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Abstract (250 words) 25 

A metabolite profiling approach has been implemented to elucidate metabolic adaptation at set culture 26 

conditions in five Mycobacterium species with the potential to act as model organisms for 27 

Mycobacterium tuberculosis (Mtb). Analysis has been performed over designated growth phases and 28 

under representative environments (nutrient and oxygen depletion) experienced by Mtb during infection. 29 

The procedure was able to determine a range of metabolites (60 - 120 compounds) covering 30 

nucleotides, amino acids, organic acids, saccharides, fatty acids, glycerols, -esters, -phosphates and 31 

isoprenoids. Among these classes of compounds key biomarker metabolites were identified that can 32 

act as indicators of pathway/process activity. In numerous cases, common metabolite traits were 33 

observed for all five species across the experimental conditions. Amino acid content, especially glutamic 34 

acid, highlighted the different properties between the fast- and slow-growing mycobacteria studied. The 35 

greatest similarities in metabolite composition between fast- and slow-growing mycobacteria were 36 

apparent under hypoxic conditions. A comparison to previously reported transcriptomic data revealed 37 

a strong correlation between changes in transcription and metabolite content. Collectively, these data 38 

validate the changes in the transcription at the metabolite level, suggesting transcription exists as one 39 

of the predominant modes of cellular regulation in Mycobacterium. Whilst, sectors with restricted 40 

correlation between metabolites and transcription (e.g. hypoxic cultivation) warrant further study to 41 

elucidate and exploit post-transcriptional modes of regulation. The strong correlation between the 42 

laboratory conditions used and data derived from in vivo conditions, indicates that the approach applied 43 

is a valuable addition to our understanding of cell regulation in these Mycobacterium species.  44 
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Introduction 45 

The genus Mycobacterium contains a variety of species with different phenotypes (e.g. fast- and slow-46 

growers, chromogens, pathogens and saprophytes) and hence, provides a range of suitable model 47 

organisms for Mtb. The suitability of Mycobacterium species as model organisms has been extensively 48 

discussed highlighting differences/similarities in growth rate, cell envelope chemistry, 49 

pathogenicity/biosafety and their phylogenetic relationship compared to Mtb (e.g. Barry, 2001). For the 50 

purpose of this study, two fast-growing (M. smegmatis and M. phlei) and three slow-growing (M. bovis 51 

BCG, M. avium and M. intracellulare) mycobacteria were chosen to represent a diverse range of 52 

Mycobacterium species. These mycobacteria were analysed at set growth stages to show adaptation 53 

processes upon the induction of abiotic stresses (e.g. nutrient and oxygen limitation through natural 54 

depletion of given resources) which are comparable to the microenvironment experienced by Mtb. The 55 

metabolite levels monitored elucidated metabolic pathways common to the genus Mycobacterium (e.g. 56 

mycolic acid synthesis (Gago et al., 2011)) and specific to certain phenotypes mentioned above (e.g. 57 

poly-glutamine synthesis in slow-growers (Harth and Horwitz, 1999)).  58 

The culture conditions in the present study were based on published in vitro models (Wayne and Hayes, 59 

1996) to represent typical environments experienced by Mtb under physiological conditions. The 60 

prevalent stress conditions experienced within the host, including infection stages of active replication 61 

in alveolar macrophages and dormancy within granulomas (Chao and Rubin, 2010), involve a gradual 62 

depletion of oxygen and nutrients (Russell et al., 2010). To minimise environmental influences on the 63 

mycobacterial cells, they were cultivated in a standardised volume of nutrient rich medium with no 64 

additionally supplementation over the duration of the experiments creating a natural depletion of 65 

nutrients over the period of batch cultivation. The three culture conditions investigated included growth 66 

from lag to stationary phase (Phase I) and growth from logarithmic (log) phase for 28d under aerated 67 

(Phase II) or hypoxic (Phase III) conditions. To capture the changes in metabolites occurring under 68 

these conditions a quantitative metabolite profiling approach was used (Drapal et al., 2014). The 69 

resulting changes at the metabolite level were compared with previous published transcriptomic and 70 

proteomic data (e.g. (Betts et al., 2002; Hampshire et al., 2004)) for a better understanding of cellular 71 

regulation in Mycobacterium and its changing chemotype with environmental adaptation. Collectively, 72 

these data will enable an assessment of how representative the laboratory conditions used are 73 

compared to real life scenarios. 74 

  75 
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Material and Methods 76 

Bacteria 77 

M. smegmatis (National Collection of Type Cultures (NCTC) 8159, Public Health England,), M. phlei 78 

(NCTC 8151), M. bovis BCG (Pasteur strain, from AHVLA Collection, Weybridge, UK), M. avium 79 

