
1

Understanding Android App Piggybacking: A
Systematic Study of Malicious Code Grafting

Li Liξ,Daoyuan Li, Tegawendé F. Bissyandé,Jacques Klein,Yves Le Traon,David Lo,Lorenzo Cavallaro

F

Abstract—The Android packaging model offers ample opportunities for
malware writers to piggyback malicious code in popular apps, which can
then be easily spread to a large user base. Although recent research
has produced approaches and tools to identify piggybacked apps, the
literature lacks a comprehensive investigation into such phenomenon.
We fill this gap by 1) systematically building a large set of piggybacked
and benign apps pairs, which we release to the community, 2) em-
pirically studying the characteristics of malicious piggybacked apps in
comparison with their benign counterparts, and 3) providing insights
on piggybacking processes. Among several findings providing insights
analysis techniques should build upon to improve the overall detection
and classification accuracy of piggybacked apps, we show that piggy-
backing operations not only concern app code, but also extensively
manipulates app resource files, largely contradicting common beliefs.
We also find that piggybacking is done with little sophistication, in many
cases automatically, and often via library code.

1 INTRODUCTION

Android apps are distributed as software packages (i.e.,
APK files, which are actually archives in the ZIP format) that
include developer bytecode, resource files and a Manifest
which presents essential information about the app, such
as permissions requested and the list of components, that
the system must know about before it can run any of the
app’s code. Unfortunately, unlike for traditional software
executables, Android app package elements can easily be
modified by third parties [6]. Malware writers can thus
build on top of popular apps to ensure a wide diffusion of
their malicious code within the Android ecosystem. Indeed,
it may be effective to simply unpack a benign, preferably
popular, app and then graft some malicious code on it before
repackaging it and distributing it for free. The resulting app,
which thus piggybacks a malicious payload, is referred to as
a piggybacked app.

Previous studies, have exposed statistics suggesting that
malware is written at an industrial scale and that a given
malicious component can be extensively reused in a bulk

• ξ The corresponding author.
• L. Li, D. Li, T. Bissyandé, J. Klein, and Y. Le Traon are with the

Interdisciplinary Centre for Security, Reliability and Trust, University
of Luxembourg, Luxembourg.
E-mail: li.li@uni.lu

• D. Lo and L. Cavallaro are with Singapore Management University and
Royal Holloway, University of London, respectively.

Manuscript received XXX; revised XXX.

of malware [39], [50]. These findings support the assump-
tion that most malware might be simply repackaged ver-
sions of official applications. Evidence of the widespread
use of repackaging by malware writers is provided in
MalGenome [50], a reference dataset in the Android security
community, where 80% of the malicious samples are known
to be built via repackaging other apps. A more recent
analysis highlights the fact that even Google Play security
checkers are challenged in detecting fake apps1, providing
further evidence that the problem is widespread.

In contrast with common repackaging, where the code
of original apps may not be modified, piggybacking grafts
additional code to inject an extra, often malicious, behaviour
to original apps. A study of piggybacked apps, a specific
subset of repackaged apps, can thus contribute in the re-
search directions towards comprehending malware creation,
distribution, etc. Indeed, piggybacked apps, because of the
introduction of alien code, will present characteristics that
analyzers can leverage to locate and investigate malicious
payloads of Android malware.

To the best of our knowledge, state-of-the-art works have
mainly focused on detecting repackaged apps rather than
detecting piggybacked apps. Even so, the problem of detect-
ing piggybacked apps is eventually related to the problem
of detecting app clones and repackaged apps. The major-
ity of state-of-the-art works, such as DroidMoss [48] and
DNADroid [14], have focused on performing pairwise sim-
ilarity comparisons of app code to detect repackaged apps.
However, because millions of Android apps are now avail-
able in markets, pairwise comparison based approaches
cannot scale. For example, considering the 2 million apps
in Google Play, there would be C2

2∗106 candidate pairs for
comparison2.

To alleviate the scalability problem that exists in such
approaches, PiggyApp [47] builds, for every app, a vector
with normalized values of semantic features extracted from
components implementing the app’s primary functionality.
Thus, instead of computing the similarity between apps
based on their code, PiggyApp computes, as a proxy, the dis-
tance between their corresponding vectors. This approach
however also remains impractical, since one would require

1. http://goo.gl/kAFjkQ – Posted on 24 February 2016
2. If we consider a computing platform with 10 cores each starting

10 threads to compare pairs of apps in parallel, it would still require
several months to complete the analysis when optimistically assuming
that each comparison would take about 1ms.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298526?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://goo.gl/kAFjkQ

2

the dataset to contain exhaustively the piggybacked apps
as well as their corresponding original apps. In practice
however, many piggybacked apps are likely to be uploaded
on different markets than where the original app can be
found.

Overall, the aforementioned limitations could be over-
come with approaches that leverage more knowledge on
how piggybacked apps are built. Instead of a brute-force
comparison, one could use semantic features that hint on
probable piggybacking scenarios. Although piggybacked
apps can be taken as repackaged apps, which have been
well studied by literature works, the features extracted from
repackaged apps may not be representative of piggyback-
ing.

The goal of our work is to extensively investigate pig-
gybacked apps for understanding how piggybacking is
performed. To the best of our knowledge, this study is the
first work attempting to provide a systematized knowledge
on this topic to the community. We make the following
contributions:
• We contribute to the research community efforts by build-

ing and sharing the first publicly available dataset [1] on
piggybacked apps. This dataset, which was collected in a
systematic way and includes for each piggybacked app
its associated original app, can be used as a reference
ground truth for assessing approaches. This dataset will
be further systematically and regularly updated as new
Android malware samples are collected in the AndroZoo
project [2].

• We conduct a comprehensive study of piggybacked apps
and report our findings on how piggybacked apps dif-
ferentiate from benign apps, what actions are performed
by piggybackers, what payloads are inserted, etc. Among
several insights, we find that piggybacking is done with
little sophistication, in many cases automatically, and of-
ten via library code.

The remainder of this paper is organized as follows.
Section 2 presents a terminology related to piggybacked
apps to which we will refer to in the remainder of this paper.
Section 3 details how the benchmark dataset of piggybacked
apps was collected. Section 4 describes dimensions of this
study and all the findings. We discuss the implications of the
findings and enumerate the threats to validity in Section 5.
Section 6 enumerates related work and Section 7 concludes
this paper.

2 TERMINOLOGY

We now provide a terminology to which we will refer to in
the remainder of this paper. There are several terms that
have been leveraged in the literature to indicate actions
involving app code reuse processes. Particularly, cloning is
used to describe the process of constructing a program by
reusing the functionality of other programs. In the Android
ecosystem, it is straightforward to clone an app through
repackaging. However, repackaging does not necessarily
need to modify the bytecode of a given app. Indeed, one can
repackage an app without changing anything but to switch
the app owner. Piggybacking is defined in the literature as
an activity where a given Android app is repackaged after
manipulating the app content, e.g., to insert a malicious

Set of Android Apps

Carrier Rider

piggybacked APP (a2)

Hook

original
APP (a1)

Set of Piggybacked Apps

Set of Malware

Fig. 1: Piggybacking terminology.

Android APK File

classes.dex

*.so

classes.dex
*.xml

Fig. 2: An example of extra code of a given Android apps, where
the extra code is highlighted with red dotted lines.

payload, an advertisement library, etc. Piggybacked apps
thus constitute a specific subset of repackaged apps.

Fig. 1 illustrates the constituting parts of a piggybacked
app. Such malware3 are built by taking a given original app,
referred to in the literature [47] as the carrier, and grafting to
it a malicious payload, referred to as the rider. The malicious
behaviour will be triggered thanks to the hook code that is
inserted by the malware writer to connect his rider code
to the carrier app code. The hook thus defines the point
where carrier context is switched into the rider context in
the execution flow.

Fig. 2 illustrates the simplified file structure of a given
Android app. Besides the standard app code4, compiled into
classes.dex, Android apps can include additional code:

• Native compiled code in ELF format (.so files in Fig. 2);
• Some extra bytecode in another dex file hidden behind

the format of a resource file such as XML.
In this work, we refer to any other executable code that is
not in the standard classes.dex as extra code (i.e., all code
present in dash rectangles in Fig. 2).

3 DATASET COLLECTION

Research on Android security is challenged by the scarcity
of datasets and benchmarks. Despite the abundance of stud-
ies and approaches on detection of piggybacked apps, access
to the associated datasets is limited. Furthermore, while
other studies focus on various kinds of repackaged apps,

3. Our definition of malware is related to the flags of AV products.
Typically, (aggressive) adware are also included.

4. Throughout this manuscript, app code exclusively refers to artifacts
produced by compiling code written in a programming language. App
resource files, such as image and metadata files, are not considered as
code.

3

ours targets exclusively piggybacked malware. Finally, re-
lated work apply their approach on random datasets and
then manually verify the findings to compute performance.
Conversely, we take a different approach and automate
the collection of a ground truth that we share with the
community [1].

3.1 Process
Our collection is based on AndroZoo [2], a large reposi-
tory of millions of apps crawled over several months from
several markets (including Google Play, appchina, anzhi),
open source repositories (including F-Droid) and researcher
datasets (such as the MalGenome dataset). We follow the
process in Fig. 3 to collect the ground truth dataset of
piggybacked apps.

First, we send all apps to VirusTotal5 to collect their
associated anti-virus scanning reports. Based on VirusTotal’s
results, we classify the set of apps to two subsets: one
contains only benign apps while the other contains only
malicious apps.

Set of Android Apps

Benign/Malicious
Apps

2) Irrelevance Filtering

Ground Truth

1) VirusTotal Classification
3) Similarity
Inspection

(2.1)
Same App

(package name)

(2.2)
Different Authors

(certificate)

(2.3)
Same Versions

(e.g., SDK)

Fig. 3: The ground truth build process.

