
Log your car: Reliable maintenance services
record

Hafizah Mansor1, Konstantinos Markantonakis2, Raja Naeem Akram3, Keith
Mayes4, and Iakovos Gurulian5

Information Security Group, Smart Card Centre,
Royal Holloway, University of London,

United Kingdom
{Hafizah.Mansor.20111, RajaNaeem.Akram.20083,

Iakovos.Gurulian.20145}@live.rhul.ac.uk,
{K.Markantonakis2, Keith.Mayes4}@rhul.ac.uk

Abstract. A maintenance services logging system is a useful tool for car
owners to keep track of the car’s condition and also can increase the mar-
ket value of the car. Logging systems range from manual, paper-based, to
automated, cloud-based systems. The automated process provides ease
of use and availability of the records. A secure protocol is required to
ensure that the workshop and service record are authentic, and hence
the records are reliable. In this paper, we propose a secure protocol for
automated maintenance services logging systems, through the use of a
mobile application called AutoLOG. The multiple electronic control units
(ECUs) used to support the connected and intelligent vehicle’s technol-
ogy are used to support the digital automated logging system. The car
is the trusted entity that generates the log. The records are stored in
an authorised mobile device and uploaded onto a cloud server to ensure
availability. The proposed protocol is implemented to measure the per-
formance and is formally analysed using Scyther and CasperFDR, with
no known attack found.

1 Introduction

Maintenance services conducted are manually recorded by workshops. The ser-
vices are either not recorded at all, or recorded in a logbook kept by the car
owners. For reminder purposes, to notify the car owner of the next service date,
a workshop may attach a sticker on the windshield. Recent use of mobile ap-
plications that have been introduced for car maintenance include a notification
reminder for the next service date. However, other than the date of the next
service, the type of maintenance repair, replacement or any other services might
also be useful for the car owner to keep track of. The process of recording is
manual, whereby the user has to manually enter the information using the mo-
bile application. The logbook not only will keep the owner up-to-date on the
health status of the car and avoid higher maintenance cost due to breakdowns,
but it will also add value to the car, especially when the car is resold. The recent

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/77298429?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Hafizah Mansor et al.

implementation which notifies the date of next service is available through the
car dealer’s cloud server [6]. When a car is being serviced by a car dealer, the
details are uploaded onto the car dealer’s server. When the next service date is
nearing, the car owner will be contacted by the car dealer as a reminder.

An Electronic Control Unit (ECU) is a microcontroller that controls the
operations of a car. In modern cars, there can be around 70 ECUs that control
the overall operations of the vehicle [20]. Each ECU is responsible for different
operations, such as body control, engine control and telematics. The different
ECUs are connected within a car through networks such as Local Interconnect
Network (LIN) [40], Controller Area Network (CAN) bus [22], FlexRay [25]
and Media Oriented Systems Transport (MOST) [27]. The OBD-II (On-Board
Diagnostic) port is a port that interfaces the outside world to the in-vehicle
networks [41]. The port can be interfaced with a Wi-Fi, Bluetooth or serial
connection using the ELM327 interface [17].

1.1 Problem statement

The challenges in a maintenance services record system are to provide integrity,
authenticity and reliability of the data. The process of recording the maintenance
log is manual, and the car owner normally does not have access to the data, unless
it is manually recorded in a logbook that he/she keeps. The car owner cannot
validate the services being conducted but must trust the information provided
by the workshop through the receipts or documents provided. Furthermore, it
is inconvenient to keep these receipts and/or documents for all the records of
maintenance services. Equally, a potential buyer does not have an assurance that
the records in the maintenance log and the workshops who had performed the
services are authentic.

1.2 Contribution

In this paper we propose a protocol for a secure automated process of recording
the maintenance services for car maintenance. It ensures integrity of the data
stored as well as the authenticity of the data and party conducting the service.
The automated process ensures the maintenance data is available all the time
to the car owner. The list of services/repairs conducted by the workshop is also
validated. The protocol is not only useful to the car owners, but also benefits
the garages, car sales organisations and vehicle manufacturers.

2 Maintenance services logging system

A maintenance logging system allows the car owner to keep the car’s mainte-
nance services record updated and hence can reduce the cost of maintenance by
avoiding major car breakdowns. Other than that, it can also add value to the
car when it is resold [10]. The potential buyer is assured that the car is in good
condition as it is well maintained. The logging of the maintenance services also

Log your car: Reliable maintenance services record 3

shows the party who conducted the services: for example, if it is conducted by
a reliable and trusted workshop or car dealer.

2.1 Manual maintenance services logging system

A manual maintenance services logging system is where the process of uploading
and storing the records of the services is performed manually. The workshop will
issue receipts to show the list of services performed, or enter this information on
the car’s physical logbook.

In a manual maintenance logging system, a malicious entity can:

(i) Fake a signature to show that the service is conducted by a recognised dealer
or workshop. If the process is manual and using a printed document, the
document is stamped as a proof of signature. This stamp can be forged.

(ii) Fake a record to show that a service is conducted when it is not. Dates can
easily be changed or faked.

(iii) Change the list of maintenance services conducted.

For a manual logging system, the manipulation could be conducted by the car
dealer or the car owner. The purpose is to increase a car’s value when reselling
it [5,7]. The owner might also collude with a workshop to falsify the records. The
car dealer might falsify the records themselves, or an untrustworthy workshop
might falsify the list of conducted services, repairs or parts replaced to obtain a
higher profit.

2.2 Automated services logging system

In this system, the process of recording and storing the log is automated, mainly
operated by the workshop or car dealer. An automated process can ensure avail-
ability of data and ease of use. In the automated logging system, the potential
storage locations are the electronic data logger, mobile devices or cloud server.
The electronic data logger resides in the car and is connected to the CAN bus
as one of the nodes. The mobile device is an external device (to the car), and
it requires a connection to communicate with the in-vehicle network. The log
could also be stored on a cloud server.

