
The Mixed Chinese Postman Problem Parameterized by

Pathwidth and Treedepth∗

Gregory Gutin, Mark Jones, and Magnus Wahlström
Royal Holloway, University of London

Egham, Surrey TW20 0EX, UK

Abstract

In the Mixed Chinese Postman Problem (MCPP), given a weighted mixed graph G
(it may have both edges and arcs), our aim is to find a closed walk of minimum weight
traversing each edge and arc at least once. The MCPP parameterized by the number of
edges in G or the number of arcs in G is fixed-parameter tractable as proved by van Bevern
et al. (2014) and Gutin, Jones and Sheng (2014), respectively. Solving an open question of
van Bevern et al. (2014), we show that somewhat unexpectedly MCPP parameterized by
the (undirected) treewidth of G is W[1]-hard. In fact, we prove that even the unweighted
MCPP parameterized by the pathwidth of G is W[1]-hard. On the positive side, we show
that MCPP parameterized by treedepth is fixed-parameter tractable (even with arbitrary
integer weights). We are unaware of any widely studied graph parameters between path-
width and treedepth and so our results provide a close characterization of the complexity
of MCPP.

1 Introduction

Let us formally introduce the Mixed Chinese Postman Problem. A mixed graph G = (V,E ∪A)
may contain both edges (set E) and arcs (set A).1 A mixed graph G is strongly connected
if for each ordered pair x, y of vertices in G there is a walk from x to y that traverses each
arc in its direction. In this paper, we will deal with simple mixed graphs (where for each pair
of vertices u, v, at most one of the edge uv, the arc uv and the arc vu exist)2 and (possibly
non-simple) directed multigraphs (with multiple arcs between each pair of vertices). If every
edge and arc e of a mixed graph G is assigned a weight w(e), the weight of a walk Q in G
is
∑

e∈E∪A tQ(e)w(e), where tQ(e) is the number of occurrences of e in Q. Whenever we
refer to the treewidth (pathwidth, treedepth) of a graph, we mean the treewidth (pathwidth,
treedepth) of the underlying undirected graph.

Mixed Chinese Postman Problem (MCPP)
Instance: A strongly connected mixed graph G = (V,E∪A), with vertex set V , set E
of edges and set A of arcs; a weight function w : E ∪A→ N0.
Output: A closed walk H of G that traverses each edge and arc at least once, of
minimum weight.

∗An extended abstract [17] of this paper has appeared in ESA 2015.
1Undefined terms in graph theory and parameterized complexity used in this section, are defined in the next

section.
2This assumption is for convenience only. We can relax it in our algorithm by subdividing parallel arcs and

edges, as this increases treedepth by at most one.

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298274?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 INTRODUCTION 2

In what follows, we will consider a solution H of MCPP as both a walk in G and a strongly
connected directed multigraph G∗. Every arc of G∗ corresponds to either an arc of G or an
edge of G together with one of the two directions to traverse the edge. The multiplicity of
an arc xy of G∗ equals the number times arc xy of G is traversed by the walk or the number
of times edge xy of G is traversed from x to y by the walk. Clearly, G∗ is an Euler directed
multigraph in which each vertex is balanced, i.e., the out-degree and in-degree of each vertex
are equal. Every Euler trail of G∗ corresponds to a closed walk of G that traverses each arc
and edge of G at least once. We say that G∗ covers an arc (edge) in G if the multiplicity of
that arc in G∗ (the combined multiplicity of both orientations of that edge in G∗) is at least 1.
Thus, G∗ must cover every edge and arc in G.

There is numerous literature on various algorithms and heuristics for MCPP; for informative
surveys, see [2,5,11,20]. When A = ∅, we call the problem the Undirected Chinese Postman
Problem (UCPP), and when E = ∅, we call the problem the Directed Chinese Postman
Problem (DCPP). It is well-known that UCPP is polynomial-time solvable [10] and so is
DCPP [1,6,10], but MCPP is NP-complete, even whenG is planar with each vertex having total
degree 3 and all edges and arcs having weight 1 [19]. It is therefore reasonable to believe that
MCPP may become easier the closer it gets to UCPP or DCPP. Indeed, when parameterized
by the number of edges in G or the number of arcs in G, MCPP is proved to be fixed-parameter
tractable (FPT) by van Bevern et al. [2] and Gutin, Jones and Sheng [16], respectively.

Van Bevern et al. [2] noted that Fernandes, Lee and Wakabayashi [13] proved that MCPP
parameterized by the treewidth of G is in XP (when all edges and arcs have weight 1), and asked
whether this parameterization of MCPP is FPT. It is well-known that many graph problems
are FPT when parameterized by the treewidth of the input graph (only a few such problems are
W[1]-hard; see, e.g., [8,12,15]). In this paper, we show that somewhat unexpectedly the MCPP
parameterized by treewidth belongs to a small minority of problems, i.e., it is W[1]-hard. In
fact, we prove a stronger result by (i) replacing treewidth with pathwidth, and (ii) assuming
that all edges and arcs have weight 1.

To complement this, we obtain a positive result for the parameter treedepth. We design
an algorithm which uses an “iterative improvement” strategy, i.e., given a solution to MCPP
for a graph of treedepth k, it finds a solution of lower cost in FPT time (or conclude that we
have found the optimum). The algorithm searches for a feasible improvement step by applying
dynamic programming on the treedepth decomposition of the graph, and after iterating the
process a sufficient number of times, an optimal solution will have been produced. We show
that if there exists such an improvement, then there also exists an improvement step where
the edit distance between the two solutions is bounded by a function of the treedepth. Note
that the bound on treedepth is used here in two different manners: to prove a structural result
about the space of the solutions, and to run the final dynamic programming algorithm.

To make our presentation easier to understand and following [13], we initially assume that
all weights equal 1. However, we also show how to generalize our result to the integer-weighted
case.

Our paper is organized as follows. Some basic terminology and notation in graph theory
and parameterized complexity is defined in the next section. In Section 3 we introduce an
intermediate problem Properly Balanced Subgraph (PBS), and give a W[1]-hardness
proof for a restricted variant of it. In Section 4 we reduce this variant of PBS to MCPP
parameterized by pathwidth, showing that the latter is also W[1]-hard. In Section 5 we show
that PBS is FPT with respect to treedepth, as outlined above, and in Section 6 we reduce
MCPP parameterized by treedepth to PBS parameterized by treedepth, showing that this
parameterization of MCPP is FPT. In Section 7 we discuss the generalization to arbitrary
integer weights. We conclude the paper with Section 8, where, in particular, we mention an
open question from van Bevern et al. [2] on another parameterization of MCPP.

2 PRELIMINARIES 3

2 Preliminaries

Directed and Mixed Graphs. In this paper, all walks in mixed and directed graphs are
directed, i.e., they traverse arcs in their directions. A walk is closed if it starts and ends at
the same vertex. For an arc uv, u is its tail and v is its head. For a vertex x in a directed
multigraph D, the out-degree d+D(x) of x (in-degree d−D(x) of x) is the number of arcs whose tails
(heads) are x. We will usually drop the subscript when D can be understood from context. A
trail in a directed multigraph D is a walk without repeated arcs. A closed trail in D is Euler if
it traverses every arc just once. It is well-known that D has an Euler trail if and only if D is
strongly connected and every vertex x of D is balanced, i.e., d+(x) = d−(x).

Treewidth, Pathwidth and Treedepth. For an undirected graph G = (V,E), a tree de-
composition of G is a pair (T , β), where T is a tree and β : V (T)→ 2V such that

•
⋃

x∈V (T) β(x) = V ,

• for each edge uv ∈ E there exists x ∈ V (T) with u, v ∈ β(x), and

• for each v ∈ V the set of nodes β−1(v) induces a connected subgraph in T .

The width of (T , β) is maxx∈V (T)(|β(x)| − 1). The treewidth of G is the minimum width of all
tree decompositions of G.

The pathwidth of a graph is the minimum width of all tree decompositions (T , β) for which T
is a path. For a directed multigraph H, we will use pw(H) to denote the pathwidth of the
underlying undirected graph of H.

The treedepth of a connected graph G is defined as follows. Let T be a rooted tree with
vertex set V (G), such that if xy is an edge in G then x is either an ancestor or a descendant
of y in T . Then we say that G is embedded in T . The depth of T is the number of vertices in a
longest path in T from the root to a leaf. The treedepth of G is the minimum t such that G is
embedded in a tree of depth t. Thus, for example, a star K1,r has treedepth 2. It is well-known
that a path of length n has treedepth O(log n) and a graph of treedepth k has pathwidth at
most k − 1 [3].

Parameterized Complexity. A parameterized problem is a subset L ⊆ Σ∗ ×N over a finite
alphabet Σ. L is fixed-parameter tractable (FPT) if the membership of an instance (x, k) in L
can be decided in time f(k)|x|O(1) (called FPT time and the corresponding algorithm an FPT
algorithm), and in XP if it can be decided in time |x|f(k), where f is a computable function of
the parameter k only. Let P and Q be parameterized problems, a function φ : P → Q is a
parameterized reduction from P to Q if

• x ∈ P if and only if φ(x) ∈ Q,

• for x ∈ P , φ(x) can be computed in FPT time (in the parameter k of x), and

• there is a function g(k) such that if k is the parameter of x ∈ P and k′ is the parameter
of φ(x), then k′ ≤ g(k).

It is not hard to see that if there is a parameterized reduction from P to Q and Q is FPT, then
so is P .

There exists a collection of parameterized complexity classes, W[1],W[2], . . . such that FPT ⊆
W[1] ⊆W[2] ⊆ · · · ⊆ XP. Informally, a parameterized problem belongs to the complexity class
W[i] if there exists an FPT algorithm that transforms every instance of the problem into an

3 PROPERLY BALANCED SUBGRAPH PROBLEM 4

instance of Weighted Circuit Satisfiability for a circuit of weft i: FPT is the class W[0].
It is widely-believed and generally assumed that FPT 6= W[1]. Consider κ-Clique, Clique
parameterized by the number κ of vertices of the required clique. κ-Clique was proved to be
W[1]-complete and so it is widely-believed that the problem is not FPT. For more information
on parameterized algorithms and complexity, see [7, 9].

Other Notation. Henceforth, for each positive integer n, [n] = {1, 2, . . . , n}.

3 Properly Balanced Subgraph Problem

In this section, we introduce the problem Properly Balanced Subgraph (PBS). As dis-
cussed at the end of Section 1, we use PBS as an intermediate problem towards deriving results
for MCPP. The intuition behind the problem is that PBS captures an “improvement step” of
MCPP, i.e., given a (possibly suboptimal) solution to MCPP, the task of finding a solution
of lower cost can be cast as an instance of PBS. In this section we show that PBS is W[1]-
hard parameterized by pathwidth, and in Section 5 we show that a special case of PBS with
restricted weights is fixed-parameter tractable with respect to treedepth. Both of these results
are extended to MCPP via parameterized reductions, in Sections 4 and 6.

A directed multigraph is called balanced if the in-degree of each vertex coincides with its
out-degree. A double arc is a pair of arcs (a, a′) such that a and a′ have the same heads and
tails. We will say that a subgraph D′ of D respects double arcs if |A(D′) ∩ {a, a′}| 6= 1 for
every double arc (a, a′). A forbidden pair is a specified pair of arcs (b, b′) such that b is the
reverse of b′. We say that D′ respects forbidden pairs if |A(D′)∩{b, b′}| 6= 2 for every forbidden
pair (b, b′). We will say that a subgraph D′ of D is properly balanced if D′ is balanced and
respects double arcs and forbidden pairs. PBS is then defined as follows.

Properly Balanced Subgraph (PBS)
Instance: A directed multigraph D = (V,A); a weight function w : A→ Z; a set X =
{(a1, a′1), . . . , (ar, a

′
r)} of double arcs with ai, a

′
i ∈ A for each i ∈ [r]; a set Y =

{(b1, b′1), . . . , (bs, b
′
s)} of forbidden pairs with bi, b

′
i ∈ A for each i ∈ [s]. Each arc

occurs in at most one pair of X ∪ Y .
Output: A properly balanced subgraph D′ of D of negative weight, if one exists.

Throughout the paper, when we talk about a graph in the context of PBS, we implicitly
mean a directed multigraph together with a weight function, a set of double arcs and a set of
forbidden pairs, as described above.

3.1 Gadgets for PBS

We now describe three basic gadget graphs used in our proof that PBS is W[1]-hard parame-
terized by pathwidth (for now we do not assign weights; we will do this later). Each gadget will
have some number of input and output arcs. Later, we will combine these gadgets by joining
the input and output arcs of different gadgets together using double arcs.

Definition 1. A Duplication gadget has one input arc and t output arcs, for some positive
integer t. The vertex set consists of vertices x, y, and ui, vi for each i ∈ [t]. The arcs form a
cycle

xy, yu1, u1v1, v1u2, u2v2, . . . , utvt, vtx.

