B̂ +
1

2

[

Â, B̂
]

+
1

12

([

Â,
[

Â, B̂
]]

+
[[

Â, B̂
]

, B̂
])

+
1

24

[

Â,
[[

Â, B̂
]

, B̂
]]

+
1

120

(

[

Â,
[

Â,
[[

Â, B̂
]

, B̂
]]]

+
[[

Â,
[[

Â, B̂
]

, B̂
]]

, B̂
]

−1

3

{

[[

Â,
[

Â,
[

Â, B̂
]]]

, B̂
]

+
[

Â,
[[[

Â, B̂
]

, B̂
]

, B̂
]]

}

−1

6

{

[

Â,
[

Â,
[

Â,
[

Â, B̂
]]]]

+
[[[[

Â, B̂
]

, B̂
]

, B̂
]

, B̂
]

})

+
1

480

(

[

Â,
[[

Â,
[[

Â, B̂
]

, B̂
]]

, B̂
]]

+
[[

Â,
[

Â,
[[

Â, B̂
]

, B̂
]]]

, B̂
]

−1

3

{

[

Â
[

Â,
[[[

Â, B̂
]

, B̂
]

, B̂
]]]

+
[[[

Â,
[

Â,
[

Â, B̂
]]]

, B̂
]

, B̂
]

}

−1

3

{

[[

Â,
[

Â,
[

Â,
[

Â, B̂
]]]]

, B̂
]

+
[[

Â,
[[[

Â, B̂
]

, B̂
]

, B̂
]]

, B̂
]

})

+ · · · . (A.0.7)

An obvious extension to the above result, which is used briefly in Chapter 5, is to

consider the product of three exponential terms; i.e. to find Ẑ when

eẐ = eÂeB̂eĈ . (A.0.8)

The solution to this can be swiftly constructed from the above result for two exponents,

by considering the problem as

eẐ = eÂeB̂′

with eB̂′

= eB̂eĈ , (A.0.9)

and then Ẑ can be written as the standard Campbell-Baker-Hausdorff expansion, but

with every instance of B̂′ being replaced with it’s own expansion. Grouping the terms by

the total number of commutators / operators, and rewriting and combining terms where

possible, finds

Ẑ = Â+ B̂ + Ĉ +
1

2

([

Â, B̂
]

+
[

Â, Ĉ
]

+
[

B̂, Ĉ
])

+
1

6

([

Â,
[

B̂, Ĉ
]]

+
[[

Â, B̂
]

, Ĉ
])
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+
1

12

([

Â,
[

Â, B̂
]]

+
[

Â,
[

Â, Ĉ
]]

+
[

B̂,
[

B̂, Ĉ
]]

+
[[

Â, B̂
]

, B̂
]

+
[[

Â, Ĉ
]

, Ĉ
]

+
[[

B̂, Ĉ
]

, Ĉ
])

+
1

24

([

Â,
[[

Â, B̂
]

, B̂
]]

+
[

Â,
[[

Â, Ĉ
]

, Ĉ
]]

+
[

B̂,
[[

B̂, Ĉ
]

, Ĉ
]])

+
1

12

([

Â,
[[

Â, B̂
]

, Ĉ
]]

+
[[

Â, B̂
]

,
[

B̂, Ĉ
]]

+
[[

Â,
[

B̂, Ĉ
]]

, Ĉ
]

)

+ · · · . (A.0.10)

Several of the above terms will vanish in the case considered in Chapter 5, however, since

it also has the property that Â and Ĉ commute.
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Appendix B

Sixth Conservation Law of the XXZ

Model

Continuing the process of expanding equation (3.3.19) and solving the sixth order recur-

rence relation gives

X̂
(6)
M =

∑

n=0

120
[

V̂n, V̂n+1, V̂n+2, V̂n+3, V̂n+4, V̂n+5

]

+48
[[[

Ûn, V̂n+1

]

, V̂n+2

]

, V̂n+3

]

+ 48
[

V̂n,
[

V̂n+1,
[

V̂n+2, Ŵn+3

]]]

+36
[[[

V̂n, Ûn+2

]

, V̂n+3

]

, V̂n+4

]