(serotype 8, private collection) and M. intracellulare (serotype 7, private collection) were cultivated and 80 

prepared as a starting culture as published previously (Drapal et al., 2014). For the following culture 81 

conditions five replicates per species were grown in parallel. 82 

For Phase I cultivation, fresh Middlebrook 7H9 supplemented with 10% OADC (oxalic acid,-albumin-83 

dextrose-catalase) and 0.4% Tween 80 was inoculated with the starting culture until an initial optical 84 

density at 600nm (OD) of 0.1 or 0.05, for fast- and slow-growing mycobacteria respectively, was 85 

reached. The cultures (1.5 times the total volume sampled) were then incubated shaking (180 rpm, 86 

37°C) under aerated conditions in vent-cap flasks. 87 

For the other two culture conditions, fresh medium (1.5 times the total volume sampled) was inoculated 88 

as described for Phase I and incubated shaking (180 rpm, 37°C) under constant aeration in vent-cap 89 

flasks. After 16h (M. smegmatis), 1d (M. phlei) or 7d (M. bovis BCG, M. avium, M. intracellulare) an 90 

aliquot (8 ml) of the inoculated medium was sampled representing the induction point of the two different 91 

oxygen conditions. The aerated, shaking condition was maintained for Phase II cultivation and samples 92 

(8 ml) were taken at 1d, 2d and 28d after induction for all mycobacteria. For the hypoxic cultivation 93 

(Phase III), the cultures were aliquoted (8 ml) at the induction point and all aliquots cultivated without 94 

stirring at 37°C until sampled for analysis. The depletion of oxygen in the hypoxic culture was visualised 95 

by discolouration of methylene blue (1.5 µg/ml cell culture). Aliquots of inoculated medium (8 ml) were 96 

sampled following the same time regime as described for Phase II. 97 

Sampling and analysis of polar and non-polar metabolites 98 

Aliquots of the cultures were quenched with isotonic 60% (v/v) methanol, centrifuged and the resulting 99 

cell pellet weighed. The cells were the extracted with a methanol/chloroform method followed by 100 

analysis with gas chromatography mass spectrometry (GC/MS) and high performance liquid 101 

chromatography (HPLC) as previously published (Drapal et al., 2014). The metabolites of each sample 102 

were identified through a customized library (Drapal et al., 2014). Variation in the number and type of 103 

metabolites identified occurred at each sampling point. The GC/MS results were normalised to the 104 

internal standard and weight of the cell pellet. The identified compounds within each culture condition 105 

were compared to the first time point taken. Statistically significant changes of metabolites were 106 

analysed with one-way ANOVA with Dunnett’s post-test and were then plotted over a pathway diagram.  107 

Identification of lipids and proteins of the secreted layer 108 

After four days of induction of hypoxia, the secreted layer was carefully removed from the cell pellet and 109 

separately analysed for lipid and protein content. For the identification of lipids, the collected secreted 110 

layer was dissolved (1:2) in chloroform/methanol/water (10:10:3, v/v/v). The diluted sample was then 111 

mixed (1:1) with 2,5-dihydroxybenzoic acid matrix (5 mg/ml in acetonitrile with 0.1% (v/v) trifluoroacetic 112 



5 

acid) and placed on a 600 μm Anchor chip 384 format MALDI target plate (Bruker Daltonics) before 113 

analysis with MALDI–TOF/TOF-MS as described previously (Jones et al., 2013). 114 

For the identification of proteins of the secreted layer, a previously published protocol (Robertson et al., 115 

2012; Mora et al., 2013) was followed which included precipitation of proteins and separation by SDS-116 

PAGE followed by in-gel digestion of the four major protein bands and analysis with nano-LC/MS/MS. 117 

The proteins were identified through the detected peptides as previously published (Nogueira et al., 118 

2013) with SwissProt protein database for taxonomy M. tuberculosis complex. 119 

  120 
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Results 121 

Growth properties under aerated and hypoxic cultivation 122 

The growth curves for all three culture conditions were measured by monitoring optical density (OD) 123 

and colony forming units (cfu) (Supplementary File 1). Both these measurements over Phase I showed 124 

the typical sigmoid shape for all five mycobacteria (Fig. 1). The culture condition Phase II was 125 

characterised by an almost horizontal linear curve at at least 2d after log phase. Again all five 126 

mycobacteria showed similar growth properties (Fig. 1). The OD data was consistent with the cfu 127 

measurements and indicated a constant viable count of culturable cells which is associated with data 128 

found for non-replicating persistence (NRP) 1 (Chao and Rubin, 2010; Shi et al., 2010; Bacon et al., 129 

2014). The exception was M. phlei which showed a decline of growth from 1d to 2d after the log phase 130 

followed by constant values until 28d suggesting a death phase before the switch to NRP (Bacon et al., 131 

