
Can you call the software in your device firmware?

Rashedul Hassan, Konstantinos Markantonakis and Raja Naeem Akram
Information Security Group

Royal Holloway, University of London
Surrey, Egham TW20 0EX

mdrashedul.hassan.2014@live.rhul.ac.uk,k.markantonakis@rhul.ac.uk,

rajanaeem.akram.2008@live.rhul.ac.uk

Abstract— In addition to storing a plethora of code and
functionality, devices also possess a certain set of data and com-
mands, known as firmware. The ability of devices to perform
specific tasks relies on the firmware. In order to understand
the scope of firmware we conducted a qualitative analysis of its
properties, functionalities and security. We examined the use of
the terminology over a period of years and found that firmware
is used in numerous situations in a range of contexts. In this
paper, we propose a taxonomy of firmware to classify the field
and understand it better.

I. INTRODUCTION

Electronic devices are being used every day for a variety
of purposes. These devices range from mobile phones, to
laptops, microwaves, electric shavers and many others. The
physical device itself is known as the hardware and the
programs that run within the device are referred to as
software [1]. Firmware is described loosely as a coupled
mixture of both hardware and software.

“Hardware” usually refers to a combination of multiple
components with a physical existence, which will make a
noise when dropped on the floor [2]. Any device with this
property is known as hardware; for example, a processor,
flash drive, or microwave. However, such devices are unable
to function on their own and they require certain levels of
“instructions” [3] or “firmware” to perform their tasks. In-
structions can be defined as set of programmed routines that
handle the different components of the hardware, initiating it
to carry out some activity. The American Heritage Dictionary
[4] defines software as written or printed data such as
programs, routines, and symbolic languages, essential to the
operation of computers.

“Firmware” is vaguely referred to as the interface between
software and hardware [5]. Firmware can be stored in any
storage media; however, it is typically stored in Read Only
Memory (ROM) chips [6] where the program is stored and
requires no power source to maintain the data. A common
example of a piece of firmware is the Basic Input Output
System (BIOS) chip on a computer. The BIOS chip contains
permanent instructions about the computer and is activated
when the computer is started.

Despite the firmware being permanently stored on ROM
chips, it can also be replaced or re-written to enable updates
or make changes [7]. The older types of firmware were
generally stored in ROM chips and the only way to update
would be to replace them with new ROM chips. The storage

mechanism for firmware has evolved beyond ROM chips
and now it is possible to [8] re-write firmware and store it
in erasable media such as an Erasable Programmable ROM
(EPROM), or a flash drive.

If firmware is stored in a non-writable store, an upgrade
of the firmware would mean replacement of the complete
unit. In the past, when the BIOS chip had to be updated, the
whole motherboard unit of the computer had to be replaced
to accomplish that task. Even though the firmware was the
instruction set or the software content within the BIOS chip,
the “chip” was considered to be the firmware.

BIOS is a particular type of Personal Computer (PC)
firmware. Usually, any IBM PC will carry a BIOS imple-
mentation or another implementation known as Unified Ex-
tensible Firmware Interface (UEFI) [9]. UEFI is generic and
resides mostly in systems that are not IBM PC compatible.
There are other firmware in use other than UEFI and BIOS,
e.g. CoreBoot [10], and OpenBIOS [11].

The example of BIOS illustrates the different ways
firmware is described. As a whole, the BIOS can be referred
to as firmware, but if only the “chip” or the physical existence
is considered, it can be termed “hardware”. In addition,
the program part within the chip can also be regarded as
“software”.

The IEEE Standard Glossary of Software Engineering
Terminology [12] extended the definition of “firmware”
as follows: “the combination of a hardware device and
computer instructions or computer data that reside as read-
only software on the hardware device”. However, studies
by Barsamian et al. [6], [13], [14] described “firmware” as
the intermediate layer between hardware and software. There
has been no conclusive study done to distinguish firmware
from software or hardware. The scope of firmware needs to
be studied and defined. The number of devices that have
firmware is continually increasing. Every day approximately
2 million devices [15] are being activated, yet there is no
clear definition of firmware in the literature.

This paper is structured as follows: Section 2 discusses
related work. It consists of a brief overview of the trends in
firmware. Section 3 deals with the taxonomy. It is followed
by our rationale and then a brief discussion of each element
together with descriptions of some attacks and vulnerabil-
ities that apply to firmware. The final section presents our
conclusions and possibilities for future research.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298338?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


II. RELATED WORKS

In this section we discuss previous work on firmware and
trends over the years. We start by discussing the changes over
the years. More discussion on trends follow this section. We
continue the discussion of trends towards storage trends and
end this section with discussions related to current trends.

The usage of the word began in 1967. It was first men-
tioned by Opler [3]. Work done by Opler discusses about
the software portion that is saved in a ROM providing
specific guidelines on how the software should behave. From
1967 till 1971 there were no significant work done on
firmware. In 1971 Barsamian and Dec mentioned firmware
as programmed instructions stored in special ROM or Read-
Write (RW) control stores [13].

There were no major update from the year 1971 till 1993.
In 1993, Mange et.al used the term firmware to visualise
the concept of transforming software logic into hardware
instruction set [16]. The idea was used to provide a bridge
between the hardware and software and vice versa. The
software part exhibited the idea of driving the hardware to
do a specific task. The author did not refer the software itself
to be the firmware, however he pointed the transformation
process to be the firmware since it was bridging the gap for
establishing a communication platform.