+ 12
[[[

Ŵn, V̂n+2

]

, V̂n+3

]

, V̂n+4

]

+36
[

V̂n,
[

V̂n+1,
[

Ŵn+2, V̂n+4

]]]

+ 12
[

V̂n,
[

V̂n+1,
[

V̂n+2, Ûn+4

]]]

+24
[

V̂n,
[[

Ŵn+1, V̂n+3

]

, V̂n+4

]]

+ 24
[[

V̂n,
[

V̂n+1, Ûn+3

]]

, V̂n+4

]

+15
[[[

V̂n, Ŵn

]

, V̂n+2

]

, V̂n+3

]

+ 6
[

V̂n,
[

V̂n,
[

Ûn+2, V̂n+3

]]]

+15
[[

V̂n,
[

V̂n+1, Ûn+2

]]

, V̂n+2

]

+ 6
[[[

V̂n, Ŵn+1

]

, V̂n+3

]

, V̂n+3

]

+18
[

V̂n,
[

V̂n,
[

Ŵn+1, V̂n+3

]]]

+ 3
[

V̂n,
[

V̂n,
[

V̂n+1, Ûn+3

]]]

+18
[[[

V̂n, Ûn+2

]

, V̂n+3

]

, V̂n+3

]

+ 3
[[[

Ŵn, V̂n+2

]

, V̂n+3

]

, V̂n+3

]

+21
[

Ûn, Ŵn+1

]

+ 24
[[

V̂n,
[

Ûn+2, V̂n+2

]]

, V̂n+3

]

−6
[[[

V̂n, V̂n+1

]

, Ŵn+1

]

, V̂n+3

]

− 6
[

V̂n,
[

Ûn+2,
[

V̂n+2, V̂n+3

]]]

+6
[[

Ŵn, V̂n+2

]

,
[

V̂n+2, V̂n+3

]]

+ 6
[[

V̂n, V̂n+1

]

,
[

V̂n+1, Ûn+3

]]
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−3
[

Ŵn, Ûn+3

]

+ 6
[

V̂n,
[

V̂n,
[

V̂n+1, Ŵn+1

]]]

+6
[[[

Ûn, V̂n

]

, V̂n+1

]

, V̂n+1

]

− 3
[

Ûn, Ŵn

]

(B.0.1)

+6
[

V̂n,
[

V̂n+1,
[

Ŵn+2, V̂n+3

]]]

+ 6
[[[

V̂n, Ûn+1

]

, V̂n+2

]

, V̂n+3

]

+12
[[

Ŵn,
[

V̂n+1, V̂n+2

]]

, V̂n+3

]

− 6
[[[

Ŵn, V̂n+1

]

, V̂n+2

]

, V̂n+3

]

+12
[

V̂n,
[[

V̂n+1, V̂n+2

]

, Ûn+3

]]

− 6
[

V̂n,
[

V̂n+1,
[

V̂n+2, Ûn+3

]]]

+6
[

V̂n,
[[

Ûn+1, V̂n+1

]

, V̂n+2

]]

− 2
[[

V̂n, Ûn+1

]

,
[

V̂n+1, V̂n+1

]]

+6
[

V̂n,
[[

V̂n+1, Ŵn+1

]

, V̂n+2

]]

− 2
[[

V̂n, V̂n+1

]

,
[

Ŵn+1, V̂n+2

]]

+4
[[

V̂n,
[

Ûn+1, V̂n+2

]]

, V̂n+2

]

+ 4
[

V̂n,
[[

V̂n, Ŵn+1

]

, V̂n+2

]]

+3
[[[

V̂n, Ŵn

]

, V̂n+1

]

, V̂n+2

]

+ 6
[

V̂n,
[[

V̂n, V̂n+1

]

, Ûn+2

]]

−3
[

V̂n,
[

V̂n,
[

V̂n+1, Ûn+2

]]]

− 2
[

V̂n,
[[

Ŵn, V̂n+1

]

, V̂n+2

]]

+3
[

V̂n,
[

V̂n+1,
[

Ûn+2, V̂n+2

]]]

+ 6
[[

Ŵn,
[

V̂n+1, V̂n+2

]]