2014). Interestingly, a resurgent increase of cfu values was detected at 28d (Phase II) only for M. 132 

smegmatis, M. avium and M. intracellulare which indicated a reactivation of cells or a second log phase 133 

of the remaining active cells. Phase III cultures, contrary to Phase II, showed an immediate stop of 134 

replication at the first time point after induction of hypoxic conditions conferred by the removing of 135 

agitation (Fig. 1). This was shown through constant values similar to the induction point (log phase) 136 

measured until 28d and would indicate that the cells are capable of rapid detection/adaptation to the 137 

change in oxygen concentration. This change in condition was monitored in situ by the reduction of 138 

methylene blue in the medium. Discolouration arose four hours after induction, which was approximately 139 

half the duration required for all cells to settle at the bottom of the culture tube and was the same for all 140 

five mycobacteria. All samples retained the discolouration throughout Phase III. 141 

The metabolite profile was measured at each set time point and compared to the first time point of the 142 

culture condition for each Mycobacterium species separately. The resulting changes of metabolite 143 

levels were calculated and their significance evaluated (Supplementary File 2). Key metabolites within 144 

the data set were chosen to visualise changes of nucleotides, the nitrogen and sulphur pathways, TCA 145 

cycle, glyoxylate shunt, the biosynthesis of fatty acids and complex lipids and thus describe the 146 

metabolic state over the growth stages. 147 

Metabolite changes occurring at the logarithmic and stationary growth phases (Phase I) 148 

Overall ~70 compounds were detected throughout Phase I for four of the five mycobacteria tested. M. 149 

phlei was the exception with 126 metabolites detected. The summarised Phase I data for all five 150 

mycobacteria (Fig. 2) highlighted the differences in metabolite levels between the fast-growing and the 151 

slow-growing Mycobacterium species. Interestingly, the slow-growers had decreased metabolite levels 152 

predominantly, when compared to lag phase, which suggested that metabolites associated with primary 153 

metabolism were not detectable or rapid utilisation occurred. The data on the fast-growers, M. phlei and 154 

M. smegmatis, showed increased levels of polar metabolites suggesting accumulation of the latter. M. 155 

bovis BCG, being one of the slow-growing mycobacteria, showed similar metabolite changes to M. 156 

avium and M. intracellulare but differed from the latter two as more metabolites were detected in M. 157 

bovis BCG including uracil, glycine, fatty acid precursors and intermediates of the TCA cycle. 158 
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The common nucleotide detected in M. smegmatis, M. bovis BCG and M. phlei was uracil and showed 159 

increased levels from log phase onwards. M. phlei had the most nucleotides detected which showed 160 

the same increasing trends as uracil (Supplementary File 2). No nucleotides were detected for M. avium 161 

and M. intracellulare over Phase I which would be compliant with rapid utilisation. 162 

Homocysteine, the key intermediate of the sulphur pathway, can be metabolised via cysteine to 163 

mycothiol (Zeng et al., 2013) or converted to methionine (Singhal et al., 2013) leading to reduced levels 164 

of the latter as detected throughout Phase I, in four out of five mycobacteria tested. M. phlei was the 165 

only Mycobacterium species in this study for which no homocysteine but increased cysteine levels were 166 

detected. 167 

Glutamic acid, the preferred nitrogen assimilation product (Amon et al., 2009), showed higher levels at 168 

log compared to the stationary phase in M. phlei and M. smegmatis. M. intracellulare was the only slow-169 

growing species which showed up-regulation of glutamic acid at stationary phase. The other two slow-170 

growing species, M. bovis BCG and M. avium, had decreased levels of glutamic acid. Additionally, in 171 

M. bovis BCG levels of proline were increased.  172 

The only intermediate of the TCA cycle which was detected in all five mycobacteria studied throughout 173 

Phase I was succinic acid. This intermediary metabolite connects the TCA cycle, glyoxylate shunt and 174 

methylcitrate cycle, which are all involved in fatty acid synthesis and catabolism (Eoh and Rhee, 2013). 175 

Succinic acid and odd-chain fatty acids were decreased in the three slow-growing mycobacteria studied. 176 

In the case of M. phlei and M. smegmatis, levels of succinic acid showed no change or an increase at 177 

log phase, respectively. For glyoxylate, the key intermediate of the glyoxylate shunt, the derivative 178 

glycolate was detected by GC/MS, due to chemical structures created during derivatisation process. 179 