3 Proposed solution

The framework is shown in Fig. 1. The mobile device gives both the graphical
user interface (GUI) and the connectivity. The mobile application supporting
our proposed protocol is called AutoLOG. The process starts with the workshops
updating in the car log of the list of services conducted, the date the service was
conducted and the next of date of service. In order to communicate with the car,
the workshop uses a diagnostic tool (DT). The diagnostic tool will communicate
with the car through its Central Communication Unit (CCU). The CCU is a
type of Electronic Control Unit (ECU). It is the first node any external device

4 Hafizah Mansor et al.

Cloud

Mobile device (MD)

CarDiagnostic tool (DT)

Fig. 1. Framework for the automated maintenance logging system

will have to go through in order to communicate with other ECUs. The related
sensors and/or ECU(s) for the service will validate the information given to the
CCU by the DT. After the validation, the CCU will store the latest record of
maintenance services. The mobile device will then retrieve this data from the
CCU and upload the data to the cloud. This way, the records are always available
on both the mobile device and the cloud. In case the mobile device is lost, the
data is always available on the cloud. In this proposal, the trust foundation is
moved from the workshop to the car’s sensors and ECU nodes. The cloud server
could be owned by the user, trusted third party, community or government body.
The cloud ownership is out of the scope of this paper.

Our proposal is based on the EVITA project [19], which proposed an embed-
ded Hardware Security Module (HSM) in the ECU to ensure secure communica-
tions for on-board system. As proposed in the EVITA project, each ECU has its
own HSM. This suggests that any node communicating through the CAN bus
is required to have access authorisation in order to send or receive messages. In
our proposal, the mobile device and diagnostic tool act as a communicating node
through the CAN bus, and so requires access authorisation. This avoids the issue
of unauthorised access to the in-vehicle networks, especially the CAN bus. The
assumption on our proposal is based on the capability of the sensors in the car
to validate the services being performed. While this may not be available now
in current implementations, future firmware updates may introduce a version of
this work.

3.1 Related work

There are many mobile applications available in the market that provide mainte-
nance service logging systems [1–4,9]. However, these applications require man-
ual information to be entered by the car owner. After a car is serviced or repaired,
the information can either be keyed in, or a photo of the document is captured

Log your car: Reliable maintenance services record 5

to be stored. The data can later be stored in the cloud, depending on the appli-
cation feature. Some applications require a manual upload to the cloud, while
other applications will store the data automatically to the chosen cloud server.

Another type of maintenance service logging system is the one provided by
car dealers [6, 11]. When a car is being serviced by a car dealer, details are
uploaded onto the car dealer’s server. When the next service date is nearing, the
car owner will be contacted by the car dealer as a reminder.

A most recent development for car maintenance logging systems was intro-
duced in “AUTObiography” by Motoriety [8]. This service logs the maintenance
services record onto the cloud. Trusted workshops registered with Motoriety can
use the service and will digitally sign the services conducted to be stored on
the cloud. The data, or the “biography” of the car will then be available on the
cloud, and can be passed from one owner to another. All the records are being
managed by the service, can be retrieved by the car owners, and owners will get
reminders for the next service date.

In the above-mentioned works, the trust is completely in the hands of the
workshops. If an untrustworthy workshop fakes an item in the list of services
conducted, nobody could prove this. On the other hand, a trustworthy workshop
might mistakenly insert an item as a result of human error, since the process of
recording and keying in the data is manual.

There are proposals for reminder notifications of the next service date [12,21].
There is also a system proposed using a passive radio frequency identification
(RFID) device to detect the repairs/services being conducted [13].

Table 1 shows the added features of AutoLOG compared to other related
works, which include manual and automated systems. AutoLOG, AUTObiogra-
phy and a car dealer’s cloud server provide automation, but the mobile applica-
tions do not [1–4, 9]. Data ownership of the records belong to the car owner in
AutoLOG, AUTObiography and the discussed mobile applications. However, the
ownership of the records in a car dealer’s cloud server belongs to the car dealer.
Data availability is supported by all the works discussed including AutoLOG.
However, since the uploading process is manual for these mobile applications,
data availability depends on this manual process. Unlike other related works, in
our proposal, we consider the capability of the ECUs to validate the services. Se-
curity is a feature provided by all three automated systems. The car owners have
the flexibility to choose from a range of different workshops for AutoLOG, AU-
TObiography and the discussed mobile applications. However, in the car dealer’s
cloud server system, the options of workshops are limited to the ones appointed
by the car manufacturers.

The reason for not choosing TLS protocol for this application is because it is
too much for CCU/ECU devices to cope with. The TLS protocol is bulky and
has many implementation options. This will lead to more vulnerabilities. Our
proposed protocol is very specific for this application, eliminating additional
vulnerabilities. The TLS protocol is also slower in performance [38].

6 Hafizah Mansor et al.

Table 1. Features of AutoLOG compared to other related works

Features AutoLOG AUTObiography Mobile Car dealer’s
applications cloud server

Automation 4 4 8 4

Data ownership 4 4 4 8

Data availability 4 4 4 4

Validation of services 4 8 8 8

Security 4 4 8 4

Options of workshops 4 4 4 8

3.2 Threat model

In the maintenance services logging system, assets to be protected are the read
and write access authorisation and the authentication and integrity of the data.
Potential attackers are untrustworthy workshops, owners and hackers with fi-
nancial motivation, and potential buyers attempting to reduce the selling price.
The two most likely threats are:

i) Dishonest mechanic charges owner for a full service, but may have done
little/nothing.

ii) Owner changes service log to make the car more attractive to a buyer.

There are a number of possible attacks that could be performed in a digital
maintenance logging system as follows:

(i) Denial of service (DoS) attack: to cause an availability issue, where data
stored is not able to be retrieved, or data cannot be stored. Denying access
of data to an authorised party is also a method of DoS.

(ii) Impersonation attack: to impersonate an authorised party to conduct fur-
ther attacks, for example, an attacker impersonating an authorised workshop
to log a record showing that the service is conducted by a certain trusted
workshop.

(iii) Data manipulation attack: to change the list of the services, either by chang-
ing the data before or after the storage.

(iv) Replay attack: by replaying the same record of service to be stored on a
different date to fake a record.

An additional assumption of the threat model in the digital automated system
is the attacker cannot break well-established cryptographic algorithms.

3.3 Security requirements

From the architecture, the security requirements can be elicited [26]. In gen-
eral, a maintenance services logging system should satisfy the following security
requirements:

– Integrity: The data stored should not be changed, modified or added to, to
ensure that the record of the maintenance services integrity is protected.

Log your car: Reliable maintenance services record 7

– Authentication: Data authentication and data origin authentication should
be in place. This is to ensure that the data comes from an authorised party
(workshop and car) and the data itself is authentic.

– Non-repudiation: To ensure that the data stored by the workshop can be
verified, i.e., the workshop cannot deny that the data stored originated from
its diagnostic tool and services were conducted by the workshop or dealer.