, V̂n+2

]

−3
[[[

Ŵn, V̂n+1

]

, V̂n+2

]

, V̂n+2

]

− 2
[[

V̂n,
[

V̂n+1, Ûn+2

]]

, V̂n+2

]

+3
[

V̂n,
[[

V̂n, Ŵn

]

, V̂n+1

]]

−
[

V̂n,
[

V̂n,
[

Ŵn, V̂n+1

]]]

−
[[

V̂n,
[

V̂n, Ûn+1

]]

, V̂n+2

]

−
[

V̂n,
[[

Ŵn+1, V̂n+2

]

, V̂n+2

]]

−1

2

[[[

Ŵn, V̂n+1

]

, V̂n+1

]

, V̂n+2

]

− 1

2

[

V̂n,
[

V̂n+1,
[

V̂n+1, Ûn+2

]]]

−1

2

[[

V̂n,
[

V̂n, Ûn+1

]]

, V̂n+1

]

− 1

2

[

V̂n,
[[

Ŵn, V̂n+1

]

, V̂n+1

]]

, (B.0.2)

with Û and Ŵ as defined in Chapter 3. Only the lowest order of the above coefficient is

needed, in which case V̂ is just ĥ, and Û and Ŵ become k̂ and ĝ respectively. As before,

there are also contributions from earlier coefficients, namely the second and fourth: the

latter contributing triple commutators of three ĥs and a single projection operator (i.e.

every possible option of replacing one of the ĥs in equation (4.4.4) with a P̂ ); the former a

solitary single commutator of two projection operators (the final term in equation (4.4.2)).
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B.1. Identities and Relations

B.1 Identities and Relations

As well as the the reduction identities (3.1.8a) and (3.1.8b) and the relation (3.1.12), the

following were also employed in the final step of the calculation of the fifth conservation

law, and are required again here.

These identities were found whilst calculating the local conservation laws with the aim

of simplifying them as much as possible, and comparing them to previous results. Their

existence is to be expected due to the structure of the problem: any two-site operator

can be written as a linear combination of the permutation and spin-projection operators,

and since all three site operators are products of two two-site operators1, it is possible to

form a basis of three-site operators from these products of two-site ones. Multiplying by

further two-site operators will give expressions which still only span three sites, and must

thus be expressible as a linear combination of the two- and three-site operators already

obtained. Although unproven, it is believed that the identities in Chapter 3 and those

below represent all the identities that exist for three- and four-site operators.2

The first set of identities reduce double commutator terms down to a linear combina-

tion of operators

[

ĥn+1,
[

ĥn+1, P̂n+2,n+3

]]

= 2P̂n+2,n+3 − 2P̂n,n+2, (B.1.1)
[[

P̂n,n+1, ĥn+1

]

, ĥn+1

]

= 2P̂n,n+1 − 2P̂n,n+2, (B.1.2)
[

P̂n,n+1,
[

ĥn, ĥn+1

]]

= ∆ĥn+1 − ∆2P̂n,n+1 + P̂n,n+2 − Σ̂n,n+2

=
[

ĥn,
[

P̂n, ĥn+1

]]

, (B.1.3)
[[

ĥn, ĥn+1

]

, P̂n+1,n+2

]

= ∆ĥn − ∆2P̂n,n+1 + P̂n,n+2 − Σ̂n,n+2

=
[[

ĥn, P̂n+1,n+2

]

, ĥn+1

]

, (B.1.4)
[

ĥn,
[

ĥn, Σ̂n+1,n+3

]]

= (1 + ∆2)Σ̂n+1,n+3 + (1 − ∆2)P̂n+1,n+3 − 2Ĵn+1,(B.1.5)
[[

Σ̂n,n+2, ĥn+2

]

, ĥn+2,
]

= (1 + ∆2)Σ̂n,n+2 + (1 − ∆2)P̂n,n+2 − 2Ĵn+1, (B.1.6)

1which share a common site e.g. P̂1,2 and Σ̂2,3.
2but note that the summation over the site index can cause unexpected complications.