The input arc is the arc xy, and the output arcs are the arcs uivi for each i ∈ [t].

3 PROPERLY BALANCED SUBGRAPH PROBLEM 5

Definition 2. A Choice gadget (see Figure 1) has one input arc xy and t output arcs uivi :
i ∈ [t], for some positive integer t. The vertex set consists of the vertices x, y, z, w and ui, vi
for each i ∈ [t]. The arcs consist of a path wxyz, and the path zuiviw for each i ∈ [t].

xy input

z w

u1 v1

output

u2 v2

output . . .
ut vt

output

Figure 1: A Choice gadget with t output arcs. A balanced subgraph that contains the input
arc will contain exactly one output arc.

w

z

x1 y1 . . . xtl ytl

Left input arcs

u1 v1 . . . utr vtr

Right input arcs

Figure 2: A Checksum gadget with tl left input arcs and tr right input arcs. A balanced
subgraph will contain the same number of left and right input arcs.

Definition 3. A Checksum gadget (see Figure 2) has tl left input arcs xiyi : i ∈ [tl] for some
positive integer tl, and tr right input arcs uivi : i ∈ [tr], and no output arcs. The vertex set
consists of the vertices w, z together with xi, yi for each i ∈ [tl] and ui, vi for each i ∈ [tr]. The
arc set consists of the path wxiyiz for each i ∈ [tl], and zuiviw for each i ∈ [tr].

Proposition 1 below is easy to prove and thus its proof is omitted.

Proposition 1. Let D be one of the gadgets of Definitions 1-3, let X be a subset of input
arcs in D, and let Y be a subset of output arcs in D. Then there exists a properly balanced
subgraph D′ of D containing all the arcs from X and Y (and no other input or output arcs) if
and only if one of the following cases holds:

3 PROPERLY BALANCED SUBGRAPH PROBLEM 6

(1) X = ∅ and Y = ∅;

(2) D is a Duplication gadget, |X| = 1 and Y contains all the output arcs of D;

(3) D is a Choice gadget, |X| = 1 and |Y | = 1; or

(4) D is a Checksum gadget, and X contains an equal number of left input arcs and right
input arcs.

We next describe how to combine these gadgets. For two vertex-disjoint arcs uv and xy
(possibly in disjoint graphs), the operation of joining uv and xy is as follows: Identify u and x,
and identify v and y. Keep both uv and xy, and add (uv, xy) as a double arc.

Observe that in all of our gadgets, the vertices in input or output arcs all have in-degree and
out-degree 1. Thus, the following technical lemma will be useful for showing the correctness of
our constructions.

Lemma 1. Let D1 and D2 be disjoint directed multigraphs. Let u1v1, . . . , utvt be arcs in D1,
and let x1y1, . . . , xtyt be arcs in D2, such that ui and vi both have in-degree and out-degree 1
in D1, and xi and yi both have in-degree and out-degree 1 in D2 for each i ∈ [t]. Let D be the
graph formed by joining uivi and xiyi for each i ∈ [t]. Then a subgraph D′ of D is a properly
balanced graph if and only if (1) |A(D′)∩{uivi, xiyi}| 6= 1 for each i ∈ [t]; and (2) D′ restricted
to D1 is a properly balanced subgraph of D1, and D′ restricted to D2 is a properly balanced
subgraph of D2.

Proof. Suppose first that D′ is a properly balanced subgraph of D. The first condition holds
by definition, since (uivi, xiyi) is a double arc in D for each i ∈ [t]. For the second condition,
let D′1 be D′ restricted to D1. It is clear that D′1 respects double and forbidden arcs in D1.
Furthermore, every vertex except ui or vi, i ∈ [t], has the same in- and out-degree in D′1 as
in D′, hence D′1 is balanced for these vertices. Finally, for a vertex ui or vi, i ∈ [t], note that
such a vertex has in- and out-degree 2 in D, and by the double arc (uivi, xiyi) either both
these arcs are used in D′, or neither. In both cases, we find that the restriction D′1 is balanced.
Hence D′1 is balanced at every vertex, and respects both double and forbidden arcs, i.e., D′1 is
a properly balanced subgraph of D1. An analogous argument holds for D2.

Conversely, suppose that |A(D′) ∩ {uivi, xiyi}| 6= 1 for each i ∈ [t], D′ restricted to D1 is
a properly balanced subgraph of D1, and D′ restricted to D2 is a properly balanced subgraph
of D2. Then, by definition, D′ respects double arcs and forbidden arcs of D. As D1, D2

partition the arcs of D, and D′ is balanced when restricted to either of these graphs, we have
that D′ is balanced. Thus, D′ is a properly balanced subgraph of D, as required.

3.2 W[1]-hardness of PBS

We now use the gadget behavior, as described in Proposition 1, to construct a W[1]-hardness
proof for PBS (in Theorem 2). By joining an output arc of one gadget to the input arc of
another gadget, we have that a solution will only pass through the second gadget if it uses the
corresponding output arc of the first gadget. Thus for example, if a Duplication gadget has k
output arcs, each of which is joined to the input arc of a Choice gadget, then any solution that
uses the input arc of the Duplication gadget has to use exactly one output arc from each of
the Choice gadgets. By combining gadgets in this way, we can create “circuits” that represent
instances of other problems.

We will use this idea to represent the following W[1]-hard problem. In k-Multicolored
Clique, we are given a graph G = (V1 ∪ V2 · · · ∪ Vk, E), such that for each i ∈ [k], Vi forms
an independent set, and asked to decide whether G contains a clique with k vertices, where k
is the parameter.

3 PROPERLY BALANCED SUBGRAPH PROBLEM 7

Theorem 1. [9] k-Multicolored Clique is W[1]-hard.

Our reduction is similar in structure to that of Dom et. al [8] for Capacitated Dominating
Set parameterized by treewidth and solution size, although the details are rather different. We
produce a large graph of constant pathwidth that represents a choice of one vertex vi from each
class Vi. In order to ensure that these vertices form a clique, the graph also requires that for
each chosen vertex vi ∈ Vi, we choose an edge between vi and Vj , for each j 6= i. Finally, we
add O(k2) vertices to check that for each i 6= j, the choice of edge between vi and Vj is the
same as the choice of edge between vj and Vi.

The following technical lemma will also be useful for proving that PBS is W[1]-hard param-
eterized by pathwidth.

Lemma 2. Let D′, D1, D2, . . . , Dl be disjoint directed multigraphs, let a1, . . . , al be distinct
arcs in D′, and let D be a graph formed by joining the arc ai to an arc in Di, for each i ∈ [l].
Then pw(D) ≤ pw(D′) + maxi(pw(Di)) + 1.

Proof. Consider a minimum width path decomposition of D′. For each i ∈ [l], let xi be the
bag in the path decomposition of D′ that contains both vertices of ai (if there is a choice
of bags, let xi be the bag of smallest size). Now replace xi with two identical bags x′i, x

′′
i ,

and in between x′i and x′′i add a sequence of bags formed by taking a minimum width path
decomposition of Di and adding all the vertices of xi to each bag. Do this for each i ∈ [l]. The
resulting decomposition is a path decomposition of D. By construction and by choice of xi, the
width of this decomposition is at most pw(D′) + maxi(pw(Di)) + 1.

We are now ready to give a full proof of Theorem 2.

Definition 4. We say that an instance of PBS is semi-simple if replacing each double arc and
each forbidden pair by an edge yields a simple mixed graph (i.e., for every pair of vertices u, v,
there is either one double arc, one forbidden pair, a single arc, or neither).

Theorem 2. PBS is W[1]-hard parameterized by pathwidth, even when the instance is semi-
simple, there are no forbidden arcs, there is a single arc a∗ of weight −1 and a∗ is not part of
a double arc, and all other arcs have weight 0.

Proof. Given an instance G = (V1 ∪V2 · · · ∪Vk, E) of k-Multicolored Clique, let e1, . . . em
be an arbitrary enumeration of the edges of E. For each unordered pair {i, j} ⊆ [k] with i 6= j,
let E{i,j} be the subset of edges in E with one vertex in Vi and the other in Vj . Note that
any k-clique in G will have exactly one edge from E{i,j} for each choice of i, j.

The structure of our PBS instance will force us to choose a vertex vi from each class Vi,
corresponding to the vertices of a k-clique. In addition, for each chosen vertex vi and each j 6= i,
we choose an edge ei→j between vi and Vj . A set of O(k2) Checksum gadgets will ensure that
for each i 6= j, the chosen edges ei→j and ej→i must be the same. This ensures that vi and vj
are adjacent for each i 6= j, and that therefore the vertices v1, . . . , vk form a clique.

We build our PBS instance (D,w,X, Y) with double arcs X and forbidden pairs Y out of
Duplication, Choice, and Checksum gadgets as follows. Let Start be a Duplication gadget
with input arc a∗ and k output arcs. Label each output arc with a distinct integer i from [k].
For each i ∈ [k], let ChooseVertex(i) be a Choice gadget with |Vi| output arcs. Label each
output arc with a distinct vertex v from Vi. Join the input arc of ChooseVertex(i) to the
output arc of Start with label i.

For each i ∈ [k], v ∈ Vi, let AssignVertex(i, v) be a Duplication gadget with k − 1
output arcs. Label the output arcs with the integers from [k] \ {i}. Join the input arc of
AssignVertex(i, v) to the output arc of ChooseVertex(i) with label v.

3 PROPERLY BALANCED SUBGRAPH PROBLEM 8

For each i ∈ [k], v ∈ Vi, j ∈ [k] \ {i} let ChooseEdge(i, v,→ j) be a Choice gadget
with |N(v) ∩ Vj | output arcs. Label each output arc with a distinct edge er between v and Vj .
Join the input arc of ChooseEdge(i, v,→ j) to the output arc of AssignVertex(i, v) with
label j.

For each i ∈ [k], v ∈ Vi, j ∈ [k] \ {i} and edge er between vi and Vj , let AssignEdge(i, v,→
j, er) be a Duplication gadget with r output arcs. Label this whole set of output arcs as
Output(i, v,→ j, er). Join the input arc of AssignEdge(i, v,→ j, er) to the output arc of
ChooseEdge(i, v,→ j) with label er.

Finally, for each i, j ∈ [k] with i < j, let CheckEdge(i, j) be a Checksum gadget with∑
{r : er ∈ E{i,j}} left input arcs and

∑
{r : er ∈ E{i,j}} right input arcs. Partition the left

and right input arcs of CheckEdge(i, j) as follows. For each er ∈ E{i,j}, let Input(i, v,→ j, er)
be a set of r left input arcs, where v is the endpoint of er in Vi. Similarly, let Input(j, u,→ i, er)
be a set of r right input arcs, where u is the endpoint of er in Vj . Now, join each set of arcs
of the form Input(i, v,→ j, er) to the set of arcs of the form Output(i, v,→ j, er) from the
gadget AssignEdge(i, v,→ j, er).

Finally, we assign weights and define X and Y . Let a∗ have weight −1 and let all other
arcs have weight 0. Let X be the set of double arcs created by the join operations above, and
let Y = ∅. This concludes the construction of (D,w,X, Y). Observe that every output arc is
joined to an input arc, and every input arc except a∗ is joined to an output arc.

Correctness. We now show that D has a properly balanced subgraph of negative weight if and
only if G has a clique with k vertices. Observe that by repeated use of Lemma 1, a subgraph D′

of D is a properly balanced subgraph if and only if

• D′ restricted to any gadget Start, ChooseVertex(i), AssignVertex(i, v), ChooseEdge(i, v,→
j), AssignEdge(i, v,→ j, er) or CheckEdge(i, j) is a properly balanced subgraph for
that gadget; and

• for each output arc a that is joined to an input arc a′, a is in D′ if and only if a′ is in D′.

First suppose that D has a properly balanced subgraph D′ of negative weight. Then D′ must
contain a∗, the input arc of Start with weight −1. By Proposition 1, D′ must contain all of the
output arcs of Start. Thus for each i ∈ [k], D′ contains the input arc of ChooseVertex(i).
By Proposition 1, D′ contains exactly one output arc of ChooseVertex(i); let vi ∈ Vi be
the unique vertex in G such that D′ restricted to ChooseVertex(i) contains the output arc
labeled vi.

It now follows that for each i ∈ [k], v ∈ Vi, D′ contains the input arc of AssignVertex(i, v)
if and only if v = vi. Then by Proposition 1, if v = vi, then D′ contains the all the
output arcs of AssignVertex(i, v), and otherwise D′ contains none of the output arcs of
AssignVertex(i, v).

It follows that for each i ∈ [k], v ∈ Vi, j ∈ [k]\{i},D′ contains the input arc of ChooseEdge(i, v,→
j) if and only if v = vi. If v 6= vi then, by Proposition 1, D′ contains none of the output arcs of
ChooseEdge(i, v,→ j). If v = vi, then again by Proposition 1 D′ contains exactly one output
arc of ChooseEdge(i, v,→ j). So for each i ∈ [k], j ∈ [k] \ {i}, let r(i→ j) be the index such
that D′ contains the output arc of ChooseEdge(i, vi,→ j) labeled with er(i→j). (Later we
will show that r(i→ j) = r(j → i), implying that vi and vj are adjacent.)