– Freshness: To ensure no replay attack is possible, hence a record of services
cannot be logged/replayed if it is not actually performed.

The records should not be linked to a car owner’s personally identifiable
information (PII). Hence, privacy is not a concern in the maintenance services
record, unlike various other applications involving cyber-physical systems [39].

3.4 Protocol goals

This section discusses the requirements of each party involved in the automated
maintenance service log update.

(i) Car: The car requires authentication of the diagnostic tool, authentication
of mobile device and data integrity of the information transferred from the
diagnostic tool.

(ii) Mobile device (MD): The mobile device requires authentication of the car
(CCU) and data integrity of the information transferred from the CCU.

(iii) Diagnostic tool (DT): The diagnostic tool requires authentication of the car
(CCU).

3.5 Protocol assumptions and preconditions

Assumptions and preconditions on the successful use of AutoLOG are as follows.

1. The mobile application is installed on a mobile device and the cloud server
is properly set up for the data to be stored.

2. The nonces generated (by DT, CCU and MD) should be random and not
predictable.

3. The ECUs and sensors are equipped with the capability to validate the
services being conducted on the car. For example, the sensor can validate
the parameter given by the CCU, such as the serial ID of a new component.
The proposal [13] could be used for this purpose. For a start, the firmware
update status could be logged. Cars are now full of electronic modules that
may require firmware updates. As part of the normal service, logging the
status of all this firmware (which may then trigger updates) could be useful.
So, when buying a second-hand car, not only does the potential buyer know
it had a normal service on a particular date but also whether its IT/electronic
systems have been “serviced” (kept up-to-date).

4. The cloud is securely managed. A user is authenticated to access the cloud
server, and only authorised users have access to the data. However, even if
an attacker is able to get access to the data in the cloud, the main concern
is to protect the integrity of the data, which is provided by our protocol.

8 Hafizah Mansor et al.

5. The data is always automatically transmitted to the phone and later to the
cloud. If data is not updated after a certain time, the owner will be notified.

3.6 Protocol key distribution

Trusted Third Party

DT manufacturer

DT - workshop

Car manufacturer

Car Mobile device

Fig. 2. Hierarchy for the key distribution

Figure 2 shows the hierarchy for the key distribution. The hierarchy may be
implemented for a specific car manufacturer. A car manufacturer may have a list
of trusted workshops and diagnostic tool manufacturers. Each diagnostic tool of
a workshop has its own set of public and private keys, one set for signature and
one set for encryption. The digital certificates contain the public keys of the
diagnostic tools, which tie the diagnostic tool to a workshop, and are available
at a diagnostic tool manufacturer server, which is under a trusted third-party
server. The cars and mobile devices are registered under the car manufacturer,
which is also under the same trusted third-party server of the diagnostic tool
manufacturer. Each CCU has its own set of public and private keys, which are
pre-installed during manufacturing. These keys are updated by the car manu-
facturer. The mobile device needs to be registered to the car manufacturer in
order to communicate with the car. After the AutoLOG application is installed
on the mobile device, the registration of the mobile device via the AutoLOG
application will enable the mobile device to communicate with the car. Based
on the input parameters during registration, which include the Vehicle Identifi-
cation Number (VIN), the car manufacturer will share a symmetric key, kccu−md

of the CCU with the intended mobile device. Similarly, the diagnostic tool will
acquire the public key of the CCU from the trusted third party. The CCU, which
is the master ECU in the car, has the records of all ECUs. The records of ECUs
include their IDs, the hash content of the firmware and their symmetric keys to
communicate with the CCU, kccu−ecu. The keys are stored in the HSM for the
car (CCU and ECUs) and the diagnostic tool. For the mobile device, the keys
are stored in a secure memory for example on a secure element.

Log your car: Reliable maintenance services record 9

Table 2. Notations for the protocol

DT Diagnostic tool
CCU Central Communication Unit
MD Mobile device
dt ID of DT
ccu ID of CCU
md ID of MD
pkx Public key of x, x= DT or CCU
skx Private key of x, x= DT or CCU
na, nb, nc, nd Message Authentication Code (MAC) keys
ne, nf AES keys
kccu−ecu Symmetric key shared between CCU and ECU
kccu−md Symmetric key shared between CCU and MD
ENC Encryption using RSA
enc Encryption using AES128
sign Sign using RSA
MAC HMAC using SHA256
a||b a concatenate with b
a⊕ b a XOR b
mile Mileage
servicetype Type of service (basic, full or major)
servicedate Date of service
nextdate Next date of service
serviceupdate Command to conduct the log update
serviceupdatereq Command to obtain the log update
validateservice Command to validate service from CCU to ECU
serviceupdateready Response from CCU to acknowledge it is ready with updated data
ackready Response from ECU to acknowledge it is ready for validation
ack Acknowledgement
s1, s2, s3 List of services, repairs and/or updates conducted

3.6.1 Protocol description To communicate with the car, the mobile device
is connected to the OBD-II port via Wi-Fi or Bluetooth. Once connected, the
mobile device will be authenticated, to determine whether it is authorised to
retrieve the requested data. Once authenticated, the mobile device is connected
to the CAN bus, and able to access the required data. The protocol notations
are as shown in Table 2. The protocol, which is divided into three phases, is
shown in Tables 3, 4 and 5. The first part (Table 3) shows the communication
between the DT and CCU.

1. In the first message, the DT will send its ID, concatenated with update
notification, serviceupdate, and a nonce, na. These parameters are signed
with the DT’s private key and encrypted with the CCU’s public key. The
digital signature is using signature with message recovery. The signature is
then encrypted with the CCU’s public key. The objective is to protect the
secret nonce na, so that only the authorised CCU is able to obtain the value
of na. The CCU will decrypt the message and verify the signature of the
DT. From that, it will obtain the na, to be sent in the second message to
the DT.

2. In the second message, the CCU will send its ID concatenated with the
acknowledgment receipt of service update command and nonce na. It will be
concatenated with its own generated nonce, nb. This message will be signed
by its private key and encrypted with DT’s public key. This signature is also
using signature with message recovery and then encrypted with DT’s public
key in order to protect nb.

10 Hafizah Mansor et al.

3. The DT will then decrypt the message to get the nonce nb. The nonces na
and nb are used for MAC computation for the following messages between
DT and CCU. The DT will then reply with all the required information,
i.e. the maintenance type of service conducted (either basic, full or major),
the service date, the next date of service to be conducted and the mileage
reading, and concatenated with the MAC of all the parameters. The MAC
is to ensure that the integrity of the data can be verified by the CCU.