133



B.2. The Sixth Local Conservation Law

where the latter two involve the four-site operator

Ĵn+1 = ∆ĥn,n+3 − (1 − ∆2)P̂n,n+3. (B.1.7)

The second group allows for rearrangement and different representations of the results

[

ĥn, Σ̂n,n+2

]

= −∆
[

ĥn, ĥn+1

]

− (1 − ∆2)
([

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

=
[

Σ̂n,n+2, ĥn+1

]

, (B.1.8)
[

P̂n,n+1, Σ̂n,n+2

]

= −
[

ĥn, ĥn+1

]

+ ∆
([

ĥn, P̂n+1,n+2

]

+
[

P̂n,n+1, ĥn+1

])

=
[

Σ̂n,n+2, P̂n+1,n+2

]

, (B.1.9)
[

Ĵn+1, ĥn+2

]

= −∆2
[

Σ̂n,n+2, ĥn+2

]

− (1 − ∆2)
[

P̂n,n+2, ĥn+2

]

−∆(1 − ∆2)
[

Σ̂n,n+2, P̂n+2,n+3

]

. (B.1.10)

B.2 The Sixth Local Conservation Law

Collecting together the aforementioned contributions and with repeated application of the

various commutator identities and relations mentioned above and in Chapter 3, the sixth

local conservation law may written as

L̂6 = 120
∑

n

[

ĥn, ĥn+1, ĥn+2, ĥn+3, ĥn+4, ĥn+5

]

−∆
([[[

Σ̂n,n+2, ĥn+2

]

, ĥn+3

]

, ĥn+4

]

+
[

ĥn,
[

ĥn+1,
[

ĥn+2, Σ̂n+3,n+5

]]]

+
[

ĥn,
[[

Σ̂n+1,n+3, ĥn+3

]

, ĥn+4

]]

+
[[

ĥn,
[

ĥn+1, Σ̂n+2,n+4

]]

, ĥn+4

])

+∆(1 − ∆2)
([

P̂n,
[

ĥn+1,
[

ĥn+2, ĥn+3

]]]

+
[[[

ĥn, ĥn+1

]

, ĥn+2

]

, P̂n+3

]

+
[

ĥn,
[

P̂n+1,
[

ĥn+2, ĥn+3

]]]

+
[[[

ĥn, ĥn+1

]

, P̂n+2

]

, ĥn+3

])

+∆2
[

Σ̂n,n+2, Σ̂n+2,n+4

]

+
[

Ĵn, ĥn+2

]

+
[

ĥn, Ĵn+2

]

+2∆3
([

Σ̂n,n+2, ĥn+2

]

+
[

ĥn, Σ̂n+1,n+3

])

+∆
([

Ĵn, ĥn+1

]

+
[

ĥn, Ĵn+1

])

−2∆3(1 − ∆2)
([

P̂n, ĥn+1

]

+
[

ĥn, P̂n+1

])
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B.2. The Sixth Local Conservation Law

+20(1 + 2∆)L̂4 − 80(1 + 2∆2 + 3∆4)L̂2

+6
∑

n

∆
([[

Σ̂n,n+2,
[

ĥn+1, ĥn+2

]]

, ĥn+3

]

+
[

ĥn,
[[

ĥn+1, ĥn+2

]

, Σ̂n+2,n+4

]]

+
[[

ĥn+1,
[

Σ̂n,n+2, ĥn+2

]]

, ĥn+3

]

+
[

ĥn,
[[

ĥn+1, Σ̂n+2,n+4

]

, ĥn+2

]])

− 12
([

Ĵn, ĥn+2

]

+
[

ĥn, Σ̂n+1,n+3

])

−12∆
([

Σ̂n,n+2, ĥn+2

]

+
[

ĥn, Σ̂n+1,n+3

])

+12∆(1 − ∆2)
([

P̂n,n+2, ĥn+2

]

+
[

ĥn, P̂n+1,n+3

])

+12∆(1 − ∆2)
([

P̂n, ĥn+1

]

+
[

ĥn, P̂n+1

])

+ 16(1 + 3∆2)L̂2. (B.2.1)

There is a striking (and unexpected) difference between the form of this conservation

law and the previous ones. Until now every term of a conservation law had the same

coefficient; (n − 1)! for the nth conservation law (ignoring linear combinations of lower

order conservation laws). This new conservation law bucks the trend and contains several

terms which do not fit this pattern, and all attempts at rearrangement into this form

have failed. This begs the question what, if anything, do these anomalous terms mean?