Glycolate was down-regulated throughout Phase I in all mycobacteria studied, except M. smegmatis for 180 

which no glyoxylate was detected. Additionally, malonic acid, the dicarboxylic acid of malonyl-CoA, was 181 

detected and its levels increased at the stationary phase for M. bovis BCG and M. smegmatis and at 182 

the log phase of M. phlei. The even-chain fatty acids, consecutive intermediates of malonyl-CoA and 183 

precursors for biosynthesis of mycolic acids (Crellin et al., 2013), were reduced in all five mycobacteria 184 

studied throughout Phase I. Similarly, the content of glycerol, utilised for glycero- and phospholipid 185 

biosynthesis (Crellin et al., 2013), was decreased or at levels below the limit of detection. Besides 186 

malonic acid, fatty acid precursors isoleucine, threonine, leucine and valine were detected with 187 

increased levels for M. bovis BCG, M. smegmatis and M. phlei.  188 

Saccharides associated with components of the cell wall (arabinose, galactose, inositol, mannose and 189 

trehalose) showed different trends in all mycobacteria tested over Phase I. Arabinose, part of the 190 

arabinogalactan, was only detected in M. smegmatis at stationary phase. Galactose, also part of the 191 

arabinogalactan, was decreased in all mycobacteria except M. phlei which showed increased levels at 192 

log and no change at the stationary phase. Contrary to this, inositol and mannose-6-phosphate, both 193 

components of plasma membrane related lipids, were increased in all mycobacteria except M. avium, 194 

which showed decreased levels throughout Phase I. Trehalose, the backbone of trehalose mono- and 195 

dimycolates (TMM, TDM), showed the most differences in contents between the five mycobacteria 196 

tested. It was increased throughout Phase I for M. smegmatis, at log phase for M. phlei, at stationary 197 
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phase for M. intracellulare and showed no change and decreased levels throughout in M. avium and 198 

M. bovis BGC, respectively. 199 

An essential metabolite for the electron transport chain is menaquinone (MK) 9, the major lipoquinone 200 

in Mycobacterium species (Mathew et al., 2010). It was detected with overall decreased contents 201 

compared to lag phase in all mycobacteria studied and showed increasing levels between log and 202 

stationary phase for all species except for M. phlei. The data for M. phlei showed further decrease of 203 

MK9 from log to stationary phase and increased levels of β-carotene throughout Phase I. M. 204 

intracellulare, the other chromogenic Mycobacterium species studied, produced only phytoene, a 205 

colourless carotenoid which represent the first step in the C40 pathway, during Phase I. Metabolite 206 

profiling features found over Phase I, such as even-chain fatty acid and glycerol metabolism and MK9 207 

levels, highlighted similarities between the mycobacteria studied.  208 

 209 

Metabolic changes under elongated aerated cultivation (Phase II) 210 

In all five mycobacteria, more compounds were detected over Phase II compared to Phase I. M. phlei 211 

had the most metabolite changes measured over Phase II which were mainly lower levels compared to 212 

the initial time point of measurement (Fig. 3).  213 

Nucleotide metabolism appeared to be active in all five mycobacteria as a variety of changes in 214 

nucleotide constituents were detected throughout Phase II. Amino acid content was unchanged for M. 215 

avium and M. intracellulare at 1d and 2d, respectively, and decreased for M. phlei. Contrary to this, M. 216 

smegmatis and M. bovis BCG showed an increase in number and levels of amino acids especially at 217 

2d of Phase II. 218 

 219 

Even though the overall trends of amino acid levels differed between the five mycobacteria studied, the 220 

amino acids involved in the sulphur and nitrogen pathways were similar between them. 221 

Homocysteine/cysteine content showed no change overall and glutamic acid levels showed a 222 

decreasing trend throughout Phase II after an initial increase for M. smegmatis and M. intracellulare. 223 

Additionally, M. phlei had decreased levels of biochemically related consecutive intermediates of 224 

glutamic acid (ornithine and citrulline), whereas M. bovis BCG and M. smegmatis showed increased 225 

levels at 1d or 2d (proline and ornithine) (Supplementary File 2). 226 

The glyoxylate shunt seemed activated after 1d for M. smegmatis and after 2d for BGC and M. avium 227 

which was indicated by increased levels of glyoxylate and/or glycine. M. intracellulare showed 228 

decreased levels of glyoxylate at 2d and no change of glycine. Whereas, M. phlei had decreased levels 229 

of both glyoxylate and glycine throughout Phase II with a further decrease from 1d to 2d.  230 

The metabolite profiling data of Phase II showed that trehalose and glycerol contents were related to 231 

even chain fatty acid levels which are all precursors for the biosynthesis of TDM or triacylglyceride 232 

(TAG). In M. phlei, fatty acids and trehalose were decreased, whereas in the three slow-growing species 233 

no change was detected for both trehalose and fatty acids within the first two days of Phase II. 234 