4. The CCU will acknowledge the receipt of these parameters and concatenate
it with the MAC.

5. Upon receiving the acknowledgment, the DT will send the list of services,
repairs or updates conducted; in this example, they are s1, s2 and s3.

Table 3. DT-CCU update of services protocol

1. DT : M1= ccu||serviceupdate||na
DT → CCU : dt||ENCpkccu{signskdt{M1}}

2. CCU : M2=dt||ack||na||nb
CCU → DT : ccu||ENCpkdt{signskccu{M2}}

3. DT : M3= ccu||servicetype||servicedate||nextdate||mile
DT→ CCU : dt||M3||MACna||nb{M3}

4. CCU : M4=dt||ack
CCU → DT : ccu||M4||MACna||nb{M4}

5. DT : M5=s1||s2||s3
DT→ CCU : dt||M5||MACna||nb{M5}

6. The next part is the communication between the CCU and the related
ECU(s), as shown in Table 4. The CCU will validate the list of services,
repairs and/or updates claimed by the DT. The related ECUs, equipped
with sensors to verify the services/repairs/updates conducted, will respond
accordingly. The CCU will send a command validateservice and a nonce nc,
which is encrypted with kccu−ecu to ensure only authorised ECU can read
the nonce.

7. The ECU will decrypt the message to obtain the nonce nc. It will then send
a message to acknowledge the receipt of nonce nc, and that it is prepared
for the validation process, and will send its own generated nonce nd. This
message is encrypted with the same kccu−ecu. The CCU will then decrypt
the message in order to obtain the nonce nd. These nonces nc and nd are
used for MAC computation for the following messages between CCU and
corresponding ECU.

8. The CCU will send the list of services/repairs/updates conducted, concate-
nated with a MAC.

9. The ECU, after verifying the MAC received from the CCU, will validate
each service/repair through its related sensors. After validating the list, it
will send an acknowledgment of whether or not the validation is successful,
concatenated with a MAC. If all items in the list are true, only the acknowl-

Log your car: Reliable maintenance services record 11

edgment is sent with a MAC. Otherwise, the failed item is included in the
message.

Table 4. CCU-ECU validation of services protocol

6. CCU : M6=ecu||validateservice||nc
CCU → ECU : ccu||enckccu−ecu{M6}

7. ECU : M7=ccu||ackready||nc||nd
ECU → CCU : ecu||enckccu−ecu{M7}

8. CCU : M8=ecu||s1||s2||s3
CCU→ ECU : ccu||M8||MACnc||nd{M8}

9. ECU : M9=ccu||ack
ECU → CCU : ecu||M9||MACnc||nd{M9}

10. The last part of the protocol is where the mobile device retrieves the list of
services/repairs/updates from the CCU. The mobile device will send a mes-
sage containing its ID concatenated with a command of serviceupdatereq
and a nonce ne, which is encrypted with a pre-shared symmetric key be-
tween the mobile device and CCU, kccu−md. The encryption is to ensure the
confidentiality of the nonce ne. Only the authorised CCU will be able to
decrypt the message and obtain ne.

11. The CCU will decrypt the message to get the nonce ne and then will reply
with a message telling that a new service is available. If the service has
already been retrieved before, it will send a different message to inform
the MD. The message contains the ID of the mobile device, serviceupdate
reply, concatenated with nonce ne and its own generated nonce nf . They
are encrypted with the pre-shared symmetric key between the mobile device
and CCU, kccu−md. The nonces ne and nf are used for AES computation
for the proceeding messages between the CCU and MD.

12. The MD will then decrypt the message to obtain the nonce nf and will then
send an acknowledgment message to the CCU. This message is encrypted
using the nonces as the key.

13. The CCU will then start sending the required service information to the
MD, i.e., the maintenance type of service conducted (either basic, full or
major), the service date and the next date of service to be conducted, the
current mileage and the signature of this message. The signature is using
signature with appendix. The signature is used to verify that the message
originates from the CCU. The record transferred to the mobile device will
not be able to be changed, because only the CCU has the private key to sign
the message.

14. The MD, upon receiving these data, will be able to verify the origin of the
message (i.e., CCU) by verifying the signature. It will then acknowledge the
receipt of this message, in an encrypted message using AES128.

15. The CCU will next send the list of services/repairs/updates conducted. They
are also appended with a signature for the same reason as in step 13, i.e.
origin authentication and integrity protection.

12 Hafizah Mansor et al.

16. Finally, the MD, upon receiving and storing these data, will send an ac-
knowledgment encrypted using AES128 to the CCU. This will notify the
CCU that the latest maintenance services record has been retrieved.

Table 5. MD-CCU request for services update protocol

10. MD : M10=serviceupdatereq||ne
MD→ CCU : md||enckccu−md{M10}

11. CCU : M11=md||serviceupdate||ne||nf
CCU → MD : ccu||enckccu−md{M11}

12. MD : M12=ack
MD → CCU : md||ccu||enc(ne⊕nf){M12}

13. CCU : M13=servicetype||servicedate||nextdate||mile
CCU → MD : ccu||enc(ne⊕nf){M13}||signskccu{enc(ne⊕nf){M13}}

14. MD : M14=ccu||ack
MD→ CCU : enc(ne⊕nf){M14}

15. CCU : M15=s1||s2||s3
CCU → MD : ccu||enc(ne⊕nf){M15}||signskccu{enc(ne⊕nf){M15}}

16. MD : M16=md||ack
MD → CCU : enc(ne⊕nf){M16}

3.7 Security analysis

The protocol is first analysed using informal analysis. Then, formal analysis is
conducted using CasperFDR [24] and Scyther [16] tools to verify the protocol
and provide indicative results.

3.7.1 Informal analysis of the protocol Based on the threat model dis-
cussed in the previous section, the protocol addresses them accordingly.

Denial of service attack (DoS) could be conducted:

(i) by stealing the mobile device. If the mobile device is stolen, all the records
are still available on the server. A stolen mobile device would not be able
to tamper with the available stored data, because the data is signed by the
car’s CCU.

(ii) by disabling connectivity between mobile device and CCU to disable the
update. Since the logging process is automated, once a mobile device is
authenticated to the CCU, it will ask for an update every time they are
connected. If the update is not conducted, the owner will be notified.