Whether they are significant and correspond to new effects which become important

with increasing lattice length cannot be determined and requires further study and the

calculation of higher order conservation laws.
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Appendix C

Exact form of V̂ij for the Hubbard

Model

In Chapter 5 the Campbell-Baker-Hausdorff expansion was used to find V̂ij, where

µV̂ij = ln L̂ij

= ln
(

eλÛie
κ
2
T̂ H

ij eλÛj

)

, (C.0.1)

as an expansion in the parameters. It is desirable however, to find the exact form, which

can be obtained using the method outlined in the same chapter. Table C.1 lists the

sixteen two site states, split up by the number of (fermionic) particles in that state. It

also contains the bosonic form of these states (where the two spins on a site represent the

presence (down) or not (up) of a spin up and spin down fermion respectively), and the

effect of the hopping and potential operators defined at the beginning of Chapter 5. The

states have been grouped by (fermionic) particle number, as none of the operators (or

combinations of them) will change this and so the calculation of V̂ij can be broken down

and considered one particle number subspace at a time.

Tables C.2 and C.3 contain the matrix form of the hopping and potential operators and

their various commutators, again divided into the subspaces for differing particle number

(note that the subspaces with zero and four particles look exactly the same). Higher order
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Table C.1: Two site states of the Hubbard model and the effect of the Hopping and
Potential operators on them.

State fermionic bosonic Effect of operator

site i site j site i site j T̂H
ij Ûi Ûj

|1〉 - - ↑↑ ↑↑ 0 1
2
|1〉 1

2
|1〉

|2〉 ↑ - ↓↑ ↑↑ |3〉 −1
2
|2〉 1

2
|2〉

|3〉 - ↑ ↑↑ ↓↑ |2〉 1
2
|3〉 −1

2
|3〉

|4〉 ↓ - ↑↓ ↑↑ |5〉 −1
2
|4〉 1

2
|4〉

|5〉 - ↓ ↑↑ ↑↓ |4〉 1
2
|5〉 −1

2
|5〉

|6〉 ↑ ↑ ↓↑ ↓↑ 0 −1
2
|6〉 −1

2
|6〉

|7〉 1√
2
[(↑↓)i + (↑↓)j]

1√
2
[(↓↓)i(↑↑)j + (↑↑)i(↓↓)j] 2|8〉 1

2
|7〉 1

2
|7〉

|8〉 1√
2
[↑i↓j + ↓i↑j]

1√
2
[(↓↑)i(↑↓)j + (↑↓)i(↓↑)j] 2|7〉 −1

2
|8〉 −1

2
|8〉

|9〉 1√
2
[↑i↓j − ↓i↑j ]

1√
2
[(↑↓)i(↓↑)j − (↑↓)i(↓↑)j] 0 −1

2
|9〉 −1

2
|9〉

|10〉 1√
2
[(↑↓)i − (↑↓)j]

1√
2
[(↓↓)i(↑↑)j − (↑↑)i(↓↓)j] 0 1

2
|10〉 1

2
|10〉

|11〉 ↓ ↓ ↑↓ ↑↓ 0 −1
2
|11〉 −1

2
|11〉

|12〉 ↑↓ ↑ ↓↓ ↓↑ |13〉 1
2
|12〉 −1

2
|12〉

|13〉 ↑ ↑↓ ↓↑ ↓↓ |12〉 −1
2
|13〉 1

2
|13〉

|14〉 ↑↓ ↓ ↓↓ ↑↓ |15〉 1
2
|14〉 −1

2
|14〉

|15〉 ↓ ↑↓ ↑↓ ↓↓ |14〉 −1
2
|15〉 1

2
|15〉

|16〉 ↑↓ ↑↓ ↓↓ ↓↓ 0 1
2
|16〉 −1

2
|16〉

commutators have not been included because they all either vanish or can be written as

a linear combination of those already there. It must therefore also be possible to write

the right hand side of equation (C.0.1) as a linear combination of the operators in these

tables.