Furthermore, glycerol-3-phosphate was increased for M. bovis BCG and M. intracellulare and together 235 
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with glycerol-esters decreased in M. avium and M. phlei. Only M. smegmatis showed no change of fatty 236 

acids, an increase in trehalose and a decrease of glycerol-3-phosphate. 237 

The chromogenic mycobacteria (M. phlei and M. intracellulare) and M. smegmatis had increased levels 238 

of isoprenoids throughout Phase II and increased levels of MK9 at 1d except for M. phlei which showed 239 

no change in MK9 levels. M. avium and M. bovis BCG showed no change of MK9 and an additional MK 240 

(MK8) was detected for M. bovis BCG.  241 

Cultivation of mycobacteria tested over Phase II highlighted differences between the Mycobacterium 242 

species, especially for M. phlei which showed down-regulated metabolite levels throughout Phase II 243 

and even further decreases at 28d whereas the other mycobacteria showed a predominantly positive 244 

metabolic switch at the last time point. At 28d, M. smegmatis showed increased levels of the glyoxylate 245 

shunt, sulphur pathway and fatty acids and M. bovis BCG showed increased levels of the glyoxylate 246 

shunt, nucleotides and fatty acid precursors indicating activated energy metabolism and induced activity 247 

for cell replication. At the same time, M. avium and M. intracellulare showed a distinct metabolic 248 

activation of all pathways with mainly increased levels except for glycerol-esters which were decreased. 249 

For M. smegmatis, M. avium and M. intracellulare these metabolic changes at 28d were also reflected 250 

with increased cfu values as described earlier. 251 

 252 

Effects of hypoxic culture conditions on metabolite levels (Phase III) 253 

Over Phase III, mycobacterial cells were not agitated and became oxygen-depleted, a well-documented 254 

effect (Wayne and Sohaskey (2001). The measured changes of metabolites over Phase III were more 255 

similar between the five mycobacteria tested (Fig. 4) compared to the data described for Phase II. In 256 

general, fewer metabolites were detected in Phase III (~90) than Phase II (~110).  257 

The number of nucleotides detected followed this trend with a decrease in amount and number or a 258 

general lack of nucleotides detected for M. smegmatis, M. avium and M. intracellulare, respectively. In 259 

M. bovis BCG uracil showed increased levels after 2d and in M. phlei the highest number of nucleotides 260 

was detected with increased levels of most nucleotides at 1d (Supplementary File 2).  261 

 262 

No change of homocysteine levels was detected for M. bovis BCG throughout Phase III, for M. 263 

intracellulare after 1d and for M. smegmatis and M. avium until 28d. All three mycobacteria had 264 

increased levels of homocysteine at the other time points. As seen in Phase I and II, only cysteine was 265 

detected in M. phlei with decreased levels throughout Phase III. 266 

A striking observation was the decrease of glutamic acid in all three slow-growers throughout Phase III 267 

whereas the fast-growing species showed increased levels. Only two biochemically related consecutive 268 

metabolites, proline and ornithine, were detected in M. smegmatis and M. phlei, respectively, with 269 

increased content at 1d.  270 

The succinic acid levels varied for all five mycobacteria tested. M. smegmatis and M. avium showed 271 

decreased levels from 1d and 2d, respectively, in M. bovis BCG no change occurred and M. phlei and 272 

M. intracellulare showed increased followed by decreased levels of succinic acid at 1d and 2d, 273 

respectively. Similar to succinic acid, precursors for lipid and cell wall synthesis (glycerol, fatty acids 274 
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and saccharides) were expressed with different metabolite levels for all mycobacteria. M. smegmatis 275 

and M. avium showed decreased levels of glyercol-3-phosphate whereas M. phlei and M. intracellulare 276 

showed increased levels of glycerol-3-phosphate and -esters, respectively, at 1d followed by no change 277 

from 2d onwards. M. bovis BCG showed an increase of glycerol, -phosphate and –esters and most fatty 278 

acids at 2d with the exception of decreased levels of C18:0 throughout Phase III, a fatty acid favoured 279 

for first or second position of TAG (Walker et al., 1970). Arabinose was detected in M. smegmatis at 1d 280 

and in M. phlei and M. avium at 28d. Galactose content was mainly unchanged over Phase III apart 281 

from decrease throughout in M. smegmatis and increase at 1d in M. phlei. At 1d M. phlei also had an 282 

increased content of mannose which was otherwise unchanged for the other four species. Inositol and 283 

trehalose were detected with similar trends of levels over Phase III. For M. smegmatis they were 284 

increased over the first two days and at 2d, respectively. In M. avium both saccharides were decreased 285 

after 1d and 2d, respectively. Inositol and trehalose were unchanged in M. bovis BCG until 28d at which 286 

point they were decreased. M. intracellulare also showed unchanged levels of inositol and an increase 287 

at 28d whereas trehalose was increased until 2d and showed no change at 28d. In M. phlei, trehalose 288 

and inositol were increased at 1d followed by no change of trehalose and decreased levels of inositol. 289 

