
A Model for Secure and Mutually Beneficial
Software Vulnerability Sharing

Alex Davidson
Royal Holloway

University of London
alex.davidson.2014@rhul.ac.uk

Gregory Fenn
Royal Holloway

University of London
gregory.fenn.2014@rhul.ac.uk

Carlos Cid
Royal Holloway

University of London
carlos.cid@rhul.ac.uk

ABSTRACT
In this work we propose a model for conducting efficient and
mutually beneficial information sharing between two com-
peting entities, focusing specifically on software vulnerability
sharing. We extend the two-stage game-theoretic model pro-
posed by Khouzani et al. [18] for bug sharing, addressing two
key features: we allow security information to be associated
with different categories and severities, but also remove a
large proportion of player homogeneity assumptions the pre-
vious work makes. We then analyse how these added degrees
of realism affect the trading dynamics of the game. Secondly,
we develop a new private set operation (PSO) protocol that
enables the removal of the trusted mediation requirement.
The PSO functionality allows for bilateral trading between
the two entities up to a mutually agreed threshold on the
value of information shared, keeping all other input informa-
tion secret. The protocol scales linearly with set sizes and
we give an implementation that establishes the practicality
of the design for varying input parameters. The resulting
model and protocol provide a framework for practical and
secure information sharing between competing entities.1

1. INTRODUCTION
Cybersecurity is of crucial importance in today’s economy,

affecting businesses from a range of sectors, from telecom-
munications and finance to energy, healthcare and trans-
portation. However, it is clear that businesses cannot work
alone in protecting their digital assets from cyber threats,
even in highly competitive sectors. It is therefore widely
acknowledged that the gathering and exchange of security
intelligence are key factors in enhancing the effectiveness
of cybersecurity measures, and pivotal to the protection of
the modern economy. This recognition has given rise to a
range of initiatives – both in the public and the private sec-
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tors – to facilitate, galvanise and coordinate the exchange
of cybersecurity information between businesses. In the UK,
the Cyber-security Information Sharing Partnership (CiSP),
which is part of CERT-UK, is a “joint industry government
initiative to share cyber threat and vulnerability information
in order to increase overall situational awareness of the cyber
threat and therefore reduce the impact on UK business”2. In
the USA, the Cybersecurity Information Sharing Act was
signed in December 2015 with the goal of improving “cyber-
security in the United States through enhanced sharing of
information about cybersecurity threats, and for other pur-
poses”3. In the private sector, we have witnessed the launch
of a number of businesses and schemes offering platforms for
the exchange of cybersecurity intelligence between parties in
a secure and trusted manner (e.g. ThreatStream4 and Face-
book’s ThreatExchange5). In addition, there has been much
recent work in the development of standards for represent-
ing and exchanging threat information, namely the OASIS
standards TAXII, STIX and CybOX.6

However, while these tools and initiatives can provide use-
ful and efficient platforms for exchange of cybersecurity in-
formation, the role of incentives must not be ignored. In
fact, despite a choice of trusted exchange platforms, one
could argue that in many cases there may be incentives for
not sharing some types of cybersecurity information. For in-
stance, “public disclosure” of security breach incidents can
harm consumer and investor confidence and lead to signifi-
cant decreases in the market value of firms [2, 10].

In this paper, we build from an initial proposal by Khou-
zani et al. [18], and further develop the game theoretic mod-
elling for the exchange of bug-knowledge between competing
organisations that use a common platform. Our modelling is
motivated by incidents such as the discovery of the Heart-

bleed bug in the popular OpenSSL cryptographic library,
which was exposed in April 2014, and by the observation
that cybersecurity information sharing appears to be more
developed and prevalent in some particular business sectors,
e.g. the financial sector.

2https://www.cert.gov.uk/cisp/
3https://www.congress.gov/bill/114th-congress/
senate-bill/754
4https://www.threatstream.com/
5https://www.facebook.com/threatexchange/
6https://www.oasis-open.org/
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1.1 Our contributions and paper layout
In Section 3 we extend the model by Khouzani et al. [18]

to significantly weaken numerous assumptions in developing
a more complete and realistic interpretation of the infor-
mation sharing dynamics between two competitive entities.
Specifically, we examine a scenario where bugs can be taken
from different categories and where the effect of exploitation
is defined independently for the two parties. Our analysis
focuses on a bilateral sharing scenario where we make use
of a generalised mediator who facilitates fair trades during
the sharing phase of the game. We also describe numeri-
cal results that corroborate and illustrate the results. The
weakened assumptions on the economic model means that it
applies more readily to real-life situations where competitive
organisations evaluate the viability of information sharing.

In Section 4 we establish the exact functionality provided
by the mediator for the generalised case where bugs take on
a given severity level associated with the harm they cause
to the owner of the bug. In Section 5 we provide a novel
private set operation (PSO) protocol that enables mutually
beneficial trades prescribed by our economic model with-
out the need for third-party mediation, and which is secure
in the presence of semi-honest adversaries. The protocol is
asymptotically optimal as the computation and communica-
tion complexities are both linear in the size of the input sets.
This result allows each of the players to learn new bugs up
to the point where a mutually agreed threshold is reached;
bugs already known to both players, or falling beyond the
threshold, are kept private to the input player. We see this
as a big advantage in a landscape where finding trusted
third parties for multiple parties is a challenge, especially
since specific services provide focal points for attackers who
may benefit from learning sensitive information about such
trades. Moreover, we acknowledge that in the post-Snowden
era it is important to limit the amount of knowledge being
passed to outsiders regardless of trust assumptions.

Finally in Section 6 we show that our protocol is practi-
cal regarding both running times and communication over-
heads in a proof-of-concept Go implementation that is run
on commodity hardware. The entire contribution serves as
a foundation for initiating and performing information shar-
ing between competitive entities where private knowledge is
regarded as too valuable to reveal without receiving intelli-
gence of a suitable value in return.

For all experiments described in this paper, the source
code and data is available on request.

2. PRELIMINARIES

2.1 Notation
The paper splits naturally into two parts, with Section 3

concerning the game theoretic findings of our work, while
Sections 4 and 5 analyse the possibility of instantiating the
mediator via PSOs. As such our notation will differ slightly
between these sections to maintain consistency with the no-
tation used in related literature.

In Section 3, we refer to the two economic agents involved
in security investment and information trading as i and j.
The sets of bugs that is then offered in a trade between them
will be denoted by si and sj .

In Sections 4 and 5 we will refer to protocol participants
by P1 and P2 (for the two-party protocol case) with sets
S1 and S2 where n = |S1| and m = |S2|. The severity of

bugs across the whole paper will be considered in a levelled
structure where there are W levels and w refers to a specific
level in [W ] = {1, 2 . . . ,W}.

For an array-like structure A, we let A[i] refer to the i-th
element in A. Finally, let Γ be an additively homomorphic
encryption (AHE) scheme and c1, c2 be encryptions of m1

and m2. Then +H denotes the additive operation such that
Dsk(c1 +H c2) = m1 +m2 For a constant κ, c1 · κ denotes a
scalar multiplication of the underlying ciphertext.