Starting with the simplest subspaces, the effect of the Lax operator on the zero and

four particle states is

L̂ij |1〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|1〉

= eλ|1〉, (C.0.2)

L̂ij |16〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|16〉

= eλ|16〉. (C.0.3)
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The only operators to be non-zero in these subspaces are the Ûα, and so trivially

ln

[

eλ

]

=

[

λ

]

= λ
(

Ûi + Ûj

)

,

but note that this combination also contributes something to the two particle subspace.

In the subspace of states with a single particle, the Lax operator acts on each state as

follows

L̂ij |2〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|2〉

= cosh
(κ

2

)

|2〉 + eλ sinh
(κ

2

)

|3〉, (C.0.4)

L̂ij |3〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|3〉

= cosh
(κ

2

)

|3〉 + e−λ sinh
(κ

2

)

|2〉, (C.0.5)

L̂ij |4〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|4〉

= cosh
(κ

2

)

|4〉 + eλ sinh
(κ

2

)

|5〉, (C.0.6)

L̂ij |5〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|5〉

= cosh
(κ

2

)

|5〉 + e−λ sinh
(κ

2

)

|4〉. (C.0.7)

Here the problem is already block diagonalised, with both blocks the same, and so it is

only necessary to calculate the logarithm of the two-by-two matrix

ln







cosh
(

κ
2

)

e−λ sinh
(

κ
2

)

eλ sinh
(

κ
2

)

cosh
(

κ
2

)






=

1

2







0 κe−λ

κeλ 0






, (C.0.8)

and noting from tables C.2 and C.3 that in this subspace, for the same two-by-two blocks,

the off-diagonal elements can be written as the following combination of commutators







0 4

0 0






= −

{[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûj

]}

+ T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

, (C.0.9)
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





0 0

4 0






=

[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûj

]

+ T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

, (C.0.10)

and so in this subspace the operator µV̂ij can be written as

1

2







0 κe−λ

κeλ 0






=

1

8

{

κe−λ(C.0.9) + κeλ(C.0.10)
}

(C.0.11)

=
κ

4
sinhλ

{[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûj

]}

+
κ

4
coshλ

{

T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]}

.

Note that this combination of operators returns zero in the two particle subspace. In the

three particle subspace however, Ûα → −Ûα, and so the λs in equation (C.0.8) change

sign, as do the single commutators in equations (C.0.9) and(C.0.10). These changes in

sign then cancel out when constructing the final relation, and so the above combination

of commutators also gives the correct form of µV̂ij in the three particle subspace.

This just leaves the two particle space to be dealt with. The states in table C.1 were

chosen to ensure T̂H
ij was already almost fully diagonal, so that applying L̂ij to the six

states

L̂ij |6〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|6〉

= e−λ|6〉, (C.0.12)

L̂ij |7〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|7〉

= eλ cosh
(

κ
)

|7〉 + sinh
(

κ
)

|8〉, (C.0.13)

L̂ij |8〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|8〉

= e−λ cosh
(

κ
)

|8〉 + sinh
(

κ
)

|7〉, (C.0.14)

L̂ij |9〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|9〉

= e−λ|9〉, (C.0.15)

L̂ij |10〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|10〉

= e−λ|10〉, (C.0.16)
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L̂ij |11〉 = exp
{

λÛi

}

exp
{κ

2
T̂H

ij

}

exp
{

λÛj

}

|11〉

= e−λ|11〉, (C.0.17)

leads to the relatively simple block diagonal matrix

































e−λ 0 0 0 0 0

0 eλ cosh κ sinh κ 0 0 0

0 sinhκ e−λ cosh κ 0 0 0

0 0 0 e−λ 0 0

0 0 0 0 eλ 0

0 0 0 0 0 e−λ

































. (C.0.18)

After taking the logarithm, the four pure diagonal terms can be seen to stem from the

same combination as was used for the zero and four particle subspaces, which just leaves

the two-by-two block to be dealt with

ln







eλ cosh κ sinhκ

sinh κ e−λ cosh κ






=

ν

sinh ν







sinh λ cosh κ sinh κ

sinhκ − sinhλ cosh κ






, (C.0.19)

in terms of the new parameter cosh ν = cosh λ cosh κ. Again referring to tables C.2 and