Second, we filter out irrelevant results, in an attempt to
only focus on building piggybacking pairs. This step has
further been divided into three sub-steps. In step (2.1), we
filter the apps based on Application Package name recorded
in the Manifest file of each app, which should identify
uniquely the app6. Considering the identicality of package
names, we were able to focus on a subset of about 540 thou-
sands pairs< appg, appm > of benign (appg) and malicious7

(appm) apps sharing the same package name. This step
yields our first set of candidate pairs. Before proceeding to
the next step, we ensure that for each pair, the creation date
of the benign app precede the one of the malicious app. In
step (2.2), we do not consider cases where a developer may
piggyback his own app to include new payload. Indeed, we
consider piggybacking to be essentially a parasite activity,
where one developer exploits the work of another to carry
his malicious payload. Furthermore, developers may later
“piggyback” their own app, e.g., to insert an advertising
component to collect revenue, transforming these apps to
adware (often classified as malware). We choose to clean the
dataset from such apps. Thus, we discard all pairs where

5. http://virustotal.com, which hosts around 50 anti-virus products
from providers such as Symantec, McAfee, Kaspersky.

6. Two apps with the same Application Package name cannot be
installed on the same device. New versions of an app keep the package
name, allowing updates instead of multiple installs.

7. In this study, we consider an app to be malware if at least one of
the anti-virus products from VirusTotal has labeled it as such.

both apps are signed with the same developer certificate.
This step brings the subset to about 70 thousands pairs. In
step (2.3), we focus on cases where piggybackers do not
modify version numbers and do not entirely re-implement
functionality which would require new SDK versions. By
considering pairs where both apps share the same version
number and SDK requirements, we are able to compile a
promising dataset of 1,497 app pairs where one app poten-
tially piggybacks the other to include a malicious payload.

Finally, in order to build a final ground truth, we must
validate the relevance of each pair as a piggybacking pair. To
that end, we perform a similarity analysis where we expect
that, given a pair of apps < appg, appm >, appg’s code is
part of appm and appm includes new code to constitute the
malicious payload.

3.2 Similarity analysis
Similarity analysis is essential to quantify and qualify the
difference (or similarity) in the packages of two apps, no-
tably for a pair of piggybacked apps. Given a pair of apps
(app1, app2), we compute the following four metrics that
have already been adopted by state-of-the-art tools such as
Androguard [17], [29]:
• identical – a given method including both signature and

implementation is exactly the same in both apps.
• similar – a given method has slightly changed (at the

instruction level) between the two apps, i.e., methods with
same signature but with different contents.

• new – a method has been added in the piggybacked app,
i.e., methods exist in app2 but not in app1.

• deleted – a method has been deleted from the carrier code
when including it in the piggybacked app, i.e., methods
exist in app1 but not in app2.

Based on these metrics, we can now calculate the simi-
larity score of pair (app1, app2) using Formula 1.

similarity = max{ identical

total − new
,

identical

total − deleted
} (1)

where

total = identical + similar + deleted+ new (2)

3.2.1 Code to text representation
In order to enable a fast comparison for scaling to large
datasets, our similarity analysis builds on a text represen-
tation that abstracts the implementation logic of each app
method. Given two Android apps, our similarity analysis
compares their included methods based on the sequence of
statements that they implement. We first pre-define a map-
ping between statement types8 and printable characters. For
example, a static invocation statement could be mapped to
the character c. Based on this mapping, every method can be
represented at a high level as a short string. In the example
of Fig. 4, the content of method onCreate() is represented by
string aabcdbe.

In addition to the fast comparison scheme, applying
code-to-text representation for similarity analysis brings
in another advantage: it is resilient to simple obfuscation

8. https://ssebuild.cased.de/nightly/soot/javadoc/index.html

http://virustotal.com
https://ssebuild.cased.de/nightly/soot/javadoc/index.html

4

scenarios that change the names of classes, methods and
variables. As cons, the similarity measure is only an approx-
imation. To ensure confidence in these approximations, we
have experimentally validated on a small dataset of apps
that we obtain are in line with the scores produced by the
state-of-the-art Androguard tool [17].

 protected void onCreate(Bundle $param0) {
1: Intent $Intent;

2: Intent $Intent_1;

3: specialinvoke this.onCreate($param0);

4: staticinvoke <UarcaNawren: void nvcisoewa(Context)>(this);

5: $Intent = new Intent;

6: specialinvoke $Intent.<init>(this, class "");

7: virtualinvoke $Intent.addFlags(65536);
 }

a

b

a

b

d

c

e
aabcdbe

Fig. 4: Illustration of Code to Text transformation. Characters in
the right box are representations of the type of statements.

3.2.2 Ground truth inference

Our similarity analysis allowed to consolidate our dataset
by validating that apps in a piggybacking pair were indeed
very similar in terms of code content; pairs with code sim-
ilarity of less than a pre-defined 80% threshold are filtered
out. Zhou et al. [49] have previously found, through empir-
ical experiments, that 70% is already a good threshold for
similarity-based repackaged/piggybacking app detection.
In this work, we aim for a more constrained threshold.

We further drop cases of app pairs where no new code
has been added (e.g., only resource files have been modi-
fied/added). The final set of ground truth is now composed
of 950 pairs of apps.

3.2.3 Hook and rider identification

Methods that are found to be similar between a pair of
app represent a sweet spot for characterising piggybacking.
Given a method m present in two artifacts a1 and a2 but
differing in their implementation, our similarity analysis
takes one step further by performing a fine-grained analysis
to localize the added/changed/deleted statements of m in
a2 w.r.t a1. Such statements are considered as the hooks via
which the malware writer connects his malicious code to
the original app (a1). Rider code is then inferred as the set
of added methods and classes in the control-flow graph that
are reachable from the hook statements.

3.2.4 Implementation

Our similarity analysis is implemented in Java on top of
Soot [25], which is a framework for analyzing and trans-
forming Java/Android apps. The code to text representa-
tion is conducted at the Jimple level [41], where Jimple is
an intermediate representation of Soot. The transformation
from Android Dalvik bytecode to Jimple is conducted by
Dexpler [7], which now has been integrated into Soot. The
main advantage of leveraging Jimple is that we are able to
assign a printable character to every statement type because
the number of statement types in Jimple is small.

3.3 Dataset Characterization
For each piggybacking pair in our dataset, we collect the
metadata information (i.e., creation date, description, cate-
gorisation, download count) of the original app by looking
in their Manifest file and by crawling description pages from
specialized websites9.

Temporal distribution of our dataset. As illustrated in Fig. 5,
our dataset contains piggybacked apps from a period of
6 years. At the time of writing, Androzoo dataset and
associated antivirus (AV) reports were limited to apps until
mid-2014. We performed our study on the available apps,
but committed to continuously update the dataset of piggy-
backing pairs as new samples get archived in Androzoo. (cf.
Section 5.3 on the mitigation of this threat to validity).

1	 3	 1	 1	 1	 2	 3	 2	

15	

3	
11	

3	 1	 1	 1	
6	
1	
5	 3	 3	 6	

15	 15	

27	
18	
11	

7	
1	

13	
6	 8	

20	

40	 40	

7	 7	
12	

6	

19	

7	

25	

45	

62	

91	

50	

74	

28	

12	

28	
34	

80	

19	 19	

4	

0	

10	

20	

30	

40	

50	

60	

70	

80	

90	

100	

09
-0

9
09

-1
1

10
-0

1
10

-0
8

10
-1

0
10

-1
2

11
-0

3
11

-0
5

11
-0

7
11

-0
9

11
-1

1
12

-0
1

12
-0

3
12

-0
5

12
-0

7
12

-0
9

12
-1

1
13

-0
1

13
-0

3
13

-0
5

13
-0

7
13

-0
9

13
-1

1
14

-0
1

14
-0

3
14

-0
5

14
-0

7

Fig. 5: Temporal Distribution of piggybacked apps in our
dataset. (app creation date ≡ dex compilation timestamp)

Variety of app categories. Statistics of app categories, il-
lustrated in Fig. 6, show that Game apps are the most
represented in our piggybacked datasets. A random sam-
pling on our dataset of 2 million apps shows that Games
also constitute the largest category of apps. Our dataset of
piggybacking pairs further includes piggybacked apps from
a variety of 22 categories such as Productivity, Tools, En-
tertainment, Personalization, Social Networking, Shopping,
Sports, Weather, Transportation or News.

78%
3%
1%
1%
1%

0 200 400 600 800

GAME
TOOLS

PRODUCTIVITY
ENTERTAINMEN
PERSONALIZATI

28%
18%

14%
12%

7%

0 50 100 150 200

GAME_ARCADE
GAME_CASUAL
GAME_PUZZLE
GAME_RACING
GAME_ACTION

Fig. 6: Top 5 categories (left) and game sub-categories (right) of
Android apps used to carry piggybacking payloads.

Distribution channels. Piggybacked apps from our dataset
were found in several markets. While many were dis-
tributed on alternative markets such as anzhi (71%) and
appChina (14%), some are actually spread via the official
Google Play market (2.2%).

Popularity of apps. The distribution of download counts
of original apps in piggybacking pairs and of a random
sample of benign apps from Google Play, shows that mainly
popular apps are leveraged by malware writers to carry
their malicious payloads (cf. Fig. 7).

Variety of malicious behaviour. We have collected AV re-
ports from around 50 AV engines provided by VirusTotal

9. Notably http://www.bestappsmarket.com

http://www.bestappsmarket.com

5

1,000,000+

100,000+

10,000+

1000+

1+

ORIGINAL APPS RANDOM APPS

Fig. 7: Download counts of apps leveraged for piggybacking vs.
apps randomly sampled in GooglePlay. (Sets are of same size)

for the piggybacked apps. As a proxy to the type/family of
malware they are categorized in, we rely on AV labels. Our
piggybacked apps were qualified with over 1000 distinct
labels by the AVs. Even considering that each AV has its
own naming system, this high number suggests a variety
of malicious behaviour implemented in the piggybacked
payloads.

Piggybacking delay. For each piggybacking pair, we com-
pute the time difference to explore the time delay before an
app is leveraged for piggybacking. Distribution 10 in Fig. 8
shows that piggybacking operation can be done on apps
of any age, with a median delay of 33 days. On average
however, malware writers wait half a year before using a
“known” app to spread malicious payload.

0 100 200 300 400 500

Days

mean=186 days

Fig. 8: App age when it is piggybacked (Median=33 days)

Piggybacking pair similarity. Fig. 9 plots the similarity
analysis results of our collected dataset. Generally, a small
amount of methods in carrier are modified in the piggy-
backed code and the remaining methods are kept identi-
cal. In most cases, piggybacked apps also introduce new
methods while piggybacked apps remove methods from the
original carrier code in only a few cases.