It now follows that for each i ∈ [k], v ∈ Vi, j ∈ [k] \ {i} and edge er between vi and Vj , D
′

contains the input arc of AssignEdge(i, v,→ j, er) if and only v = vi and r = r(i → j).
Furthermore by Proposition 1, D′ contains the set of output arcs Output(i, v,→ j, er) if v = vi
and r = r(i→ j), and otherwise D′ contains none of the arcs from Output(i, v,→ j, er).

3 PROPERLY BALANCED SUBGRAPH PROBLEM 9

We now have that for each i, j ∈ [k] with i < j, the left input arcs of CheckEdge(i, j)
inD′ are exactly those in Input(i, vi,→ j, er(i→j)), and the right input arcs of CheckEdge(i, j)
in D′ are exactly those in Input(j, vj ,→ i, er(j→i)). By Proposition 1, we have that

|Input(i, vi,→ j, er(i→j))| = |Input(j, vj ,→ i, er(j→i))|

and so r(i → j) = r(j → i). It follows that er(i→j) and er(j→i) are the same edge, and that
therefore this is an edge in G between vi and vj .

Thus we have that v1, . . . , vk form a clique in G, as required.
Now for the converse, suppose G has a clique on k vertices. By definition of G, this clique

must have exactly one vertex from each class Vi, i ∈ [k]. For each i ∈ [k], let vi be the vertex
of Vi that is in the clique. For each i 6= j, let r(i, j) be the index such that er(i,j) is the edge
between vi and vj .

We will now describe a graph D′ by describing its restriction to each gadget. The construc-
tion will be such that an output arc is in D′ if and only if the input arc it is joined to is also
in D′. Refer to a gadget as passive if no arcs in it are contained in D′, and active otherwise;
further, for a Choice gadget, say that it selects arc i if the i’th output arc is contained in D′.
Note that by Proposition 1 these options all correspond to restrictions of balanced subgraphs
to D′.

The graph D′ is constructed as follows. The Start gadget is active; for every i ∈ [k], the
ChooseVertex(i) gadget is active and selects the output arc labeled vi, and the AssignVertex(i, v)
gadget is active for v = vi; and for every i ∈ [k] and every j ∈ [k]\{i}, the gadget ChooseEdge(i, v,→
j) with v = vi is active, selecting the output arc labeled er(i,j), and the AssignEdge(i, v,→ j, e)
gadget is active for v = vi and e = er(i,j). All other AssignVertex, ChooseEdge and As-
signEdge gadgets are passive. Note that D′ contains an arc set Output(i, v,→ j, er) if and
only if v = vi and r = r(i, j).

Finally, for each i, j ∈ [k] with i < j, let D′ restricted to CheckEdge(i, j) be a properly
balanced subgraph containing the left input arcs from Input(i, vi,→ j, er(i,j)), the right input
arcs from Input(j, vj ,→ i, er(j,i)), and no other input arcs. As r(i, j) = r(j, i), such a subgraph
exists by Proposition 1.

This concludes the construction of D′. As D′ restricted to each gadget is a properly balanced
subgraph, and an output arc is in D′ if and only if the input arc it is joined to is in D′, we have
that D′ is a properly balanced subgraph of D. As D′ contains the arc a∗ of weight −1 and all
other arcs have weight 0, D′ is a properly balanced subgraph with negative weight, as required.

Structure of the constructed graph and wrap-up of the proof. We have proved that D
represents the instance of k-Multicolored Clique. Now it remains to show that D satisfies
all properties given in the statement of this theorem, that pw(D) is bounded by a function of k,
and that it can be constructed in fixed-parameter time.

We now address the properties of D in turn. It is clear that there exists a single arc a∗ of
weight −1, that a∗ is not part of a double arc, that all other arcs have weight 0, and that there
are no forbidden pairs. It is also clear from the construction that D is semi-simple. To see that
pathwidth is bounded, let D∗ be the graph derived from D by deleting the vertices w and z from
every CheckEdge gadget, along with incident arcs. (That is, D∗ is the graph we had before
adding CheckEdge gadgets in the construction of D.) We constructed D∗ by joining arcs in
Start to the input arcs of the ChooseVertex(i) gadgets, then joining arcs of the resulting
graph to the input arcs of the AssignVertex(i, v) gadgets, then joining arcs of the resulting
graph to the input arcs of the ChooseEdge(i, v,→ j) gadgets, then joining arcs of the resulting
graph to the input arcs of the AssignEdge(i, v,→ j, er) gadgets. Observe that a Duplication
gadget can be turned into a path by the removal of one vertex, and Choice and Checksum
gadgets can be turned into disjoint unions of paths by the removal of two vertices. Therefore

4 REDUCING PBS TO MCPP 10

Duplication gadgets have pathwidth 2, and Choice and Checksum gadgets have pathwidth 3.
Hence by repeated use of Lemma 2, D∗ has pathwidth at most ((((2 + 3 + 1) + 2 + 1) + 3 + 1) +
2 + 1) = 16.

There are
(
k
2

)
= k2−k

2 CheckEdge gadgets, and therefore we can remove k2 − k vertices
from D to get D∗. It follows that D has pathwidth at most k2−k+16 (as we can add the k2−k
extra vertices to every bag in a path decomposition of D∗).

Finally, it is clear that the reduction can be performed in polynomial time, as we construct
a polynomial number of gadgets and each gadget can be constructed in polynomial time. Thus
we have provided a parameterized reduction from any instance of k-Multicolor Clique to
an instance of PBS with the required properties and with pathwidth O(k2).

4 Reducing PBS to MCPP

We now show how to reduce an instance of PBS, of the structure given in Theorem 2, to
MCPP. This will prove that MCPP parameterized by pathwidth is W[1]-hard. Let (D =
(V,A), w,X = {(ai, a′i) : i ∈ [t]}, Y = ∅) be an instance of PBS with double arcs X and no
forbidden pairs, and where w(a∗) = −1 for a single arc a∗ and w(a) = 0 for every other arc. We
may assume that a∗ is not in a double arc. We will produce an instance G of MCPP and an
integer W , such that G has a solution of weight W , and G has a solution of weight less than W
if and only if our instance of PBS has a solution with negative weight. All edges and arcs in
our MCPP instance will have weight 1.

We derive G by replacing every double arc and individual arc of D by an appropriate gadget.
The gadgets will be such that within each gadget, there are only two possibilities for MCPP
solutions of weight at most W : a solution can be balanced within the gadget (corresponding to
not using the original arc/double arc in a solution to D), or a solution can be imbalanced at
some vertices by the same amount that the original arc or double arc is (which corresponds to
using the original arc or double arc in a solution to D). Thus, every solution for G of reasonable
weight corresponds to a properly balanced subgraph of D, and vice versa.

For each gadget, except for the gadget corresponding to the negative weight arc, the weights
of the two solutions will be the same. In the case of the negative weight arc, the solution that
corresponds to using the arc will be cheaper by 1. Thus, there are two possible weights for a
solution to G, and the cheaper weight is only possible if D has a properly balanced subgraph
of negative weight.

In what follows, we will construct arcs and edges of two weights, standard and heavy.
Standard arcs and edges have weight 1; heavy arcs and edges have weight M , where M is a
large enough (but polynomially bounded) integer such that we may assume that no solution
traverses a heavy arc or edge more than once. This will be useful to impose structure on the
possible solutions when constructing gadgets. A heavy arc (edge) is equivalent to a directed
(undirected) path of length M , and so we also show W[1]-hardness for the unweighted case.

Given a directed multigraph H (corresponding to part of a solution to an MCPP instance)
and a vertex v, the imbalance of v is d+H(v)− d−H(v). The gadgets are constructed as follows.

For each double arc between a pair of vertices u, v, we produce a gadget Gadget(u, v)
that contains u, v and new vertices appearing in Gadget(u, v). Similarly, we produce a gadget
Gadget(u, v) for any arc uv that is not part of a double arc, with the structure of the gadget
depending on the weight of the arc.

For an arc uv of weight 0 that is not part of a double arc: Construct Gadget(u, v)
by creating a new vertex zuv, with standard arcs zuvu and zuvv, two heavy arcs uzuv, and a
heavy arc vzuv. (See Figure 3.)

4 REDUCING PBS TO MCPP 11

u v0

(a) Arc uv of weight 0

u zuv v

(b) Gadget(u, v)

u
zuv v

(c) Passive solution

u zuv v

(d) Active solution

Figure 3: The gadget Gadget(u, v) when uv is an arc of weight 0 that is not part of a double
arc. Dashed lines represent heavy arcs.

For any solution in which each heavy arc is traversed exactly once, zuv has in-degree ex-
actly 3. The remaining arcs are the two arcs with tail zuv, which must be traversed exactly
three times in total as described below:

• Passive Solution: Traverse zuvu twice and zuvv once. In this solution, every vertex is
balanced within Gadget(u, v) and the cost is 3M + 3.

• Active Solution: Traverse zuvu once and zuvv twice. In this solution, every vertex is
balanced except for u, which has imbalance 1, and v, which has imbalance −1. The cost
of this solution is also 3M + 3.

Observe that the difference between the weight of the passive and active solutions is 0, and
the imbalance at u and v for the active solution is the same as in an arc from u to v.

The total weight of Gadget(u, v) is 3M + 2.

For an arc uv of weight −1 that is not part of a double arc: Construct Gadget(u, v)
by adding two new vertices wuv and zuv, with standard arcs zuvu, zuvwuv and vwuv, two heavy
arcs uzuv, one heavy arc wuvzuv, and two heavy arcs wuvv. (See Figure 4.)

For any solution in which each heavy arc is traversed exactly once, zuv will have exactly 3
in-arcs, and wuv will have exactly 3 out-arcs. It remains to decide how many times to use the
arcs out of zuv and into wuv. There are two possible solutions:

• Passive Solution: Traverse zuvu twice, zuvwuv once and vwuv twice. In this solution,
every vertex is balanced within Gadget(u, v) and the cost is 5M + 5.

4 REDUCING PBS TO MCPP 12

u v−1

(a) Arc uv of weight −1

u zuv wuv v

(b) Gadget(u, v)

u
zuv

wuv

v

(c) Passive solution

u
zuv

wuv v

(d) Active solution

Figure 4: The gadget Gadget(u, v) when uv is an arc of weight −1 that is not part of a double
arc. Dashed lines represent heavy arcs.

• Active Solution: Traverse zuv once, zuvwuv twice and vwuv once. In this solution, every
vertex is balanced except for u, which has imbalance 1, and v, which has imbalance −1.
The cost of this solution is 5M + 4.

Observe that the active solution costs 1 less than the passive solution, and the imbalance
at u and v for the active solution is again the same as in an arc from u to v.

The weight of this gadget is 5M + 3.

u v

0

0

(a) A double arc from u to v

u v

(b) Gadget(u, v)

u v

(c) Passive solution

u v

(d) Active solution

Figure 5: The gadget Gadget(u, v) when there is a double arc from u to v. Dashed lines
represent heavy arcs; the dotted line represents a heavy edge.

For a double arc from u to v: Gadget(u, v) consists of a heavy arc uv and a heavy
edge {u, v}. (See Figure 5.) Assuming a solution traverses each heavy arc/edge exactly once,

4 REDUCING PBS TO MCPP 13

it remains to decide in which direction to traverse the undirected edge. Thus there are two
possible solutions:

• Passive Solution: Traverse the edge from v to u. In this solution, every vertex is
balanced within Gadget(u, v) and the cost is 2M .

• Active Solution: Traverse the edge from u to v. In this solution, every vertex is balanced
except for u, which has imbalance 2, and v, which has imbalance −2. The cost of this
solution is also 2M .

Observe that the difference between the weight of the passive and active solutions is 0, and
the imbalance at u and v for the active solution is the same as in a double arc from u to v.

The weight of this gadget is 2M .

Removing heavy arcs and edges. Finally, we replace every arc (edge, respectively) we
just created of weight M by a directed (undirected) path of length M , where all internal vertices
have in-degrees and out-degrees one (degree two, respectively). Note that in any minimal
solution, each arc or edge in such a path will be traversed the same number of times (if one
edge in the path is traversed more times than its neighbor, then it must be traversed at least
twice more, including at least once in each direction, and so the solution is not minimal). Thus
in the analysis, we may treat such a path as effectively being a single edge or arc of weight M .

In the proof of the main result of this section, Theorem 3, we will use the following technical
lemma, whose proof is identical to that of Lemma 2.

Lemma 3. Let H be a mixed multigraph, and G the mixed multigraph derived by replacing each
arc or double arc from u to v with a gadget Guv. Then pw(G) ≤ pw(H) + maxuv pw(Guv).