According to work done by Chen [17], the software itself
has been called a firmware. From 1993 till 2012, many work
has been done [5], [18]–[24] on firmware, however the idea
was addressed according to the context in discussion. It
ranged from an “in-between” layer to “software”, nobody
highlighted its position.

Early storage of firmware was done in a Read Only
Memory (ROM) or permanent storage media. The practice
of writing firmware in the ROM continues today. In 1971,
firmware was quoted as “micro-instructions that could be
saved in the ROM mostly to be used for read-only purposes”
[13]. However, the convention did not remain stagnant and
limited to ROM. 1990s and beyond introduced the rise of
Integrated Circuitry (IC). Instruction sets in IC were hard-
coded and installed in devices. Flash storage was intro-
duced simultaneously. This introduction provided more speed
and convenience for the developers and manufacturers. Re-
writing the flash storage became easier. Unlike the IC’s,
which had to be manually removed to update the programs,
flash storage did not require any removal and it was reused
to overwrite existing firmware.

Upon introduction of flash storage, the year 1993 referred
firmware as “a way to convert hardware instructions into
software instructions” [16]. As discussed in the previous
section, the idea of bridge was being highlighted. It has also
been referred as a type of a software loosely referring as “a
form of software” known as firmware [6].

The idea was not limited to software alone, but also
focused on the area of hardware. Work done by Schubert
[25] described firmware as “chip-set”. The connection or
the “layer” that resides between software and hardware is
typically referred to as “firmware”, as identified in 2009 as

the interface between the two [5]. Beyond 1990s flash storage
was widely used but the usage of ROM was still in existence.
In 2010, the firmware stored in ROM was referred to as a
defined “functionality” that accomplishes a set of function
or job [20]. Following the work, further research in 2012
on firmware redefined it as being software stored in certain
memories [21].

Firmware has evolved to represent any programmable con-
tent of a hardware device; it did not only represent software
or binary code. It also exemplified machine code for a proces-
sor, but also configurations and data for Application-Specific
Integrated Circuits (ASICs), programmable logic devices and
others. On the domain of processors, the firmware is being
referred to as being “complicated logic which is stored
as micro-instructions” [13]. In an embedded system, [6]
described firmware as programs that are stored in hardware
memories such as ROMs. The work deems the firmware to
be just “hardware”.

In work carried out in aviation and dealing with software
engineering challenges, it was quoted “It is sometimes not
clear what constitutes a processor, for example, because so
much specialized electronics is involved. Similarly, software
is sometimes in read-only memories called firmware rather
than software” [18].

It can be clearly seen the understanding varied over the
years, where it was referred to as dedicated software and/or
hardware specific instruction set. The ways the term has been
defined was in context to the application or device under
discussion.

III. THE TAXONOMY AND ITS JUSTIFICATION

In this section we will expand on the landscape of
firmware. We start by proposing a taxonomy structure of
firmware followed by a subsequent section briefly discussing
the rationale behind the categorisation. The diagram of our
taxonomy is illustrated in Figure 1.

A. Framework

The first family is named as “Framework” that highlights
the basic structure and characteristics of a firmware. This
family tree has been further dissected into three branches
namely: “Core”, “Protection” and “Interface”.

1) Core: We bisect the firmware into multiple parts, the
rationale behind naming this section “Core” is to represent
the major functionalities of the firmware. This branch con-
sists of three more sub-children that are highlighted in figure
1.

a) Hardware: We categorise “hardware” where infor-
mation to control a device runs on a printed circuit board or
a signal converter. An example of this classification would
be the microchip inside a watch, table lamp, toy cars [26].
The circuitry uses electricity to convert electrical energy to
different forms of energy. In case of a watch, it is converted
to mechanical and kinetic energy which helps with the
movement of dials. In case of a lamp, the electrical energy
is converted to light and heat energy. The range of attacks
within this domain are limited since it involves manipulating



Fig. 1. Taxonomy of firmware

the hardware components and is usually referred to as hacks
rather than attacks [27].

b) Software: We classify “software” to the kind of
firmware where the programs are stored programmatically
inside a storage media e.g. ROM, EPROM, EEPROM etc.
These are programs that have their existence in a digital
format rather than a series of electrical signals. Examples
would include, drivers for a printer [8], visual firmware for
customising a mouse [28], etc. In work done by Maskiewicz
et al. [29] a Logitech G600 mouse was programmed by
writing a custom software to achieve a file transfer task.

Attacks in this domain usually involves manipulating the
code to achieve extra benefits. It has been shown in work
done by Yanlin et. al [30] it is possible to reverse engineer
the firmware of a network card and manipulate it. Using
a package known as Interactive Dis-Assembler (IDA) it is
possible to alter the function calls within a software program.

c) HW SW Hybrid: The device family which involves
both characteristic of hardware and software are enlisted
in this category. As referred to our example of BIOS in
Section 1, the chip-set itself has a physical existence whereas,
it cannot be called hardware because there is a software
program within the chip. On the contrary, labelling it as
mere software is not applicable since, it is a chip which
has physical existence and does not require power to store
the information. Other example for this criteria include the
set top TV boxes. They convert direct button press signals to
machine readable signals [19]. Furthermore, they have their
storage installed within their device that stores the firmware
content and updating that content can be done by connecting
a cable and flashing it [31].