C.3, the elements of this two-by-two block can be related by the equations







16 0

0 −16






=

[

Ûi, T̂
H
ij , T̂

H
ij

]

+
[

T̂H
ij , T̂

H
ij , Ûj

]

, (C.0.20)







0 4

4 0






= T̂H

ij −
[

Ûi, T̂
H
ij , Ûj

]

, (C.0.21)

and so, including the combination from the zero particle subspace, µV̂ij in this subspace
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can be written in the form

λ
(

Ûi + Ûj

)

+
1

16

{

ν

sinh ν
sinhλ cosh κ− λ

}

(C.0.20) +
1

4

ν sinhκ

sinh ν
(C.0.21). (C.0.22)

Finally, the two combinations of operators (C.0.12) and (C.0.22) give µV̂ij in the odd

and even particle number subspaces respectively, and so, summing the two gives the full

and exact form:

µV̂ij[µ] = λ
(

Ûi + Ûj

)

+
κ

4
sinhλ

(

[

Ûi, T̂
H
ij

]

+
[

T̂H
ij , Ûi

]

)

+
κ

4
cosh λ

{

T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

}

+
1

16

{

ν

sinh ν
sinh λ cosh κ− λ

}

(

[

Ûi, T̂
H
ij , T̂

H
ij

]

+
[

T̂H
ij , T̂

H
ij , Ûj

]

)

+
1

4

ν sinh κ

sinh ν

(

T̂H
ij +

[

Ûi, T̂
H
ij , Ûj

]

)

. (C.0.23)

C.1 Identities and Relations

Unlike the XXZ model where the permutation and spin-projection operators commute,

the hopping and potential operators which form the Hubbard Hamiltonian do not. This

non-abelian aspect makes life considerably more complicated, as it is the eight operators

in Tables C.2 and C.3 which form a basis for all two-site operators, as opposed to just

the two in the previous case. As before, three-site operators are constructed as products

of two-site ones, but the number of combinations has risen dramatically, and any hope

of finding all possible relations and reduction identities at higher orders is lost. Bearing

this in mind, the following complete the group of identities discovered so far, which have

been used for the simplification of the conservation laws in Chapter 5

∑

n

{

[

Ĥn, Ĥn+1, Ĥn+2, Ĥn+2

]

− (1 + g)
([

Ĥn, Ĥn+1

]

− g
[

Ĥn, Ûn+1

])

−g
([

Ĥn,
[[

Ĥn+1, Ûn+2

]

, Ĥn+2

]]

+
[

Ĥn,
[

Ĥn+1,
[

Ĥn+2, Ûn+3

]]])

}

= 0,(C.1.1)
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Table C.2: Hopping and Potential operators and their Commutators.

Operator Particle Number subspace
0/4 1 2 3

T̂H
ij

[

0
]









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

























0 0 0 0 0 0
0 0 2 0 0 0
0 2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









Ûi

[

1
2

]

1
2









−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1









1
2

















−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

















1
2









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









Ûj

[

1
2

]

1
2









−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1









1
2

















−1 0 0 0 0 0
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 −1 0 0
0 0 0 0 1 0
0 0 0 0 0 −1

















1
2









1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1









[

Ûi, T̂
H
ij

]

[

0
]









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

























0 0 0 0 0 0
0 0 2 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0









[

T̂H
ij , Ûj

]

[

0
]









0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

























0 0 0 0 0 0
0 0 −2 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0








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Table C.3: Double Commutators of the Hopping and Potential operators.

