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Abstract

Traditionally, card emulation mode in Near Field
Communication devices makes use of a hardware Se-
cure Element (SE) as a secure storage and execution
environment for applications. However, a different way
of card emulation that bypasses the SE has emerged,
referred to as Host-based Card Emulation (HCE).
HCE relies on the phone CPU for processing power,
sharing it with other running processes. This produces
variable readings in terms of response times from the
phone. This paper investigates this variability in HCE
implementation as compared to an SE implementation.
We also discuss how our findings may call into ques-
tion the use of HCE in time critical scenarios.

1. INTRODUCTION

Near Field Communication (NFC), has showed a lot
of promise in a number of markets since its emergence
on phones and other mobile devices. NFC devices
operate in three modes; reader/writer mode, peer-to-
peer mode, and the card emulation mode (1). The
card emulation mode is arguably the most interesting
because it allows an NFC device to communicate
with a contactless terminal as if it were a smart card.
This means that NFC devices can be compatible with
existing contactless infrastructure. As card emulation
is security sensitive, NFC devices incorporate a Secure
Element (SE). The SE was originally envisaged as
a small tamper-resistant chip (or part of an existing
security chip) conforming to high security standards
such as the Common Criteria (2).

While card emulation has proven to be attractive
for applications such as mobile payments and transport
ticketing, access to the SE is tightly controlled by the
Mobile Network Operators (MNO) and/or the Original
Equipment Manufacturer (OEM). This tight control on

the SE means small companies and mobile application
developers have no access to the services of the SE
and indeed the ability to use the NFC card emulation
functionality. This has hindered the use of NFC phones
and prevented usage from reaching its full potential.
There have been moves to resolve this by using a
Trusted Service Manager (TSM), although this has not
been universally adopted by businesses and standards.
The TSM provides secure application provision and
personalization services, key management services as
well as post issuance life cycle management.

However, in recent times, a different way of card
emulation has emerged, which bypasses the hardware
SEs. The approach is referred to as the Host-based
Card Emulation (HCE) (3) which is sometimes referred
to as the soft SE (4). In HCE, an application running
on the Operating System (OS) of the host device can
emulate a smart card and interact with an external
reader directly; we will refer to these applications as
HCE-apps in this paper. Research In Motion (RIM),
on the Blackberry platform (4), were the first to
incorporate this functionality in their phones. Sub-
sequently Cyanogenmod integrated some patches (5)
to the Android OS which permitted NFC enabled
mobile phones to perform card emulation from the
host. However, HCE attracted most attention when
Google incorporated it within Android 4.4 (KitKat).

Unlike the case of the hardware SE where there is
a tamper-resistant secure microprocessor, HCE relies
on the phone CPU for processing. As the phone OS
is multi-threaded, the HCE-app will share resources
with other processes requiring CPU usage. This may
have direct implication on the performance of HCE-
apps, as CPU load of the phone is very variable. This
potentially variable characteristic of HCE-apps with
regards to processing times adds something rather new
to the dynamics. Traditional contactless smart cards
have consistent timing and often critical constraints on
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absolute duration, especially in transport ticketing.
In this paper we investigate variations in HCE execu-

tion times as compared to a similar chip-based SE im-
plementation. It should be noted that the comparative
security and attack-resistance of HCE and hardware
SEs is a hot research topic, although out of scope for
this paper

In Section 2, we give some background on the
NFC technology, we briefly explain the CPU power
management in Android as well as the role played
by CPU governors. The way the test was set up and
specifications of the devices used are represented in
Section 3, followed by the actual testing carried out
in Section 4. In Section 5, we put our tests together
for analysis and comparisons. We also discuss how our
findings may have an impact in a number of areas. We
discuss future directions of our research and finally
conclude the paper in Section 6 .

2. BACKGROUND

In this Section, we give some background infor-
mation on NFC. and the card emulation options. We
conclude the section by briefly explaining the way in
which Android manages CPU power and also the role
played by the CPU governors in achieving this.

2.1. Near Field Communication (NFC)

Near Field Communication (NFC) (6) is a short
range contactless communication technology (some-
times referred to as Radio Frequency Identification
(RFID)) which enables the exchange of data between
devices, it typically works within the range of less
than 10 cm and at a Radio Frequency (RF) of 13.56
MHz. An NFC device may either be passive or active.
An active NFC device (known as the initiator) is
capable of producing its own electromagnetic field and
directly transmitting data, while a passive NFC device
(sometimes referred to as a target or a tag) relies on the
initiator’s electromagnetic field for power and clock,
and uses load modulation for data transmission. The
communication between the two entities is halfduplex,
meaning only one entity can talk at a time. NFC is
standardised by the NFC Forum (1) and is based on
legacy standards such as ISO/IEC 14443 (7) as well as
the ECMA (8) standards. NFC is therefore compatible
with existing and widespread contactless/RFID infras-
tructure, such as found in payment, transport, identity
and access control systems, making it a favourable
technology for a lot of industries. NFC works in
three different modes; Reader/Writer Mode, Peer-to-

Peer mode, and Card Emulation mode, although the
first two modes are beyond the scope of this paper.