There are attacks targeted to BIOS. Work done by Wo-
jtczuk and Alexander [32] showed the attack of BIOS by
manipulating several checksums. They used a BIOS building
tool followed by patching to compensate the checksum.
Other work has shown how data can be hidden in BIOS
chips. BIOS has a capacity of storing 128K to 512K of data
and this storage can be used by criminals [33]. Miscreants
could use this feature to manipulate a target computer to
cause damage or create data-loss in an organization or a
specific person. Fortunately, the modern implementations of
BIOS [34] have changed and stronger security primitives
within BIOS are introduced with secure boot and UEFI
(Unified Extensible Firmware Interface) [9].

2) Protection: This sub-tree discusses the security mech-
anism that is available in any kind of firmware. It has been
further elaborated into two more sub-children namely:

a) Locked: When describing firmware, how the
firmware itself is utilised or stored in a media is a very
important aspect. A firmware can be stored in a ROM [35],
but not always; since it can also be stored in a hard disk
drive, EPROM flash drive or Solid State Drive (SSD). The
protection of the storage is classified as an attribute. Some
firmware has protective mechanism to restrain unauthorised
modification or alteration whereas other firmware does not
have any protection. By “Locked” we refer to the family of
firmware which are digitally signed by manufacturer [36] and
has their default administrator login credentials encrypted.

Attacks involved in this domain includes the successful
“jailbreaking” [37] of multiple iOS versions. iOS jailbreaking
removes the restrictions of the Apple’s iOS operating system
using software exploits. This allows the locked restriction of



downloading additional applications, music and themes that
are not available through the official AppStore [38].

b) Open: In situations where the username and pass-
word to the administrator access portal of the firmware is not
cryptographically protected or written in plain text falls into
our branch of “Open”. It has been discovered manufacturers
[22] do not take necessary precaution to encrypt the default
administrator login credentials within the firmware. Rather
they use specific company-title [22] and other fixed place
decimal value data linked with the firmware that can be easily
brute-forced to retrieve the credentials. These type of devices
are termed as “Open” in our taxonomy. For example, in a
TP-Link TD-W8951ND V4 ADSL router it was observed
that the username and password were stored in plain text
when a simple man in the middle attack was performed
using Cain [39]. Furthermore, it has also been reported in
specific software packages e.g. Deploy Studio [40], which
is used to image and deploy Mac computers to manage
workstations and servers, that the firmware passwords are
stored in the log in plain texts. In addition to these, the
telecommunication giant EE’s BrightBox routers login page
stores their customers credentials in a plain text format [41].

3) Interface: The interface of a firmware is placed as a
part of the firmware’s framework capabilities. It represents
two different types of firmware that consists of an interface to
allow configuration; whereas there is another set of firmware
that comes with predefined characteristic and functionality
that does not allow any customisation and thus only behaves
according to the manufacturers pre-set instruction sets.

a) Visual: Ideally the interface makes way for config-
uring the firmware. It also allows the control of the device.
The BIOS of a computer machine has been considered as
an example. The BIOS is a type of firmware that gives the
user an option to customise the settings of a computer [42].
The interface used is a Graphical User Interface (GUI) which
allows navigation via a keyboard that would allow the user
to tweak settings e.g. primary boot device, secondary boot
device.

Another example would include when a user of a computer
would want to enable a Firmware password to restrict the
machine from booting from another hard drive. In an Apple
Macintosh where there is a specific Graphical User Interface
(GUI) that enables the usage of a firmware password [43].
The presence of an interface enables the option to set up
a password. The interface allows the possibility to set up a
password, without it the user will not be able to set it up.
Only the manufacturer would have been able to do that.

The visual category has been established to also represent
messaging output too. In a telephone handset, the display that
shows the digits inputted into the set can also be referred as
the visual interface. More examples would include tuning
the thermostat in a home where the current temperature and
other settings are displayed as a message or information to
the user.

b) None: To the family of firmware that does not
exhibit a configurable interface is termed as to be residing
in this section. The example clarifies the members of this

sub-children. The hardware content within a CPU consists
of processors [44], RAM [45] and hard disk drive [46] to
name a few. All of these devices have firmware within them
that provides them with instruction on how to operate specific
mechanical parts of that device. For example, the firmware
within hard disk [47] drive controls the disk rotation and
read-write speed. It also contains information regarding how
the allocation tables are managed. Configuring the firmware
is not possible since the data is already set up by the
manufacturer and there is no interactive interface to tweak
and configure the settings.

There have been attacks on some of these components
even though they lack a visual interface. Kaspersky re-
searchers discovered that the hard drive firmware could be
compromised [46]. They showed, subverting the firmware
allows the attacker to create invisible storage space to hide
data from the system. The data is not erased even when the
hard drive is being formatted. This allows the attacker to be
able to retrieve the data at a later date.

The above section of our taxonomy discussed the basic
structure and characteristics of a firmware. Within the limited
scope of this paper, we tried to explain the different arrays
of firmware that exists in the industry and highlight their
respective positions.

B. Purpose

This category has been formed to fulfil our goal of
categorising different firmware according to their functional
capabilities.

1) Bridge: It is known as an intermediary that allows the
connection from the product itself to its operator. An example
has been used to depict the usability of bridge.

For example, the firmware of a battery, when the operating
system of the computer or a phone would ask for the
percentage left or the life cycle or capacity of the battery,
the firmware within the battery would reply with those
information [48]. In this situation, the firmware is acting as a
bridge providing a connection medium to establish workflow
between the software and the hardware counterpart. Another
example would include the mechanism in a touch screen
device in a supermarket till. The firmware within the touch
screen converts the mechanical touch inputs into electrical
output to be read by the system [49]. The software or
“firmware” here aids as a bridge connecting the input to
convert into outputs.