2.2 Information sharing economics
The need for studying the economics of sharing informa-

tion derives from the conflicting incentives to maintain an
advantage over rivals, while supporting allies. Typically in-
formation has a high cost to generate, for example in R&D,
but is cheap to distribute, such as over a secure internet con-
nection. Sometimes information is given away for free, such
as in a health awareness campaign. But usually, information
is traded at a price, paid-for with cash or other information
in return. Traditional forms of information of economic in-
terest include market data, newspaper and magazine access,
or consumer data for advertising purposes. For a guide on
information economics, see [29]. Or for a more a theoretical
survey on information sharing games, see [30].

Information sharing in the context of cybersecurity is in-
vestigated in papers like [11, 13, 24, 31]. For example, Gor-
don et al. present a model for evaluating the effects of US
policy on computer systems security, showing that when eco-
nomic or legal mechanisms incentivise information sharing
between private firms, firms invest less in security but the
overall network is made more secure [11]. Further research
into the effects of US policy, specifically the Sarbanes-Oxley
Act, on security information sharing can be found in [13].
Phillips, Ting and Demurjian take a geopolitical approach
to the information economics of extreme security situations,
such as international disasters or military action [27].

More recently, Laube and Böhme [23] investigate how
legally mandatory sharing of security breaches affects the
balance of private security investment from detective to pre-
ventative measures. They show that when law enforcement
for reporting of security breaches is too strong, firms may
over-invest in detection and underinvest in prevention. This
socially suboptimal situation may also arise when informa-
tion sharing is too effective.

Continuing in this strain of research, in this paper we
specifically examine the economics of security vulnerabili-
ties in tools or products used or sold by rival firms.

2.3 Security investment games
Cyber security, such as network, application, web or hard-

ware security, is a private good. This means that a user
derives benefits from using secure products, and conversely
firms that offer more secure products can command a higher
price. To improve a product or tool, firms invest in security
goods such as penetration testing, formal analysis, network
redundancy and antivirus software. Security games examine
various economic scenarios relevant to cybersecurity, with
each game analysing a different behavioural dynamic [12].

For instance, when devices or applications are connected
with each other, the security of the whole network depends
on the security of each of the individual objects. This means
that security is also a public good, as improved security of
one firm’s products and systems can indirectly improve the



security of other firms. The trade-off between investing in
private security, and ‘free-riding’ off the security of others
gives rise to interdependent security investment games [16].
For example, Kunreuther and Heal examine how the network
effects on security can disincentivise security investment, as
players (nodes) can decide to accept the risk from not in-
vesting on the hope of their neighbours being secure enough
to protect them for free [20]. For a detailed survey of classic
research into interdependent security investment games, see
[22]. For a discussion on network games in general, see [15].

2.4 Private set operation protocols
Private set operations (PSOs) are an important crypto-

graphic tool that can help multiple participating organisa-
tions to strategically collate their private data for further
processing (e.g. advanced data mining procedures) without
giving their entire input data away. The need for privacy
stems from the fact that parties regard their input data se-
cret to maintain client privacy or competitive advantage for
example, while learning the output of a given set operation is
advantageous for all parties. The applications for private set
operations have been established across wide-ranging topics,
including location sharing [25] and performing computations
over genetic data [14].

The research into PSO protocols stands largely apart from
the generic constructions for multi-party computation since
custom protocols can be optimised to perform the desired
operations much more efficiently. The most researched oper-
ations are intersection (PSI) with notable practical designs
such as [4, 7, 28], union (PSU) [1, 9], intersection/union
cardinality (PSI/PSU-CA) [8], and designs allowing for the
computation of multiple operations such as [5, 19].

In this work we describe a new PSO variant that allows for
learning new elements from another set up until a threshold
value that depends on the value of the elements that are be-
ing learnt. The technique that we use in our construction is
related to the works of [5, 6, 17] where we use Bloom filters
to represent sets and encrypt the entries with a partially
homomorphic encryption (PHE) scheme. Our secure infor-
mation sharing protocol will make use of encrypted Bloom
filters along with constructions of oblivious transfer. Both
these tools are defined fully in Appendix A.

2.4.1 PSO security model
To provide cryptographic guarantees on the privacy of in-

put sets in a PSO computation we prove security with re-
spect to predefined security models, we detail these models
here and use them in the security proof for our protocol
in Section 5. Protocols for computing PSOs can be proven
secure with respect to either semi-honest or malicious adver-
saries. Before we show what this means we first define ‘com-
putational indistinguishability’ for probability distributions:

Definition 2.1. Let X = {Xλ}λ∈S and Y = {Yλ}λ∈S be
probability ensembles indexed by S. We say that these en-
sembles are computationally indistinguishable if for all prob-
abilistic polynomial time (PPT) distinguishers, {Dn}n∈N,
there exists a negligible function negl : N 7→ [0, 1] where

|Pr[Dn(Xλ) = 1]− Pr[Dn(Yλ) = 1] | < negl(n)

and we write X ' Y to denote this.

Now assume that we have a protocol π that is required to
securely represent a specific polynomial-time functionality f .

Let Si be the input set for participant Pi for i ∈ {1, 2} and
let auxi be a set of auxiliary information that Pi holds (we
specifically consider the case where f computes an operation
over input sets). For each Pi, define the view of the protocol
for Pi to be

viewπi (S1, S2) = (Inpi, ri,msgi, π(S1, S2)i)

where Inpi = (Si, auxi) is the combined input of Pi to π, ri
are the internal coin tosses of Pi,msgi is the messages viewed
by Pi in the protocol, and π(S1, S2)i is the output witnessed
by Pi. Then we can formulate the following definition for
semi-honest adversaries.

Definition 2.2. Protocol π securely computes the func-
tionality f in the presence of static semi-honest adversaries
if there exist polynomial-time simulators Sim1, Sim2 where

{Sim1(Inp1, f(S1, S2))} ' {viewπ1 (S1, S2)}

{Sim2(Inp2, f(S1, S2))} ' {viewπ2 (S1, S2)}

Intuitively, this states that each party’s view of the protocol
can be simulated using only the input they hold and the
output that they receive from the protocol. Notice that we
specifically consider the case where one of the players in the
computation is corrupted by a semi-honest adversary.

2.5 Canonicalisation of bugs
As part of Section 5 we require that bugs are viewed in

unique formats that are commonly known to both partici-
pants, allowing for the efficient swapping of these bugs using
foundational PSO primitives. In particular we uniquely en-
code the bugs as elements of ZN for a composite integer N so
that we can “encrypt the bugs” with Paillier encryption. We
justify this assumption based on recent threat intelligence
standardisation efforts, such as STIX and CybOX, which
aim to define canonical formats for representing different
types of security events.