We can now prove the following:

Theorem 3. MCPP is W[1]-hard parameterized by pathwidth even if all weights are 1.

Proof. Let (D = (V,A), w,X = {(ai, a′i) : i ∈ [t]}, Y = ∅) be a semi-simple instance of PBS
(see Definition 4) with double arcs X and no forbidden pairs, and where w(a∗) = −1 for a
single arc a∗ and w(a) = 0 for every other arc. Let G be the graph in which every arc / double
arc in D is replaced with its corresponding gadget.

Let m1 be the number of arcs of weight 0 not in a double arc in D. By Theorem 2, we may
assume there is only one arc of weight −1 not in a double arc in D. Let m2 be the number of
double arcs in D.

If we use the passive solution for every gadget, then every vertex is balanced, every arc and
edge is covered, and the total cost is m1(3M + 3) + 5M + 5 +m2(2M) = (3m1 + 2m2 + 5)M +
3m1 + 5. Therefore this is an upper bound on the weight of a optimal solution.

The total weight of the graph ism1(3M+2)+5M+3+m2(2M) = (3m1+2m2+5)M+2m1+3.
Therefore, any minimal solution that does not traverse each heavy arc/edge exactly once will
have weight at least (3m1 +2m2 +6)M +2m1 +3. This is M −m1−2 greater than the solution
in which we use the passive solution for every gadget. So by setting M to be m1 + 3, we may
assume that the optimal solution traverses each heavy arc/edge exactly once. Therefore we
may assume that we use either the active or passive solution for each gadget.

Let W = (3m1+2m2+5)M+3m1+5, the cost of using the passive solution for each gadget.
We now show that G has a solution of weight less than W if and only if D has a solution of
negative weight.

Suppose first that G has a solution of weight less than W . As discussed above, we may
assume that every gadget is either given the active or passive solution. Let u∗, v∗ be the vertices

5 PBS PARAMETERIZED BY TREEDEPTH 14

such that u∗v∗ is the only arc in D of weight −1. Then Gadget(u∗, v∗) is the only gadget for
which one solution weighs less than the other. Therefore we may assume Gadget(u∗, v∗) is
given the active solution.

Let D′ be the subgraph of D whose arc set is the set of all arcs whose corresponding gadget
in G has the active solution (with both arcs in a double arc included if their gadget has the
active solution, and neither if it has the passive solution). Then D′ contains u∗v∗ and so D
has negative weight. By construction, D′ respects double arcs, and, as there are no forbidden
pairs, D′ trivially respects forbidden pairs. It remains to show that D′ is balanced.

In our MCPP solution, the imbalance of a vertex v is equal to the sum of its imbalance in
the active gadgets containing it. The imbalance of v in an active gadget is +1 if the gadget
corresponds to a single arc with tail v, −1 if the gadget corresponds to a single arc with
head v, +2 if the gadget corresponds to a double arc starting at v, and −2 if the gadget
corresponds to a double arc ending at v. It follows that the imbalance of v in our MCPP
solution is equal to its imbalance in D′, Then as our MCPP solution is balanced, D′ is also
balanced, as required.

Suppose on the other hand that D has a solution D′ of negative weight. Construct a
solution G∗ to MCPP on G by assigning each gadget the active assignment if the corresponding
arc/double-arc appears in D′, and the passive assignment otherwise. As D has negative weight,
it must use u∗v∗ and so Gadget(u∗, v∗) gets the active solution. It follows that the cost of G∗

is W −1. It is clear that every arc and edge is traversed at least once. As before, the imbalance
of each vertex in G∗ is equal to its imbalance in D′, implying that G∗ is balanced. Furthermore,
G∗ is strongly connected, as G is. An Euler trail in this multigraph corresponds to a closed
walk G traversing every arc and edge at least once, as required.

We now show that G has pathwidth bounded by a function of pw(D), the pathwidth of D.
Observe that for each gadget Gadget(u, v) in our construction of G, Gadget(u, v) can

be turned into a disjoint union of paths by the removal of at most 4 vertices, and therefore
Gadget(u, v) has pathwidth at most 5. Furthermore, G can be derived from D by replacing
each arc or double arc with a corresponding gadgets. It follows from Lemma 3 that G has
pathwidth at most pw(D) + 5.

Let m be the number of arcs in D. Then G is derived from D by introducing at most m
gadgets, and each gadget has at most 5M ≤ 5m + 15 arcs. Therefore G can be constructed
in O(m2) time.

We now have that, given an instance (D,w,X, Y) of PBS of the type specified in Theo-
rem 2, we can in polynomial time create an instance G of MCPP with pathwidth bounded
by max(pw(D), 4). We therefore have a parameterized reduction from this restriction of PBS,
parameterized by pathwidth, to MCPP parameterized by pathwidth.

5 PBS Parameterized by Treedepth

In this section we show that a certain restriction of PBS is fixed-parameter tractable with
respect to treedepth. In Section 7 we discuss how to generalize the results to the arbitrary
integer-weighted case.

Aside from some standard dynamic programming techniques, our main technical tool is
Lemma 5, which implies that there exists a solution with size bounded by a function of
treedepth. The following simple observation will be useful in the proof of Lemma 5.

Lemma 4. Let I be a set of indices and {Hi : i ∈ I} a family of pairwise arc-disjoint subgraphs
of G, such that each Hi respects double arcs. Then H =

⋃
i∈I Hi is a properly balanced subgraph

of G if and only if H is balanced and H respects forbidden pairs.

5 PBS PARAMETERIZED BY TREEDEPTH 15

We are now ready to prove that any properly balanced subgraph decomposes into properly
balanced subgraphs of size bounded by a function of treedepth. This will allow us to assume,
when constructing the algorithm (Lemma 6), that a solution has bounded size.

Lemma 5. Let G be a directed multigraph (with double arcs and forbidden pairs) of treedepth k,
and let H be a properly balanced subgraph of G. Then H is a union of pairwise arc-disjoint
graphs Hi, each of which is a properly balanced subgraph of G, with |A(Hi)| ≤ f(k) where f(k) =

22
k

.

Proof. We prove the claim by induction on the treedepth k. For the base case, observe that
if k = 1 then G has no arcs, and the claim is trivially true. So now assume that k ≥ 2,
and that the claim holds for all graphs of treedepth less than k. We also assume that the
underlying undirected graph of H is 2-connected, as otherwise a block decomposition of H is
a decomposition into properly balanced subgraphs, and we may apply our result to each block
of H. Similarly, if the underlying undirected graph of G is not 2-connected but H is, then H
lies inside one block of G, and we may restrict our attention to this block. Hence assume that
the underlying undirected graph of G is 2-connected as well.

Let G be embedded in a tree T of depth k, and let x be the root of T . Observe that x has
only one child in T , as otherwise x is a cut-vertex in G. Let y be this child, and let G′ be the
multigraph derived from G by identifying x and y and removing loops. Similarly, let H ′ be the
subgraph of G′ derived from H by identifying x and y and removing loops. Observe that H ′ is
balanced as H is balanced and so the number of arcs into {x, y} equals the number of arcs out
of it. Let B be the set of arcs in H between x and y, and observe that there is a one-to-one
correspondence between the arcs of H ′ and the arcs of H not in B. By identifying x and y
in T , we get that G′ has treedepth at most k − 1.

By the induction hypothesis,H ′ can be partitioned into a family {H ′i : i ∈ I ′} of pairwise arc-
disjoint properly balanced subgraphs of G′, each having at most f(k− 1) arcs. For each i ∈ I ′,
let Fi be the subgraph of G corresponding to H ′i. Observe that B can also be partitioned into
a family {Fi : i ∈ I ′′} of subgraphs with at most 2 arcs, that respect double arcs (we add any
double arc from B as a subgraph Fi, and add every other arc as a single-arc subgraph).

Letting J = I ′∪I ′′, we have that {Fi : i ∈ J } is a partition ofH, each Fi has at most f(k−1)
arcs, and each Fi respects double arcs and is balanced everywhere except possibly at x and y.
We now combine sets of these subgraphs into subgraphs that are balanced everywhere.

For each i ∈ J , let ti be the imbalance of Fi at x, i.e. ti = d+Fi
(x) − d−Fi

(x). Observe

that |ti| ≤ f(k−1)
2 for each i and, as H is balanced,

∑
i∈J ti = 0. Suppose that there exists a

subset J ′ ⊆ J such that |J ′| ≤ f(k−1)−1 and
∑

i∈J ti = 0. Then define H1 to be
⋃

i∈J ′ Fi. By
construction, H1 is balanced at every vertex (as it is balanced for every vertex other than y, and
a directed multigraph cannot be imbalanced at a single vertex), and H1 respects double arcs.
As H1 is a subgraph of H, and H respects forbidden pairs (since H is properly balanced), H1

also respects forbidden pairs. Therefore H1 is a properly balanced subgraph, with number of

arcs at most (f(k−1)−1)f(k−1). Observe that f(k) = 22
k

is a solution to the recursion (f(k−
1)− 1)f(k− 1) < f(k) with f(1) = 4. Thus, H1 has at most 22

k

arcs, as required. By applying
a similar argument to H \H1, we get a properly balanced subgraph H2 with at most f(k) arcs.
Repeating this process, we get a partition of H into properly balanced subgraphs each with at
most f(k) arcs.

We now show that J ′ exists. Initially choose j ∈ J such that |tj | is minimized, and set J1 to
be {j}. Then iteratively construct sets Jr by adding i such that ti < 0 to Jr−1 if

∑
p∈Jr−1

tp >

0, and adding i such that ti > 0 otherwise. Now note that either ti = ±f(k − 1)/2 for
every i ∈ J , in which case we have a subset J ′ with |J ′| = 2 ≤ f(1) − 1 ≤ f(k − 1) − 1,

or |
∑

i∈Jr
ti| < f(k−1)

2 for each r, and therefore there are at most f(k − 1)− 1 possible values

5 PBS PARAMETERIZED BY TREEDEPTH 16

that
∑

i∈Jr
ti can take. Then there exist r, r′ such that r′ < r, r − r′ ≤ f(k − 1) − 1, and∑

i∈Jr\Jr′
ti = 0. So let J ′ = Jr \ Jr′ .

Using Lemma 5, we may now assume that if G has a properly balanced subgraph with
negative weight, then it has a properly balanced subgraph of negative weight with at most f(k)
arcs (as any negative weight properly balanced subgraph can be partitioned into properly
balanced subgraphs of at most f(k) arcs, at least one of which must have negative weight).

5.1 Fixed-Parameter Tractability of PBS

In the Appendix, we prove the following lemma:

Lemma 6. Given an instance (D = (V,A), w,X, Y) of PBS with integer weights, a path
decomposition of the underlying undirected graph of D with width k, and an integer l, we can
find a properly balanced subgraph of D of weight at most W in time O∗(2k

2+3k(2l + 1)k+1),
where W is the minimum weight of a properly balanced subgraph of D with at most l arcs.

A graph with treedepth at most k has pathwidth at most k− 1 [3]. As PBS asks us to find
a properly balanced subgraph of negative weight, and as we may assume such a graph exists
with at most f(k) arcs, Lemma 6 implies the following:

Theorem 4. PBS with integer weights is FPT with respect to treedepth.

The proof in the Appendix uses standard dynamic programming techniques.
For the purposes of solving MCPP with unit weights, it will be enough to show that PBS is

FPT with respect to treedepth when all arcs in double arcs have weight 0, all arcs in forbidden
pairs have weight −1, and all other arcs have weight 1 or −1. For this special case, we can give
a proof using Courcelle’s theorem:

Proof. Let D be an instance of PBS and let k be the treedepth of D. By Lemma 5, we may
assume that a solution has at most f(k) arcs. We will prove the theorem by guessing all possible
solutions D′ (up to isomorphism), and then checking whether D′ is isomorphic to a subgraph
of D using Courcelle’s theorem.

First, we assign each arc a ofD the label Double if a is in a double arc, the label Forbidden
if a is in a forbidden pair, and otherwise the label Negative if a has weight−1 and Positive if a
has weight 1. Next, enumerate all balanced directed multigraphs D′ with at most f(k) arcs, to-
gether with all possible labelings λ : (A(D′))→ {Negative,Positive,Double,Forbidden}.

We may assume that no vertex has degree 1 in D′, as otherwise D′ cannot be balanced.
Thus we may assume every vertex in D′ has degree at least 2, and therefore we may assume D′

has at most f(k) vertices. For each i ∈ [f(k)], either D′ contains fewer than i arcs, or the i’th
arc is from one of f(k) vertices to one of f(k) vertices, and has one of four possible labels.
Therefore there are at most 1 + 4f(k)2 choices for the identity (or non-existence) of each arc.
Thus, we can enumerate all possible graphs D′ in time O∗((1 + 4f(k)2)f(k)).