Identical Similar Deleted New

0
20

40
60

80
10

0

Pe
rc

en
ta

ge
 o

f M
et

ho
ds

Fig. 9: Overview of the similarity analysis findings for the pairs
of apps in our collected dataset.

10. This distribution is presented through a boxplot, which provides
a convenient means to visually elucidate groups of numeric data. A
boxplot is made up of five horizontal lines. As shown in Fig. 8, from
left to right, the five lines (in black) are 1) the least value (MINIMUM),
2) the line where 25% of data values are below (LOWER QUARTILE),
3) the middle point of the data values (MEDIAN), 4) the line where 25%
of the data values are above (UPPER QUARTILE), and 5) the greatest
value (MAXIMUM).

4 UNDERSTANDING PIGGYBACKING

Our investigation into Android app piggybacking is carried
out through a dissection of Android piggybacked apps. The
dissection is conducted mainly in manual, with the support
of python and shell scripts. In this section, we overview
in Section 4.1 the various dimensions of dissection that
we used to answer several relevant research questions for
understanding the piggybacking process. Subsequently, we
detail our study and the findings in Section 4.2.

4.1 Dimensions of dissection

Our study explores several aspects of Android app piggy-
backing. Overall we look into:
• Which app elements are manipulated by piggybackers?

An Android application package includes a classes.dex
file that contains the main code implementing app func-
tionality. Besides this code, the apk file includes icons and
background image files, layout description XML files, as
well as other resource files such as library Jar files and
archives containing extra code.

Image and layout resource files are important for mal-
ware writers who must ensure, beyond advertised func-
tionality, that the malicious app has the proper “look and
feel”. Launcher activity and component lists are also es-
sential elements described in the Manifest file that could
be manipulated during piggybacking to ensure that the
app is transparently installed on user devices, and that
the malicious code is triggered seamlessly. We investigate
the extent of these modifications to answer the following
research questions:
RQ-01 Are resource files as much concerned by piggyback-

ing operations as app bytecode?
RQ-02 What types of resources are included in the mali-

cious payload?
RQ-03 Are rider code samples redundant across piggy-

backed apps?
RQ-04 What changes are applied to the Manifest file during

piggybacking?
RQ-05 What developer certificates can be found in piggy-

backed apps?
• How app functionality and behaviour are impacted?

Android apps are made up of four types of components:
1) Activity, which is used to represent the visible part of
Android apps; 2) Service, which is dedicated to execute
tasks in the background; 3) Broadcast Receiver, which waits
for receiving user-specific or system events; and 4) Content
Provider, which plays as a standard means for structural
data access. These components may not be equally impor-
tant for spreading malicious payloads.

App components use Intents as the primary means for
exchanging information. When the Android OS resolves an
intent which is not explicitly targeted to a specific compo-
nent, it will look for all registered components that have
Intent filters with actions matching the intent action. Indeed,
Intent filters are used by apps to declare their capabilities.
Piggybacked apps may declare new capabilities to trick
users into triggering themselves the malicious behaviour.

Finally, every Android app must be granted the neces-
sary permissions to access every sensitive resource or API

6

required for its functioning. If the malicious code interacts
with more sensitive resources than the original app, new
permissions must be requested in the Manifest file.

In the following research questions, we investigate in
details the scenarios mentioned above.

RQ-06 Does the malicious payload require extra-
permissions to execute?

RQ-07 Which types of components are more manipulated
in piggybacking?

RQ-08 Is piggybacking always performed manually for
every target popular app?

RQ-09 What kind of actions, encoded in Intents, are created
by piggybacked rider code?

RQ-10 Are there new sensitive data leaks performed for
the piggybacking needs?

• Where malicious code is hooked into benign apps?

To elude detection, malware writers must identify the
sweet spots to graft malicious rider code to the benign
carrier code. Programmatically, in Android, there are mainly
two ways to ensure that rider code will be triggered during
app execution. We refer to the two ways as type1 and type2
hooks. Type1 hooks modify carrier code to insert specific
method calls that connect to rider code, which does not need
to modify the Manifest file. Conversely, Type2 hooks come
in as rider components (need to register in Manifest), which
can be launched independently (e.g., via user actions such as
clicking, or system events). It is thus important to investigate
to what extent piggybackers place hooks that ensure that the
rider code will be executed (e.g., with only type2 hooks or
both?).

Piggybackers may also attempt to elude static detection
of malicious behaviour by dynamically loading parts of the
rider code. Finally, rider code may deliver malicious be-
haviour from various families. We investigate these aspects
through the following research questions:

RQ-11 Is the injected rider code complex?
RQ-12 Is the piggybacking rider code limited to the stati-

cally accessible code?
RQ-13 How tightly is the rider code integrated with the

carrier code?
RQ-14 Are hook code samples specific to each piggybacked

app?
RQ-15 What families of malware are spread via piggyback-

ing?

4.2 Findings

In this section we report on the findings yielded by our
investigation of the research questions outlined above. For
each of the findings, named from F1 to F20, we provide the
take-home message before providing details on the analysis.

When a finding involves a comparison of a characteristic
of piggybacked app w.r.t original apps, we have ensured
that the difference is statistically significant by performing
the Mann-Whitney-Wilcoxon (MWW) test. MWW is a non-
parametric statistical hypothesis test for assessing the statis-
tical significance of the difference between the distributions
in two datasets [33]. We adopt this test as it does not assume
any specific distribution, a suitable property for our experi-

mental setting. In this paper, we consider a significance level
at α = 0.00111.

F1I The realisation of malicious behaviour is often accompa-
nied by a manipulation (i.e., adding/removing/replacing) of app
resource files.

In our dataset collection, we only considered piggy-
backing cases where code has been modified to deviate
from original behaviour implementation. Thus, we focus on
investigating how other app elements are treated during
piggybacking. As illustrated in Fig. 10, most (91%) piggy-
backed apps have added new resource files to the original
apps, while only a few (6%) have left the resources files of
the original apps untouched.

91%

38%

6%

0 200 400 600 800 1000

ADDED NEW RESOURCES

REMOVED RESOURCES

NO ADDED/REMOVED
RESOURCES

Fig. 10: Distribution of piggybacked apps that add/remove
resource files to/from their original counterparts.

We first investigate the cases where the piggybacked app
has removed resource files from the app carrying its mali-
cious payload. Fig. 11 highlights that many image files are
removed as well as some Java serialized objects. At a lesser
extent, Plain text files, which may contain configuration
information, and XML files, which may describe layouts,
are also often removed/replaced.

1047
509

351
123

0 200 400 600 800 1000 1200

PNG IMAGE
SERIALIZED OBJECT

PLAIN TEXT
XML TEXT

Fig. 11: Top types of resource files removed during piggyback-
ing.

We further investigate the removal of resource files
during piggybacking. A common case that we have found
is that resource file removal actually corresponds to files
renaming. For example, for the piggybacking pair (A801CF12

to 59F8A1) , six PNG files under the drawable directory have
been slightly renamed. Besides file names, file extensions
(e.g., from PNG to GIF) and parent directories (e.g., from
drawable-480dpi to drawable-xxhdpi) can be changed during
piggybacking. This finding suggests that piggybackers at-
tempt to mitigate any possibility of being identified in basic
approaches, e.g., through resource-based similarity analysis.
We have computed for example the similarity scores in
the piggybacking pair (A801CF to 59F8A1), and found that
the resource-based similarity score is 72.3% while the code-
based similarity score reaches 99.9%.

11. When the null hypothesis is rejected, there is one chance in a
thousand that this is due to a coincidence.

12. In this paper, we refer to apps using the last six letters of their
SHA256 hash, to enable quick retrieval in Androzoo.

7

F2I Piggybacking modifies app behaviour mostly by tampering
with existing original app code.

Although classes.dex remains the main site where app
functionality is implemented, Android apps can carry extra
code that may be invoked at runtime. We investigate the
resource files added by piggybacked apps to check that they
do not actually constitute the more subtle means used by
malware writers to insert malicious payload. Fig. 12 shows
that most of the added resources are media data (i.e., audio,
video and image files). Extra DEX code have been added
in only 8% of piggybacked apps. In 10% of cases, native
compiled code in ELF format has been added.

These results suggest that sophisticated piggybacking
which manipulates extra code is still limited. In most cases,
malware writers simply modify the original app code.

69%
9%
8%
10%
8%

0 100 200 300 400 500 600 700

MEDIA DATA
DATABASE

LAYOUT
ELF

DEX

Fig. 12: Distribution of piggybacked apps according to the types
of added resource files.

F3I Piggybacked apps are potentially built in batches.
In our effort towards understanding app piggybacking,

we investigate the developers who sign the certificates of
those apps. We found that some certificates have been used
for several apps. For example, RANGFEI.RSA certificate key
appears in 71 piggybacked apps of our dataset, suggesting
that the owner of this signature is intensively producing
batches of piggybacked apps.

We further consider the case of the 71 piggybacked
apps signed with RANGFEI.RSA to investigate whether
the developer injected similar malicious payloads in the
apps. To that end, we first cluster the 71 apps through the
Expectation-Maximization algorithm [34] using rider class
names as features, yielding 8 clusters. We then investigate
how different apps in one cluster are from apps in the others.
To that end, we consider the set of labels and compute the
Jaccard distance between sets of labels across clusters. We
found that the clusters were highly distant (average distance
> 0.7), suggesting different payloads in the associated
piggybacked apps.

F4I Piggybacking often requires new permissions to allow the
realisation of malicious behaviour.

For every piggybacking pair, we check in the Manifest
files how requested permissions differ. We found that 812
(85%) piggybacked apps have requested new permissions
that were not initially requested by their original counter-
parts. Fig. 13 enumerates the top 10 newly added permis-
sions in our dataset of piggybacked apps. 6 out these 10
permissions are for allowing access to sensitive user/phone
information. We note that almost half of the piggybacked
apps require the WAKE_LOCK permission which enables
it to keep device processor from sleeping or screen from
dimming. This permission is mostly used by apps that must

keep executing tasks even when the user is not actually
using his device.

541
520

477
431

412
408

391
388

313
280

0 100 200 300 400 500 600

ACCESS_WIFI_ STATE
READ_PHONE_STATE

SYSTEM_ALERT_WINDOW
WRITE_EXTERNAL_STORAGE
READ_EXTERNAL_STORAGE

WAKE_LOCK
INSTALL_SHORTCUT

GET_TASKS
ACCESS_COARSE_LOCATION

ACCESS_FINE_LOCATION

Fig. 13: Top 10 permissions that are newly added.