(iii) by introducing manual errors. However, the process may repeat and retry
the update. The diagnostic tool will likely abort after a few attempts. A
notification message will be prompted after a certain retry limit. An error
could occur in normal use; however it could also be evidence of an attack.
The data will always be consistent, as the mobile device will verify with the

Log your car: Reliable maintenance services record 13

CCU whether the last data has been retrieved. If not, the CCU will retain
the last record.

(iv) by causing the related ECUs/sensors to malfunction. During the second
phase, i.e., the validation of the services, the ECU will acknowledge that
the services are correctly being performed as given by the DT to the CCU in
the previous phase. In this phase, all the related sensors will verify the cor-
rectness of the provided data. If any of the sensors fail, this will be displayed
on the diagnostic transmission code (DTC, which is the error code) before
the services is being performed. The faulty sensor should be fixed prior to
updating the maintenance services logging system.

Impersonation of recognised workshop or dealer is prohibited with the use of
digital signature to ensure only authorised DT can conduct the storing of infor-
mation to CCU.

Data manipulation attack (change, deletion or insertion) could be conducted at
three different stages:

(i) From the DT side: Digital signature is used to ensure that only authorised
DT can sign the message required. Therefore, the message is authentic and
comes from an authorised party, unless the private key is compromised.

(ii) After storing the information to the CCU, and during retrieval of data from
CCU to the MD: The CCU only stores the last record of maintenance service
conducted. This information is important to the car owner, in order to know
the last service record. If the adversary wanted to modify or manipulate this
one record, he/she needs to have the access to the CCU information, i.e.,
key to read and/or write to the specific memory address.

(iii) After storing the information in the mobile application or server: Fake records
could be inserted to increase the car resale value. With this protocol, this is
impossible because the record is protected by the CCU’s signature to ensure
its integrity is protected. The mileage can also prove the age of the car when
the service is conducted.

Replay attack is not possible through the use of random nonces for each trans-
action.

The proposal also addresses all the security requirements discussed in Section
3.3, as follows:

– Integrity: The data stored could not be changed, modified or added. To
ensure that the record of maintenance service is integrity protected, MAC
and digital signatures are used.

– Authentication: Data authentication and data origin authentication should
be in place. MAC is used to verify the data origin authentication.

– Non-repudiation: Digital signatures are used to ensure that the workshop
and the car cannot deny their own data.

– Freshness: Freshness is verified by using nonces and the mileage reading.

14 Hafizah Mansor et al.

3.7.2 Formal analysis of the protocol using CasperFDR and Scyther
tools The security requirements to be verified include confidentiality and au-
thentication properties. Aliveness, agreement and synchronisation are part of
the authentication property. Scyther is an automated tool for the verification
of security protocols [16]. CasperFDR tool uses Communication Sequential Pro-
cess (CSP) files to be analysed using Failure Divergence Refinement (FDR) [24].
CasperFDR and Scyther input scripts are as in link: CasperFDR and Scyther
input scripts. The protocol is modelled as follows. The DT knows the CCU, but
does not know the MD. MD only communicates with the CCU and not with the
DT.

The protocol security objectives are key confidentiality and internal (CCU-
ECU) and external (DT-CCU and MD-CCU) authentication. From our Scyther
and CasperFDR input scripts, the following security claims are made and veri-
fied.

(i) Confidentiality: To verify the confidentiality of the cryptographic keys. The
key confidentiality includes confidentiality of secret nonce (na, nb, nc and
nd: used as the MAC keys, and ne and nf : used as the AES keys), and all
secret keys (skdt, skccu and skmd).

(ii) Authenticity: To verify the authenticity of all entities involved in the process
(DT, CCU and MD). This includes agreement and aliveness tests as defined
in [15, 23]. In Scyther, additional authentication property, i.e., synchronisa-
tion is also verified. Synchronisation considers the content and ordering of
the messages [15].

Analysis using CasperFDR The security properties verified are secrecy, aliveness
and agreement. The confidentiality property is to verify the secrecy of the nonces
(na, nb, nc and nd) that are used as keys for MAC computations, and (ne and
nf) that are used as keys for AES computations. The aliveness property is to
verify the aliveness between DT and CCU, between CCU and ECU and between
MD and CCU. The agreement property is to ensure the agreement of variables
shared between DT and CCU (na and nb), between CCU and ECU (nc and nd)
and between MD and CCU (ne and nf). The threat model is that the attacker
knows all the entities involved, i.e., the DT, CCU, ECU and MD, and their
corresponding public keys. No known attack was found in the protocol.

The scripts are divided into three parts for the three different parts of the
protocol. The full script for the first part (DT-CCU) can be found in link:
CasperFDR input script. The script starts with #Free variables declaration,
which declares all the variables used in the protocol. It is followed with the #Pro-
tocol description. This describes the messages being transmitted (in sequence)
during the information passing from DT to CCU, which starts from service up-
date notification (i.e., 1.a ->c:a,{{c,serviceupdate,na}{SK(a)}}{PK(c)}). In 3.
a ->c:a,c,service,mile,h(a,c,service,mile,na,nb), the list of services is passed from
DT to CCU in clear text but appended with MAC of the message. It is the same
in 5. a - >c:a,s1,s2,s3,h(s1,s2,s3,na,nb). Only DT and CCU can compute the
MAC and verify them based on the shared keys in the previous message.

https://www.dropbox.com/sh/ixqrynsxb6tfvr0/AAB0Q7ohHbcA9atE9O854ZWxa?dl=0
https://www.dropbox.com/sh/ixqrynsxb6tfvr0/AAB0Q7ohHbcA9atE9O854ZWxa?dl=0
https://www.dropbox.com/s/mlvl33829kkppo4/maintenance.spl?dl=0

Log your car: Reliable maintenance services record 15

In the #Processes, all the involved entities in the protocol and their knowl-
edge are declared. For example, INITIATOR(a,c,serviceupdate,na,service,mile,
s1,s2,s3) knows PK,SK(a) , where a is the DT and c is the CCU.

The #Specification declares all the assertions made to verify the security
properties. The confidentiality of na and nb are declared as Secret(a,na,[c]) and
Secret(c,nb,[c]). As an authentication verification, the aliveness property between
DT-CCU and the Agreement property between DT-CCU are verified.