2.1.1. Card Emulation Mode. In card emulation
mode, the NFC device, typically behaves like an
ISO14443 compliant smart card. Card emulation can
be done in a number of ways. Traditionally it was
done using the hardware SE, the idea been that the SE
provides a safe and secure environment to house ap-
plications, sensitive data and cryptographic credentials,
as well as a secure execution environment. These SEs
are very similar to conventional smart cards in terms
of hardware although the interface differs, with the
SE connected to the NFC controller through the NFC
wired interface (NFC-WI) or the single wire protocol
(SWP) (9). In a conventional SE-based approach, when
a user taps his device on a terminal, by default the NFC
controller routes all messages from the terminal to
the corresponding application residing in the SE. The
applications are identified through their Application
Identifier (AID). The hardware SE comes in three
different forms:

Embedded SE. The SE in this case is soldered
into the hardware of the mobile device at the produc-
tion phase, and is not intended to be removable. The
embedded SE is owned and managed (at least initially)
by the OEMs.

Universal Integrated Circuit Card (UICC) SE.
The Subscriber identity Module (SIM) in the mobile
phone can also be used as the SE and the SWP acts
as the interface for connection to the NFC controller.
The SE in this form factor is owned and managed by
the MNOs.

MicroSD-based SE. The SE could also be in the
form of a memory card inserted into the mobile device.
While this form factor offers the most flexibility in
terms of SE ownership and control, it has practical
drawbacks. Each Service Provider (SP) will have to
issue a microSD card to all its customers, who will
then have to swap memory cards when using a service
from a different SP.

2.2. Host Card Emulation

HCE is a radical change to card emulation that to
some extent bypasses the MNO and OEM control of
SEs. Prior to HCE, all messages from a card terminal
are routed directly to the SE. However with HCE, the
host OS decides what should handle the messages,
which could be an SE, but is more likely to be an
application running on the host CPU. HCE, as far
as Android OS is concerned, is implemented as a
service, i.e. it can run in the background without a



user interface (3). This is a feature very important to
a number of NFC scenarios such as transport ticketing
where a user does not have to launch the application
before using it. A simple tap of the phone on the
reader invokes the correct application to handle the
transaction.

An application that wishes to emulate a smart card
registers its AID with the NFC controller, which main-
tains a routing table containing the routing rules. Each
rule is a mapping of an AID to an application. When
a user taps a phone on a terminal, the first APDU the
phone receives is a SELECT command, this command
contains the AID of the application it wants to talk to.
The NFC controller uses this AID to apply a necessary
routing rule, and all subsequent commands are sent
to the selected application until another application is
selected, or the current one is deselected.

2.3. Android CPU Policy

Android devices typically have a multi-core proces-
sor design. This means that a single unit can consist
of two or more more independent CPUs referred to
as cores. Android devices use both the ARM and
x86 architectures. Android also uses the Symmetric
Multiprocessing (SMP) design for managing the dif-
ferent CPUs (10). Normally, all CPUs share the same
CPU frequency policy, i.e. all CPUs are online at
the same time and any process can run on any of
them. Nevertheless, Android devices switch between
different frequency levels in response to variable CPU
load, this is enforced and regulated by a driver known
as the CPU governor (11). There are several types of
CPU governors with different characteristics. In this
paper, we used the “ondemand” governor which is the
factory default for most Android phones, it increases
and decreases CPU frequency according to demand.
We also used the “userspace” governor: it permits a
user to choose which frequency state the CPU should
run in.

3. TEST SETUP

In this Section we explain how the testing was
set-up and conducted. To test the performance with
regards to variable delays, we developed two card
emulating applications. The first one is a Java card
applet based on Java card framework v2.2.1 (12). We
refer to this applet as the SE-app. We loaded the SE-
app into the SE of a Nokia 6131 (one of the first
NFC phones). Nokia, in (13) explains how to use the
Nokia NFC Unlock Service MIDlet to unlock the SE of
the Nokia 6131. The second application is an Android

application (HCE-app), running on Android platform
version 4.4 with Android framework Application Pro-
gramming Interface (API) level 19 as the target API.
This application is deployed within a Nexus 5 mobile
device. Table 1 provides a summary of the devices used
to conduct the testing.