2) Hardware Semantic: A module of hardware that has
micro-instructions [50] embedded into the chipset falls into
this category. It is a block originally created by the manufac-
turer and has the logic within it to make the hardware work
accordingly. Example would include an electric razor by
Philips SensoTouch. The power button is synchronised with
the motor in a chipset. When the power button is pressed, the
logical instructions within the semiconductor chip instructs
the motor head to start rotating hence achieving the task and
making the device useful [51]. Similar example would be the
usage of a kitchen Toaster. It has the same architecture, where
the button is programmed to push the bread and initiate the



heating of the filament. This branch has overlapping with our
“HW SW Hybrid branch” within “Framework”. However,
we have still placed “Hardware Semantic” here since it is a
specific quality of the firmware and cannot be ignored when
it comes to categorise a purpose of the firmware.

3) Operating System: The operating system, e.g. iOS,
Android, Windows Embedded acts as a firmware to operate
the embedded device or a phone or a Kiosk. The firmware
allows the device’s hardware to be used to convenient output.
i.e. processing a touch or processing a swipe of the card
in a kiosk. Operating system is closely related to a bridge.
The difference comes in its behaviour, the operating system
provides an user interface to interact with the phone: making
the buttons on the phone do specific task, making the touch
inputs process relevant output, ability to respond to force-
touch [52]. When an iPhone’s software fails to launch, the
device needs to be reset to factory settings. The process
is known as recovery mode [53] however the technical
terminology is referred to as Device Firmware Upgrade
(DFU) [54]. To update the operating system of iPhone, an
iPod software firmware file (IPSW) is required [55]. This
can be obtained manually and injected to iTunes or can
be automatically downloaded by iTunes itself. Once the
software binary is acquired, iTunes can initiate installation
of the latest firmware on to the device.

4) Driver: When there is a hardware, there needs to be
specific type of instruction set provided by the manufacturer
to make the device work desirably into another environment.
For example: the printer, HP LaserJet 4200, to be identified
properly by a computer or a network, there is a need of a
driver program that would help accomplish the effective com-
munication [56]. In addition to that, when an Apple computer
is used to run a different operating system, the hardware
should be given proper instruction to behave accordingly to
the new environment. An example of this is the Bootcamp
software from Apple which makes the Macintosh hardware
compatible with the Microsoft Windows operating system
allowing all the peripherals to work perfectly [57].

C. Communication

The firmware requires transfer of data within other devices
and with the outside world. We have referred the process
of data transfer to be called “Communication”. This branch
consists of two more sub-children that entail the functionality
of our communication.

1) Protection: We refer to the ways the communication
is monitored or allowed. Some communications are followed
with cryptographic security mechanisms whilst others are
not. Thus the sub-children of this branch represents:

a) Secure Channel: The firmware in a Logitech G600
mouse uses RSA encryption [29] to communicate with the
device. Gathering data from the mouse and transferring the
data to the operating system of the computer is done via
a secure channel communication. The data communicated
is not in plain text. This allows a secured medium for
communication that prohibits interception of data and adds
more security.

The importance of security varies from use cases. Dif-
ferent firmware have different level of security. When the
application is a sensitive issue; in any medical equipment
that has the risk of the well-being of the patient, security is
a very important criteria. For example, the pace-maker within
a patient’s heart; the firmware of any planted device should
have security since it is vulnerable [23] to malicious attacks
[58] which could compromise a human life.

There has been attacks reported that falls into our cate-
gorisation within a secured channel. Maskiewicz et. al [29]
reported in their work, the firmware of the mouse can be
compromised to write custom malicious code executing other
tasks. They have written their own code to copy a file while
the mouse was in work. The work depicts, the firmware
in peripheral devices are not secure. In another work done
by [59], they discussed the manipulation of a network card
which was using a flawed firmware that an attacker may
subvert remotely by sending packets on the network to the
adapter.

b) Other: However in cases like Nikon camera D3100
or other entertainment devices e.g. music players, where
the firmware could be easily manipulated to enable hidden
features are termed as “none” or “other” in the protection
category. The Canon IXUS30 (SD200) camera’s firmware
can be easily modified [60] to attain pictures of higher res-
olution, taking RAW images, shooting self-capture images,
time-lapse, etc. The firmware modification allows all these,
and the user may not have to buy a later model to get
those features. The tweak has more usage. In an experiment
to capture images of the Earth the camera was modified
to capture pictures throughout the whole duration of the
experiment [61]. In addition to this, previous work [58], [62],
[63] also discusses about lacking proper user authentication.