3. THE GAME-THEORETIC MODEL
In the information sharing model developed in [18], it is es-

tablished that the amount of bug-sharing between two firms
using a common platform depends on whether or not the
firms believe they gain more of a competitive edge from us-
ing bug-free products than the overall harm done to the
whole sector following successful attacks. In this case, firms
would lose more per bug shared than they would gain from
improving the overall market, and so they patch bugs in their
own platforms but do not inform their rival firms about it.

In this paper, we build on the base game, but focus instead
on further developing the notion of the mediator who can
ensure that players set the terms of a trade of bugs between
each other, rather than merely unilaterally sending bugs to
their competitor. This has two general advantages. The first
is that each player can expect a certain return from the other
player when they trade their resources, ensuring that they
are not disincentivised from sharing security information out
of fear of losing their competitive advantage. Without such
a mediator, a trade is effectively a unilateral donation of re-
sources from one player to another. In our game, the players
are modelled to agree on a pair of packages of bug to trade
before sharing information. The second advantage is that
the mediator can determine which bugs each player already
knows about, so that useless information is not sent. This is



useful for modelling trading behaviour straightforwardly in
terms of the raw number of bugs sent between participants.

Furthermore, our work also addresses two limitations in
the economic model from [18]. Firstly, we consider the case
in which bugs to come in a range distinct kinds, such as
buffer overflow, weak crypto, unreliable connection, etc –
the exact taxonomy of kinds of bugs would depend on the
exact situation. Secondly, we reduce the player homogeneity
assumptions, and consider the game when bugs are allowed
to affect each player with different severities.

3.1 Bug-trading economic model
We consider two firms i and j in a competitive environ-

ment, representing therefore an oligopoly market structure.
Their competing products rely on the same software, run
on machinery with similar configurations, or operate on the
same network or server; we simply refer to this as the ‘com-
mon platform’. The vulnerabilities on the common platform
therefore affect both firms. In short, both i and j’s products
are susceptible to similar security vulnerabilities.

The full economic model is split into two games, with the
second stage embedded within the first as a subgame.

1. Players invest in bug-discovery research, at a cost ci ≥
0 for player i, and cj ≥ 0 for player j. This will be
understood equivalently as choosing a ‘security level’
pi ∈ [0, 1), representing the probability of i discover-
ing an arbitrary bug in the platform. We assume that
pi(ci) is a strictly increasing, concave function of ci.

2. The players then trade bug knowledge with each other.

Stage 2 is a well-defined game independent of stage 1,
and simply models the decision problem of what trade deals
between i and j’s resources are mutually acceptable. The
rational behaviour of players in stage 1, however, is depen-
dent on stage 2 as players choose their investment strategies
(pi, pj) with the anticipation of forming trade deals later. In
this paper, we only investigate the bug-trading game, stage
2. During this stage, players are modelled to own sets Biw,
referring to the set of bugs that i knows of category w. Bug-
discovery investment will be left to future research, as our
contribution here is focused on the role of the mediator in
bug-knowledge sharing.

We will suppose that i and j can agree on the kind of
any given bug, and that bugs can be categorised with labels
w = 1, 2, . . . ,W . We assume that any two bugs of a given
kind affect players in the same way, so that i is indifferent
between any two kind-w bugs. Note that this is not saying
that a kind-w bug affects i and j in the same way, only
that two kind-w bugs affect i in the same way. Therefore,
these labels w should be understood as merely categories of
distinct kinds of bugs.

The random variable Bw ∈ N is the number of security
issues of level w affecting their products. Player i has the
belief that there are around λiw bugs of level w to worry
about, and likewise for j. To be precise, the number of bugs
of kind w, Bw, are believed by i to follow a Poisson distri-
bution for each w ∈ [W ]:

Bw ∼ Poi(λiw) (1)

where the actual realisation of the random variable is bw.
The specific distribution will be unimportant, it is the mean
λiw that turns out to be most relevant to the game. A Pois-
son distribution is a standard modelling choice for a discrete

random variable over {0, 1, 2, 3, . . . } where the only other in-
formation given is of the expectation (e.g as in [18]).

Besides λiw, the expected number of bugs of type w, and
Biw, the set of such bugs that i has privately discovered,
there are 3W other parameters that characterises the type of
player i. For each category w, i has a vector (δiw, τiw, liw) ∈
(R+

0 )3 that characterises the severity of a bug of level w
as far as i is concerned. They have the following intuitive
meanings in our game:

• Bugs that still exist in j’s product after the game, but
are known (and fixed) in i’s product will give a com-
petitive gain to i of δiw and a competitive loss to j
worth δjw. So δ represents the betterness of a product,
modelling the customers who choose i’s product over
j’s because of some bug.

• A w-bug that exists in any firm’s product, either i or
j’s, will harm both firms by some value τw > 0. The
number τiw is what i takes as the expected value of
τw, noting that i and j may disagree about the market
harm severity of a kind-w bug. When i and j use the
same platform, or produce similar products, τiw (or
τjw) represents the perceived harm done to the mar-
ket as a whole when bugs of level w are unpatched,
modelling the loss in consumer confidence in the sec-
tor that i and j are engaged in.

• Finally, any bug of level w that is unpatched in i’s final
product will individually harm firm i by some amount
modelled as liw. This could represent the compensation
that firms pay to their customers because of defects, or
the reduced confidence in that firm to produce high-
quality products.

So player i’s type is ((δiw, τiw, liw, λiw,Biw) for w ∈ [W ]).

3.1.1 Player strategies
In our bug-sharing game, players conduct a trading strat-

egy (si, sj) where we have

si = (si1, si2, . . . , siW ) ∈ N× N× · · · × N, (2)

and siw represents the number of bugs of kind w that i sends
to j. Without loss of generality, we assume that every bug
that j sends to i is useful information to i, because giving
information to i that it already owns is no different from
not sending the information at all. In practice, the ability to
tell whether or not j already knows some information that
i knows will be actualised with our cryptographic mediator
in Sections 4 and 5. In particular, we have that

∀w ∈ [W ], 0 ≤ siw ≤ bw − sjw ≤ bw. (3)

Players are modelled to work together to choose a strat-
egy pair (si, sj) that is maximally beneficial to both players,
negotiating a mutually agreeable trade of security informa-
tion. In this sense, our game can be understood as a coali-
tion game, as the action of player i will be a function of
the action of j, made possible with the mediator. Note that
real-life firms need not literally negotiate each individual
information-sharing arrangement, the game models any sit-
uation whereby the set of mutually-agreeable trade deals can
be codified, with the optimal arrangement automatically se-
lected. Here, optimal arrangements refer to maximal ‘Pareto
dominance’, whereby (si, sj) Pareto dominates (s′

i, s
′
j) iff



(si, sj) results in a greater utility for both i and j than
(s′

i, s
′
j) would. In practice, we expect machines i and j to

compute their type and bug-knowledge, and run the cryp-
tographic protocol described later to automate this process.
The mediator will also enforce a property that we will call
‘fair trading’, described in Definition 3.2. This restricts the
space of possible action-pairs (si, sj).

3.1.2 Utility function
From a competitive firm’s selfish point of view, a bug from

the category labeled ‘w’ takes one of four forms.