Operator Particle Number subspace
0/4 1 2 3

[[

Ûi, T̂
H
ij

]

, T̂H
ij

]

[

0
]









−2 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 2

























0 0 0 0 0 0
0 8 0 0 0 0
0 0 −8 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























2 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 −2









[

T̂H
ij ,
[

T̂H
ij , Ûj

]]

[

0
]









2 0 0 0
0 −2 0 0
0 0 2 0
0 0 0 −2

























0 0 0 0 0 0
0 8 0 0 0 0
0 0 −8 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























−2 0 0 0
0 2 0 0
0 0 −2 0
0 0 0 2









[

Ûi,
[

T̂H
ij , Ûj

]]

[

0
]









0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

























0 0 0 0 0 0
0 0 −2 0 0 0
0 −2 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

























0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0









∑

n

{

[

Ĥn, Ĥn, Ĥn+1, Ĥn+2

]

− (1 + g)
([

Ĥn, Ĥn+1

]

− g
[

Ûn, Ĥn

])

−g
([

Ĥn,
[[

Ûn+1, Ĥn+1

]

, Ĥn+2

]]

+
[

Ûn,
[

Ĥn,
[

Ĥn+1, Ûn+2

]]])

}

= 0, (C.1.2)

∑

n

[

Ûn,
[

Ĥn,
[

Ĥn, Ĥn+1

]]]

+
[

Ĥn,
[

Ĥn,
[

Ĥn+1, Ûn+2

]]]

− (1 + 3g2)
[

Ĥn, Ûn+1

]

=

∑

n

[[[

Ûn, Ĥn

]

, Ĥn+1

]

, Ĥn+1

]

+
[[[

Ĥn, Ĥn+1

]

, Ĥn+1

]

, Ûn+2

]

− (1 + 3g2)
[

Ûn, Ĥn

]

,(C.1.3)

∑

n

{

[

Ûn,
[

Ĥn,
[

Ĥn, Ĥn+1

]]]

+
[[[

Ĥn, Ĥn+1

]

, Ĥn+1

]

, Ûn+2

]

−g
([[

Ûn, Ĥn, Ûn+1

]

, Ĥn+1

]

+
[

Ĥn,
[

Ûn+1,ˆHn+1, Ûn+2

]])

−2g
[

Ĥn, Ĥn+1

]

+ 3g2
([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

}

= 0, (C.1.4)
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∑

n

{

2
[

Ĥn,
[

Ĥn,
[

Ûn+1, Ĥn+1

]]]

−
[

Ûn+1,
[

Ĥn,
[

Ĥn, Ĥn+1

]]]

−
[[

Ûn, Ĥn, Ĥn

]

, Ĥn+1

]

−
[[

Ĥn, Ĥn, Ûn+1

]

, Ĥn+1

]

−
[

Ûn, Ĥn

]

− 4g
[

Ĥn, Ĥn+1

]

+ g2
(

4
[

Ûn, Ĥn

]

+ 5
[

Ĥn, Ûn+1

])

}

= 0, (C.1.5)

∑

n

{

2
[[[

Ĥn, Ûn+1

]

, Ĥn+1

]

, Ĥn+1

]

−
[[[

Ĥn, Ĥn+1

]

, Ĥn+1

]

, Ĥn+1

]

−
[

Ĥn,
[

Ûn+1, Ĥn+1, Ĥn+1

]]

−
[

Ĥn,
[

Ĥn+1, Ĥn+1, Ûn+2

]]

−
[

Ĥn, Ûn+1

]

− 4g
[

Ĥn, Ĥn+1

]

+ g2
(

5
[

Ûn, Ĥn

]

+ 4
[

Ĥn, Ûn+1

])

}

= 0, (C.1.6)

g
∑

n

{

[

Ĥn,
[

Ĥn,
[

Ĥn+1, Ûn+2

]]]

+
[[[

Ûn, Ĥn

]

, Ĥn+1

]

, Ĥn+1

]

+2
[[

Ûn, Ĥn, Ĥn

]

, Ĥn+1

]

+ 2
[

Ĥn,
[

Ĥn+1, Ĥn+1, Ûn+2

]]

}

=
∑

n

{

2
[

Ĥn, Ĥn, Ĥn+1, Ĥn+1

]

+g2
([[

Ûn, Ĥn, Ûn+1

]

, Ĥn+1

]

+
[

Ĥn,
[

Ûn+1,ˆHn+1, Ûn+2

]])

−2g2
[

Ĥn, Ĥn+1

]

− g(7 + 2g2)
([

Ûn, Ĥn

]

+
[

Ĥn, Ûn+1

])

}

. (C.1.7)
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