Both applications run the same cryptographic proto-
col designed for the tests. The purpose of the protocol
is simply to require the emulating processor to carry
out some non-trivial and representative cryptographic
processing We used the javacardx.crypto package for
the SE-app, and the java.crypto package for the HCE-
app.

We created a 1024-bit RSA algorithm keypair, and to
simplify testing, we departed from cryptographic best
practice not only by using this key-size, but also by
using the same pair for both encryption and signing.
For the encryption we used the ALG RSA PKCS1 field
of the cipher class from the javacardx.crypto package.
ALG RSA PKCS1 uses the RSA cipher for encryption
and the Public-key cryptography standards (PKCS1)
(v1.5) for data padding. For the signature, we used
ALG RSA SHA PKCS1 field of the cipher class from
the javacardx.crypto package. ALG RSA SHA PKCS1
firstly computes a hash of the message resulting in a
20-byte SHA digest, which is then padded using the
PKCS1 before signing using the RSA algorithm.

We recognise that SHA-1 is no longer recom-
mended, however the goal was to test performance
variation rather than establish a secure protocol. For
performance testing, we first used the Java timer class
in the terminal application to take measurements. To
ensure accuracy of the values produced by the timer in
our program, we then used the CLT Move- Contactless
Spy tool from COMPRION (14) to double check the
measurements. This tool monitors the flow of APDUs
between the reader and the phone, giving a byte level
view of messages and their corresponding delays.

4. EXPERIMENTAL RESULTS

The first phase of any communication between a
card/phone and a smart card reader is the initialisation
and anti-collision phase; this (6) is where they establish
identities and agree on the parameters of communi-
cation for all subsequent messages. The parameters
include the number of bits they can handle at a time
and also the agreed amount of time the reader has to
wait for a response from the phone before it times
out, known as the Frame Waiting Time (FWT). The
anti-collision phase exists to resolve the situation of
multiple smart cards within range of a single terminal,
which was not case for our tests.



Table 1. Devices used in the testing

Device Manufacturer Operating System RAM ROM

SE (Nokia) NXP Semiconductors SmartCafe expert 3.1(G&D) 4kb 160kb
Phone (Nexus 5) LG Electronics Android kit-kat 4.4 2GB
Laptop SONY Ubuntu 14.04.1 trusty 4GB
Card Reader SCM Microsystems

After a successful initialisation and anti-collision,
the reader application selects the applet by sending
a select APDU using the AID; the application sends
back the 0x9000 status word if the select APDU was
successful. The reader then sends a command APDU
(ENCRYPT) with an 11-byte data to be encrypted
by the card emulating application. The application
encrypts the message and sends back a response APDU
containing the corresponding cipher text together with
the 0x9000 status word (or error code on failure).
Subsequently another command APDU (SIGN) is sent
to the phone in order to get a signature on the 8-
byte data contained in the APDU. The phone signs
the data and sends the result back to the reader. Timing
is measured from the time the command is sent from
the reader to the time it recieves the response back.
For accuracy, we carried out 400 hundred runs of the
protocol and computed the average. All timings were
taken in milliseconds(ms).

4.1. SE-app TESTING

Table 2 shows a statistical analysis of the results
from the SE-app on the Nokia hardware SE. It shows
the statistics for individual commands as well the
protocol in full over 400 runs.

Table 2. Readings from the SE-app testing

SE-app SELECT SIGN ENCRYPT FULL PROTOCOL

Average 18.6 1679 285 1982

Mode 18 1691 283 2002

Median 18 1680 284 1984

MAX 116 1746 300 2105

MIN 17 1618 279 1917

From the table we see that the SELECT command
had an average execution time 18.6ms. SELECT is
a fairly light weight command requiring no cryp-
tographic processing and simply returning a status
response. However, the first SELECT command of the

400 runs took 116ms. This is because of the initialisa-
tion and anti-collision phase which is not present in the
remaining runs, which have very consistent execution
times with the minimum and maximum times differing
by at most 3ms. It is important to note that in a
real-life scenario, for every tap of the phone unto a
terminal by the user, there will be an initialisation
and anti-collision phase. Overall our test protocol has
an average execution time of 1982ms, with about 85
percent of the time spent on digitally signing the
message. The absolute duration would be too long for
timing critical applications (e.g. transport ticketing),
however the measurements are very consistent, with
some variation due to experimental tolerances.

4.2. HCE-app TESTING

For the HCE-app, we did things slightly differently;
we ran the test in two different scenarios which we
will refer to as CASE1 and CASE2 from now on. As
suggested in (15) “While measuring CPU power, or
holding CPU power constant in order to make other
measurements, it may be best to hold the number of
CPUs brought online constant, such as to have one
CPU online and the rest offline (hotplugged out)”. In
our case, the Nexus 5 has a multi core processor with
four cores, so we hotplugged three of them, leaving
only one online. This was to ensure that all processes
ran on the same CPU giving us better control of the
testing platform.