• B¬i¬j:w: bugs known to neither player.

• B¬ij:w: bugs only known to j.

• Bi¬j:w: bugs only known to i.

• Bij:w: bugs known to both players.

These are random variables over N, counting the number
of bugs to be discovered after firms have engaged in their
private bug-discovery research.

In this paper, the most general utility function for player
i, over both stages of the game, is as follows.

Definition 3.1. In a 2-player oligopoly, the bug infor-
mation sharing game is characterised by

Ui(si, sj)

=

W∑
w=1

[
− (τiw + liw) · b¬i¬j:w + (δiw − τiw) · (bi¬j:w − siw)

− (δiw + τiw + liw) · (b¬ij:w − sjw) + 0 · bij:w
]

(4)

where sjw is the number of (useful) bugs of level w that j
sends to i, and vice versa for siw, and bi¬j:w is the realised
value of Bi¬j:w.

Strictly speaking, Ui is a discrete function of

(siw, sjw) ∈ ([0, bi¬j:w] ∩ Z)× ([0, b¬ij:w] ∩ Z)

for each bug-kind w. But we will idealise the utility function
and suppose siw is a continuum over [0, bi¬j:w] (and like-
wise for sjw). This will be useful for framing the model as a
calculus problem later. Such an idealisation is justified from
experiments described in Section 3.3. Player i is assumed to
choose si to maximise Ui, given a belief about j’s sj .

3.2 Bilateral trading with a mediator
To determine what sets of bugs i would require from j in

order to agree to a trade (si, sj), we develop here a working
definition for a ‘fair trade’ between i and j, such that both
players benefit from the trade in equal (positive) measure. It
will be seen that this is a helpful way to determine rational
coalition strategies.

In a bug-trade (si, sj), we refer to Definition 3.1 and
note that player i believes that their utility increases by
the amount

U+
i =

W∑
w=1

[siw · (τiw − δiw) + sjw · (δiw + τiw + liw)] (5)

and likewise for j, flipping the i and j subscripts as usual.
Notice we could equivalently define the marginal utility to
i, denoted U+

i , as a function given by:

U+
i (si, sj) =

W∑
w=1

[
siw ·

∂Ui
∂siw

]
+

W∑
w=1

[
sjw ·

∂Ui
∂sjw

]
(6)

with Ui from Definition 3.1. We can now formally define a
fair trade.

Definition 3.2. Let (si, sj) be a pair of packages of trad-
able bugs (bugs not already known to the other party). We
say that (si, sj) is a “fair trade” iff U+

i (si, sj) = U+
j (si, sj).

That is, the marginal, or incremental, utility is equal for
both players in any fair trade. From now on, we suppose a
theoretical mediator limits all possible trading agreements
between i and j to fair trades only. We can characterise the
effect of a fair trade with the following Lemma, of which we
omit the full proof.

Lemma 3.2.1. In the bug-trading game, let (si, sj) be a
fair trade. The marginal utility for both players is

U+ =
1

2

∑
k∈{i,j}

W∑
w=1

[skw · (τkw + τk′w + lk′w + δk′w − δkw)]

where {k, k′} = {i, j}. Conversely, U+
i = U+ =⇒ U+

i = U+
j .

Proof. The result follows from algebraic manipulation.
We can use equation (5) to define U+

i and U+
j (by flipping

the i and j subscripts). We then solve 1
2
· (U+

i +U+
j ) and let

U+
i = U+

j to derive the formula.

We will refer to the value of U+ as the ‘trade-value’ of the
exchange. Clearly, whenever U+(si, sj) > 0, both players
would prefer to trade their bugs packages (si, sj) than to
trade nothing at all (0,0). But the optimal action is to agree
on a package (si, sj) to maximise U+(si, sj). Note that U+

is maximised iff Ui is maximised subject to the restriction
of trade deals to fair trades. To be more precise, when i and
j are forced to engage in a fair trade with each other, i will
choose (si, sj) to maximise Ui subject to U+

i = U+
j .

Proposition 3.1. In a fair-trade bug-sharing game, the
players select (si, sj) to solve the following problem:

Maximise

W∑
w=1

[siw · (τiw − δiw) + sjw · (δiw + τiw + liw)]

such that

W∑
w=1

[sjw · (δjw + δiw + τiw + liw − τjw)

− siw · (δiw + δjw + τjw + ljw − τiw)] = 0

and ∀w, siw ∈ [0, bi¬j:w], sjw ∈ [0, b¬ij:w]

The following important corollary establishes plausible con-
ditions under which trading behaviour reduces to one player
sharing all their bug knowledge in exchange for a subset of
their rival’s.

Corollary 3.1. Suppose that

|δiw − δjw| < τiw + τjw +Min{liw, ljw} (7)

and

|τiw − τjw| < δiw + δjw +Min{liw, ljw} (8)

for every bug kind w. Then, in any optimal fair trade ar-
rangement, one (or both) players will trade all of their bugs
for a subset of their opponents, i.e.

∀w, siw = bi¬j:w or ∀w, sjw = b¬ij:w
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Figure 1: Utility improvement for both players when
trading fairly as bi¬j:2 varies. Before bi¬j:2 reaches
around 4000, player i trades all Bi¬j in exchange for
a subset of j’s bugs. After this point is reach, j trades
everything for a subset of i’s information.

Proof. Let’s start with some trade package (si, sj) that
is fair. Note that such a package must exist since (0,0) is
trivially fair. Now, suppose there exist x, y ∈ {1, 2, . . . ,W}
such that six < bi¬j:x and siy < b¬ij:y.

We claim that we can increase six or sjy to bi¬j:x or b¬ij:y
whilst maintaining fairness. Note that this scenario would be
desirable to both players, because from Lemma 3.2.1, and
the assumption (7), we have that U+ is strictly increasing
in every siw, sjw.

Let

µ =
δix + δjx + τjx + ljx − τix
δjy + δiy + τiy + liy − τjy

and so by assumption (8), we have µ > 0. Now define

ε = min{bi¬j:x − six,
1

µ
· (b¬ij:y − sjy)}.

It follows that (six+ ε, sjy+λ · ε) is a pair of tradable assets
that is still fair, as can be checked against Proposition 3.1,
and induces a greater utility than (six, sjy). By construction
of ε, at least one of these is maximal. We can iterate this
process for any six, sjy in a fair trade such that both are
non-maximal, until there are no such pairs left.

3.3 Numerical evaluation
We computed numerical solutions to Proposition 3.1 using

the Python3 module pulp to check that the linear program
can be solved quickly. We ran the experiments using both
the continuum idealisation and the more realistic discrete
spaces for (si, sj). When the number of tradable bugs is
fairly large, such as over 100, the proportional difference in
optimal fair trade utility in the continuous and discrete cases
becomes very small. We consider this a justification for the
idealisation when analysing the game mathematically. The
experiments are described fully in Appendix B.

i1 i2 i3 j1 j2 j3
δ 3 3.5 5 3 4 5
τ 1 2 1.5 1 2 2.4
l 4 2 7 6 9 10
b 1000 2500 800 1111 2222 3333

Table 1: Default game settings to experimentally
test Proposition 3.1 (W = 3). The table rows in-
dicate the parameter type and the columns indicate
the relevant subscript (biw should be read as bi¬j:w).
See Appendix B for full results.