For each constructed directed multigraph D′, we first check whether D′ would be a properly
balanced subgraph of D, if it existed as a subgraph of D. This can be done by checking, for
each pair of vertices, that D′ has at most one arc labeled Forbidden, and either 0 or 2 arcs (in
the same direction) labeled Double. If D′ is not a properly balanced subgraph, we disregard
it. Otherwise, we then check whether D′ has negative weight. (This can be done by checking
that the number of Negative and Forbidden arcs is greater than the number of Positive
arcs.)

6 POSITIVE RESULT: REDUCING MCPP TO PBS 17

If D′ has negative weight, it remains to check whether D′ is isomorphic to a subgraph of D
(respecting the labels). As D has treewidth at most k and D′ has at most f(k) vertices, this
can be done in fixed-parameter time by Courcelle’s theorem (see Theorem 11.37 in [14]).

6 Positive Result: Reducing MCPP to PBS

In this section, we consider MCPP parameterized by treedepth. To simplify the exposition,
we restrict ourselves to the case where all weights equal 1; this restriction will be lifted in the
next section. In contrast to pathwidth, we will show that MCPP parameterized by treedepth
is FPT. Hereinafter, bH(v) denotes the imbalance of v, i.e. bH(v) = d+H(v) − d−H(v). In the
problem comp-MCPP, we are given an instance of MCPP together with a solution H, and
asked to find a solution H ′ of weight less than w(H), if one exists. To solve an instance of
MCPP, it would be enough to find some (not necessarily optimal) solution of weight M , then
repeatedly apply comp-MCPP to find better solutions, until we find a solution H for which no
solution H ′ of weight less than w(H) exists, i.e. an optimal solution. As comp-MCPP returns
an improved solution if one is available, we would have to apply comp-MCPP at most M
times. For the case that all weights are 1, this is sufficient to give an FPT algorithm. For the
weighted case, we need some further careful analysis, which we defer to the next section.

As with the hardness proof, we will use PBS as an intermediate problem, giving a reduction
from comp-MCPP to PBS. In order to bound the size of the gadgets we produce for this
reduction, we need a bound on the number of times an arc or edge can be used in a solution to
MCPP. We also need a bound on the size of an initial solution to MCPP, in order to bound the
number of times we need to improve the solution. In the case when all weights are 1, Lemma 7
(below) is sufficient to provide a bound on the number of times each edge or arc is used in a
solution, and hence on the size of a solution. For the weighted case, we also need Lemma 8.

In the rest of the paper, m will denote the number of arcs and edges in the instance (G,w)
under consideration.

Lemma 7. Given an instance (G,w) of MCPP, we can, in polynomial time, find a closed walk
of G that traverses each edge and arc at least once, if such a walk exists, and this walk traverses
each arc at most m+ 1 times, where m is the number of arcs and edges in G.

Proof. For each arc or edge a in G, we will construct a closed walk walka that contains a. If a
is an edge, we may let walka be a walk that traverses a once in each direction. Then this is a
closed walk that traverses a twice and traverses no other arcs or edges. If a is an arc, let u be
the tail and v the head of a. In polynomial time, find a simple walk from v to u. (If no such
walk exists, then (G,w) has no solution). Adding a = uv to this walk, we have a closed walk
that traverses a once and each other edge or arc at most once. Taking the union of walks walka

for every edge and arc a, we get a walk that traverses each arc or edge a at most m+ 1 times
(at most twice by walka, and at most once for all other walks).

Lemma 8. Let (G = (V,E ∪A), w) be an instance of MCPP. For every solution H to (G,w),
there is a solution H ′ which is a subset of H where each arc and edge has multiplicity at
most m + 1, where m is the number of arcs and edges in G. Furthermore, such a solution H ′

can be found in polynomial time.

Proof. Let e ∈ A ∪ E be an edge or arc of G that is repeated more than m + 1 times in H.
Consider the decomposition of H into directed cycles (this can be found greedily). Let a cycle
in this decomposition be critical if it contains the only occurrence(s) of some arc or edge e′

in A ∪ E, and observe that if C is a non-critical cycle in H, then H − C is also a solution.
Assume thus that every cycle in the decomposition that contains e is critical. Then this is

6 POSITIVE RESULT: REDUCING MCPP TO PBS 18

either a single cycle, in which case e has multiplicity at most 2 ≤ |A ∪ E| + 1 in H, or by a
pigeonhole argument there are at most m− 1 such cycles. The lemma follows.

We now reduce comp-MCPP to PBS, in the following sense: For any input graph G and
initial solution H, we produce a directed multigraph D such that D has a properly balanced
subgraph of negative weight if and only if G has a solution of weight less than w(H). The
multigraph D has double arcs and forbidden pairs; a double arc represents re-orienting an edge
from one direction to the other, and a forbidden pair represents two arcs in opposite directions,
such that we may remove one but not both.

For any adjacent vertices u, v in G, let Guv be the subgraph of G induced by {u, v}, and
similarly let Huv be the subgraph of H induced by {u, v}. We say Huv traverses uv from u
to v (from v to u) exactly t times if Huv contains exactly t copies of the arc uv (vu). Note
that by Lemma 8, we may assume Huv traverses uv from u to v at most m + 1 times for
each u, v ∈ V (G).

For each edge and arc uv in G, we will produce a gadget Duv, based on Guv and Huv. The
gadget Duv is a directed multigraph, possibly containing double arcs or forbidden pairs, and
by combining all the gadgets, we will get an instance D of PBS.

We now construct Duv according to the following cases (roughly speaking, including a
positive weight arc in the solution to the PBS instance represents adding an arc in that direction
to H, and including a negative weight arc represents removing an arc in the opposite direction
from H):

If Guv is an arc from u to v and Huv traverses uv exactly t ≤ m+1 times: Then Duv

has t− 1 arcs from v to u of weight −w(uv), and m+ 1− t arcs from u to v of weight w(uv).
If Guv is an edge between u and v, and Huv traverses uv from u to v exactly t ≤

m+ 1 times, and from v to u exactly 0 times: Then Duv has a double arc (a, a′), where a
and a′ are both arcs from v to u of weight 0. In addition, Duv has t − 1 arcs from v to u
of weight −w(uv), m + 1 − t arcs from u to v of weight w(uv), and m arcs from v to u of
weight w(uv).

If Guv is an edge between u and v and Huv traverses uv from u to v exactly t > 0
times, and from v to u exactly s > 0 times: Then we may assume s = t = 1, as otherwise
we may remove a pair of arcs (uv, vu) from H and get a better solution to MCPP. Then Duv

has m arcs from u to v of weight w(uv), m arcs from v to u of weight w(uv), and a forbidden
pair (a, a′), where a is an arc from u to v, a′ is an arc from v to u, and both a and a′ have
weight −w(uv).

The next lemma shows that the gadgets Duv behave as we require. Intuitively, B represents
the imbalance at one vertex in a subgraph of Duv, and the change in balance given by the
corresponding change in solution on Guv. As these numbers are the same, a balanced subgraph
in D corresponds to a change in solution on G that remains balanced. W represents the weight
of a subgraph in Duv, and the corresponding change in weight of a solution on Guv. As these
are the same, a negative weight solution in D corresponds to an improved solution on G.

Lemma 9. Let uv be an edge or arc in G, and let B and W be arbitrary integers such that
w(Huv) +W ≤ (m+ 1)w(uv). Then the following are equivalent.

1. There exists a graph H ′uv with vertex set {u, v} that covers Guv such that w(H ′uv) =
w(Huv) +W and the imbalance bH′uv

(u) = bHuv
(u) +B;

2. Duv has a subgraph D′uv which respects double arcs and forbidden pairs such that w(D′uv) =
W and bD′uv

(u) = B.

Proof. We consider each of the cases separately.

6 POSITIVE RESULT: REDUCING MCPP TO PBS 19

If Guv is an arc from u to v and Huv traverses uv exactly t ≤ m + 1 times: Then
recall Duv has t − 1 arcs from v to u of weight −w(uv), and m + 1 − t arcs from u to v of
weight w(uv). Observe that w(Huv) = tw(uv).

(1) → (2): Observe that (1) can only hold if W = Bw(uv). As H ′uv covers Guv, we
have 1 ≤ bHuv

(u) + B ≤ m + 1, and therefore 1 − t ≤ B ≤ m + 1 − t. If B = 0, let D′uv have
no arcs. If B > 0, let D′uv have B positive weight arcs from u to v. If B < 0, let D′uv have |B|
negative weight arcs from v to u. Observe that in each case D′uv is a subgraph of Duv and
satisfies condition 2 (D′uv trivially satisfies double arcs and forbidden pairs, as there are none
of these with arcs in Duv).

(2) → (1): Observe that by construction of Duv, W = Bw(uv), and also observe that the
minimum possible weight of D′uv is −(t−1)w(uv) and so 1−t ≤ B. If B = 0, then let H ′uv = Huv

and observe that H ′uv satisfies condition 1. If B > 0, let H ′uv be Huv with the addition of B
extra arcs from u to v. Then w(H ′uv) = w(Huv) +W , and H ′uv satisfies condition 1. If B < 0,
let H ′uv be Huv with |B| arcs from u to v removed. As |B| < t, H ′uv still has at least one arc
from u to v and so covers Guv, and condition 1 is satisfied.

If Guv is an edge between u and v, and Huv traverses uv exactly t ≤ m+ 1 times
from u to v, and from v to u exactly 0 times: Then recall that Duv has a double arc (a, a′),
where a and a′ are both arcs from v to u of weight 0. In addition, Duv has t − 1 arcs from v
to u of weight −w(uv), m+ 1− t arcs from u to v of weight w(uv), and m arcs from v to u of
weight w(uv).

(1)→ (2): Let t′ be the number of arcs from u to v in H ′uv, and s′ the number of arcs from v
to u in H ′uv. Observe that W = (s′ + t′ − t)w(uv) and B = t′ − t− s′.

If s′ = 0, then t′ > 0 and we have W = (t′− t)w(uv) = Bw(uv). If B = 0, then let D′uv have
no arcs. If B > 0, then note that B ≤ m+ 1− t and let D′uv have B positive weight arcs from u
to v. If B < 0, then note that |B| ≤ t − 1 (as otherwise H ′uv does not cover uv) and let D′uv
have |B| negative weight arcs from v to u. Observe that in each case D′uv satisfies condition 2.

If t′ = 0, then s′ > 0 and we have W = (s′ − t)w(uv) and B = −t− s′. Then let D′uv have
all t − 1 negative weight arcs from v to u, both arcs in the double arc from v to u, and s′ − 1
positive weight arcs from v to u. Observe that D′uv has weight (s′ − 1 − (t − 1))w(uv) = W
and bD′uv

(u) = −t− s′ = B, and D′uv respects double arcs, and so D′uv satisfies condition 2.
If t′ > 0 and s′ > 0, then if t′ + s′ > 2 we may remove a pair of arcs (uv, vu) from H ′ and

get a better solution to MCPP. Therefore we may assume t′ = s′ = 1 and so W = (2− t)w(uv)
and B = −t. If t ≥ 2 let D′uv contain t − 2 negative weight arcs from v to u, and both arcs
of the double arc from v to u. Otherwise t = 1. In this case, let D′uv contain both arcs of
the double arc from v to u, and one positive weight arc from u to v. In either case, D′uv has
weight −(t− 2)w(uv) = W and bD′uv

(u) = −t = B , and D′uv respects double arcs, and so D′uv
satisfies condition 2.

(2) → (1): Let s′ be the number of positive weight arcs from u to v in D′uv, t′ the number
of negative weight arcs from v to u in D′uv, and r′ the number of positive weight arcs from v
to u in D′uv. Then W = (s′ − t′ + r′)w(uv).

Suppose first that D′uv does not contain the double arc. Then B = s′− t′− r′. If s′− t′ = 0,
then let H ′uv be Huv with r′ arcs from v to u added. If s′ − t′ > 0, then let H ′uv be Huv

with s′ − t′ arcs from u to v added and r′ arcs from v to u added. If s′ − t′ < 0, then let H ′uv
be Huv with t′− s′ arcs from u to v removed and r′ arcs from v to u added (note that as t′ < t,
removing t′−s′ arcs from u to v still leaves uv covered). Observe that in each case, H ′uv satisfies
condition 1.

Now suppose that D′uv contains the double arc. Then B = s′ − t′ − r′ − 2. If s′ − t′ = 0,
then let H ′uv be Huv with one arc from u to v removed and r′ + 1 arcs from v to u added.
If s′ − t′ > 0, then let H ′uv be Huv with s′ − t′ − 1 arcs from u to v added and r′ + 1 arcs

6 POSITIVE RESULT: REDUCING MCPP TO PBS 20

from v to u added. If s′− t′ < 0, then let H ′uv be Huv with t′− s′+ 1 arcs from u to v removed
and r′ + 1 arcs from v to u added. Observe that in each case, H ′uv satisfies condition 1.