2) Interface: The branch has been dissected further to cat-
egorise different medium of communication that takes place
within a firmware. Typically three interfaces are proposed.

a) Wired: Firmware updates in automotive industry is
carried out using a wired interface [64]. It can also be used
to connect to the diagnostics port to retrieve information
about the vehicle as well. The firmware diagnosis and update
process is done off-board, by connecting (hardwired) a
diagnosis tool with the on-board network and performing
firmware updates [65].

b) Wireless: Other ways of communication include per-
forming the whole data transfer over a wireless connection
e.g. Wi-Fi, 4G, Bluetooth, infrared, etc. For example, in
automotive the update to the firmware can be patched via
over the air [66], [67]. The wireless mechanism is not only
limited to automotive domain, in a mobile phone Over The
Air (OTA) updates of firmware of a mobile telephone handset
can also be done too [68].

c) Hybrid: However, some devices are not only limited
to these two types of communication. It is not possible to
categorise them into the aforementioned Wired and Wireless
category. So we open up a new category named “Hybrid”.
A smart-card is an example of this category. The smart-
card could operate two ways, as a chip-and-pin mechanism



and also in a contactless mechanism too [69]. The example
of smart-card can not necessarily be categorised as having
a “wired” interface nor it can be categorised as having a
“wireless” interface. It has the ability of performing both
the interfaces and thus we have our another sub-children:
“hybrid”.

D. Update

This branch consists of two more sub-children that repre-
sent the ways the update of the firmware is involved.

As discussed earlier when firmware used to reside on
a ROM, it was difficult to apply updates. But with recent
improvements in technology, as of 2013, most firmware can
be updated [70]. But still there are risks. Upon a failed
update, the whole device runs the risk of being termed as
“bricked” where the update procedure has deemed to have
destroyed the device [71].

Applying firmware updates on critical embedded systems
can be cumbersome and daunting [24], however there are
different mechanisms that accommodates for varying update
mechanisms and techniques. As depicted in Figure 1, the
“Update” branch is dissected into two further sub-children:
“Types” - discusses the security mechanism of the updates
and “Process” - the ways the update takes place.

1) Types: Types refer to the possible ways the update of a
firmware could be performed. Types has been broken down
into three simplistic branches that discusses the possible
ways a user can have their firmware updated to get a newer
version or revert back to a different version.

a) Skilled: This section is referred to the installation of
a firmware that a normal user would not be able to perform
by himself i.e. to perform an update of the BMW 6 series
auto-mobile’s dashboard navigation system, the user need to
bring the car to BMW’s dealer to apply an update. Here, the
technician will use one of the communication mechanism as
discussed earlier to perform the update.

b) Non-Skilled: Any sort of update that does not require
the special assistance or unavailable toolset is referred to as
non-skilled update. If we consider the situation where the
phone’s firmware needs to be updated, it can be easily done
via the operating system’s interface. The phone manufactur-
ers have readily made the resource available to everyone for
them to be able to perform it without any skilled assistance.
For example: any “Android” user could update their phone
software by themselves clicking appropriate buttons from the
user interface.

c) Non-intervention: This type of update is referred
to those planned updates that are done automatically on a
specific date, time or a period. As an example, when a new
software update is available in a Windows machine, if the
user has agreed to apply the updates, they will be downloaded
and installed automatically to the system [72]. Devices today
are increasingly equipped with WiFi components and the
availability of WiFi hotspots has improved. This means that
devices can take advantage of free and fast connections to
download Web content, e.g. prefetch Webpages for offline

use, update RSS feeds, or download podcasts, new e-mails
or updates for Web widgets [72].

For example: when a user has set up an “auto-update” in
his or her machine, the update shall take place without any
further input. It should carry on at a prescribed time. The
situation is also true when a user turns on the auto-update
feature, e.g. Microsoft Windows Update.

2) Process: When an update is due, the manufacturer may
choose to distribute the latest update to all the devices under
its ecosystem. The update option could be prompted or if
previously recorded it can initiate on its own. Consecutively
in situation where the update has failed, it may automatically
request the update to be performed again [73].

a) Pull: To categorise the situation when updates are
sent or received, we classified a “Pull” sub-children. The
purpose of this sub-children is to fulfil the kind of updates
that takes place upon a request. When a new version of the
firmware is being released by the manufacturer the consumer
might not be notified straight away. It could be due to
design issues of the manufacturer or server traffic once a new
version is release. To obtain this type of update materials,
a user would have to query the network asking for new
update. If an update is available, the firmware would then
be downloaded or installed. For example: when a firmware
update of nVidia GTX 650M graphics card driver is released,
the notification does not pop up reminding the user to update
it. However, when the user would voluntarily prompt for
“Check for Updates”, the new firmware version would show
up [74]. Obtaining this kind of updates is referred as the
“Pull” mechanism in our tree.

b) Push: In situations when new information or data
needs to be sent to the subscribers or customers, one of
the ways used by companies or manufacturers is to dispatch
or release the data. The data from the central network is
intended to reach the product as a part of an update [75]. For
example: in a Programmable Logic Controller (PLC) in an
industry, when it is needed to provide changes to the current
instruction set [76], the whole firmware could be patched in
via a push update.

c) Relay: In a very specific case, a resource does not
necessarily have to be obtained via a push or pull mechanism.
A resource can sometimes be available via a third party.
We have termed this type of procedures as “Relay”. The
source is obtained from multiple media e.g. a ROM, DVD
or flash storage and then applied to the target media. For
example: when a user would attempt to update the firmware
of an Apple Watch Sport, the user would need to obtain the
firmware update via the iPhone rather than the Apple Watch
itself [77]. The Apple Watch does not have the mechanism
or capability to download the new firmware and relies on
a another device to apply the update. To make this update
possible, the iPhone has to transfer or “relay” the data via
Bluetooth to complete the update [78].

IV. CONCLUSION

The landscape of firmware is enormous and categorising in
a compact fashion was the main concern behind this paper.