The #Actual variables section describes the names of the actual agents,
servers and the actual variables such as agent a is DT and agent c is CCU.
In the #Functions section the public and secret keys are declared (symbolic
PK,SK). The #System section again declares all the involved entities in the
protocol and their knowledge, but with their actual names. For example, INI-
TIATOR(DT,CCU,Serviceupdate,Na,Service,Mile,S1,S2,S3).
The #Intruder Information declares the intruder X who has the knowledge of all
the entities involved and their public keys, and its own public and secret keys,
i.e., IntruderKnowledge=DT,CCU,X,PK.

All the specifications made are verified and no attack is found for all the
assertions.

Analysis using Scyther The security properties verified are secrecy, non-injective
synchronisation, non-injective agreement and aliveness. The secrecy property is
to verify the confidentiality of the nonces that are used as keys for MAC com-
putations. The non-injective synchronisation property is to verify that parties
know who they are communicating with, agree on the content of the messages
and the order of the messages. The non-injective agreement is to verify that
parties agreed on the content of the variables. The aliveness property is to verify
that the intended communication partner (DT-CCU, CCU-ECU and MD-CCU)
has executed some events. In Scyther, all the security properties are modelled in
role-base. The properties are viewed from the local view of each role.

The full script for MD-CCU communication can be found in link: Scyther in-
put scripts. In this section, the discussion is about the third part of the protocol,
i.e., between MD-CCU. The script starts with functions declarations (line 1-4).
Then, we have macros of messages to make the script neat and easy to follow
(line 8-14). Next, the events and claims are made for each role (MD: line 16-42
and CCU: line 44-69).

For example, for MD role, the examples of events are send 10(md,ccu,m10)
and recv 11(ccu,md,m11), which means the MD sends the macro m10 to the
CCU and later receives macro m11 from the CCU. Claims are the security
properties to be verified. For example, for the MD role, claim I3(md,SKR, ne)
is for confidentiality. Authentication properties are verified through Agreement
(claim I6 (md,
Weakagree), claim I2(md,Niagree)), Synchronisation (claim I1(md,Nisynch)),
and Aliveness (claim I4(md,Alive)).

The default verification setup was used (i.e., five maximum number of runs,
type-matching and to find best attack with ten maximum patterns per claim).
The results for all the claims made are verified as “Ok” in the “Status” with

https://www.dropbox.com/s/i1f9zax8d2ga549/AutoLOG_mdccu.spdl?dl=0
https://www.dropbox.com/s/i1f9zax8d2ga549/AutoLOG_mdccu.spdl?dl=0

16 Hafizah Mansor et al.

“Verified” and “No attacks” in the “Comments”. This means that no attack was
found within the bounded or unbounded statespace; the security property has
been successfully verified [14].

3.8 Protocol implementation

The protocol was then implemented on a PIC32MZ Microchip microcontroller
and an Android device to obtain indicative performance results.

3.8.1 Implementation platform Our approach of implementation is to ob-
serve the computation time on the DT, CCU, ECU and the mobile device sepa-
rately. The mobile device communicates via Wi-Fi, while the DT, CCU and ECU
via CAN bus. There is a Wi-Fi module connected to the CCU to receive the Wi-
Fi messages from the mobile device and convert these messages into UART mes-
sages. There is another interface module between the Wi-Fi module and the CCU
to translate UART messages into CAN messages and vice versa. The DT, CCU
and ECU are simulated using a microcontroller with all the functions required
to be an actual ECU with cryptographic engines. PIC32MZ2048ECM144 [37]
is chosen as the implementation platform for all three components (DT, CCU
and ECU). It is a 32 bit microcontroller with 2048 KB of flash and 512 KB of
SRAM, and operates at 200 MHz clock. It supports CAN bus communication, as
required in an ECU. The hardware cryptographic engines support the computa-
tion of cryptographic algorithms to produce faster performance. For the mobile
device, the application protocol is loaded into a LG Nexus 5 with a Quad-core
2.3 GHz Krait 400 CPU running on Android 5.1. PIC18F4580 is used as the in-
terface module to translate UART-CAN messages. PIC18F4580 [29] is an 8 bit
microcontroller with 32 KB of flash and 256 bytes of RAM. It operates with a
16 MHz clock and supports CAN bus and UART communication. For the Wi-Fi
module, the Wi-Fi G demo board [36] is used.

CCUInterface moduleWi-Fi

module (PIC18F) (PIC32MZ)

UART CAN

Fig. 3. CCU’s setup for communication with MD

3.8.2 Experiment setup For the DT, CCU and ECU setup, the simulation of
the messages from and to each component uses the Microchip CAN bus analyser
tool [31]. The tool can be used to observe the messages sent from the PIC32MZ
microcontroller and also to send messages to it. On the PIC32MZ part, the
PIC32MZ2048ECM144 starter kit [35] is connected to a CAN PICtail daughter
board [32] through a starter kit adapter [34] and an I/O expansion board [30].
The CAN PICtail daughter board is then connected to the CAN bus analyser.

Log your car: Reliable maintenance services record 17

The setup is shown in Fig. 4. The computation performance is measured based
on cycle count given by MPLABX debugger.

For the interface module (using PIC18F4580), an additional CAN transceiver,
MCP2551 [28], is connected to the PIC18. The interface module is then con-
nected to MCP2200 breakout module [33] to observe the UART messages. The
performance of communication is measured using an oscilloscope. The perfor-
mance of Wi-Fi communication is measured using the “Inspector” feature from
the internet browser.

All the protocol messages are in the data byte of the CAN message. The
header of the CAN message is used in the same manner as in current imple-
mentation where it indicates what operation is to be handled. Based on the
proposed protocol, the length of a message is more than eight bytes, hence, all
the messages will need to be divided into more than one CAN message due to
the limited number of bytes (8 bytes) of data per CAN message transmission.
The messages are divided into three to eighteen messages to be transmitted via
CAN.