Figure 2: A 3D plot of U+ as a function of (δi3, δj3).
All other parameters as in Table 1. The plot shows
that the mutual value of a fair trade is maximised
when players have a balanced view on the competi-
tive value of each bit of information.

3.4 Bug discovery with anticipated fair trades
A general analysis of the security investment bug-discovery

game is not covered this paper, as we intend to focus on
the role of a trading mediator between firms. However, pre-
liminary investigations show that both players do invest in
bug-discovery research, avoiding the free-riding problem dis-
covered in [18]. The intuition behind this result is that when
a mechanism exists to restrict bug trading to what we have
defined as ‘fair’ trades, both players try to discover bugs, so
that they are in a stronger negotiating position to learn even
more bugs from their competitor. On the other hand, players
will not over-invest in bug-discovery, because their opponent
should be expected to provide a significant proportion of in-
formation too. We hope to investigate this dynamic in more
depth in future research.

In summary, the main results of our model is that when
the two players can access a mediator that ensures bugs are
traded “fairly”, according to an agreed pricing scheme, they



are incentivised to trade as many of their bugs as they can.
Further, players will use this expectation to help them decide
on their security investment levels (i.e. into bug-discovery)
in order to strike a balance between not investing so much
that the potential benefits of trading later are wasted, and
not so little that they do not have enough to trade. In effect,
the bugs act as valuable resources, and this game describes a
special case of optimal resource acquisition and trading that
is of interest to information security.

4. FORMALISATION OF THE MEDIATOR
We showed in Section 3 that it is in the best interest of

both players to share information whenever a fair trade can
be established. Using the same concept of a theoretical medi-
ator that was first inferred in [18], it is possible to construct
an environment where fair trades are then assumed to occur.
Unfortunately, a third party who carries out this role may be
hard to find and requires strong assumptions of trust from
both parties. With this in mind, the second contribution of
this paper is the proposal of a novel cryptographic protocol
where the trusted party can be replaced with a mechanism
with privacy guarantees, ensuring that fair trades are en-
forced. While syntaxes and services exist for sharing threat
intelligence, none provide a bilateral trading mechanism that
enables a party to receive new information for any informa-
tion they share themselves. In this section we categorically
define the functionality of the third party mediator so that
we can later provide a cryptographic protocol that imple-
ments this functionality.

As noted earlier, we will adopt a slightly different nota-
tion in the next sections, to maintain consistency with other
literature in private set operations. LetM be a mediator as
referred to in Section 3.2, and let P1 and P2 be the partici-
pants from the game in Section 3 with corresponding sets S1

and S2 of vulnerabilities discovered in the early phase of the
game. Here we will assume that bugs b1, . . . , b|E|, where E is
the universe of bugs, can be assigned any category from the
set [W ] with the corresponding economic value of a bug b
denoted val(b). Let b1,j , . . . , bn,j be the set of bugs belonging
to the set Sj for j = 1, 2. The mediator takes T correspond-
ing to a threshold total value of bugs to be traded and then
computes an approximately optimal sharing of bugs to re-
turn to the two players. We define the formal functionality
for the mediator in Figure 3.

Mediator M

1 : Take as input the sets S1, S2 from P1, P2

2 : Compute S∗j = Sj \ (S1 ∩ S2) for j = 1, 2

3 : Compute val(S∗j ) :=
n∑
i=1

val(bi,j) for j = 1, 2

4 : Compute T = min(val(S∗1 ),val(S
∗
2 ))

5 : Take S′1 ⊆ S∗1 , S
′
2 ⊆ S∗2 where:

• val(S′1) = val(S′2) = V ′ ≤ T

• V ′ is maximal.

6 : Send S′1 to P2 and send S′2 to P1

Figure 3: Generalised mediator for bilateral trades.

Note that we could define a mediator that satisfies fair
trading of bugs of equal categories, and just define this me-

diator for each level. However, this would imply that bugs of
different kinds could not be traded; our generalised mediator
above allows for these richer trades.

Remark 4.1. We compute T to be the maximum value
possible as set out by the economic model. This can be gen-
eralised to allow both players to input a maximum amount to
share from which the mediator takes the minimum amount.

Remark 4.2. As discussed in Section 3.3, some inexac-
titude in the threshold T is tolerable. As such, the reason
that the mediator in step 5 of Figure 3 allows for swap-
ping some value of bugs V ′ ≤ T is because the combination
of bugs in both sets may not allow for the swapping of the
full amount T . The mediator here computes the answer to
a form of the ‘knapsack problem’. These are generally NP-
hard problems, but since the difference between discrete and
continuous information sharing is negligible (Section 3.3),
we can use polynomial-time algorithms such as those shown
by [21] to approximate T .

5. MEDIATOR PROTOCOL
By generalising the mediator we can achieve our goal of

ensuring that sharing takes place in all cases. In this sec-
tion we analyse the orthogonal question of “can we instanti-
ate such a mediator in a real-world scenario?”. As discussed
previously, relying on a third-party trust assumption is far
from ideal and so we develop a cryptographic protocol that
can be carried out between the players that replicates the
functionality from Section 4.

We devise a Private Set Operation (PSO) protocol that
allows the particular set operation over input sets from the
two players to be computed without revealing other infor-
mation of relevance. We point the reader to the security
model in Section 2.4.1 for a formal treatment of the secu-
rity guarantees. Notice that the set operation we require is
similar to a union operation in that the output reveals ele-
ments contained in the opposing set, though in our case a
threshold limits how many of the elements are learnt. While
more complex set operations have emerged regarding limit-
ing thresholds (e.g. [19]), no current protocols provide the
functionality we require for our bug-sharing scheme. In this
section we develop a novel solution, based on a recent pro-
posal of a construction for a family of PSO protocols with
linear complexities [5]. Similar to most PSO proposals, we
will consider security against semi-honest adversaries in our
construction as opposed to the strongest ‘malicious’ adver-
sary’ model which is often considered in PSO proposals.

The main body of our design focuses on the use of en-
crypted Bloom filters (as defined in Section A.1). Our proto-
col trades a set of bugs corresponding to an agreed threshold
T . The threshold T represents the maximum value of bugs
that can be traded in any given interaction. We require that
the protocol satisfies three security properties: (i) hides the
intersection of both sets, (ii) does not reveal to the sending
party (P2) which bugs have been sent, only their security
levels, and (iii) can only reveal bugs to the receiving party
(P1) that are shared from the sending party’s set. We for-
mally articulate these requirements next.