F5I Some permissions appear to be more requested by piggy-
backed apps than non-piggybacked apps.

From the newly added permissions of Fig. 13, we
note that permission SYSTEM_ALERT_WINDOW, which is
requested by 458 (i.e., '50%) piggybacked apps, is only
requested by 26 (i.e., 3%) original benign apps (as illustrated
in Fig. 14). When considering the top 10 newly added per-
missions only, we note that they are requested, on average,
by 65% piggybacked apps and only 26% benign original
apps.

90 35

449

103

298

26 86

525

311

524
443 376

888

364

787

458
322

909

690

909

GET_TASKS

INSTALL_SHORTCUT

READ_PHONE_STATE

ACCESS_COARSE_LOCATION

ACCESS_WIFI_STATE

SYSTEM_ALERT_WINDOW

ACCESS_FINE_LOCATION

READ_EXTERNAL_STORAGE

WAKE_LOCK

WRITE_EXTERNAL_STORAGE

ORIGINAL PIGGYBACKED

Fig. 14: Distribution of requests of the top 10 permissions across
original and piggybacked apps.

Fig. 15 further shows that, excluding outliers, a given
piggybacked app requests a minimum of 5, and median
number of 7 (out of the 10) from the top permissions list,
while original benign apps only request a maximum of 4.

Original

Piggybacked

0 2 4 6 8 10

Fig. 15: Distribution of the number of top-10 permissions re-
quested by original apps and piggybacked apps.

F6I Piggybacking is probably largely automated.
Since permissions are a key element in Android app

programming, a malware writer must systematically ensure
that the necessary permissions are granted to its app to
enable the working of inserted malicious payloads. We
investigate how permissions are added, and note that there
seems to be a naive automated process for adding per-
missions. Indeed, we found that permissions requests are

8

often duplicated within the same Manifest file. For example,
permission READ_PHONE_STATE, which is among the top
newly added permissions by piggybacked apps, has been
systematically duplicated in 58 apps. Often both permis-
sion requests appear consecutively in the Manifest file as
illustrated in Listing 1 which is extracted from app 713414,
suggesting that the second permission was not manually
added by a developer.

1 uses-perm:"android.permission.ACCESS_WIFI_STATE"
2 uses-perm:"android.permission.READ_PHONE_STATE"
3 uses-perm:"android.permission.READ_PHONE_STATE"
4 uses-perm:"android.permission.GET_ACCOUNTS"

Listing 1: Example of duplicated permission declaration.

In our dataset, we have found that there is at least one
duplicate permission for 590 piggybacked apps, where 576
of them have a permission existing already in the original
apps.

F7I Piggybacked apps overly request permissions, while leverag-
ing permissions requested by their original apps.

As illustrated in Fig. 15, and discussed previously, piggy-
backed apps appear to “systematically” include a larger set
of permissions than their original counterparts. We investi-
gate the control-flow of piggybacked apps to check whether
they reached the sensitive APIs that are protected by their
requested permissions (based on PScout’s results [4]). We
found that 759 (or 80%) piggybacked apps have declared
more permissions than necessary. This finding is inline with
previous studies [8] on Android apps, including legitimate
apps, which showed that app authors are usually unaware
of what exact permissions are needed for the APIs leveraged
in their apps. Similarly, our results suggest that piggybacked
app writers are not aware of the permissions needed for the
APIs accessed by their injected payloads.

Fig. 16 shows that half of the piggybacked apps have
requested at least two more permissions that they do not
leverage. At the same time, rider code actually use APIs
protected by permissions originally requested by original
apps.

Existing (original) Used (rider) Non−Used (rider)

0
2

4
6

8
10

#.
 o

f P
er

m
is

si
on

s

Fig. 16: Distribution of the number of permissions relating to
the rider code.

F8I Most piggybacked apps now include new user interfaces, im-
plement new receivers and services, but do not add new database
structures.

Fig. 17 highlights the statistics of components added by
piggybacking. 834 (or 88%) of apps have added Activity
components during piggybacking: these represent new user

interfaces that did not exist in the original apps. We manu-
ally check a random sample of those components and find
that they are mostly for displaying advertizement pages.
We checked all such apps and their associated original apps
and found that they added new ad libraries to redirect the
ad revenues to the accounts of piggybackers. Fig. 18 shows
that half of the piggybacked apps even add several Activ-
ity components. Those components can represent different
advertisement libraries. As an example, the piggybacking
process that led to app 90D8A5 has brought in two ad
libraries: com.kuguo.ad and net.crazymedia.iad. Although this
phenomenon is not very common, it does suggest that
piggybackers may take steps to maximize the opportunities
of gaining benefits.

834	

704	

709	

600	 650	 700	 750	 800	 850	

Ac,vity	

Service	

Receiver	

Fig. 17: # of piggybacked apps adding at least one new compo-
nent.

Activity Service Receiver Provider

0
2

4
6

8

#.
 o

f c
om

po
ne

nt
s

Fig. 18: Distribution of the number of components newly
added.

Service and Broadcast Receiver components are also
largely injected by piggybacking payload. While Broadcast
Receivers register to device events (e.g., WIFI connection is
active) so that the malicious code can be triggered, Service
components run background tasks which can deplete device
resources (cf. recent clicker trojans13 found in GooglePlay).
We found that, in most cases, when a service is injected, a
receiver will be correspondingly injected. In this case, the
receiver plays as a proxy for ensuring that the service will
be launched. Indeed, it is much easier for trigger malicious
behaviour via a receiver than to make a user start a service.
This finding has also been reported at a smaller scale in our
previous work [26].

Interestingly, we have found that some newly injected
components are shipped with empty implementations. In
Listing 2, component com.idpack.IRE is a newly injected class
in app 39DE41. In the manifest file, com.idpack.IRE has been

13. http://goo.gl/kAFjkQ

http://goo.gl/kAFjkQ

9

declared with a lot of capabilities (i.e., six actions), making it
likely to be triggered. For example, it will be launched when
a new app is installed (cf. line 7) or uninstalled (cf. line 8).
However, as shown in line 2, the implementation of compo-
nent com.idpack.IRE is surprisingly empty. When executing
the component, it will reuse the implementation of its parent
class named com.is.p.Re. Unfortunately, this indirection is of-
ten ignored in trivial static analysis approaches, leaving the
real implementation of injected components unanalyzed. It
would be interesting to investigate to what extent such tricks
can impact the results of existing static analysis approaches.
This, however, is out of the scope of this paper and therefore
we consider it for future work.

1 //The implementation of component com.idpack.IRE
2 public class com.idpack.IRE extends com.is.p.Re { }
3
4 //The manifest declaration of component com.idpack.IRE
5 <receiver android:name="com.idpack.IRE">
6 <intent-filter>
7 action:"android.intent.action.PACKAGE_ADDED"
8 action:"android.intent.action.PACKAGE_REMOVED"
9 <data android:scheme="package" />

10 </intent-filter>
11 <intent-filter>
12 action:"android.net.conn.CONNECTIVITY_CHANGE"
13 action:"android.intent.action.USER_PRESENT"
14 action:"com.lseiei.downloadManager"
15 action:"com.cdib.b"
16 </intent-filter>
17 </receiver>

Listing 2: An example of empty component implementation
(app 39DE41).

Finally, we note that no piggybacked apps add new Con-
tent Provider components. This finding is inline with the
intuition that malicious apps are not targeted at structuring
data for sharing with other apps.

F9I Piggybacking often consists in inserting a component that
offers the same capabilities as an existing component in the
original app.

We noted that piggybacking may add a component with
a given capability which was already declared for another
component in the carrier app. This is likely typical of piggy-
backing since there is no need in a benign app to implement
several components with the same capabilities (e.g., two
PDF reader components in the same app). For example,
in our ground truth dataset, we have found that in each
of 551 (i.e., 58%) piggybacked apps, several components
have the same declared capability. In contrast, 6% of the
benign original apps included components with the same
capability.

We then perform a manual investigation of the dupli-
cated component capabilities and make two observations:
1) In most cases, duplicated component capabilities are
associated with Broadcast Receivers. This finding is intu-
itively normal since receivers can be easily triggered (e.g.,
by system events) and consequently can readily lead to
the execution of other (targeted) components. 2) All the
duplicated component capabilities are likely to be newly
injected. Because piggybackers intend to maximize their
benefits, they will usually inject at the same time different
modules. Those modules are independent from each other
and each of them will attempt to maximize its possibility
of being executed. As a result, each module declares a

1 receiver:com.sumase.nuatie.wulley.RsollyActivity
2 action:"android.intent.action.PACKAGE_ADDED"
3 action:"android.net.conn.CONNECTIVITY_CHANGE"
4 action:"android.intent.action.USER_PRESENT"
5 receiver:com.fuonw.suoetl.cuoll.TsenaActivity
6 action:"android.intent.action.PACKAGE_ADDED"
7 action:"android.net.conn.CONNECTIVITY_CHANGE"
8 action:"android.intent.action.BOOT_COMPLETED"
9 receiver:com.hunstun.tallsyen.blawe.RsekleeActivity

10 action:"android.intent.action.PACKAGE_ADDED"
11 action:"android.net.conn.CONNECTIVITY_CHANGE"
12 action:"android.intent.action.USER_PRESENT"
13 receiver:com.luotuy.mustn.VenrowoActivity
14 action:"android.intent.action.PACKAGE_ADDED"
15 action:"android.net.conn.CONNECTIVITY_CHANGE"
16 action:"android.intent.action.USER_PRESENT"

Listing 3: An example of duplicated component capabilities
(app 4C35CC).

receiver to listen to popular system events, further resulting
in duplicated component capabilities. Listing 3 shows an
example of duplicated component capabilities. All the four
receivers (possibly from four modules as indicated by the
name of receivers) are newly injected and all of them have
declared the same capabilities.

Fig. 19 enumerates the top 10 duplicated capabili-
ties that are leveraged by piggybacked apps. The three
capabilities presented in Listing 3 are found to be
the top duplicated capabilities by piggybackers. Actu-
ally, the corresponding system events, including 1) new
app installed (PACKAGE ADDED), 2) internet connection
changed (CONNECTIVITY CHANGE), and 3) phone un-
locked (USER PRESENT), are commonly-fired events in
Android devices.