If Guv is an edge between u and v and Huv traverses uv exactly t > 0 times from u
to v, and exactly s > 0 times from v to u: Then recall that we may assume s = t = 1,
and Duv has a forbidden pair (a, a′), where a is an arc from u to v, a′ is an arc from v to u, and
both a and a′ have weight −w(uv). In addition, Duv has m arcs from u to v of weight w(uv),
and m arcs from v to u of weight w(uv).

(1) → (2): If H ′uv = Huv, then let D′uv have no arcs. Otherwise, we may assume all arcs
in H ′uv are in the same direction (as otherwise we may remove a pair of arcs {uv, vu} to get a
better solution). So assume that all arcs in H ′uv are from u to v (the other case is symmetric).

Let t′ > 0 be the number of arcs from u to v in H ′uv. Then W = (t′ − 2)w(uv) and B = t′.
Here, the number t′−2 comes from the fact W that represents the difference in solution weight,
and two copies of the edge were already accounted for in Huv. Then let D′uv contain the arc uv
from the forbidden pair, together with t′−1 positive weight arcs from u to v. Observe that D′uv
satisfies condition 2.

(2) → (1): Let t′ be the number of positive weight arcs from u to v in D′uv, and let s′ be
the number of positive weight arcs from v to u in D′uv.

Suppose first that D′uv doesn’t contain either arc from the forbidden pair. Then W =
(t′+ s′)w(uv) and B = t′− s′. Then let H ′uv be Huv with t′ arcs added from u to v and s′ arcs
added from v to u. Observe that H ′uv satisfies condition 1.

So now suppose that D′ contains one arc from the forbidden pair; assume D′ contains the
arc uv (the other case is symmetric). Then W = (t′ + s′ − 1)w(uv) and B = t′ − s′ + 1. Then
let H ′uv be Huv with t′ arcs added from u to v, s′ arcs added from v to u and one arc from v
to u removed (note that even if t′ = s′ = 0, removing the arc from v to u still leaves an arc
from u to v covering uv). Observe that H ′uv satisfies condition 1.

Note that in a graph H ′′ with two vertices u and v, bH′′(u) = −bH′′(v). Thus, in addition
to implying that bD′uv

(u) = bH′uv
(u)− bHuv

(u), Lemma 9 also implies that bD′uv
(v) = bH′uv

(v)−
bHuv

(v).
Using Lemma 9, we show that the combination of gadgets give us an instance of PBS which

represents an instance of comp-MCPP.

Lemma 10. Let D be the directed multigraph derived from G and H by taking the vertex
set V (G) and adding the gadget Duv for every arc and edge uv in G. Then there exists a
solution H ′ to comp-MCPP on G with weight less than H if and only if D has a properly
balanced subgraph of negative weight.

Proof. Suppose first that H ′ is a solution with weight less than w(H), and let H ′uv be the
subgraph of H ′ induced by {u, v}, for every edge or arc uv in G. For each edge and arc uv,
let D′uv be the subgraph of Duv corresponding to H ′uv in Lemma 9 (which exists as w(H ′uv) ≥ 1
for each uv, which in turn implies w(H ′uv) < (m + 1)w(uv) for each uv). Let D′ be the union
of all such D′uv. As each D′uv respects double arcs and forbidden pairs, so does D′. By Lemma
9, the weight of D′ is

∑
uv w(D′uv) =

∑
uv(w(H ′uv)−w(Huv)) = w(H ′)−w(H) < 0 (where the

sums are taken over all edges and arcs uv). Finally, for each vertex u, the imbalance of D′ at u
is
∑

a∈A(u) bD′a(u) =
∑

a∈A(u)(bH′a(u)−bHa
(u)) =

∑
a∈A(u) bH′a(u)−

∑
a∈A(u) bHa

(u) = 0−0 = 0

(where A(u) is the set of all edges or arcs containing u). Thus, D′ is balanced. It follows that D′

is a properly balanced subgraph of D of negative weight, as required.
Conversely, suppose that D′ is a properly balanced subgraph of D of negative weight, and

let D′uv be the subgraph of D′ induced by {u, v}, for every edge or arc uv in G. For each edge and
arc uv, let H ′uv be the graph corresponding to D′uv in Lemma 9. (To see that this exists, observe

7 HANDLING ARBITRARY INTEGER WEIGHTS 21

by inspection of Duv that either w(D′uv) has weight at most (m+1)w(uv)−w(Huv), or we could
replace D′ with a properly balanced subgraph of smaller weight by removing two positive weight
arcs, or by replacing a positive weight arc with a negative weight arc in D′uv. Thus by taking
D′ to be the minimum weight properly balanced subgraph of D, we may assume that w(D′uv)+
w(Huv) ≤ (m + 1)w(uv).) Let H ′ be the union of all such H ′uv. As each H ′uv covers uv, H ′

covers all edges and arcs of G. By Lemma 9, the weight of H ′ is
∑

uv w(H ′uv) =
∑

uv(w(Huv)+
w(D′uv)) = w(H) + w(D′) < w(H) (where the sums are taken over all edges and arcs uv).
Finally, for each vertex u, the imbalance of H ′ at u is

∑
a∈A(u) bH′a(u) =

∑
a∈A(u)(bHa

(u) +

bD′a(u)) =
∑

a∈A(u) bHa
(u) +

∑
a∈A(u) bD′a(u) = 0 + 0 = 0 (where A(u) is the set of all edges

or arcs containing u). Thus, H ′ is balanced. It follows that H ′ is a solution with weight less
than w(H), as required.

We note that as each gadget Duv only has arcs between u and v, the graph D in Lemma 10
has the same treedepth as G. Therefore Lemma 10 implies that we have a parameterized
reduction from comp-MCPP parameterized by treedepth to PBS parameterized by treedepth.
Then by Theorem 4, together with the initial solution given by Lemma 7, we have the following:

Theorem 5. MCPP with all weights equal to 1 is FPT with respect to treedepth.

7 Handling Arbitrary Integer Weights

We now discuss how to solve MCPP for arbitrary integer weights in FPT time. The strategy of
the algorithm will be the same as in Sections 5 and 6, however, we need some adjustments, as
the number of calls to comp-MCPP is no longer trivially polynomially bounded in the input
length.

We begin by showing the necessary tractability of weighted PBS.

Lemma 11. Let I = (D,w,X, Y) be an instance of PBS, such that D has m arcs and treedepth
at most k. Assume that D has a properly balanced subgraph D∗ of weight W < 0. In FPT time,
we can find a properly balanced subgraph D′ of D of weight at most W/m.

Proof. By Lemma 5, D∗ decomposes into a union of pairwise arc-disjoint properly balanced
subgraphs Di of D, where each subgraph Di contains at most f(k) arcs, for some f(k). Clearly,
the number of such subgraphs is at most the number of arcs in D∗, which is at most m. We
therefore find that at least one such subgraph Di has weight at most W/m < 0. By Lemma 6,
we can then find a properly balanced subgraph with weight at most that of Di in FPT time.

Theorem 6. MCPP with arbitrary integer weights is FPT with respect to treedepth, with a
running time of O(f(k) · poly(n+m+ `)) for some f(k), where ` = maxx∈A∪Edlog2 w(x)e.

Proof. We will show first that the reduction from comp-MCPP to PBS still applies to the
weighted versions of the problems, then that the number of calls to comp-MCPP is bounded.
Let ` = maxx∈A∪Edlog2 w(x)e.

For the first part, we will reuse the gadget reduction given in Section 6. By Lemma 7 we
can produce an initial solution, and by Lemma 8 we only need to consider improvement steps
that produce an MCPP solution with multiplicity bounded by m+ 1. We use the gadgets Duv

for every pair of edge or arc uv in G, as in Section 6. This results in a weighted PBS instance
where the weight of a solution is identical to the change in the weight of the MCPP solution
produced by applying the improvement.

For the second part, let W = w(H∗)−w(H), where H∗ is an optimal solution to the MCPP
instance. By Lemma 11, in FPT time we can find a new solution H1, whose improvement

8 DISCUSSION 22

over H is of value at least W/m. Observe that w(H1)− w(H∗) ≤ (1− 1/m)(w(H)− w(H∗)).
Let us repeat the process of computing an improvement m times, and let Hi be the improvement
derived after i iterations. Then by an inductive proof, w(Hi+1)−w(H∗) ≤ (1− 1/m)(w(Hi)−
w(H∗)) ≤ (1 − 1/m)i+1(w(H) − w(H∗)). Thus after m iterations we produce an MCPP
solution H ′ where w(H ′)−w(H∗) ≤ (1− 1/m)m(w(H)−w(H∗)) ≤ (1− 1/e)(w(H)−w(H∗))
(note that this still takes FPT time). Hence, in FPT time the gap between the current solution
and the optimal solution is reduced by a constant factor less than 1/2. Since the gap is an
integer bounded by 2`(m2 +m), repeating the process O(`+logm) times leads to a solution H ′

where w(H ′)− w(H) < 1, hence H ′ will be an optimum.

8 Discussion

We proved that MCPP parameterized by pathwidth is W[1]-hard, even if all edges and arcs
of the input graph G have weight 1. This solves the second open question of van Bevern et
al. [2] on parameterizations of MCPP; the first being the parameterization by the number of
arcs in G, which was settled in [16].

We also showed that MCPP is FPT with respect to treedepth. Our algorithm uses a
local search-style approach, where we start from a suboptimal MCPP solution H, and then
repeatedly in FPT time find an alternative solution H ′ of lower cost than H (or conclude that H
is an optimal solution). The crucial component that makes the approach work is a structural
result that implies that it suffices to look for improved solutions H ′ such that the total difference
(in a certain sense) between H and H ′ is bounded as a function of the treedepth. This allows
us to construct an FPT algorithm using standard dynamic programming techniques.

This is the first problem we are aware of that has been shown to be W[1]-hard with respect to
treewidth but FPT with respect to treedepth. Note that the pathwidth of a graph lies between
its treewidth and treedepth. Open problems include pinning down the tractability border for
the problem more precisely, or to find parameterizations that allow for more practical FPT
algorithms. Some candidate parameters are distance to linear forest, which is weaker than
pathwidth, and the feedback vertex set number.

Another parameterization of MCPP in [2] is as follows. Call a vertex v of G even if the
total number of arcs and edges incident to v is even. Motivated by the fact that if each vertex
of G is even, then MCPP is polynomial-time solvable [10], van Bevern et al. [2] ask whether
MCPP parameterized by the number of non-even vertices is FPT. Here, even membership in
XP is open.

To the best of own knowledge, kernelization for MCPP is an unexplored area of research.
For MCPP, van Bevern et al. [2] do not mention any results on polynomial kernels or lower
bounds; they provide such results for directed and undirected versions of the Rural Postman
Problem, which generalize DCPP and UCPP, respectively.

Acknowledgment. We are very grateful to the referees for several very helpful suggestions.
Research of GG was partially supported by Royal Society Wolfson Research Merit Award.

References

[1] E. J. Beltrami and L. D. Bodin. Networks and vehicle routing for municipal waste collec-
tion. Networks, 4(1):65–94, 1974.

REFERENCES 23

[2] R. van Bevern, R. Niedermeier, M. Sorge, and M. Weller. Complexity of Arc Routing
Problems. In Arc Routing: Problems, Methods and Applications (A. Corberán and G.
Laporte, eds.), SIAM, 2014.

[3] H. L. Bodlaender, J. R. Gilbert, H. Hafsteinsson, and T. Kloks. Approximating treewidth,
pathwidth, frontsize, and shortest elimination tree. Journal of Algorithms, 18(2):238–255,
1995.

[4] Bodlaender, H.L. A linear-time algorithm for finding tree-decompositions of small
treewidth. SIAM J. Computing 25(6), 1305–1317 (1996)

[5] P. Brucker. The Chinese postman problem for mixed graphs. Proc. WG 1980, LNCS
100:354–366, 1981.

[6] N. Christofides. The optimum traversal of a graph. Omega, 1(6):719 – 732, 1973.

[7] M. Cygan, F.V. Fomin, L. Kowalik, D. Lokshtanov, D. Marx, M. Pilipczuk, M. Pilipczuk,
and S. Saurabh. Parameterized Algorithms, Springer 2015.

[8] M. Dom, D. Lokshtanov, S. Saurabh, and Y. Villanger. Capacitated domination and
covering: A parameterized perspective. In Proc. IWPEC 2008, 78–91, 2008.

[9] R. G. Downey and M. R. Fellows. Fundamentals of Parameterized Complexity. Springer,
2013.

[10] J. Edmonds and E. L. Johnson. Matching, Euler tours and the Chinese postman. Mathe-
matical Programming, 5(1):88–124, 1973.

[11] H. A. Eiselt, M. Gendreau, and G. Laporte. Arc routing problems. I. The Chinese postman
problem. Operations Research, 43:231–242, 1995.