According to the best of the authors knowledge, there is
no definitive explanation of firmware in the literature. So,
we took the first initiative to design an easier image of
firmware that would help in understanding the field better.
We have specifically focused in making the field compact and
have minimal overlapping between themselves. Our design
would help other researchers and manufacturers to get better
clarity and understanding on firmware. When there would
be a requirement to describe firmware they would be able
to relate to this paper to comprehend fine detail in their
explanation. The work would also allow researchers to short-
list the aspects of firmware they are interested. This could
potentially help others eliminate the indefinite understanding
of firmware and help them focus better on a topic.

By focusing on consumer electronics and everyday appli-
ances we were able to categorise majority of the devices
within our tree. We have also provided justification and
examples for classifying firmware in this way. The design
choices to reach to this stage has been analysed and logically
rationalised before placing them in the tree. Our future work
will focus on different sections of the taxonomy tree in
greater detail and also investigate the vulnerable security
elements of firmware.

REFERENCES

[1] D. A. Patterson, Computer organization and design: the hard-
ware/software interface, D. A. Patterson and J. L. Hennessy, Eds.
Newnes, 1994.

[2] A. Clements, Principles of computer hardware. Oxford University
Press, 2006.

[3] H. W. Lawson Jr, “Programming-language-oriented instruction
streams,” Computers, IEEE Transactions on, vol. 100, no. 5, pp. 476–
485, 1968.

[4] P. Davies, The American heritage dictionary of the English language.
Dell Pub Co, 1976.

[5] T. Eisenbarth, R. Koschke, and D. Simon, “Incremental location of
combined features for large-scale programs,” in Software Maintenance,
2002. Proceedings. International Conference on. IEEE, 2002, pp.
273–282.

[6] W. O. Cesário, D. Lyonnard, G. Nicolescu, Y. Paviot, S. Yoo, A. A.
Jerraya, L. Gauthier, and M. Diaz-Nava, “Multiprocessor SoC plat-
forms: a component-based design approach,” IEEE Design & Test of
Computers, no. 6, pp. 52–63, 2002.

[7] P. Dice, Quick boot: a guide for embedded firmware developers. Intel
Press, 2013.

[8] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation.” in NDSS, 2013.

[9] UEFI Secure Boot in Modern Computer Security Solutions, 09 2013.
[Online]. Available: http://www.uefi.org/sites/default/files/resources/
UEFI Secure Boot in Modern Computer Security Solutions 2013.pdf

[10] coreboot, 02 2016. [Online]. Available: https://blogs.coreboot.org/
about/

[11] OpenBIOS, 03 2016. [Online]. Available: http://www.openfirmware.
info/Welcome to OpenBIOS

[12] September, “IEEE Standard Glossary of Software Engineering
terminology,” Office, vol. 121990, no. 1, pp. 1–84, 1990. [Online].
Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=
159342

[13] H. Barsamian and A. DeCegama, “Evaluation of hardware-firmware-
software trade-offs with mathematical modeling,” in Proceedings of
the May 18-20, 1971, spring joint computer conference. ACM, 1971,
pp. 151–161.

[14] D. Davidson, B. Moench, T. Ristenpart, and S. Jha, “FIE on Firmware:
Finding Vulnerabilities in Embedded Systems Using Symbolic Exe-
cution.” in USENIX Security. Citeseer, 2013, pp. 463–478.

[15] “Google I/O 2013 Keynote,” 2013. [On-
line]. Available: https://plus.google.com/app/basic/stream/
z133ddfxxoz5e1iog04cj35obprltdqifo40k

[16] D. Mange, “Teaching firmware as a bridge between hardware and
software,” Education, IEEE Transactions on, vol. 36, no. 1, pp. 152–
157, 1993.

[17] S.-C. Chen, P. O’neill, P. L. Sotos, J. M. Lim, and S. A. Jacobi,
“Initialization and update of software and/or firmware in electronic
devices,” Aug. 5 2008, uS Patent 7,409,685.

[18] J. C. Knight, “Software challenges in aviation systems,” in Computer
Safety, Reliability and Security. Springer, 2002, pp. 106–112.

[19] S. Dutta, R. Jensen, and A. Rieckmann, “Viper: A multiprocessor SOC
for advanced set-top box and digital TV systems,” IEEE Design & Test
of Computers, no. 5, pp. 21–31, 2001.

[20] K. Kursawe and D. Schellekens, “Flexible µtpms through disem-
bedding,” in Proceedings of the 4th International Symposium on
Information, Computer, and Communications Security. ACM, 2009,
pp. 116–124.

[21] L. McMinn and J. Butts, “A firmware verification tool for pro-
grammable logic controllers,” in Critical Infrastructure Protection VI.
Springer, 2012, pp. 59–69.

[22] G. Ramesh and R. Umarani, “Data Security in Local Area Network
Based on Fast Encryption Algorithm,” in Recent Trends in Network
Security and Applications. Springer, 2010, pp. 11–26.

[23] D. Halperin, T. S. Heydt-Benjamin, B. Ransford, S. S. Clark, B. De-
fend, W. Morgan, K. Fu, T. Kohno, and W. H. Maisel, “Pacemakers
and implantable cardiac defibrillators: Software radio attacks and zero-
power defenses,” in Security and Privacy, 2008. SP 2008. IEEE
Symposium on. IEEE, 2008, pp. 129–142.

[24] A. Bellissimo, J. Burgess, and K. Fu, “Secure Software Updates:
Disappointments and New Challenges.” in HotSec 06: 1st USENIX
Workshop on Hot Topics in Security, 2006.