1 2 4

5

1 PIC32MZ starter kit

2 Starter kit adapter board

3 I/O expansion board

5 CAN bus analyser

4 CAN PICtail daughter board

3

Fig. 4. Lab setup for DT, CCU and ECU through CAN bus communication

3.8.3 Performance results The computation and communication perfor-
mance is as shown in Table 6. The communication includes the transfer of data
from the Wi-Fi module to the middle interface module (via UART) and from
the middle interface module to the CCU (via CAN). To the authors’ knowledge,
there is no related work that proposes an automated maintenance services log-
ging system that we can compare the performance with. However, the total time
for the protocol to complete is only about 883 ms. This shows that the protocol
is efficient and practical for implementation. Although the computation time for
AES and HMAC is faster using PIC32MZ as compared to the Android phone,
the RSA computation is longer for PIC32MZ. This is because PIC32MZ has
cryptographic engines for AES and HMAC which compute the algorithms at
hardware level. Hence, this results in a faster computation time. The commu-
nication time is longer for the third part of the protocol, because the messages

18 Hafizah Mansor et al.

Table 6. Protocol performance on LG Nexus 5 and PIC32MZ; for Protocol part I:
A=DT, B=CCU, for Protocol part II: A=CCU, B=ECU, for Protocol part III: A=MD,
B=CCU

Protocol part Message Time(ms)
Computation Communication Total time (ms)

A B
I 1 53.041 52.691 1.825 107.557

2 52.680 53.012 1.825 107.517
3 0.102 0.086 0.859 1.046
4 0.084 0.079 0.752 0.915
5 0.077 0.086 0.752 0.914

II 6 0.099 0.050 0.537 0.686
7 0.039 0.083 0.537 0.659
8 0.103 0.083 0.859 1.045
9 0.083 0.078 0.537 0.697

III 10 0.605 0.049 57.627 58.280
11 0.805 0.083 72.818 73.705
12 0.382 0.036 50.031 50.450
13 1.216 39.459 163.962 204.636
14 0.231 0.031 34.841 35.103
15 1.082 39.609 163.962 204.652
16 0.199 0.030 34.841 35.069

Total 882.933

from the mobile device need to go through Wi-Fi, be converted to UART mes-
sages, then to CAN messages. It is the same for the communication from the
CCU to mobile device, where the messages from the CCU are in CAN, then
converted to UART, and later to Wi-Fi. The baud rates of communication are
at 9600 bps for UART and at 1 Mbps for CAN. The communication time can
be further improved if CAN FD [18] is used, where one message can contain up
to 64 bytes of data, instead of just 8 bytes.

4 Conclusion

The automated logging of car maintenance services helps car owners to keep track
of the car maintenance record and avoid major breakdowns that can contribute
to large costs. Having a secure protocol to conduct the automated logging can
ensure that no records can be faked or modified. This will not only help the
owner during the ownership of the car but also during car reselling, by increasing
value of the car’s price through showing that the car has been well maintained.
The use of a mobile device gives a user interface as well as connectivity for
the car, and thus helps the widespread use of this application since not all
cars have connectivity and/or user interface. The proposed protocol provides
integrity, authenticity and reliability of the data. It is also efficient and practically
implementable.

References

1. aCar - Car Management, Mileage. https://play.google.com/store/apps/

details?id=com.zonewalker.acar.pro. Last visited on 22/10/2016.

https://play.google.com/store/apps/details?id=com.zonewalker.acar.pro
https://play.google.com/store/apps/details?id=com.zonewalker.acar.pro

Log your car: Reliable maintenance services record 19

2. Auto Care. https://itunes.apple.com/gb/app/auto-care-free-car-

maintenance/id576958809?mt=8. Last visited on 22/10/2016.
3. AUTOsist. https://itunes.apple.com/gb/app/autosist-car-motorcycle-

vehicle/id897916520?mt=8. Last visited on 22/10/2016.
4. Car Minder. https://itunes.apple.com/us/app/car-minder-plus-car-

maintenance/id310809791?mt=8. Last visited on 22/10/2016.
5. Fake Car Service Histories Spot One In 8 Easy Steps. https://www.

onlinespyshop.co.uk/blog/tips-guides/fake-car-service-histories-

spot-one-in-8-easy-steps/. Last visited on 22/10/2016.
6. Ford’s Vehicle Repair and Service. http://www.ford.co.uk/OwnerServices/

VehicleServiceandRepair/ServicingyourFord/VehicleServicing. Last visited
on 22/10/2016.

7. How to Spot a Fake Service History. http://www.autoexpress.co.uk/car-news/
58853/how-spot-a-fake-service-history. Last visited on 22/10/2016.

8. Motoriety. http://motoriety.co.uk/. Last visited on 22/10/2016.
9. My Cars. https://play.google.com/store/apps/details?id=com.aguirre.

android.mycar.activity. Last visited on 22/10/2016.
10. The Value of a Full Service History. http://www.telegraph.co.uk/cars/advice/

the-value-of-a-full-service-history/. Last visited on 22/10/2016.
11. Toyota Service History. http://www.toyota.com/owners/parts-service/

history. Last visited on 22/10/2016.
12. F. Amouzegar and A. Patel. Vehicle Maintenance Notification System Using RFID

Technology. International Journal of Computer Theory and Engineering, 5(2):312,
2013.

13. G. J. Boss, P. G. Finn, A. H. II Rick, B. M. O’Connell, J. W. Seaman, and K. R.
Walker. Tracking Vehicle Maintenance using Sensor Detection, Nov 2012. US
Patent 8,311,698.

14. C. Cremers. Scyther User Manual, draft edition, February 2014.
15. C. Cremers and S. Mauw. Operational Semantics and Verification of Security

Protocols. Springer, 2012.
16. C. J. F. Cremers. The Scyther Tool: Verification, Falsification, and Analysis of

Security Protocols. In Computer Aided Verification, pages 414–418. Springer, 2008.
17. ELM Electronics. ELM327L. https://www.elmelectronics.com/wp-content/

uploads/2016/07/ELM327L_Data_Sheet.pdf. Last visited on 22/10/2016.
18. F. Hartwich. CAN with Flexible Data Rate, 2012.
19. O. Henniger. EVITA:E-Safety Vehicle Intrusion Protected Applications. Technical

report, EVITA, 2011.
20. O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and B. Weyl. Security

requirements for automotive on-board networks. In Intelligent Transport Systems
Telecommunications,(ITST), 2009 9th International Conference on, pages 641–
646. IEEE, 2009.

21. H. Hiraoka, N. Iwanami, Y. Fujii, T. Seya, and H. Ishizuka. Network Agents for
Life Cycle Support of Mechanical Parts. In Environmentally Conscious Design and
Inverse Manufacturing, 2003. EcoDesign’03. 2003 3rd International Symposium
on, pages 61–64. IEEE, 2003.

22. Road vehicles – Controller Area Network (CAN) – part 1: Data link layer and phys-
ical signalling. Standard, International Organization for Standardization, February
2013.