[12] M. Fellows, F. Fomin, D. Lokshtanov, F. Rosamond, S. Saurabh, S. Szeider, and
C. Thomassen. On the complexity of some colorful problems parameterized by treewidth.
Inf. Comput. (IANDC) 209(2):143–153, 2011.

[13] C. G. Fernandes, O. Lee, and Y. Wakabayashi. Minimum cycle cover and Chinese postman
problems on mixed graphs with bounded tree-width. Discrete Appl. Math., 157(2):272–279,
2009.

[14] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[15] P. A. Golovach, J. Kratochvil, and O. Suchy. Parameterized complexity of generalized
domination problems. Discrete Appl. Math., 160(6):780–792, 2012.

[16] G. Gutin, M. Jones, and B. Sheng. Parameterized complexity of the k-arc Chinese postman
problem. In ESA 2014, Lect. Notes Comput. Sci. 8737:530–541, 2014.

[17] G. Gutin, M. Jones, and M. Wahlström. Structural Parameterizations of the Mixed Chinese
Postman Problem. In ESA 2015, Lect. Notes Comput. Sci. 9294: 668–679, 2015.

[18] T. Kloks, Treewidth: Computations and Approximations. LNCS, vol 842, Springer, Hei-
delber (1994)

[19] C. H. Papadimitriou. On the complexity of edge traversing. J. ACM, 23:544–554, 1976.

[20] Y. Peng. Approximation algorithms for some postman problems over mixed graphs. Chi-
nese J. Oper. Res., 8:76–80, 1989.

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 24

A PBS Parameterized by Pathwidth and Solution Size

In this section, we will prove the following lemma:

Lemma 6. Given an instance (D = (V,A), w,X, Y) of PBS with integer weights, a path
decomposition of the underlying undirected graph of D with width k, and an integer l, we can
find a properly balanced subgraph of D of weight at most W in time O∗(2k

2+3k(2l + 1)k+1),
where W is the minimum weight of a properly balanced subgraph of D with at most l arcs.

Proof. In what follows, let [−l, l] denote the set of all integers z such that −l ≤ z ≤ l.
Recall that an instance of PBS is semi-simple if replacing every double arc and every

forbidden pair by an edge yields a simple mixed graph (i.e., for every pair of vertices u, v, there
is either one double arc, one forbidden pair, a single arc, or neither). We refer to an arc a in D
that is not in a double arc or forbidden pair as a standard arc.

If (D = (V,A), w,X, Y) is not semi-simple, we may construct an equivalent semi-simple
instance as follows. For each standard arc a = uv in D, introduce a new vertex xa, and replace a
with a pair of arcs uxa, xav, where w(uxa) = w(xav) = w(uv). For a double arc {a, a′} from u
to v, introduce a new vertex x{a,a′}, and replace {a, a′} with two double arcs {a1, a′1}, {a2, a′2},
where a1, a

′
1 are arcs from u to x{a,a′}, a2, a

′
2 are arcs from x{a,a′} to v, and w(a1) = w(a2) =

w(a), w(a′1) = w(a′2) = w(a′). Finally for a forbidden pair {b, b′}, where b is an arc uv
and b′ is an arc vu, introduce a new vertex x{b,b′}, and replace {b, b′} with two forbidden
pairs {b1, b′1, }, {b2, b′2}, where b1 is the arc ux{b,b′}, b

′
1 is the arc x{b,b′}u, b2 is the arc x{b,b′}v, b′2

is the arc vx{b,b′}, and w(b1) = w(b2) = w(b), w(b′1) = w(b′2) = w(b′).
Let D′ be the resulting graph, and observe that the pathwidth of D′ is at most the pathwidth

of D plus 1. Indeed, consider a minimum width path decomposition of D. For each new
vertex x that was added with neighbors u, v, choose a bag in the path decomposition D that
contains both u and v, choosing a bag of smallest size if there is a choice of bags. Now add a
bag immediately after this bag that is identical, except that it also contains x. The resulting
decomposition is a path decomposition of D′. By construction and the fact that no new vertices
are adjacent to each other, the width of this decomposition is at most pw(D) + 1. It is also
easy to verify that D has a properly balanced subgraph of weight W with l arcs if and only
if D′ has a properly balanced subgraph of weight 2W with 2l arcs. Thus, we may now assume
that our instance (D = (V,A), w,X, Y) is semi-simple.

Following [18], we may assume that we have a “nice” path decomposition with at most 4n
nodes. In particular, we may assume we are given a series (V1, . . . , Vr) of subsets of V , such
that

• r ≤ 4n;

• |Vi| ≤ k + 1 for all i ∈ [r];

•
⋃r

i=1 Vi = V ;

• For every arc uv ∈ A, there exists i ∈ [r] such that {u, v} ⊆ Vi;

• For every v ∈ V , there exist i, j ∈ [r], i ≤ j such that v ∈ Vi′ if and only if i ≤ i′ ≤ j;

• For every i ∈ [r − 1], |Vi \ Vi+1|+ |Vi+1 \ Vi| = 1.

For i > 1, we call Vi an Introduce bag if |Vi \ Vi−1| = 1, and we call Vi a Forget bag
if |Vi−1 \ Vi| = 1. In other words, an Introduce bag adds a new vertex to its predecessor, and
a Forget bag removes a vertex from its predecessor. Observe that by the above condition, Vi
is either an Introduce bag or a Forget bag, for each i > 1. Let Vi =

⋃i
j=1 Vj . Thus in

particular Vr = V .

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 25

We now prove the claim using standard dynamic programming techniques. Informally, we
will define a value φ(i,H, b), where i is the index of some bag Vi in the path decomposition, H
is a subgraph of D[Vi], and b is an imbalance function mapping vertices in Vi to integers. The
value of φ will, roughly speaking, tell us the minimum weight of a subgraph D′ of Vi satisfying
a certain structural property, that agrees with H on D[Vi], and is properly balanced except
for the fact that the imbalance of each vertex v ∈ Vi is equal to b(v). The structural property
is that the imbalance of every vertex is in [−l, l], not just for D′ but for the restriction of D′

to Vj for every j ≤ i. We note that every subgraph with at most l arcs satisfies this property.
So by letting i = r and b be the function that maps every vertex to 0, φ(i,H, b) gives us the
minimum weight of a properly balanced subgraph of weight at most W , for some choice of H.
Given the structual property, we may assume that the imbalance function b maps each vertex
to an integer in [−l, l]. Thus, the number of values φ(i,H, b) that need to be computed will
be restricted to a function of k and l. We will compute values φ(i,H, b) using values of the
form φ(i− 1, H ′, b′), for i > 1. As each value can be computed in FPT time, we will have that
we can compute all relevant values of φ(i,H, b) in FPT time, and thus find the weight of a
properly balanced subgraph with weight at most W in FPT time.

For the actual algorithm, we let φ(i,H, b) be defined for any subgraph H of D and any
function b from V to Z. However, we will define φ(i,H, b) to be ∞ unless H is a subgraph
of D[Vi] and b(v) = 0 for any v /∈ Vi. This allows us to simplify the description of parts of our
algorithm.

We now give the precise definition of φ(i,H, b) (giving an explanation for the definition
immediately afterwards). Given an integer i ∈ [r], a subgraph H of D, and an imbalance
function b : V → Z, we say that the tuple (i,H, b) is well-formed if the following conditions
hold.

1. H is a subgraph of D[Vi] (that is, H contains no arcs except those within D[Vi]);

2. H respects double arcs;

3. H respects forbidden pairs;

4. b(u) = 0 for all u ∈ V \ Vi; and

5. b(u) ∈ [−l, l] for all u ∈ Vi.

Furthermore, for a well-formed tuple (i,H, b), we say that a subgraph D′ of D conforms
with (i,H, b) if the following conditions hold.

1′. D′ is a subgraph of D[Vi];

2′. D′[Vi] = H;

3′. for each u ∈ V , the imbalance d+D′(u)− d−D′(u) of u in D′ is exactly b(u);

4′. D′ respects double arcs;

5′. D′ respects forbidden pairs;

6′. for each u ∈ V and each j ≤ i, the imbalance of u in D′[Vj] is contained in [−l, l];

We now define φ(i,H, b) to be the minimum weight of a subgraph D′ of D that conforms
with (i,H, b), if (i,H, b) is well-formed and if such a subgraph exists; otherwise we let φ(i,H, b) =
∞.

Conditions 1–5 are conditions on H and b that can be checked in polynomial time, and
without which there can be no D′ that conforms with (i,H, b). Condition 5 in particular also

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 26

limits the number of values of b for which we need to perform a calculation. Conditions 1′–3′

ensure that D′ corresponds properly with the choice of (i,H, b). Conditions 4′ and 5′ enforce
part of the requirements for a properly balanced subgraph (the other requirement, that of being
a balanced graph, is enforced using Conditions 4, 3′ and a suitable choice of b). Condition 6′ is
a condition added to reduce the search space of our algorithm. (We show in the next paragraph
that we may assume there is a subgraph satisfying this condition.)

Let b∗ : V → Z be the function mapping every vertex to 0. We note for any properly
balanced subgraph D′ of D with at most l arcs, Conditions 1–5 hold for (r,D′[Vr], b∗) and D′

satisfies Conditions 1′–6′. Thus φ(r,D′[Vr], b∗) ≤ w(D′) for any such D′, and in particu-
lar φ(r,H, b∗) ≤W (the minimum weight of a properly balanced subgraph with at most l arcs)
for some subgraph H of D[Vr]. We next show how to compute φ(r,H, b∗) for each H. At the end
of the proof we show how to find a properly balanced subgraph D′ of D with weight φ(r,H, b∗),
from which the claim follows.

For each i ∈ [r] in turn, each subgraph H of D[Vi] and each function b : V → [−l, l]
where b(u) = 0 for all u ∈ V \ Vi, we compute φ(i,H, b) in the following way:

If i = 1: If (1, H, b) is not well-formed, or if (1, H, b) is well-formed but H does not conform
with (1, H, b), set φ(1, H, b) =∞. Otherwise, set φ(1, H, b) = w(H).

Proof of correctness. By definition φ(i,H, b) =∞ if (1, H, b) is not well-formed. Otherwise, we
claim that D′ conforms with (1, H, b) only if D′ = H. Indeed, as D′ satisfies Conditions 1′ and 2′

with respect to (1, H, b), we have that D′ = D′[V1] = D′[V1] = H. Thus, to compute φ(1, H, b)
it is enough to check that H satisfies Conditions 1′–6′ with respect to (1, H, b).

We now consider the cases when i > 1. We may now assume that we have correctly
computed φ(i−1, H ′, b′) for any H ′, b′ such that H ′ is a subgraph of D[Vi−1] and b′ : V → [−l, l]
has b′(u) = 0 for all u ∈ V \ Vi−1. For any H ′, b′ not satisfying these conditions, we know by
Conditions 1–5 that φ(i− 1, H ′, b′) =∞ and so we assume this in the algorithm.

If Vi is an Introduce bag:
Recall that |Vi \Vi−1| = 1 (and therefore |Vi−1 \Vi| = 0), i.e., there exists a single vertex v ∈

Vi such that v /∈ Vi−1 and Vi = Vi−1 ∪ {v}.
Assume that (i,H, b) is well-formed; otherwise set φ(i,H, b) = ∞. Define H ′ to be the

graph H[Vi−1], and define b′ : V → Z by setting b′(u) = b(u)−(d+H(u)−d−H(u))+d+H′(u)−d−H′(u)
for each u ∈ V (taking d+H′′(u) = d−H′′(u) to be 0 whenever u is not in the subgraph H ′′).
Set φ(i,H, b) = φ(i− 1, H ′, b′) + w(H)− w(H ′).

Proof of correctness. By definition φ(i,H, b) =∞ if (i,H, b) is not well-formed. So assume that
this is not the case.

We first show that φ(i,H, b) ≤ φ(i − 1, H ′, b′) + w(H) − w(H ′). Assume without loss
of generality that φ(i − 1, H ′, b′) 6= ∞, i.e. (i − 1, H ′, b′) is well-formed and there exists a
subgraph D′′ of D that conforms with (i − 1, H ′, b′). Let D′′ be such a graph of minimum
weight, i.e., w(D′′) = φ(i − 1, H ′, b′). Now let D′ be the graph derived from D′′ by adding
all arcs that are in H but not in H ′, i.e., all arcs of H that are incident to v. Observe
that w(D′) = w(D′′) + w(H) − w(H ′) = φ(i − 1, H ′, b′) + w(H) − w(H ′). Thus it remains to
show that φ(i,H, b) ≤ w(D′), which we will do by showing that D′ conforms with (i,H, b).