[25] K.-D. Schubert, “Improvements in functional simulation addressing
challenges in large, distributed industry projects,” in Design Automa-
tion Conference, 2003. Proceedings. IEEE, 2003, pp. 11–14.

[26] Quartz clocks and watches. [Online]. Available: http://www.
explainthatstuff.com/quartzclockwatch.html

[27] “Developer hacks Apple Watch to boot and run Win-
dows 95.” [Online]. Available: http://9to5mac.com/2016/04/30/
developer-hacks-apple-watch-to-run-windows-95/

[28] R. R. Plant, N. Hammond, and T. Whitehouse, “How choice of
mouse may affect response timing in psychological studies,” Behavior
Research Methods, Instruments, & Computers, vol. 35, no. 2, pp. 276–
284, 2003.

[29] J. Maskiewicz, B. Ellis, J. Mouradian, and H. Shacham, “Mouse
trap: Exploiting firmware updates in usb peripherals,” in 8th USENIX
Workshop on Offensive Technologies (WOOT 14), 2014.

[30] Y. Li, J. M. McCune, and A. Perrig, “VIPER: verifying the integrity of
PERipherals’ firmware,” in Proceedings of the 18th ACM conference
on Computer and communications security. ACM, 2011, pp. 3–16.

[31] T. corp., How to upgrade the new firmware., Topfield. [Online].
Available: http://www.toppy.org.uk/downloads/firmware.php

[32] R. Wojtczuk and A. Tereshkin, “Attacking intel BIOS,” BlackHat, Las
Vegas, USA, 2009.

[33] P. Gershteyn, M. Davis, and S. Shenoi, “Forensic analysis of BIOS
chips,” in Advances in Digital Forensics II. Springer, 2006, pp. 301–
314.

[34] R. Wilkins and B. Richardson, “UEFI Secure Boot in Modern Com-
puter Security Solutions,” UEFI forum Tech. report, Tech. Rep., 2013.
[Online]. Available: http://www.uefi.org/sites/default/files/resources/
UEFI Secure Boot in Modern Computer Security Solutions 2013.pdf

[35] L. Zhang, S.-g. Hao, J. Zheng, Y.-a. Tan, Q.-x. Zhang, and Y.-z. Li,
“Descrambling data on solid-state disks by reverse-engineering the
firmware,” Digital Investigation, vol. 12, pp. 77–87, 2015.

[36] A. iOS team, “iOS Security-white paper,” Apple Inc., Tech. Rep.,
09 2015. [Online]. Available: https://www.apple.com/business/docs/
iOS Security Guide.pdf

[37] “iOS 9 Cydia.” [Online]. Available: http://www.ios9cydia.com/
ios-9-3-jailbreak.html

[38] “App Store - Apple Developer.” [Online]. Available: https://developer.
apple.com/app-store/

[39] “TP-Link router sending username and passwords in plain text.”
[Online]. Available: https://www.reddit.com/r/AskNetsec/comments/
2vmikg/tplink router sending password in plain text plus/

[40] “Deploy studio Forum firmware passwords in plain text.”
[Online]. Available: http://www.deploystudio.com/Forums/viewtopic.
php?id=4974



[41] “EE BrightBox router hacked.” [Online]. Available: https://scotthelme.
co.uk/ee-brightbox-router-hacked/

[42] M. Predko and M. Predko, PC PhD: Inside PC Interfacing. McGraw-
Hill Professional, 1999.

[43] “How to Set a Firmware Password on a Mac.” [Online]. Available:
http://osxdaily.com/2014/01/06/set-firmware-password-mac/

[44] D. Becker, R. K. Singh, and S. G. Tell, “An engineering environment
for hardware/software co-simulation,” in Proceedings of the 29th
ACM/IEEE Design Automation Conference. IEEE Computer Society
Press, 1992, pp. 129–134.

[45] C. Bernard and F. Clermidy, “A low-power VLIW processor for 3GPP-
LTE complex numbers processing,” in Design, Automation & Test in
Europe Conference & Exhibition (DATE), 2011. IEEE, 2011, pp.
1–6.

[46] How the NSAs Firmware Hacking Works and Why Its So
Unsettling. [Online]. Available: https://www.wired.com/2015/02/
nsa-firmware-hacking/

[47] I. Sutherland, G. Davies, and A. Blyth, “Malware and steganography
in hard disk firmware,” Journal in computer virology, vol. 7, no. 3,
pp. 215–219, 2011.

[48] C. Miller, “Battery firmware hacking,” Black Hat USA, pp. 3–4, 2011.
[49] G. Barrett and R. Omote, “Projected-capacitive touch technology,”

Information Display, vol. 26, no. 3, pp. 16–21, 2010.
[50] H. McGraw, Dictionary of Scientific and Technical Terms, S. P. Parker,

Ed. McGraw-Hill Professional, 2003.
[51] Philips, “User Manual of Philips Sensotouch 3D,” 2014. [Online].

Available: http://download.p4c.philips.com/files/r/rq1280 22/rq1280
22 dfu eng.pdf

[52] Using a Force Touch trackpad. [Online]. Available: https://support.
apple.com/en-gb/HT204352/

[53] If you cant update or restore your iPhone, iPad, or iPod touch.
[Online]. Available: https://support.apple.com/en-us/HT201263

[54] iPhone DFU mode explained, and how to enter DFU mode on
your iPhone. [Online]. Available: http://osxdaily.com/2010/06/24/
iphone-dfu-mode-explained-and-how-to-enter-dfu-mode-on-your-iphone/

[55] E. Sadun, M. Grothaus, and S. Sande, “Putting Your Data and Media
on Your iPad,” in Taking Your iPad 2 to the Max. Springer, 2011,
pp. 19–49.