527	

485	

405	

65	

36	

36	

29	

25	

12	

7	

0	 100	 200	 300	 400	 500	 600	

android.intent.action.PACKAGE_ADDED

android.net.conn.CONNECTIVITY_CHANGE

android.intent.action.USER_PRESENT

android.intent.action.MAIN

android.intent.action.CREATE_SHORTCUT

android.intent.action.VIEW

android.intent.action.PACKAGE_REMOVED

android.intent.action.BOOT_COMPLETED

android.appwidget.action.APPWIDGET_UPDATE

com.android.vending.INSTALL_REFERRER

Fig. 19: Top 10 duplicated component capabilities (actions).

F10I Piggybacked apps can simply trick users by changing the
launcher component in the app, in order to trigger the execution
of rider code.

As previously explained, Android apps include in their
Manifest file an Application package name that uniquely
identifies the app. They also list in the Manifest file all
important components, such as the LAUNCHER component
with its class name. Generally Application package name
and Launcher component name are identical or related
identically. However, when a malware writer is subverting
app users, she/he can replace the original Launcher with a
component from his malicious payload. The app example
from Listing 4 illustrates such a case where the app’s pack-
age (se.illusionlabs.labyrinth.full, line 1) and
launcher (com.loading.MainFirstActivity, line 10)
differ.

10

1 <manifest package=“se.illusionlabs.labyrinth.full”>
2 activity:"se.illusionlabs.labyrinth.full.
3 StartUpActivity"
4 action:"android.intent.action.MAIN"
5 - category:"android.intent.category.LAUNCHER"
6 + activity:“com.loading.MainFirstActivity”
7 + action:"android.intent.action.MAIN"
8 + category:"android.intent.category.LAUNCHER"
9 + receiver:"com.daoyoudao.ad.CAdR"

10 + action:"android.intent.action.PACKAGE_ADDED"
11 + <data android:scheme="package" />
12 + service:"com.daoyoudao.dankeAd.DankeService"
13 + action:"com.daoyoudao.dankeAd.DankeService"
14 </manifest>

Listing 4: Simplified view of the manifest file of
se.illusionlabs.labyrinth.full (app’s sha256 ends with 7EB789).

We investigate our piggybacking pairs to identify cases
where the piggybacked apps has changed their LAUNCHER
component, comparing to the original benign app. Table 1
illustrates some examples on the original and updated
LAUNCHER. These changes in the Manifest file are essential
for piggybackers to ensure that their code is run. We found
73 cases in our dataset where the piggybacked app switched
the original launcher component to one component that was
added as part of its rider code.

TABLE 1: Illustrative examples of launcher changes.

Original Launcher Updated Launcher
com.unity3d.player.UnityPlayerActivity com.sorted.android.probe.ProbeMain

com.ubermind.ilightr.iLightrActivity com.geinimi.custom.Ad3034 30340001
com.virgil.basketball.BasketBallActivity cn.cmgame.billing.ui.GameOpenActivity

game.main.CatchThatKid UIActivity cn.dena.mobage.android.MobageActivity
jp.seec.escape.stalking.EscapeStalking com.pujiahh.Main

F11I Piggybacking is often characterized by a naming mismatch
between existing and inserted components.

Since Android apps are mostly developed in Java, dif-
ferent modules in the application package come in the form
of Java packages. In this programming model, developer
code is structured in a way that its own packages have re-
lated names with the Application package name (generally
sharing the same hierarchical root, e.g., com.example.*).
When an app is piggybacked, the inserted code comes as
separated modules constituting the rider code with different
package names. Thus, the proportions in components that
share the application package names can also be indicative
of piggybacking. Such diversity of package names can be
seen in the example of Listing 4. The presented excerpt
already contains three different packages. Since Android
apps make extensive use of Google framework libraries, we
systematically exclude those in our analysis to improve the
chance of capturing the true diversity brought by piggy-
backing.

Fig. 20 illustrates that piggybacked apps present a higher
diversity of packages names in comparison with their origi-
nal benign counterparts.

F12I Malicious piggybacked payload is generally connected to
the benign carrier code via a single method call statement.

Listing 5 illustrates a snippet showing an example of
type1 hook (cf. definition in Section 4.1), where the hook
(line 4) is placed immediately at the beginning of the
onCreate method to trigger the malicious payload when
component UnityPlayerProxyActivity is activated. The fact

Original

Piggybacked

0 2 4 6 8

Package diversity

Fig. 20: Distribution of the number of different packages.

that a static method is leveraged somewhat suggests that
piggybackers attempt to pay least effort to connect benign
carrier code to rider code. The simplified implementation of
touydig.init() is shown in lines 11-20. Generally, this method
is used to initialize three modules which are simultaneously
injected by piggybackers. All the three modules, including
umeng, kuguo, and crazymedia, are injected to provide adver-
tizement and consequently to redirect the revenues from the
original developers to piggybackers.

1 //In class UnityPlayerProxyActivity
2 protected void onCreate(Bundle b) {
3 this.onCreate(b);
4 + com.gamegod.touydig.init(this);
5 $r2 = new String[2];
6 $r2[0] = "com...UnityPlayerActivity";
7 $r2[1] = "com...UnityPlayerNativeActivity";
8 UnityPlayerProxyActivity.copyPlayerPrefs(this, $r2);
9 }

10
11 class com.gamegod.touydig {
12 public static void init(Context $param0) {
13 //initialize umeng module
14 $String = $bundle.getString("UMENG_CHANNEL");
15 //initialize kuguo module
16 $KuguoAdsManager = KuguoAdsManager.getInstance();
17 $KuguoAdsManager.setCooId($param0,

"ae63b5208de5422f9313d577b3d0aa41");
18 //initialize crazymedia module
19 net.crazymedia.iad.AdPushManager.init($param0, "8787",

"wx1x6nkz277ruch5", false);
20 }}

Listing 5: Simplified view of the snippet of app
com.SkillpodMedia.farmpopfrenzy (app’s sha256 ends with
BF3978). The ‘+‘ sign at Line 4 indicates the statement that
was added to the original code.

In our dataset, 699 (74%) piggybacked apps use type1
hooks to connect rider code to carrier code. Among those,
438 (i.e., 63% of type1) hooks only include a single state-
ment, creating a weak link between the call-graphs of rider
and carrier code. Table 2 enumerates the most redundant
hook statements used in piggybacked apps.

F13I Piggybacking hooks are generally placed within library code
rather than in core app code.

We look into the carrier method implementations where
hook statements are placed. Table 3 presents the top 5
methods where hook statements can be recurrently traced
to. Interestingly, all five methods are actually part of well-
known libraries that are used for benign functionality. We
further found that these libraries actually propose utility
functions for Game apps.

F14I Injected payload is often reused across several piggybacked
apps.

We compute the pairwise similarity of rider code using
the Jaccard distance at the class level, method level and API
level. When the set of classes, methods or used APIs are the

11

TABLE 2: Top five type1 hooks used by piggybacked apps.

Method # piggybacked apps
< com.basyatw.bcpawsen.DaywtanActivity : void Tawo(android.content.Context) > 42
< com.gamegod.touydig : void init(android.content.Context) > 39
< com.geseng.Dienghla : void init(android.content.Context) > 34
< com.gamegod.touydig : void destroy(android.content.Context) > 24
< com.tpzfw.yopwsn.Aervlrey : void Tdasen(android.content.Context) > 15

TABLE 3: Top five methods in carrier code where hook statements are inserted.

Method # piggybacked apps
< com.unity3d.player.UnityP layerProxyActivity : void onCreate(android.os.Bundle) > 95
< com.ansca.corona.CoronaActivity : void onCreate(android.os.Bundle) > 29
< org.andengine.ui.activity.BaseGameActivity : void onCreate(android.os.Bundle) > 11
< com.prime31.UnityP layerProxyActivity : void onCreate(android.os.Bundle) > 10
< com.g5e.KDLauncherActivity : void onCreate(android.os.Bundle) > 8

TABLE 4: Statistics on the pairwise similarity between rider code of piggybacked apps.

Jaccard Method-Level Class-Level Android-API-Level
Distance # of # of Relevant # of # of Relevant # of # of Relevant

Apps Pairwise Combinations Apps Pairwise Combinations Apps Pairwise Combinations
= 0 599 8,890 605 9,078 791 11,482
≤ 0.05 806 10,178 794 10,814 914 18,662
≤ 0.1 821 10,384 813 11,222 933 25,788
≤ 0.2 845 10,718 833 11,836 967 42,660

TABLE 5: Top five Android APIs that are interested by rider code.

Method Count
< android.net.Uri : android.net.Uri parse(java.lang.String) > 955
< android.content.Context : java.lang.Object getSystemService(java.lang.String) > 953
< android.content.BroadcastReceiver : void < init > () > 949
< android.content.Context : android.content.pm.PackageManager getPackageManager() > 941
< android.app.Activity : void < init > () > 939

same between two apps, the distance is zero. When there
is no overlap this distance amounts to 1. Table 4 provides
statistics which reveal that more than half piggybacked
apps include a rider code which can be found in another
piggybacked app. The Jaccard distance indeed amounts to 0
for 599, 605 and 791 piggybacked apps when comparing at
the method, class and API levels respectively. Theoretically,
There are in total

(2
#ofapps

)
relevant combinations.

The similarity of comparison results at the class, method
and API levels, suggest that when piggybackers reuse an
existing rider code sample, they rarely make modifications.
Finally, there are more pairs of rider code which are similar
at the API level, suggesting that many piggybacking pay-
loads often include code that perform similar tasks (e.g., for
advertizements).

F15I Piggybacking adds code which performs sensitive actions,
often without referring to device users.

Intents are special objects used by Android apps to ex-
change data across components. It allows app components
to reuse functionalities implemented in other components
(within or outside the app). Intent objects include a field
for indicating the action that must be performed on the
data exchanged (e.g., VIEW a PDF file, or DIAL a number).
Fig. 21 enumerates the top actions that can be seen in all
intents used by rider code across the piggybacked apps. In
most cases, intents transfer data to be viewed, a necessary
action for displaying advertizements. In many cases also,
rider code installs shortcuts, performs dialing, shares the
data outside the app, etc. We also note that two of the top
actions (the 6th and 8th) are not system-defined. Instead

they are defined in user code, and their presence in many
piggybacked apps further confirms the reuse of payloads
across apps.