As D′′ is a subgraph of D[Vi−1] and the only arcs added to D′′ were those within Vi, we
have that D′ is a subgraph of D[Vi], satisfying Condition 1′. By construction of D′ and the fact
that D′′[Vi−1] = H ′, we have that D′[Vi] = H, satisfying Condition 2′. For each u ∈ V , we have
that the imbalance d+D′(u)−d−D′(u) = (d+D′′(u)+d+H(u)−d+H′(u))−(d−D′′(u)+d−H(u)+d−H′(u)) =
b′(u) + (d+H(u) − d−H(u)) − (d+H′(u) − d−H′(u)) = b(u), satisfying Condition 3′. As D′′ respects
double arcs and forbidden pairs, and H respects double arcs and forbidden pairs, we have

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 27

that D′ respects double arcs and forbidden pairs. (If D′ contains exactly one arc from a double
arc, then D′′ or H also contains exactly one arc from the double arc. Similarly if D′ contains
both arcs of a forbidden pair, then so does D′′ or H). Thus, D′ satisfies Conditions 4′ and 5′.
Finally, as D′[Vj] = D′′[Vj] for j < i, we have that the imbalance of each vertex in D′[Vj] is
in [−l, l] for each j < i. Furthermore as D′[Vi] = D′, and by Condition 3′, the imbalance of
any vertex u in D′[Vi] is b(u) ∈ [−l, l]. Thus D′ satisfies Condition 6′.

Thus, D′ conforms with (i,H, b), and so φ(i,H, b) ≤ w(D′) = φ(i−1, H ′, b′)+w(H)−w(H ′).
We now show that φ(i,H, b) ≥ φ(i − 1, H ′, b′) + w(H) − w(H ′). Suppose without loss of

generality that φ(i,H, b) 6=∞, i.e., (i,H, b) is well-formed and there exists a subgraph D′ of D
that conforms with (i,H, b). Let D′ be such a graph of minimum weight, i.e. w(D′) = φ(i,H, b).
Now let D′′ = D′[Vi−1], i.e. D′′ is D′ with vertex v deleted. Observe that w(D′′) = w(D′) −
w(H) + w(H ′) = φ(i,H, b) − w(H) + w(H ′). Thus it remains to show that φ(i − 1, H ′, b′) ≤
w(D′′), which we will do by showing that (i − 1, H ′, b′) is well-formed and that D′′ conforms
with (i− 1, H ′, b′).

By construction, H ′ is a subgraph of D[Vi−1] and so Condition 1 holds. As H ′ is an induced
subgraph of H which is an induced subgraph of D′, and D′ respects double arcs and forbidden
pairs, it follows that H ′ also respects double arcs and forbidden pairs, satisfying Conditions 2
and 3. For any u ∈ V \ Vi−1, if u 6= v then b′(u) = b(u) = 0. As the only arcs of D′ incident
to v are in H, and none of them are in H ′, the imbalance of v in D′ is exactly d+H(v)− d−H(v),
and this is also the value of b(v). Thus b′(v) = b(v) − (d+H(v) − d−H(v)) + d+H′(v) − d−H′(v) =
(d+H(v)−d−H(v))−(d+H(v)−d−H(v))+0 = 0. Thus we have that Condition 4 holds. For u ∈ Vi−1,
as b(u) is the imbalance of u in D′ and by construction of D′′ and b′, we have that b′(u) =
d+D′(u) − d−D′(u) − (d+H(u) − d−H(u)) + d+H′(u) − d−H′(u) which is the imbalance of u in D′′.
As D′′ = D′[Vi−1], and as the imbalance of any vertex in D′[Vj] is in [−l, l] for each j ≤ i,
we have that b′(u) ∈ [−l, l], and so Condition 5 holds. We thus have that (i − 1, H ′, b′) is
well-formed.

Next we show that D′′ conforms with (i − 1, H ′, b′). By construction, D′′ is a subgraph
of D[Vi−1], satisfying Condition 1′. By construction of D′′ and H ′ and the fact that D′[Vi] = H,
we have D′′[Vi−1] = H ′, satisfying Condition 2′. For any u ∈ V , the arcs incident to u in D′′

are exactly the same as in D′, except for those arcs which are in H and not H ′. Therefore
the imbalance is d+D′′(u)− d−D′′(u) = (d+D′(u)− d+H(u) + d+H′(u))− (d−D′(u)− d−H(u) + d−H′(u)) =
b(u) − (d+H(u) − d−H(u)) + (d+H′(u) − d−H′(u)) = b′(u), satisfying Condition 3′. As D′′ is an
induced subgraph of D′ and D′ respects double arcs and forbidden pairs, D′′ also respects
double arcs and forbidden pairs, satisfying Conditions 4′ and 5′. Finally, for each u ∈ V and
each j ≤ i − 1, D′′[Vj] = D′[Vj], and so the imbalance of u in D′′[Vj] is contained in [−l, l],
satisfying Condition 6′.

Thus,D′′ conforms with (i−1, H ′, b′), and so φ(i−1, H ′, b′) ≤ w(D′′), and therefore φ(i,H, b) =
w(D′) = w(D′′) + w(h) − w(H ′) ≥ φ(i − 1, H ′, b′) + w(h) − w(H ′). We therefore have
that φ(i,H, b) = φ(i− 1, H ′, b′) + w(h)− w(H ′) and so the algorithm is correct.

If Vi is a Forget bag:
Recall that |Vi−1 \Vi| = 1 (and therefore |Vi \Vi−1| = 0), i.e., there exists a single vertex v ∈

Vi−1 such that v /∈ Vi and Vi−1 = Vi ∪ {v}.
If (i,H, b) is not well-formed, set φ(i,H, b) =∞. Otherwise, set φ(i,H, b) to be the minimum

value of φ(i− 1, H ′, b) over all subgraphs H ′ of D[Vi−1] such that H ′[Vi] = H and (i− 1, H ′, b)
is well-formed. If no such H ′ exists, then set φ(i,H, b) =∞.

Proof of correctness. By definition φ(i,H, b) =∞ if (i,H, b) is not well-formed. So assume that
this is not the case.

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 28

We first show that φ(i,H, b) ≤ φ(i − 1, H ′, b) for any choice of H ′ such that H ′[Vi] = H
and (i− 1, H ′, b) is well-formed. Assume without loss of generality that φ(i− 1, H ′, b) 6=∞ i.e.
there exists a graph D′ that conforms with (i− 1, H ′, b). Let D′ be such a graph of minimum
weight, i.e. w(D′) = φ(i − 1, H ′, b). We now show that D′ also conforms with (i,H, b), which
implies that φ(i,H, b) ≤ w(D′) = φ(i− 1, H ′, b).

As Vi ⊂ Vi−1, we have that Vi = Vi−1. Therefore as D′ is a subgraph of D′[Vi−1] it is also
a subgraph of D′[Vi], satisfying Condition 1′. As D′[Vi−1] = H ′, H ′[Vi] = H and Vi ⊂ Vi−1,
we have that D′[Vi] = H ′[Vi] = H, satisfying Condition 2′. As Conditions 3′, 4′, and 5′ only
concern D′ and b, and D′ satisfies these Conditions with respect to (i − 1, H ′, b), D′ trivially
satisfies these conditions with respect to (i,H, b). Finally as the imbalance of each vertex u
in D′[Vj] is in [−l, l] for each j ≤ i− 1, and Vi = Vi−1, we have that D′ satisfied Condition 6′

with respect to (i,H, b).
Thus we have that φ(i,H, b) ≤ w(D′) = φ(i−1, H ′, b) for each choice ofH ′ such thatH ′[Vi] =

H and (i− 1, H ′, b) is well-formed, and in particular for the choice of H ′ that minimizes φ(i−
1, H ′, b).

We now show that if φ(i,H, b) 6= ∞, then φ(i,H, b) ≥ φ(i − 1, H ′, b) for some choice of H ′

such that H ′[Vi] = H and (i− 1, H ′, b) is well-formed. Suppose that φ(i,H, b) 6=∞, and let D′

be a subgraph of D that conforms with (i,H, b) such that w(D′) = φ(i,H, b). Let H ′ = D′[Vi−1],
and note that H ′[Vi] = H. We now show that (i−1, H ′, b) is well-formed and that D′ conforms
with (i− 1, H ′, b), which implies that φ(i,H, b) = w(D′) ≥ φ(i− 1, H ′, b).

By construction H ′ is a subgraph of D[Vi−1], satisfying condition 1. As H ′ is an induced
subgraph of D′ and D′ respects double arcs and forbidden pairs, H ′ also respects double arcs
and forbidden pairs, satisfying Conditions 2 and 3. As V \ Vi−1 ⊂ V \ Vi and b(u) = 0 for
all u ∈ V \ Vi, Condition 4 holds for (i− 1, H ′, b). As b(u) ∈ [−l, l] for all u ∈ Vi and b(v) = 0
(since Condition 4 holds for (i,H, b)), we have that b(u) ∈ [−l, l] for all u ∈ Vi−1, satisfying
Condition 5. We thus have that (i− 1, H ′, b) is well-formed.

It remains to show that D′ conforms with (i − 1, H ′, b). As D′ is a subgraph of D[Vi]
and Vi−1 = Vi, D′ satisfies Condition 1′. By construction of H ′, D′[Vi−1] = H ′ satisfying
Condition 2′. As Conditions 3′, 4′, and 5′ only concernD′ and b, andD′ satisfies these conditions
with respect to (i,H, b), D′ trivially satisfies these conditions with respect to (i − 1, H ′, b).
Finally, 6′ for (i−1, H ′, b) is a special case of the same condition for (i,H, b), and so D′ satisfies
this condition as well.

Thus, D′ conforms with (i − 1, H ′, b), and so φ(i,H, b) = w(D′) ≥ φ(i − 1, H ′, b). We
therefore have that φ(i,H, b) ≤ φ(i− 1, H ′, b) for every H ′ such that H ′[Vi] = H and (i,H ′, b)
is well-formed, and that for some such H ′, φ(i,H, b) = w(D′) ≥ φ(i − 1, H ′, b). This implies
that φ(i,H, b) = φ(i − 1, H ′, b) for the choice of H ′ that minimizes φ(i − 1, H ′, b), and so the
algorithm is correct.

This concludes the description of the algorithm to compute φ(i,H, b) and the proof of its
correctness. We now analyze the running time.

When i = 1 or Vi is an Introduce bag, the time taken to compute φ(i,H, b) is clearly
polynomial. When Vi is a Forget bag, we need to check the value of φ(i − 1, H ′, b) for every
subgraph H ′ of D such that H ′[Vi] = H and (i−1, H ′, b) is well-formed. As such an H ′ must be
a subgraph of D[Vi−1], the only arcs that can be in H ′ but not H are those within Vi−1 incident
to v. As D is semi-simple, there are at most 2|Vi−1 \ {v}| ≤ 2k such arcs. Thus there are at
most 22k possible graphs H ′ to consider. Thus φ(i,H, b) can be computed in time O∗(22k).

The number of values φ(i,H, b) to compute is bounded by the the number of tuples (i,H, b)
where i ∈ [r], H is a subgraph of D[Vi], and b : V → [−l, l] is a function that maps u to 0
for any u ∈ V \ Vi. As D is semi-simple and |Vi| ≤ k + 1, the number of arcs in D[Vi] is at
most k(k + 1) and so the number of possible H is at most 2k(k+1) for each i. The number

A PBS PARAMETERIZED BY PATHWIDTH AND SOLUTION SIZE 29

of possible b is (2l + 1)|Vi| ≤ (2l + 1)k+1 for each i. Thus the number of values φ(i,H, b) to

compute is at most r2k(k+1)(2l + 1)k+1 ≤ 4n2k(k+1)(2l + 1)k+1 = O∗(2k
2+k(2l + 1)k+1). As

each value φ(i,H, b) can be computed in time O∗(22k), the time taken to compute all values

is O∗(2k
2+k(2l + 1)k+122k) = O∗(2k

2+3k(2l + 1)k+1).
Recall that b∗ : V → Z is the function mapping every vertex to 0. We now show how to

make the algorithm constructive, i.e. how to find a subgraph D′ with weight φ(r,H, b∗) that
conforms with (r,H, b∗), for any subgraph H of D[Vr] such that φ(r,H, b∗) 6=∞.

Define Hr = H and br = b∗. Then given graph Hi and function bi for i ∈ [r] with i > 1,
we recursively define Hi−1 and bi−1 as follows. If Vi is an Introduce bag, then let Hi−1 be
the graph H ′ and let bi be the function b′ as constructed by the algorithm for φ(i,Hi, bi).
If Vi a Forget bag, then let Hi−1 be the subgraph H ′ of D[Vi−1] that has H ′[Vi] = Hi and
minimized φ(i − 1, H ′, bi), as described in the algorithm for φ(i,Hi, bi), and let bi−1 = bi.
Now for each i ∈ [r], let Di be the unique subgraph of D[Vi] such that Di[Vj] = Hj for
every j ≤ i. Let D′ = Dr. Now observe that φ(i,Hi, bi) = w(Di) for each i ∈ [r], and so in
particular φ(r,H, b∗) = w(D′). Observe also that D′ conforms with (i,Hi, b

∗). Thus D′ is a
properly balanced subgraph with weight φ(i,H, b∗) ≤W , as required.