23. G. Lowe. A Hierarchy of Authentication Specifications. In Computer Security
Foundations Workshop, 1997. Proceedings., 10th, pages 31–43. IEEE, 1997.

https://itunes.apple.com/gb/app/auto-care-free-car-maintenance/id576958809?mt=8
https://itunes.apple.com/gb/app/auto-care-free-car-maintenance/id576958809?mt=8
https://itunes.apple.com/gb/app/autosist-car-motorcycle-vehicle/id897916520?mt=8
https://itunes.apple.com/gb/app/autosist-car-motorcycle-vehicle/id897916520?mt=8
https://itunes.apple.com/us/app/car-minder-plus-car-maintenance/id310809791?mt=8
https://itunes.apple.com/us/app/car-minder-plus-car-maintenance/id310809791?mt=8
https://www.onlinespyshop.co.uk/blog/tips-guides/fake-car-service-histories-spot-one-in-8-easy-steps/
https://www.onlinespyshop.co.uk/blog/tips-guides/fake-car-service-histories-spot-one-in-8-easy-steps/
https://www.onlinespyshop.co.uk/blog/tips-guides/fake-car-service-histories-spot-one-in-8-easy-steps/
http://www.ford.co.uk/OwnerServices/VehicleServiceandRepair/ServicingyourFord/VehicleServicing
http://www.ford.co.uk/OwnerServices/VehicleServiceandRepair/ServicingyourFord/VehicleServicing
http://www.autoexpress.co.uk/car-news/58853/how-spot-a-fake-service-history
http://www.autoexpress.co.uk/car-news/58853/how-spot-a-fake-service-history
http://motoriety.co.uk/
https://play.google.com/store/apps/details?id=com.aguirre.android.mycar.activity
https://play.google.com/store/apps/details?id=com.aguirre.android.mycar.activity
http://www.telegraph.co.uk/cars/advice/the-value-of-a-full-service-history/
http://www.telegraph.co.uk/cars/advice/the-value-of-a-full-service-history/
http://www.toyota.com/owners/parts-service/history
http://www.toyota.com/owners/parts-service/history
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327L_Data_Sheet.pdf
https://www.elmelectronics.com/wp-content/uploads/2016/07/ELM327L_Data_Sheet.pdf

20 Hafizah Mansor et al.

24. G. Lowe. Casper: A Compiler for the Analysis of Security Protocols. Journal of
Computer Security, 6(1):53–84, 1998.

25. R. Makowitz and C. Temple. FlexRay- A Communication Network for Automotive
Control Systems. In 2006 IEEE International Workshop on Factory Communica-
tion Systems, pages 207–212, 2006.

26. O. Mavropoulos, H. Mouratidis, A. Fish, E. Panaousis, and C. Kalloniatis. Ap-
paratus: Reasoning About Security Requirements in the Internet of Things. In
International Conference on Advanced Information Systems Engineering, pages
219–230. Springer, 2016.

27. Media Oriented Systems Transport Specifications, 2006.
28. Microchip. High-Speed CAN Transceiver. http://ww1.microchip.com/

downloads/en/devicedoc/21667d.pdf, 2003. Last visited on 22/10/2016.
29. Microchip. PIC18F2480/2580/4480/4580 Data Sheet. http://ww1.microchip.

com/downloads/en/DeviceDoc/39637c.pdf, 2007. Last visited on 22/10/2016.
30. Microchip. Starter Kit I/O Expansion Board Information Sheet. http://

ww1.microchip.com/downloads/en/DeviceDoc/51950A.pdf, 2010. Last visited on
22/10/2016.

31. Microchip. CAN BUS Analyzer Users Guide. http://ww1.microchip.com/

downloads/en/DeviceDoc/51848B.pdf, 2011. Last visited on 22/10/2016.
32. Microchip. CAN/LIN/J2602 PICtail (Plus) Daughter Board Users Guide. http:

//ww1.microchip.com/downloads/en/DeviceDoc/70319B.pdf, 2011. Last visited
on 22/10/2016.

33. Microchip. MCP2200 Breakout Module User’s Guide. http://ww1.microchip.

com/downloads/en/DeviceDoc/52064A.pdf, 2012. Last visited on 22/10/2016.
34. Microchip. PIC32MZ Embedded Connectivity (EC) Adapter Board Informa-

tion Sheet. http://ww1.microchip.com/downloads/en/DeviceDoc/50002199A.

pdf, 2013. Last visited on 22/10/2016.
35. Microchip. PIC32MZ Embedded Connectivity (EC) Starter Kit Users

Guide. http://ww1.microchip.com/downloads/en/DeviceDoc/70005147A.pdf,
2013. Last visited on 22/10/2016.

36. Microchip. Wi-Fi G Demo Board Users Guide. http://ww1.microchip.com/

downloads/en/DeviceDoc/50002147A.pdf, 2013. Last visited on 22/10/2016.
37. Microchip. PIC32MZ Embedded Connectivity (EC) Family. http://ww1.

microchip.com/downloads/en/DeviceDoc/60001191F.pdf, 2015. Last visited on
22/10/2016.

38. Pedro Miranda, Matti Siekkinen, and Heikki Waris. TLS and Energy Consumption
on a Mobile Device: A Measurement Study. In Computers and Communications
(ISCC), 2011 IEEE Symposium on, pages 983–989. IEEE, 2011.

39. N. E. Petroulakis, I. G. Askoxylakis, A. Traganitis, and G. Spanoudakis. A Privacy-
level Model of User-Centric Cyber-Physical Systems. In International Conference
on Human Aspects of Information Security, Privacy, and Trust, pages 338–347.
Springer, 2013.

40. M. Ruff. Evolution of Local Interconnect Network (LIN) Solutions. In Vehicular
Technology Conference, 2003. VTC 2003-Fall. 2003 IEEE 58th, volume 5, pages
3382–3389. IEEE, 2003.

41. SAE J1962 Revised APR2002. Standard, SAE Vehicle Electrical and Electronics
Diagnostics Systems Standards Committee, April 2002.

http://ww1.microchip.com/downloads/en/devicedoc/21667d.pdf
http://ww1.microchip.com/downloads/en/devicedoc/21667d.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39637c.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/39637c.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51950A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51950A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51848B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/51848B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70319B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70319B.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52064A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/52064A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002199A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002199A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/70005147A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002147A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/50002147A.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001191F.pdf
http://ww1.microchip.com/downloads/en/DeviceDoc/60001191F.pdf

	Log your car: Reliable maintenance services record