[56] Hewlett-Packard LaserJet 4200/4300 Series Printers - Firm-
ware Update/Download Release/Installation Notes. [Online].
Available: http://whp-hou4.cold.extweb.hp.com/pub/printers/software/
lj4200lbreadmefw.txt

[57] C. Seibold, Big Book of Apple Hacks: Tips & Tools for unlocking the
power of your Apple devices. ” O’Reilly Media, Inc.”, 2008.

[58] S. Hanna, R. Rolles, A. Molina-Markham, P. Poosankam, J. Blocki,
K. Fu, and D. Song, “Take Two Software Updates and See Me in
the Morning: The Case for Software Security Evaluations of Medical
Devices.” in HealthSec, 2011.

[59] L. Duflot, Y.-A. Perez, and B. Morin, “What if you cant trust your
network card?” in Recent Advances in Intrusion Detection. Springer,
2011, pp. 378–397.

[60] Talking to the Masterminds Behind the Nikon Hacker Project.
[Online]. Available: http://www.thephoblographer.com/2013/08/
04/talking-to-the-masterminds-behind-the-nikon-hacker-project/#.
VwRX38cglmk

[61] “Lego Man in Space.” [Online]. Available: http://www.
legomaninspace.com//tmagin/FPGAs.html

[62] A. Aviv, P. Cerny, S. Clark, E. Cronin, G. Shah, M. Sherr, and
M. Blaze, “Security evaluation of es&s voting machines and election
management system,” USENIX, 2008.

[63] A. Cui and S. J. Stolfo, “A quantitative analysis of the insecurity of
embedded network devices: results of a wide-area scan,” in Proceed-
ings of the 26th Annual Computer Security Applications Conference.
ACM, 2010, pp. 97–106.

[64] O. Henniger, L. Apvrille, A. Fuchs, Y. Roudier, A. Ruddle, and
B. Wey, “Security requirements for automotive on-board networks,”
in Intelligent Transport Systems Telecommunications,(ITST), 2009 9th
International Conference on. IEEE, 2009, pp. 641–646.

[65] M. S. Idrees and Y. Roudier, “Computer Aided Design of a Firmware
Flashing Protocol for Vehicular On-Board Networks,” Eurecom,
Tech. Rep., 2009. [Online]. Available: http://www.eurecom.fr/en/
publication/2899/download/rs-publi-2899.pdf

[66] D. K. Nilsson and U. E. Larson, “Secure firmware updates over the
air in intelligent vehicles,” in Communications Workshops, 2008. ICC
Workshops’ 08. IEEE International Conference on. IEEE, 2008, pp.
380–384.

[67] M. Shavit, A. Gryc, and R. Miucic, “Firmware update over the air
(FOTA) for automotive industry,” SAE Technical Paper, Tech. Rep.,
2007. [Online]. Available: http://papers.sae.org/2007-01-3523/

[68] M. Guven and M. Lorang, “Automated over-the-air firmware update
for a wireless phone,” Sep. 18 2007, uS Patent App. 11/857,090.

[69] K. Markantonakis et al., Smart cards, tokens, security and applica-
tions. Springer Science & Business Media, 2007.

[70] M. E. Soper, D. L. Prowse, and S. Mueller, CompTIA A+ 220-701
and 220-702 Cert Guide. Pearson Education, 2011.

[71] H. Mansor, K. Markantonakis, R. N. Akram, and K. Mayes, “Don’t
Brick Your Car: Firmware Confidentiality and Rollback for Vehicles,”
in Availability, Reliability and Security (ARES), 2015 10th Interna-
tional Conference on. IEEE, 2015, pp. 139–148.

[72] E. Vartiainen, V. Roto, and A. Popescu, “Auto-update: a concept
for automatic downloading of web content to a mobile device,” in
Proceedings of the 4th international conference on mobile technology,
applications, and systems and the 1st international symposium on
Computer human interaction in mobile technology. ACM, 2007, pp.
683–689.

[73] O. M. Alliance, “Firmware Update Management Object,” Open Mobile
Alliance Ltd., Version, pp. 1–0, 2006.

[74] “How to update Android smartphone.” [On-
line]. Available: http://www.pcadvisor.co.uk/how-to/google-android/
how-update-android-smartphone-or-tablet-summary-3614890/

[75] N. Trigoni, Y. Yao, A. J. Demers, J. Gehrke, and R. Rajaraman,
“Hybrid Push-Pull Query Processing for Sensor Networks.” in GI
Jahrestagung (2), 2004, pp. 370–374.

[76] Z. Basnight, J. Butts, J. Lopez, and T. Dube, “Firmware modification
attacks on programmable logic controllers,” International Journal of
Critical Infrastructure Protection, vol. 6, no. 2, pp. 76–84, 2013.

[77] “Update the software on your Apple watch.” [Online]. Available:
https://support.apple.com/en-gb/HT204641

[78] “The Story Behind Bluetooth Technology.” [Online]. Available:
https://www.bluetooth.com/what-is-bluetooth-technology/bluetooth