MK9 levels showed no change over Phase III for all mycobacteria tested and for M. intracellulare after 290 

1d. For M. bovis BCG MK8 and MK9 were detected as described for Phase II. A smaller number of 291 

carotenoids (less than half) was detected for M. phlei and M. intracellulare over Phase III compared to 292 

Phase II. The carotenoids showed no change except for phytoene which was increased throughout 293 

Phase III.  294 

At 28d of Phase III a renewed change of metabolite levels were detected similar to Phase II but without 295 

an increase in cfu number. M. bovis BCG and M. smegmatis showed activation of sulphur and energy 296 

metabolism (e.g. glyoxylate shunt, fatty acid metabolism) and an increase of nucleotide levels 297 

(Supplementary File 2). M. smegmatis and M. intracellulare had increased contents of almost all fatty 298 

acids detected. Furthermore, M. avium and M. intracellulare showed activity for all metabolic pathways 299 

as described for Phase II with the exception of increased levels of nucleotides for M. avium. 300 

 301 

The most striking property of the hypoxic cultivation was a secreted lipid layer of only the two fast-302 

growing Mycobacterium species (Fig. 5a). Three to four days after induction of hypoxic conditions, a 303 

translucent layer became visible right above the cell pellet and showed a clear separation from the 304 

medium. The control tube, containing bacterial-free medium, showed no such occurrence, indicating 305 

that the layer was a product of the bacteria. In the case of the chromogenic M. phlei, the extracellular 306 

material was coloured yellow/orange throughout and showed a zone of denser colouration at the border 307 

to the cell pellet. Analysis of carotenoids extracted from the secretion did not show any results as the 308 

amount of carotenoids was below the level of detection due to the volume of secretion per tube (~50 309 

μl/10 mg cell pellet). Thus, the concentration of carotenoids could be significant but the total amount of 310 

extracellular material precludes adequate extractable amounts. 311 

After collection, the secreted layer was analysed for metabolite and protein composition. The analysis 312 

with MALDI showed two series of peaks from 525 to 917 m/z and 1005 to 2035 m/z (Fig. 5b). The 313 

fingerprint of the molecular ion peaks was typical for MALDI spectra of TAG as seen through 314 
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comparison with TAG spectra of M. brumae (Rafidinarivo et al., 2009). The MALDI data suggested that 315 

TAG was the main compound of the secretion as no other spectra were detected in the sample. The 316 

two series of peaks in the TAG spectrum of M. smegmatis further indicated two different types of TAGs 317 

due to a combination of fatty and mycolic acids with different chain length as described for M. brumae 318 

(Rafidinarivo et al., 2009).  319 

For the protein analysis, proteins were extracted from the secreted layer and separated by SDS-PAGE. 320 

The same pattern of protein bands was seen for both fast-growing mycobacteria. The two major protein 321 

bands of both species were identified as a putative diacylglycerol O-acyltransferase (DGAT, ~63 kDa) 322 

from Mycobacterium and acyl-CoA acetyltransferase (ACAT, ~40 kDa). Furthermore, a match for the 323 

early secreted antigen target (ESAT)-6-like protein EsxB (~11kDa) was found. 324 

 325 

  326 
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Discussion 327 

The metabolome, as the end product of gene expression and protein regulation (Harrigan and 328 

Goodacre, 2003; Boshoff and Lun, 2010), can be used to give a mechanistic insight into adaptation 329 

processes of an organism. An example in the present study is increasing levels of uracil detected 330 

through all culture conditions as part of DNA repair of G+C rich bacteria in macrophage infections 331 

(Venkatesh et al., 2003; Cossu et al., 2012). Difficulties of metabolite profiling methods, including the 332 

quick metabolic turn-over and leakage during sampling, were minimised in the approach used (Drapal 333 

et al., 2014) and results reveal snapshots of the intracellular metabolism. Furthermore, the comparison 334 

of the metabolic data with transcriptional and translational data elucidates the principal mode of cellular 335 

regulation during adaptation to a stress condition.  336 

The identified common properties of all mycobacteria specific to a culture condition (Fig. 6) were 337 

consistent with transcriptional and translational data published (e.g. during macrophage infection 338 

(Sassetti and Rubin, 2003)). For Phase I this included an active nucleotide and amino acid metabolism 339 