4.2.1. CASE1. Here, we used the “ondemand” gov-
ernor running at 960Mhz (default). While running the
program, we deliberately tried to simulate the day-to-
day things a mobile phone user will usually do such
as opening social media applications and answering
phone calls. This was to mimic what might be the
case/state when a user taps a turnstile at a train station.
From the table 3 below, the first SELECT command
took longer than the others (as was the case with
the SE-app) i.e. 60ms as compared to the average of
12ms. The full protocol ran in an average of 213ms,



however it is interesting to see that range between
the MAX and MIN values of the full protocol is
708ms which is a very significant variation. Similar
variations were measured for SIGN and ENCRYPT
values individually, which ran on average of 110ms
and 91ms respectively but with a range of 475ms and
404ms respectively.

Table 3 shows a statistical analysis of the results
from the HCE-app (CASE1). It shows the statistics
for individual commands as well the protocol in full
over 400 runs.

Table 3. Readings from the HCE-app testing
CASE1

CASE1 SELECT SIGN ENCRYPT FULL PROTOCOL

Average 12 110 91 213

Mode 11 85 82 171

Median 12 95 81 188

MAX 60 544 465 853

MIN 10 69 61 145

4.2.2. CASE2. Table 4 shows a statistical analysis of
the results from the HCE-app (CASE2). It shows the
statistics for individual commands as well the protocol
in full over 400 runs.

Table 4. Readings from the HCE-app testing
CASE2

CASE2 SELECT SIGN ENCRYPT FULL PROTOCOL

Average 20 301 250 572

Mode 20 271 235 529

Median 20 294 236 550

MAX 99 883 809 1146

MIN 16 265 222 514

After noticing the high variance in the results pro-
duced in CASE1, we decided to clock the CPU at
its lowest possible frequency state of 300Mhz. To
achieve this we changed the CPU governor from the
default “ondemand” governor to the “userspace” gov-
ernor, with this, we were able to set exactly the CPU
frequency. We also set the minimum and maximum
frequency to both be 300Mhz as suggested in (15), this
gives us assurance that the CPU is fixed at 300Mhz.
We ran the protocol under these conditions and table
4 shows the results. As in previous tests the first SE-
LECT command is slower, taking 99ms as compared
to the overall average of 20ms. The full protocol took
an average of 572ms, but similar to CASE 1, there is

a significant range of (632ms). The same applies to
the SIGN and ENCRYPT values with an average of
301ms and 250ms respectively, and with a range of
618ms and 587ms respectively.

5. DISCUSSION

In this section, we put all three tests together to make
analysis and comparisons.

Figure 1. Graph Showing the Results of All the
Tests

In Figure 1 above, we can see how the SE-app has a
more clustered line graph (almost a constant), while the
two HCE-app cases show marked variation in values.
We can see how CPU clock affects average execution
time for the protocol, however the wide variations exist
even when the CPU core is allowed to run at full
speed. The absolute execution time of the SE is notably
slower than the HCE-apps although this is perhaps
an unfair comparison as the Android phone is still
current whereas the Nokia phone (and its SE) was
produced in 2006. Furthermore, the HCE-app would
likely be significantly slower in practice if software
security measures were required to reduce side-channel
leakage and improve attack resistance.

What is most interesting is the variation in the
HCE-app response times, which may call into question
HCE use in time critical applications. For example,
in transport ticketing applications there is a rule of
thumb that a gate transaction should complete in less
than 500ms, however we are seeing variations that are
greater than this, regardless of the expected execution
time.



This timing variation may also prevent the use of
some security measures to detect fake cards or attacks
in progress. For example, there has been a lot of
research and proposals on distance bounding protocols
(16) as a way of detecting RFID relay attacks. These
protocols establish an upper bound on the distance
of the proving party. This is done by taking into
consideration the delay introduced into the channel
from the time a challenge is sent to the time a response
is received. This is only possible when there is a
reasonable benchmark for an acceptable delay. In the
case of HCE the tolerance around the benchmark
will be extremely large making it very difficult to
distinguish between a relay attack and variation due
to normal phone operation.

6. CONCLUSION AND FUTURE WORK

We have conducted comparative testing on hardware
SE-based card emulation and also on an HCE-based
card emulation. The main finding was the significant
variation in the HCE execution times that could call
into question its use in time critical applications (such
as transport ticketing) and prevent the use of distance
bounding security measures for combating relay at-
tacks. We also measured significant variation in aver-
age response times with controlled CPU clock speed,
used to mimic loading affects. To build upon these
initial findings, further work is planned to consider ad-
ditional phone platforms and SEs, and the performance
analysis of real world transport and payment protocols.
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