5.1 Protocol construction
Let P1 and P2 be participants in the protocol with input

sets S1 and S2 respectively, where S1 = {xi}i∈{1,...,n} and



S2 = {yj}j∈{1,...,m}. For the purposes of this construction
xi, yj are bugs that can be encoded uniquely in ZN for some
integer N = pq for primes p, q. These bugs are marked with
category w for each w ∈ [W ]. During the protocol we will
assume that P1 will receive a subset of value T in terms
of the bug values from S2, P2 will only receive output T
as an output. For bilateral trading we simply require that
the protocol is run twice in parallel with the players playing
opposing roles. We denote the set operation that we realise
in the later sections by ∪|T and the corresponding protocol
by π∪|T to reflect the fact that we are effectively restrict-
ing a union computation with the threshold T . During the
computation P1 is the receiver and P2 is the sender.

Let BF1 denote the Bloom filter of length B, IBF1 the
inverted Bloom filter, EBF1 the encrypted Bloom filter, and
EIBF1 the encrypted, inverted Bloom filter, all represent-
ing the set S1. Let Γ = (K, E,D) be a public-key, addi-
tively homomorphic, probabilistic encryption scheme satis-
fying IND-CPA security. Let pk, sk←$K, then Epk(x) is the
encryption algorithm that takes a public key pk and a mes-
sage x and generates a ciphertext c, and Dsk(c) is the de-
cryption algorithm taking the secret key sk and a ciphertext
c and returning a message x. We denote the additive op-
eration that we obtain over the ciphertexts by +H where
Dsk(c+H c′) = m+m′, with c = Epk(m) and c′ = Epk(m

′).
An encryption scheme satisfying all these properties is the
Paillier scheme shown in [26]. We assume that both players
have access to pk and that only P1 has access to sk. We will
also have an alternate public key-pair pk′, sk′ ←$K where
pk′ is known to both P1, P2 while sk′ is known only to P2.

We assume that the maximum value of bugs to be swapped,
Tmax = min(val(S1),val(S2)), is agreed by the players in
advance via prior interaction; it is possible to do this us-
ing garbled circuits to calculate the minimum of two values
(the work of Brickell et al. [1] demonstrates this). Finally,
our participants are aware of the cardinalities of the two in-
put sets. We can write the inputs of P1 as (Inp1, aux1) =
(S1, (|S2|, pk, sk, pk′, Tmax)) with output S1 ∪O, and the in-
puts of P2 to be (Inp2, aux2) = (S2, (|S1|, pk, pk′, sk′, Tmax))
with output T where T = Tmax − val(S1 ∩ S2) (see step 8).
The steps of the protocol follow below.

5.1.1 Protocol steps

1. P1 creates BF1 to represent their set S1, and computes
EIBF1 by inverting and encrypting each element be-
fore sending to P2.

2. P2 computes

EIBF1[hl(yj)] = C
(j)
l

for each yj ∈ S2 and for l ∈ {1, . . . , k}. Let cj =

C
(j)
1 +H . . .+H C

(j)
k .

3. P2 samples random values rj,1, rj,2 ←$ZN for each yj
and computes r̃j,1 ← Epk(rj,1).

4. P2 now computes ((cj · yj) +H r̃j,1) and the messages

msgj = ((cj · yj) +H r̃j,1, cj · rj,2, Epk′(wj))

for each yj where Epk′(wj) is a probabilistic encryption
of the severity level of yj .

5. P2 sends (msgj , ind(msgj)) in a randomly permuted
order to P1 where ind(msgj) denotes the place of msgj
in the order of messages sent.

6. P1 parses each message into the form shown above and
computes qj := Dsk(msgj [1]).

• If yj ∈ S1 ∩ S2, then qj = 0; and therefore yj
cannot be learnt from msgj [0].

• Else, qj is some random value.

7. Let I = {j : qj = 0}, P1 computes w̃j := +H
j∈I

msgj [2]

sends w̃′j := w̃j +H Epk′(0) to P2. The homomorphic
addition of zero re-randomises the ciphertext.

8. P2 computes Dsk′(w̃
′
j) =

∑
j∈I(wj) and performs T =

T −
∑
j∈I wj = T − Tint. Set T ′ = T . The value T is

kept static while T ′ is used later.

9. P1 picks a randommsgu where u /∈ I and re-randomises
msgu[2] as above to compute ŵ′u. Send ŵ′u to P2.

10. P2 decrypts Epk′(wu)′ using sk′ to learn wu for the un-
derlying element yu being queried. P2 then computes
T ′ = T ′ − wu.

11. If T ′ < 0, P2 sends a ‘reject’ message to P1. P1 returns
to step 9 to pick another message. If no other choice is
possible then P1 goes to step 16.

12. If T ′ > 0, then both players now participate in a
(
m
1

)
OT. P1 is the receiver in the OT and P2 is the sender
with (rj,1, rj,2) for each yj ∈ S2.

• P1 submits ind(msgu) to the OT

• P1 receives the corresponding (ru,1, ru,2) for msgu

13. P1 computes qu · r−1
u,2 to obtain zu ∈ N (note that

zu := Dsk(cu)).

14. P1 then computes p̃u := msgu[0] +H (−r̃u,1); and then
Dsk(p̃u) = zu · yu.

15. Finally, P1 computes yu := zu · yu · z−1
u and adds yu to

the output set O and then returns to step 9.

16. P1 outputs S1 ∪ O and P2 outputs T from step 8.

5.1.2 Protocol correctness
Elements yj ∈ S1 ∩ S2 lead to Dsk(cj) = 0 due to the

characteristics of the inverted Bloom filter. Therefore, it is
impossible to add yj to O since (cj · yj) +H r̃j,1 will just
decrypt to the random value rj,1. Further, elements yj /∈ S1

are only learnt until the threshold value T ′ is reduced to a
point where the remaining bugs will cause too much to be
shared, contravening the fairness of the trade. Specifically,
if yj /∈ S1, then via the OT P1 can learn the randomness
values rj,1, rj,2 decrypt and multiply by the inverses to learn
yj . Player P2 monitors T ′, so that elements are only learnt
by P1 while T ′ remains positive. Therefore, only elements yj
that P1 do not know such that the severity level wj does not
reduce T ′ below 0, are learnt. We finally require both players
to receive new elements. This is achieved straightforwardly
with two rounds of the protocol in reversed roles.

5.1.3 Protocol security
We can formalise the security requirement by constructing

an ideal functionality for the operation we want to perform.
For input sets S1, S2 the ideal functionality can be denoted
by F∪|T = ({S2}T , T ) and is defined as:

F∪|T = ({S2}T , T ) (9)

where T is the recalculated value of elements to be shared
and the notation {X}T indicates a random selection of ele-



ments that have value equal to T from the set X. The ideal
functionality is defined commutatively so that both players
receive both outputs over two separate executions. We now
state the following theorem:

Theorem 1. Suppose that the protocol π∪|T is instanti-
ated with an OT that is semi-honest secure, and an IND-
CPA secure, additively homomorphic encryption scheme. The
protocol π∪|T securely realises the ideal functionality F∪|T
shown in equation (9) w.r.t semi-honest adversaries.