(Wang et al., 2005) which ceased with cell replication over Phase III as reported under in vivo and in 340 

vitro conditions (Wayne and Sohaskey, 2001; Betts et al., 2002). Additionally, changes in homocysteine 341 

levels as precursor for cell wall maintenance (Dhiman et al., 2009) and for protein and nucleotide 342 

synthesis (Singhal et al., 2013) were detected. MK9 and isoprenoids, both involved in the electron 343 

transport chain, seemed to play an essential interconnected role over all three conditions tested (Lee 344 

et al., 2008; Dhiman et al., 2009). Another important and already well known compound class for 345 

mycobacteria are lipids which act as a barrier to the environment (e.g. TDM) (Archuleta et al., 2005) 346 

and as carbon/energy storage (e.g. TAG) (Crellin et al., 2013). Their precursor metabolites detected 347 

included fatty acids, monosaccharides and glycerol derivatives. All of these metabolites displayed an 348 

active metabolism during replication cycles for plasma membrane and cell wall (Sassetti et al., 2003; 349 

Crellin et al., 2013) as well as part of the adaptation to environmental changes (Archuleta et al., 2005) 350 

and the transition to the dormant state in Mtb as reported in mycobacterial infections (Stehr et al., 2013). 351 

One typical mycobacterial feature is the redirection of the carbon flow under reduced oxygen conditions 352 

which results in a switch of the TCA cycle to the glyoxylate shunt (Sassetti and Rubin, 2003; Eoh and 353 

Rhee, 2013). Succinic acid and glyoxylate, both products of the isocitrate lyase in the glyoxylate shunt 354 

(Eoh and Rhee, 2013), were detected in this study. The detection of both of those metabolites over 355 

Phase I suggested that the glyoxylate shunt was already activated during active replication contrary to 356 

published literature (e.g. Wayne and Sohaskey, 2001; Chao and Rubin, 2010). Levels of glyoxylate and 357 

related metabolites indicated a far less active glyoxylate shunt over Phase II than that described for a 358 

transcriptomic study following progressive nutrient depletion similar to the conditions in the present 359 

study (Hampshire et al., 2004). 360 

The main metabolic changes, which showed distinct differences between fast- and slow-growing 361 

mycobacteria, were glutamic acid levels and sequestration of TAG over Phase III. Increased levels of 362 

glutamic acid in the fast-growing species over Phase I were coherent with nitrogen assimilation under 363 

nitrogen excess in the medium (Amon et al., 2009) and suggests that fast-growing species can sense 364 

upcoming limitation in the surrounding medium and adapt accordingly (Smeulders et al., 1999). 365 

Contrary to this, glutamic acid levels over Phase I in the slow-growing species were consistent with 366 

utilisation of the latter for nucleotide and protein synthesis and transcriptional data for optimal growth 367 
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(Sassetti et al., 2003). Over Phase III the lack of nucleotides in combination with decreased levels of 368 

glutamic acid in slow-growing species suggested secretion of glutamic acid into the extracellular 369 

environment. Pathogenic mycobacteria (e.g. M. bovis and M. tuberculosis) are known to release 370 

glutamine synthetase during infection and synthesise poly-L-glutamate/glutamine as an extracellular 371 

carbon and nitrogen storage (Harth and Horwitz, 1999). The intracellular accumulation of glutamic acid 372 

for non-pathogenic mycobacteria (e.g. M. phlei and M. smegmatis) supports the hypothesis that 373 

glutamic acid secretion is a trait of pathogenic mycobacteria. 374 

For fast-growing species a release of TAG into the medium was observed a few days after Phase III 375 

induction (Fig. 5). Lipid body formation with TAG is a common property of mycobacteria during the 376 

hypoxic phase of the infection (e.g. Garton et al., 2002; Low et al., 2009) and M. smegmatis is known 377 

to constantly releasing fatty acids or TAG into the medium (Selishcheva et al., 2012). The proteins 378 

detected in the secreted layer suggest simultaneous synthesis of TAG by DGAT similar to mycobacterial 379 

infections (Stehr et al., 2013) and β-oxidation of fatty acids by ACAT for butyryl-CoA and acetyl-CoA 380 

synthesis (Kanehisa et al., 2006). DGAT was detected in higher amounts than ACAT, resulting in more 381 

TAG synthesis compared to β-oxidation and consequently the visible TAG layer. Saprophytic 382 

mycobacteria usually cannot gain access to lipids originated from a host such as pathogenic 383 

mycobacteria (Russell et al., 2010). In the present study, oleic acid was available in the medium in its 384 

free form and through hydrolysis of Tween 80. Hence, the production and secretion of TAG with oleic 385 

acid might be the adaptation process of choice for non-pathogenic mycobacteria to create an 386 

environment similar to foamy macrophages during infection with Mtb (Stehr et al., 2013) and secure 387 

storage of extracellular signalling metabolites (oleic acid) for resuscitation (Selishcheva et al., 2012). 388 

Similar metabolic changes related to TAG synthesis were detected over Phase II and highlight that TAG 389 

synthesis and secretion might be a reaction to stressful conditions including nutrients and/or oxygen 390 

depletion, leading to a NRP state (Wayne and Sohaskey, 2001). The metabolic changes related to 391 

phenotypes suggests a possible genetic variation between pathogenic and non-pathogenic 392 

mycobacteria due to necessities presented by their respective ecological niches. 393 