2342 467
124

75
74
70
63
42
37
28

android.intent.action.VIEW
com.android.launcher.action.INSTALL_SHORTCUT

android.intent.action.DIAL
android.intent.action.MAIN
android.intent.action.SEND

broadcast.route.control
android.intent.action.CHOOSER

com.screen.main.coverscreen.close
android.intent.action.SENDTO

android.settings.WIRELESS_SETTINGS

Fig. 21: Top 10 actions from Intents brought in rider code.

Intents are either implicit (the component which will
realize the action will be selected by the user) or explicit (a
component is directly designated, bypassing user’s choice).
Differences in distributions presented in Fig. 22 suggest that
piggybacking rider code contain more explicit intents than
implicit intents. In contrast, as shown in [27], benign apps
actually attempt to use more implicit Intents (for showing
Activities).

Implicit

Explicit

0 5 10 15 20 25

#. of Intents in rider code

Fig. 22: Use of explicit vs. implicit Intents in rider code.

F16I Piggybacking operations spread well-known malicious be-

12

haviour types.
We investigate the labels provided by AV engines and

extract the top appearing names to classify malware types.
Table 6 provides statistics on the three outstanding types.
Although most are flagged as Adware, we note that there
are overlapping with Trojans and Spyware. This is inline
with the recent analysis of a family of trojans by ESET,
showing that they act as adware.

TABLE 6: Outstanding malware types reported by AV engines
on the piggybacked apps.

App type # of piggybacked apps # of distinct labels
Adware 888 230

Trojan 495 451
Spyware 192 94

We further match the AV labels against 6 well-known
malware family names reported in [50]. We found that
our dataset contains samples belonging to each family as
described in Table 7. For example, clustering the rider code
of piggybacked apps in the GingerMaster14 family based on
class names and with EM algorithm yields 5 clusters, one of
which contains over 80 samples, suggesting a high reuse of
a malicious payload code.

TABLE 7: Number of piggybacked apps in known malware
families.

ADRD BaseBridge Geinimi GingerMaster GoldDream Pjapps
11 5 21 149 11 9

F17I Piggybacked apps increasingly hide malicious actions via
the use of reflection and dynamic class loading.

The Android system provides DexClassLoader, a class
loader that loads classes from .jar and .apk files. It can
be used by malware writers to execute code not installed
as part of their apps. We found 185 (19%) piggybacked
apps whose riders dynamically load code. Such schemes
are often used by malware writers to break the control-flow
of app, and thus challenge static detection of suspicious be-
haviour [30], [31]. Fig. 23 provides the ratio of piggybacked
apps using reflection and dynamic code loading. The ratio
has substantially improved in recent years.

0.36
0.29 0.28

0.66
0.77 0.76

0.07
0.01 0.04 0.03

0.33

0.13

0

0.2

0.4

0.6

0.8

1

2009 2010 2011 2012 2013 2014

Reflection Dynamic Code Loading

Fig. 23: Trend in the use of reflection and dynamic class loading
by piggybacked apps.

F18I Piggybacking code densifies the overall app’s call graph,
while rider code can even largely exceed in size the carrier code.

14. These malware collect and send user info, including device ID
and phone number, to a remote server.

We compute the proportion of piggybacked app code
which is actually brought by rider code. Fig. 24 (left) high-
lights that, for most apps (71%), the rider code is smaller
than the carrier code. However, for 29% of the piggybacked
apps in our dataset, the rider code is bigger in terms of LOCs
than the carrier code.

12%

17%

71%

[0.8,1] [0.5,0.8) [0,0.5)

70%
4%

26%

HIGHER SAME LOWER

Fig. 24: Impact of Piggybacking on rider code proportion (left)
and CG density (right).

We further build the call graphs of piggybacked apps
and compare them to the call graphs of their corresponding
original apps. Then we compute the density metric15 using
the number of real edges in the graph divided by the total
number of possible edges. Distribution in Fig. 24 (right)
highlights that in the large majority of cases, piggybacking
code increases16 the call graph density. This increase can
be achieved by injecting complex rider code with higher
density than the carrier code. Indeed, complex rider code is
essential for piggybackers to make their code more difficult
to understand by analysts. In other words, this finding is
expected because the injected rider code will likely explore
malicious scenarios that piggybackers wish to leave hidden
to manual review and static analysis. On the other hand,
in 1/4 cases the call graph density has lowered. We have
sampled some piggybacked apps in such cases, and found
that most use type2 hooks (i.e., via events). Only a few
piggybacked apps kept the same density metric values.

F19I Piggybacked app writers are seldom authors of benign apps.
We investigate the certificates used to sign the apps in

our dataset. We collected 703 distinct certificates in original
apps against only 194 distinct certificates in piggybacked
apps. We only found 14 certificates where each have been
used to sign both a piggybacked and another app in the set
of originals. Looking into those certificates, we found that
it is inline with the well-known copy/paste problem. As an
example, we have found that a certificate issued to Android
Debug, which should only be used to develop and test an
app, is applied to released apps. Several of the overlapping
certificates were actually due to this issue.

F20I Piggybacking code brings more execution paths where
sensitive data can be leaked.

15. We leverage the Toolkit of GraphStream (http://graphstream-
project.org) to compute the density metric. The computation is imple-
mented in a complexity of O(1).

16. As for all comparisons, we remind the reader that we have
checked that the difference was statistically significant.

13

Private data leaks in Android are currently a main focus
in the research and practice community. We investigate
the static behaviour of piggybacked apps w.r.t the data
flows that they include using IccTA [27]. Fig. 25 show that
piggybacked apps include, on median, 15 more flows from
a sensitive source to a sensitive sink than original apps. We
also found that these flows mostly represent data exchange
across components. As an example, we have found 12 such
leaks where Context information is collected, then trans-
ferred to another component which eventually forwards it
outside the device via SMS.

Original

Piggybacked

0 20 40 60 80 100

#. of Leaks

Fig. 25: Distributions of the number of leaks.

5 DISCUSSION

We now explore three potential outcomes of our findings (cf.
Section 5.1). Then, we discuss two problematic assumptions
that have been commonly made in the Android community
(Section 5.2) and the potential threats to validity of this
study (cf. Section 5.3).

5.1 Potential outcomes

Understanding Android app piggybacking can help in
pushing further a number of research directions:
1) Practical detection of piggybacked apps: With this work,

we hope to follow on the steps of the MalGenome project
and drive new research on the automated detection of
piggybacked apps. Indeed, by enumerating high-level
characteristics of Android malware samples, MalGenome
has opened several directions in the research on malware
detection, most of which have either focused on detecting
specific malware types (e.g., malware leaking private
data [27]), or are exploiting app features, such as permis-
sions requested, in Machine Learning classification [3].
Similarly, we expect the devise of machine learning-
based detection approaches which can effectively model
piggybacking and thus avoid the need for impractical
and unscalable pairwise comparisons across app mar-
kets. Indeed, if we consider piggybacked detection as
a classification problem, we can address the main lim-
itation in state-of-the-art works which all require the
original app in order to search for potential piggybacked
apps that use it as a carrier. Indeed, with a classification-
based approach, original counterparts are only in the
training phase. Once it is done, the classifier can be used
in the wild to identify piggybacked apps where their
original counterparts have not been seen before. In a
similar research, researchers have already shown with
Clonewise that it was possible to treat clone detection as
a classification problem [11]. In preliminary experiments,
using a feature set limited to basic features whose ex-
traction was inexpensive (Permissions, Intents, rider API

uses) we built classifiers that achieved acceptable perfor-
mance in precision and recall (both over 70%) with 10-
Fold cross validation on our dataset. More sophisticated
and discriminative features can be explored from our
findings. Indeed, as shown in our technical report [32],
with a set of features including new declared capabilities,
duplicated permissions, diversity of packages, etc., we are able
to achieve a high performance of 97% for both precision
and recall, suggesting the features built on our findings
are promising for discriminating piggybacked apps from
non-piggybacked apps.

2) Explainable malware detection: Current Machine Learn-
ing classifiers [9], [15], [35], [44] for Android malware
detection are too generic to be relevant in the wild:
features currently used in the literature, such as n-grams,
permissions or system calls, allow to flag apps without
providing any hint on which malicious actions are actu-
ally expected. A collection of piggybacked apps provides
new opportunities for retrieving a variety of malicious
payloads that can be investigated to infer fine-grained
semantic features for malware detection.

3) Malicious code localisation: In their fight against mal-
ware, practitioners are regularly challenged by the need
to localize malicious code within an app, e.g., in order to
remove/block it, or to characterize its impact. Our work
can be leveraged towards understanding how malicious
code are hooked in benign app code, as well as which
code features may potentially help statically discriminate
malicious parts from benign parts. In our preliminary
experiments [32], based on the identified behaviors of
piggybacked apps, we are able to automatically localize
the hook code with an accuracy@5 (the hook code is
within the top 5 packages we ranked based on their
probabilities of being hook code) of 83%, without know-
ing the original conterparts of the dissected piggybacked
apps. More recently, Tian et al. [40] also propose an
approach, namely code heterogeneity analysis (i.e., Exam-
ining Android apps for code regions that are unrelated
in terms of data/control dependence), to distinguish
different behaviors of the malicious component and the
original app. As explicitly acknowledged by the authors,
their prototype approach has some limitations, e.g., being
unaware of implicit ICCs, does not work for complex
code structures, etc. With the help of our comprehensive
findings we present in this paper, their approach could
be refined.

5.2 Validity of common assumptions
Based on our study, we are able to put in perspective an
assumption used in the literature for reducing the search
space of piggybacking pairs. With FSquaDRA [46], Zhau-
niarovich et al. have proposed to rely on similarity of apps’
resource files to detect piggybacking. Finding F1 of our work
however supports that resource files can be extensively
manipulated during piggybacking.

We further plot in Fig. 26 the distribution of pairwise
similarity for the piggybacking pairs of our dataset to high-
light the significant difference between relying on resource-
based similarity and code-based similarity.