Proof. For brevity we only provide an intuitive proof.
Firstly, the IND-CPA encryption of the Bloom filter hides
the elements in EIBF1 from P2, and the IND-CPA encryp-
tion of the severities wj hides these values from P1. Further-
more, the unrevealed values are hidden by virtue of them
being masked by random values. The provision of the out-
put value T (after subtraction of the intersection value) to
P2 allows the enforcing of the threshold in the simulation
and similarly for the output that P1 receives. The OT can
be simulated in a sub-routine since no other messages are
sent in this period. Finally, messages that are sent during
the protocol are randomised, preventing either player from
recalculating the message values to infer which set elements
are being sent. Otherwise the ciphertexts cj are created de-
terministically and so they could also be calculated by P1 to
uncover elements in the intersection of the two sets.

5.1.4 Protocol efficiency
Assuming that |S1| = |S2| = n, both the computation and

communication (in bits) is linear in n, with only five com-
munication rounds needed (assuming that the OTs run in
parallel as a sub-routine in one of the rounds; we use the OT
as shown in [3]). These complexities imply practical scala-
bility for our design as set sizes increases; we reinforce this
with running times and communication loads in Section 6.

5.1.5 Comparison with ideal mediator functionality
Comparing the protocol with the mediator of Section 4 we

see that some extra information is leaked by our protocol.
For example, the players explicitly learn the cardinality of
the intersection of the two sets (this was deducible from the
mediator’s actions but not explicitly given away). Also, P2

learns the levels of the bugs that P1 is learning but not the
explicit bugs; this is so that P2 can enforce the value of the
threshold T ′. The minor information leakage will have no
significant effect on the rational trading behaviour of the
players, as the benefit of eschewing the need for a trusted
third party outweighs the negligible leakage that may occur.

It is possible to reduce the leakage profile of the protocol
by adapting the design so that both players swap a ran-
dom number of all bugs (regardless of the value of the bugs
swapped). This would mean that the kind of bugs sent would
not have to be revealed to P2 throughout the protocol. Ad-
ditionally would allow a hard threshold to be enforced, and
the participants would no longer be required to communi-
cate the category levels of bugs and thus this reduces the
number of communication rounds to three (assuming the
OT is the third round). However such an adaption does not
guarantee fair trade, as players swap random bugs and thus
could receive many high severity level bugs and vice-versa.
This random sharing adaptation would represent a trade-
off between higher security in the random case, and the fair
trade property in the original case.

6. PROTOCOL IMPLEMENTATION
In Appendix C we detail an implementation of the medi-

ator protocol from Section 5.1 written in the language Go.
We find that it can be run successfully and efficiently using
commodity computing hardware (e.g. 8GB RAM, 3.4GHz
processor) for data sets of up to at least 212 items. The
results are encouraging and emphasise the applicability of
our protocol to real-world information sharing scenarios, es-
pecially given the likelihood that more powerful dedicated
hardware could lead to further performance gains.

7. CONCLUSION
In this work we have developed a game-theoretic model

for undertaking cyber security information sharing and pro-
vided a method by which fair, bilateral trades can be per-
formed based on a mediating party. Moreover, we propose
a novel cryptographic protocol, which implements the me-
diator role, removing the need for any trusted third-party
presence. The trading model and cryptographic protocol can
be integrated alongside tools such as STIX and TAXII, giv-
ing potential users a choice between unilateral sharing, and
secure bilateral threat-intelligence sharing.

By developing information sharing as an area that sits im-
portantly in the intersection between economics and cyber
security we also establish many future routes for research.
The game-theoretic model can be modified in myriad ways to
model richer economic situations; e.g. including risk-averse
behaviour or oligopolies of more than 2 firms. Future re-
search could model the sharing of other security informa-
tion besides bugs; for example network data known to an
oligopoly of ISPs or security management policies of inter-
acting firms and governments. Further, the security invest-
ment stage of the new gameplay may be further investigated.
Preliminary results of our generalised game on security in-
vestment suggest that anticipated fair trade mechanisms in-
centivise both players to invest in bug-discovery research,
thus avoiding the free-riding effects founds in [18]. The cryp-
tographic component may be improved by fulfilling stronger
security requirements, e.g. preventing some of the leakage
that we describe from the protocol. This could include ex-
panding the random sharing model that we highlighted in
Section 5.1.5. Finally, the protocol could be modified to cater
for computations allowing multiple competing organisations
to share their information in a secure environment and al-
lowing greater industry collaboration.
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APPENDIX
A. BLOOM FILTERS AND

OBLIVIOUS TRANSFER

A.1 Bloom filters
Bloom filters are lightweight data structures that allows

for the representation of data sets and checking of inclusion
using only hash function evaluations. A Bloom filter is ini-
tially represented by a string of B bits that are all initialised
to 0. There are k public hash functions

hl : {0, 1}∗ 7→ [B]

for each l ∈ [k]. We then represent set elements x ∈ X in
the Bloom filter by evaluating h1(x), . . . , hk(x) and changing
each index that these hash functions point to from 0 to 1. If
a value has already been changed to 1 then it is left alone.
The resulting Bloom filter can then be checked against to
see if different elements lie in the set by evaluating the k
hash functions and checking if all the positions are set to 1.

One constraint on Bloom filters is that they can lead to
false positives when checking membership, i.e. an element
y /∈ X may appear to be in X after checking all the hash
outputs if all the values had already been set to 1. However,
as shown in [7], if p = 1−(1−1/B)kn is the probability that
a particular bit in the Bloom filter is set to 1, and n = |X|
is the size of the input set, then the upper bound of the
false-positive probability is given by

ε = pk ×

(
1 +O

(
k

p

√
ln(B)− k · ln(p)

B

))
,

which is negligible in k.
In this work we will assume B and k are chosen optimally

for efficiency reasons, namely:

B = n log2 e · log2

(
1

ε

)
, k = log2

(
1

ε

)
, (10)

where e is the base of the natural logarithm.

A.1.1 Encryption and inversion
In our protocol design we work with Bloom filters that

are encrypted and inverted. We define here what we mean
by these notions and we note that previous works have used
similar conventions (see Section 2).

Definition A.1. Let Γ = (K, E,D) be a public-key cryp-
tosystem and (pk, sk)← K be generated at random from the
key space K. Let the Bloom filter calculated by Pi for the set
Si be denoted as BFi and have B entries such that ∀ b ∈ [B]
we have BFi[b] ∈ {0, 1}. The corresponding encrypted Bloom
filter is denoted EBFi and defined to be:

EBFi[b] = Epk(BFi[b]).

In the following we define EBFi = {C[1], . . . , C[B]} and for

yj ∈ Si, then EBFi[hu(yj)] = C
(j)
u for u ∈ [k].

Definition A.2. Let BFi be a Bloom filter that repre-
sents the set of party Pi. We define the corresponding in-
verted Bloom filter to be IBFi where

IBFi[b] =

{
1 if BFi[b] = 0
0 otherwise.

To make the encryption of the Bloom filter well-defined we
use 0 and 1 entries (where 1 is the identity element) from
the ring ZN for some N ∈ N.7

A.2 Oblivious transfer
An Oblivious Transfer (OT) protocol allows a receiving

party to secretly learn something from a sending party with-
out learning any other information that the sender holds,
and without the sender learning what the receiver has learnt.
The basic functionality is usually described as the receiver R
having a choice value b ∈ [n] and the sender S having n dif-
ferent elements s1, . . . , sn. The OT results in R receiving the
element sb without learning any of the elements si, where
i 6= b and without S learning the element that R learns. We
usually refer to this OT as 1-out-of-N OT or, more concisely,(
n
1

)
OT. In this work we will use the OT construction shown

by Chou and Orlandi [3].

B. NUMERICAL EVALUATION OF THE
MAXIMISATION PROBLEM FOR OPTI-
MAL FAIR TRADING OF BUGS

For our experimental analysis, we fixed W = 3 and chose
a particular set of 24 default parameters to look at, as listed
in Table 1. We chose the defaults fairly arbitrarily, but we
ensured that the conditions for Proposition 3.1 hold.

In Figure 1, we modified the parameter bi¬j:2, leaving all
others as defaults, and computed the incremental utility (the
trade-value) for both players in the optimal fair trade agree-
ment. As can be seen, up to around bi¬j:2 = 4000, every in-
crease in bi¬j:2 induces a proportional increase in the trade-
value. After around 4000, player j can no longer match i’s
total set of tradable bugs, and so the optimal fair trade flat-
tens. We ran this experiment for 30 values of bi¬j:2, but only
the first 18 are plotted on the graph as it merely levels-off
thereafter. These 30 experiments took less than 13 seconds
on a 2.5 GHz Intel Core i5 processor.

In Figure 2, we ran 400 experiments with the competitive-
edge factors of the third bug kind by varying (δi3, δj3) over
{0, 0.25, 0.5 . . . , 4.75}2. The 3D plot shows that a greater
competitive parameter for i, δi3, will improve overall utility
resulting from fair trades, as long as δi3 + δj3 < 3.75. This
initial improvement in social welfare can be understood as
the competitive edge that i can achieve from bug knowledge
getting closer to j’s. Notice from Lemma 3.2.1 that the so-
cial welfare incremental utility, U+ increases at its fastest
rate when the deltas are close. On the other hand, when
δi3 + δj3 > 3.75 each increase in the δi3 parameter will re-
duce overall social welfare, as the competitive value of bugs
becomes more important to i than to j.

In other experiments, we instead modified all 24 parame-
ters, leaving the others as defaults. Our method was to re-
place each parameter with 33%, 66%, 100%, 133%, and 166%
of its default value, and computed the resulting trade-value

7This allows us to use an additively homomorphic encryp-
tion scheme such like that of Paillier [26].



in an optimal fair exchange in both the continuous and dis-
crete cases (the induced 24× 5× 2 = 240 experiments took
155 seconds). The results were identical for both the discrete
and continuous case up to three significant figures, for ev-
ery experiment. Further, in every game, one of the players
traded all, or almost all in case of rounding errors, of their
bugs in exchange for a subset of their opponent’s, which is
consistent with the predictions from Corollary 3.1.

C. PSO PROTOCOL IMPLEMENTATION
Here we detail a proof-of-concept implementation of the

protocol from Section 5 written in the programming lan-
guage Go. We used Go due to the ease that concurrency can
be built into the programming and we use this to make use
of parallel execution for our PSO design. The implemen-
tation was run on a laptop with 8GB of RAM and a 4th
Generation Intel Core i7-4700HQ Processor (3.4GHz). To
instantiate the protocol we use an implementation of Pail-
lier encryption and we implement the OT proposed by Chou
and Orlandi [3] in Go. For the experiments we range over set
sizes from n = 26 to n = 212, we choose k = 60 and thus
the false-positive probability rate is 2−60. The length of the
modulus N is 1024 bits, and the threshold T is set equal
to n where the artificial limit just guarantees that not all
elements are known. Finally the domain of set elements is
set to 5 ∗ n (to give a reasonable size intersection between
sets) and we choose the optimal Bloom filter size for the
above choices. The implementation itself makes use of par-
allelisation in what P2 computes and during the OT, with
rudimentary tests suggesting that we achieve an approxi-
mate ×3 speed-up on a pipelined execution and so we do
not provide figures for this case. In Table 4 we display the
encryption time for a Bloom filter corresponding to each set
size, and in Tables 2 and 3 we show the communication and
computation costs for each of the cases.

We note that due to the use of public-key operations, the
initial encryption of the Bloom filter takes a long time (see
Table 4). However, we can amortise this computation over
numerous executions of the PSO protocol and so we do not
include these times in the running times of the PSO protocol
in Table 3. Firstly, after encrypting the Bloom filter we still
retain the functionality provided by a normal Bloom filter,
e.g. we can still add elements to the set. The AHE scheme
allows the holder to change entries in the Bloom filter even
while it is encrypted (e.g. by adding ciphertexts, encrypting
one to entries that need to be changed after adding an ele-
ment), thus the Bloom filter can be used for multiple execu-
tions with different parties. For running with the same party
it is enough to just re-randomise each ciphertext before send-
ing it again.8 Secondly, sets may not change during multiple
executions, especially if carrying out the information shar-
ing protocol concurrently with different entities, and so the
same Bloom filter can be used in each one.

The running times and communication costs that we show
are encouraging for the model we propose and show that
the protocol is viable for a situation where entities want
to engage in privacy-preserving cyber security information
sharing. It is quite clear that the computation and commu-

8Although multiple trades with the same entity are not cov-
ered by the economic model, where it is assumed that post-
sharing all unknown bugs are exploited in the platform they
own.

Set sizes 26 28 210 212

Comms (Mb) 1.41967 5.6765 22.7038 90.81278

Table 2: Total communication overhead (Mb).

Set sizes 26 28 210 212

Time (sec) 15.93 69.47 266.668 1024.94

Table 3: Total PSO running times (sec).

Set sizes 26 28 210 212

Time (mins) 3.03 12.85 52.27 ∼ 180

Table 4: Total encryption times (mins).

nication scale linearly as set sizes grow as the asymptotics
suggest.

If comparing our timings with the work of [28], which cate-
gorises current PSI protocols, we do notice that our protocol
has much more expensive overheads (e.g. running times are
over an order of magnitude greater than the most efficient
dedicated PSI designs). On the other hand, the communi-
cation costs appear to be in line with some of the show-
cased practical protocols, notably outperforming generic cir-
cuit designs for PSI. It is however important to note that
the protocol we have proposed and implemented provides a
much more complex structure than a PSI protocol and so
comparing these designs may seem inappropriate. Addition-
ally, trading of software vulnerabilities is unlikely to reach
set sizes above 212 and so for our use case the running times
and communication costs are reasonable, especially given the
novel functionality we propose.