Another common assumption in the literature is that
library code is noisy for static analysis approaches who must

14

Code

Resource

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Similarity

Fig. 26: Similarity distribution.

parse a large portion of code which is not part of app core
functionality, leading to false positives. Thus, recent research
works [5], [29] first heuristically prune known common
libraries before applying their approaches on apps. We have
shown however with our investigation that libraries, in
particular popular libraries, are essential to malware writers
who can use them to seamlessly insert hooks for executing
malicious rider code.

5.3 Threats to validity
The main threat to validity of our study lies in the exhaustiv-
ity of our dataset. However, we have made our best effort to
leverage the AndroZoo largest available research dataset of
Android apps [2] to search for piggybacked apps. Our apps
span a long timeline of 6 years, and we have checked that
the piggybacked apps are classified by AVClass [36] as pre-
senting 29 different labels (representing potential malware
families).

Another threat to validity is that we did not include apps
from the last year or so, due to delays in the collection of
AV reports by the AndroZoo infrastructure. We are com-
mitted to continuously update the dataset of piggybacked
apps within the AndroZoo project [2]. In that direction, we
have already identified piggybacking pairs from AndroZoo
where the samples of malware are created in 2016. We
mitigate the threat to validity on the age of our dataset by
checking and confirming that our findings remain valid for
the most recent samples of piggybacked apps.

With regards to the restrictions used in the identification
of piggybacking pairs, we would like to note for the readers
that our focus in this work is not to exhaustively detect all
piggybacking pairs. Instead, we aimed for collecting a suffi-
cient number of obvious, thus accurate, piggybacking pairs
in order to be able to dissect and understand piggybacking
processes.

The original apps in our ground truth may not be
the final original apps, i.e., they may also be repackaged
versions of a previous app. To the best of our knowledge,
there is no straightforward way to pinpoint whether a given
original app from a piggybacking pair is the true original
app. Therefore, it remains an interesting future work to the
community.

AV labels from VirusTotal engines may not be perfect
because of AV disagreements [24]. However, in this work,
we only use them to get quick insights. Finally, by con-
struction, our dataset of piggybacked apps has been built
with a constraint on the maliciousness (in the sense of AV
detection) of the piggybacked app by a different developer.
Other “piggybacking” operations may be performed by the
same developer with “benign” code.

Recently, there are many Android app packers (e.g.,
Bangcle, Ijiami, etc.) introduced for comprehensive pro-

tection of Android apps, attempting to prevent Android
apps from being reverse engineered and repackaged/pig-
gybacked. Intuitively, it becomes much harder to piggyback
packed apps. Unfortunately, state-of-the-art approaches in-
cluding AppSpear [43] and DexHunter [45] have already
demonstrated promising results for extracting DEX code
from packed apps, making it still possible to piggyback even
packed apps.

6 RELATED WORK

Dissection studies: In recent years there have been a num-
ber of studies dissecting Android malware [18], [19], [50].
Genome [50] provides an interesting overview on the land-
scape of Android malware based on samples collected from
forums and via experiments. Our approach for piggybacked
apps is however more systematic. Besides in Android com-
munity, dissection studies have also been widely performed
in other communities. For example, Jakobsson et al. [22]
have presented a comprehensive analysis on crimeware,
attempting to understand current and emerging security
threats including bot networks, click fraud, etc.
Repackaged/Cloned app detection: Although the scope
of repackaged app detection is beyond simple code, re-
searchers have proposed to rely on traditional code clone
detection techniques to identify similar apps [13], [14], [16],
[48]. With DNADroid [14] Crussell et al. presented a method
based on program dependency graphs comparison. The au-
thors later built on their DNADroid approach to build An-
Darwin [13] an approach that uses multi-clustering to avoid
the scalability issues induced by pairwise comparisons.
DroidMOSS [48] leverages fuzzy hashing on applications’
OpCodes to build a database of application fingerprints that
can then be searched through pairwise similarity compar-
isons. Shahriar and Clincy [37] use frequencies of occurrence
of various OpCodes to cluster Android malware into fami-
lies. Finally, in [12], the authors use a geometry characteristic
of dependency graphs to measure the similarity between
methods in two apps, to then compute similarity score of
two apps.

Instead of relying on code, other approaches build
upon the similarity of app “metadata”. For instance, Zhau-
niarovich et al. proposed FSquaDRA [46] to compute a
measure of similarity on the apps’ resource files. Similarly,
ResDroid [38] uses application resources such as GUI de-
scription files to extract features that can then be clustered
to detect similar apps. In their large-scale study, Viennot,
Garcia, and Nieh [42] also used assets and resources to
demonstrate the presence of large quantities of either re-
branded or cloned applications in the official Google Play
market.

Our work, although closely related to all aforementioned
works, differs from them in three ways: First, these ap-
proaches detect repackaged apps while we focus on piggy-
backed apps. Although a piggybacked app is a repackaged
app, the former poses a more serious threat and its analysis
can offer more insights into malware. Second, most listed
approaches perform similarity computations through pair-
wise comparisons [28]. Unfortunately such a process is com-
putationally expensive and has challenged scalability. Third,
these approaches depend on syntactic instruction sequences

15

(e.g., opcodes) or structural information (e.g., PDGs) to
characterize apps. These characteristics are however well
known to be easily faked (i.e., they do not resist well to
evasion techniques). Instead, our detailed examination on
piggybacked apps could provide hints to build semantic
features of apps and hence could achieve better efficiency in
detection of malicious apps. Semantic features are relevant
as they allow to be resilient to most obfuscation techniques
(e.g., method renaming). For example, the literature has
shown that, input-output states of core methods [20] are
semantic features which are more appropriate than the
related syntactic features extracted from instructions in
method definitions. In our study, findings F6 and F9 suggest
that we can consider duplication of permissions and of
capability declarations as semantic features characterizing
piggybacking. The presence of sensitive data flows, as re-
vealed by finding F20, is also semantically discriminating
for identifying malicious behavior.
Piggybacked app search and Malware variants detection:
Cesare and Xiang [10] have proposed to use similarity on
Control Flow Graphs to detect variants of known malware.
Hu, Chiueh, and Shin [21] described SMIT, a scalable ap-
proach relying on pruning function Call Graphs of x86 mal-
ware to reduce the cost of computing graph distances. SMIT
leverages a Vantage Point Tree but for large scale malware
indexing and queries. Similarly, BitShred [23] focuses on
large-scale malware triage analysis by using feature hashing
techniques to dramatically reduce the dimensions in the
constructed malware feature space. After reduction, pair-
wise comparison is still necessary to infer similar malware
families.

PiggyApp [47] is the work that is most closely related
to ours. The authors are indeed focused on piggybacked
app detection. They improve over their previous work,
namely DroidMoss, which was dealing with repackaged
app detection. PiggyApp, similar to our approach, is based
on the assumption that a piece of code added to an al-
ready existing app will be loosely coupled with rest of the
application’s code. Consequently, given an app, they build
its program dependency graph, and assigns weights to the
edges in accordance to the degree of relationship between
the packages. Then using an agglomerative algorithm to
cluster the packages, they select a primary module. To
find piggybacked apps, they perform comparison between
primary modules of apps. To escape the scalability problem
with pair-wise comparisons, they rely on the Vantage Point
Tree data structure to partition the metric space. Their
approach differs from ours since they require the presence
of the original to be able to detect its piggybacked apps.

7 CONCLUSION

We have investigated Android piggybacked apps to provide
the research community with a comprehensive characterisa-
tion of piggybacking. We then build on our findings to put
in perspective some common assumptions in the literature.
We expect this study to initiate various research directions
for practical and scalable piggybacked app detection, ex-
plainable malware detection, malicious code localization,
and so on.

8 ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers
for their helpful comments and suggestions. This work was
supported by the Fonds National de la Recherche (FNR),
Luxembourg, under projects AndroMap C13/IS/5921289
and Recommend C15/IS/10449467. This work was also
partially supported by the Singapore’s NRF Research Grant
NRF2016NCR-NCR001-008 and by the UK EPSRC Research
Grant EP/L022710/1.

REFERENCES

[1] Shared data repository, Aug. 2015. https://github.com/serval-snt-
uni-lu/Piggybacking.

[2] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves
Le Traon. Androzoo: Collecting millions of android apps for the
research community. In The 13th International Conference on Mining
Software Repositories (MSR), Data Showcase Track, pages 468–471.
ACM, 2016.

[3] Daniel Arp, Michael Spreitzenbarth, Malte Hübner, Hugo Gascon,
Konrad Rieck, and CERT Siemens. Drebin: Effective and explain-
able detection of android malware in your pocket. In NDSS, 2014.

[4] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie.
Pscout: analyzing the android permission specification. In Pro-
ceedings of the 2012 ACM conference on Computer and communications
security, CCS ’12, pages 217–228, New York, NY, USA, 2012. ACM.

[5] Vitalii Avdiienko, Konstantin Kuznetsov, Alessandra Gorla, An-
dreas Zeller, Steven Arzt, Siegfried Rasthofer, and Eric Bodden.
Mining apps for abnormal usage of sensitive data. In International
Conference on Software Engineering (ICSE), 2015.

[6] Alexandre Bartel, Jacques Klein, Martin Monperrus, Kevin Allix,
and Yves Le Traon. Improving privacy on android smartphones
through in-vivo bytecode instrumentation. Technical report,
arXiv:1208.4536, May 2012.

[7] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves
Le Traon. Dexpler: Converting android dalvik bytecode to jimple
for static analysis with soot. In ACM Sigplan International Workshop
on the State Of The Art in Java Program Analysis, 2012.

[8] Alexandre Bartel, Jacques Klein, Martin Monperrus, and Yves
Le Traon. Static analysis for extracting permission checks of a
large scale framework: The challenges and solutions for analyzing
android. Software Engineering, IEEE Transactions on, 40(6):617–632,
2014.

[9] Gerardo Canfora, Francesco Mercaldo, and Corrado Aaron Visag-
gio. A classifier of malicious android applications. In Availability,
Reliability and Security (ARES), 2013 Eighth International Conference
on, pages 607–614. IEEE, 2013.

[10] Silvio Cesare and Yang Xiang. Classification of malware using
structured control flow. In Proceedings of the Eighth Australasian
Symposium on Parallel and Distributed Computing - Volume 107,
AusPDC ’10, pages 61–70, Darlinghurst, Australia, Australia, 2010.
Australian Computer Society, Inc.

[11] Silvio Cesare, Yang Xiang, and Jun Zhang. Clonewise: Detecting
package-level clones using machine learning. In Tanveer Zia,
Albert Zomaya, Vijay Varadharajan, and Morley Mao, editors,
Security and Privacy in Communication Networks, volume 127 of
Lecture Notes of the Institute for Computer Sciences, Social Informatics
and Telecommunications Engineering, pages 197–215. Springer Inter-
national Publishing, 2013.

[12] Kai Chen, Peng Liu, and Yingjun Zhang. Achieving accuracy
and scalability simultaneously in detecting application clones on
android markets. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, pages 175–186, New York, NY,
USA, 2014. ACM.

[13] J. Crussell, C. Gibler, and H. Chen. Andarwin: Scalable detection of
android application clones based on semantics. Mobile Computing,
IEEE Transactions on, PP(99):1–1, 2014.

[14] Jonathan Crussell, Clint Gibler, and Hao Chen. Attack of the
clones: Detecting cloned applications on android markets. In Sara
Foresti, Moti Yung, and Fabio Martinelli, editors, Computer Security
ESORICS 2012, volume 7459 of Lecture Notes in Computer Science,
pages 37–54. Springer Berlin Heidelberg, 2012.

16

[15] John Demme, Matthew Maycock, Jared Schmitz, Adrian Tang,
Adam Waksman, Simha Sethumadhavan, and Salvatore Stolfo.
On the feasibility of online malware detection with performance
counters. In Proceedings of the 40th Annual International Symposium
on Computer Architecture, ISCA ’13, pages 559–570, New York, NY,
USA, 2013. ACM.

[16] Luke Deshotels, Vivek Notani, and Arun Lakhotia. Droidle-
gacy: Automated familial classification of android malware. In
Proceedings of ACM SIGPLAN on Program Protection and Reverse
Engineering Workshop 2014, PPREW’14, pages 3:1–3:12, New York,
NY, USA, 2014. ACM.

[17] Anthony Desnos. Android: Static analysis using similarity dis-
tance. In System Science (HICSS), 2012 45th Hawaii International
Conference on, pages 5394–5403. IEEE, 2012.

[18] William Enck, Damien Octeau, Patrick McDaniel, and Swarat
Chaudhuri. A study of android application security. In Proceedings
of the 20th USENIX conference on Security, SEC’11, pages 21–21,
Berkeley, CA, USA, 2011. USENIX Association.

[19] Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steve Hanna,
and David Wagner. A survey of mobile malware in the wild.
In Proceedings of the 1st ACM workshop on Security and privacy in
smartphones and mobile devices, pages 3–14. ACM, 2011.

[20] Quanlong Guan, Heqing Huang, Weiqi Luo, and Sencun Zhu.
Semantics-based repackaging detection for mobile apps. In In-
ternational Symposium on Engineering Secure Software and Systems,
pages 89–105. Springer, 2016.

[21] Xin Hu, Tzi-cker Chiueh, and Kang G. Shin. Large-scale malware
indexing using function-call graphs. In Proceedings of the 16th
ACM Conference on Computer and Communications Security, CCS ’09,
pages 611–620, New York, NY, USA, 2009. ACM.

[22] Markus Jakobsson and Zulfikar Ramzan. Crimeware: understanding
new attacks and defenses. Addison-Wesley Professional, 2008.

[23] Jiyong Jang, David Brumley, and Shobha Venkataraman. Bitshred:
Feature hashing malware for scalable triage and semantic anal-
ysis. In Proceedings of the 18th ACM Conference on Computer and
Communications Security, CCS ’11, pages 309–320, New York, NY,
USA, 2011. ACM.

[24] Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Brad Miller,
Vaishaal Shankar, Rekha Bachwani, Anthony D. Joseph, and J. D.
Tygar. Better malware ground truth: Techniques for weighting
anti-virus vendor labels. In Proceedings of the 8th ACM Workshop
on Artificial Intelligence and Security, AISec ’15, pages 45–56, New
York, NY, USA, 2015. ACM.

[25] Patrick Lam, Eric Bodden, Ondrej Lhoták, and Laurie Hendren.
The soot framework for java program analysis: a retrospective.
In Cetus Users and Compiler Infastructure Workshop (CETUS 2011),
2011.

[26] Li Li, Kevin Allix, Daoyuan Li, Alexandre Bartel, Tegawendé F
Bissyandé, and Jacques Klein. Potential Component Leaks in An-
droid Apps: An Investigation into a new Feature Set for Malware
Detection. In The 2015 IEEE International Conference on Software
Quality, Reliability & Security (QRS), 2015.

[27] Li Li, Alexandre Bartel, Tegawendé F Bissyandé, Jacques Klein,
Yves Le Traon, Steven Arzt, Siegfried Rasthofer, Eric Bodden,
Damien Octeau, and Patrick Mcdaniel. IccTA: Detecting Inter-
Component Privacy Leaks in Android Apps. In Proceedings of the
37th International Conference on Software Engineering (ICSE 2015),
2015.

[28] Li Li, Tegawendé F Bissyandé, and Jacques Klein. Rebooting
research on detecting repackaged android apps. In Technical
Report, 2016.

[29] Li Li, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.
An investigation into the use of common libraries in android
apps. In The 23rd IEEE International Conference on Software Analysis,
Evolution, and Reengineering (SANER 2016), 2016.

[30] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Droidra: Taming reflection to support whole-program analysis of
android apps. In The 2016 International Symposium on Software
Testing and Analysis (ISSTA 2016), 2016.

[31] Li Li, Tegawendé F Bissyandé, Damien Octeau, and Jacques Klein.
Reflection-aware static analysis of android apps. In The 31st

IEEE/ACM International Conference on Automated Software Engineer-
ing, Demo Track (ASE 2016), 2016.

[32] Li Li, Daoyuan Li, Tegawendé François D Assise Bissyande, David
Lo, Jacques Klein, and Yves Le Traon. Ungrafting malicious code
from piggybacked android apps. Technical report, SnT, 2016.

[33] H. B. Mann and D. R. Whitney. On a test of whether one of two
random variables is stochastically larger than the other. Ann. Math.
Statist., 18(1):50–60, 03 1947.

[34] Tood K Moon. The expectation-maximization algorithm. Signal
processing magazine, IEEE, 13(6):47–60, 1996.

[35] Justin Sahs and Latifur Khan. A machine learning approach to
android malware detection. In Intelligence and Security Informatics
Conference (EISIC), 2012 European, pages 141–147. IEEE, 2012.

[36] Marcos Sebastián, Richard Rivera, Platon Kotzias, and Juan Ca-
ballero. Avclass: A tool for massive malware labeling. In Inter-
national Symposium on Research in Attacks, Intrusions, and Defenses,
pages 230–253. Springer, 2016.

[37] H. Shahriar and V. Clincy. Detection of repackaged android
malware. In Internet Technology and Secured Transactions (ICITST),
2014 9th International Conference for, pages 349–354, Dec 2014.

[38] Yuru Shao, Xiapu Luo, Chenxiong Qian, Pengfei Zhu, and Lei
Zhang. Towards a scalable resource-driven approach for detecting
repackaged android applications. In Proceedings of the 30th Annual
Computer Security Applications Conference, ACSAC ’14, pages 56–65,
New York, NY, USA, 2014. ACM.

[39] Symantec. Internet security threat report. Volume 20, Symantec,
April 2015.

[40] Ke Tian, Danfeng Daphne Yao, Barbara G Ryder, and Gang Tan.
Analysis of code heterogeneity for high-precision classification of
repackaged malware. In Mobile Security Technologies (MoST), 2016.

[41] Raja Vallee-Rai and Laurie J Hendren. Jimple: Simplifying java
bytecode for analyses and transformations. In Sable Research Group,
McGill University, 1998.

[42] Nicolas Viennot, Edward Garcia, and Jason Nieh. A measurement
study of google play. SIGMETRICS Perform. Eval. Rev., 42(1):221–
233, June 2014.

[43] Wenbo Yang, Yuanyuan Zhang, Juanru Li, Junliang Shu, Bodong
Li, Wenjun Hu, and Dawu Gu. Appspear: Bytecode decrypting
and dex reassembling for packed android malware. In International
Workshop on Recent Advances in Intrusion Detection, pages 359–381.
Springer, 2015.

[44] S.Y. Yerima, S. Sezer, G. McWilliams, and I. Muttik. A new
android malware detection approach using bayesian classification.
In Advanced Information Networking and Applications (AINA), 2013
IEEE 27th International Conference on, pages 121–128, 2013.

[45] Yueqian Zhang, Xiapu Luo, and Haoyang Yin. Dexhunter: toward
extracting hidden code from packed android applications. In
European Symposium on Research in Computer Security, pages 293–
311. Springer, 2015.

[46] Yury Zhauniarovich, Olga Gadyatskaya, Bruno Crispo, Francesco
La Spina, and Ermanno Moser. Fsquadra: Fast detection of repack-
aged applications. In Vijay Atluri and Gnther Pernul, editors,
Data and Applications Security and Privacy XXVIII, volume 8566 of
Lecture Notes in Computer Science, pages 130–145. Springer Berlin
Heidelberg, 2014.

[47] Wu Zhou, Yajin Zhou, Michael Grace, Xuxian Jiang, and Shihong
Zou. Fast, scalable detection of ”piggybacked” mobile applica-
tions. In Proceedings of the Third ACM Conference on Data and
Application Security and Privacy, CODASPY ’13, pages 185–196,
New York, NY, USA, 2013. ACM.

[48] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting
repackaged smartphone applications in third-party android mar-
ketplaces. In Proceedings of the Second ACM Conference on Data
and Application Security and Privacy, CODASPY ’12, pages 317–326,
New York, NY, USA, 2012. ACM.

[49] Wu Zhou, Yajin Zhou, Xuxian Jiang, and Peng Ning. Detecting
repackaged smartphone applications in third-party android mar-
ketplaces. In Proceedings of the second ACM conference on Data and
Application Security and Privacy, pages 317–326. ACM, 2012.

[50] Yajin Zhou and Xuxian Jiang. Dissecting android malware: Char-
acterization and evolution. In Security and Privacy (SP), 2012 IEEE
Symposium on, pages 95–109, May 2012.