In the present study a renewed increase in metabolic activity and growth rate was detected at 28d of 394 

Phase II and III cultivation for all mycobacteria tested. The metabolic activities correlated with gene 395 

expression for optimal growth over Phase I (Sassetti et al., 2003), which indicates the presence of active 396 

and “dormant” cells in the culture. This supports reports of heterogeneous culture in in vivo and in vitro 397 

studies and suggested that this phenomenon is a mycobacterial trait and might provide new insight into 398 

NRP cultures (Smeulders et al., 1999; Chao and Rubin, 2010).  399 

Despite the metabolic differences of non-pathogenic and pathogenic mycobacteria, a comparison of 400 

their metabolic features provided valuable insight to in vivo studies as metabolic reactions detected 401 

were consistent with results described for mycobacteria under macrophage infection. The present study 402 

revealed that all Mycobacterium species maintain an active turn-over of metabolites involved in 403 

transcription, translation and other general cellular processes through all three culture conditions. The 404 

comparison with published literature highlighted that metabolic changes over a gradually occurring 405 

nutrient depletion (Phase I and II) seemed to be more influenced by transcriptional and translational 406 

processes, whereas cells experiencing a sudden oxygen reduction (Phase III) showed a more 407 

independent metabolic regulation related to a phenotype. This suggested a more complex and diverse 408 

regulation of intracellular processes over Phase III for the different phenotypes, contrary to the orderly 409 
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shift-down previously described (Cunningham and Spreadbury, 1998). This observation emphasises 410 

the importance of integrated data from several levels of cellular regulation to guarantee sufficient data 411 

for a more complex understanding of the biological processes as a whole. 412 

In conclusion, all five Mycobacterium species can be considered as model organisms for Mtb in relation 413 

to cell wall and MK9 synthesis over the cultures conditions tested. Whereas, most other metabolic 414 

changes detected over the three culture conditions (e.g. poly-L-glutamate layer over Phase III) showed 415 

a divide between fast- and slow-growing mycobacteria. This suggested that for metabolite profiling 416 

study purposes Mycobacterium species phenotypically closer related to Mtb (e.g. M. bovis BCG and M. 417 

avium) should be recommended as model organism. Given that a chloroform/methanol/water step, 418 

lethal to mycobacteria, is used for the extraction of metabolites, the methodology is applicable to use 419 

with ACDP3 pathogens such as virulent Mtb. The strong correlation between responses detected in the 420 

present laboratory based study and published data, often acquired under conditions approaching in 421 

vivo scenarios, adds support to the metabolomic approach as a means of obtaining conclusive datasets 422 

for interpretation into exploitable networks. Thus, a metabolite profiling of at least one Mtb strain should 423 

be done to further validate the presented conclusions and lead to a more precise consideration for the 424 

choice of model species for metabolic modelling.  425 

 426 

  427 
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 552 

FIGURE LEGENDS 553 

Fig. 1. Growth curves of M. smegmatis (a) and M. bovis BCG (b) under aerated and hypoxic cultivation. 554 

These are representative of all the mycobacteria studied, though the actual OD values and sampling 555 

points (diamonds, crosses and circles) vary for each species tested is (see methods). For Phase I 556 

measurements were taken from lag to stationary phase. The induction time of elongated, aerated 557 

(Phase II) and hypoxic (Phase III) cultivation is indicated by an arrow.  558 

Fig. 2. Heat map of metabolite levels measured from lag phase over log and stationary phase. M. 559 

smegmatis, M. phlei, M. bovis BCG, M. avium and M. intracellulare were grown under aerated 560 

conditions and sampled at lag, log and stationary phase. The reference point for metabolite levels was 561 

lag phase. Metabolites were grouped in polar (nucleotides, amino acids, organic acids and saccharides) 562 

and non-polar (fatty acids, glycerol, -esters, -phosphates and isoprenoids) extracts. Changes are 563 

indicated as increase (green), no change (grey), decrease (red) and not detected (white) shown in the 564 

legend. Results were means of five replicates. 565 

Fig. 3. Heat map of metabolite levels measured over Phase II. M. smegmatis, M. phlei, M. bovis BCG, 566 

M. avium and M. intracellulare were grown under aerated conditions throughout and sampled from log 567 

phase onwards over 28d. The reference point for metabolite levels was the first sampling point at log 568 

phase. Metabolites were grouped in polar (nucleotides, amino acids, organic acids and saccharides) 569 

and non-polar (fatty acids, glycerol, -esters, -phosphates and isoprenoids) extracts. Changes are 570 

indicated as increase (green), no change (grey), decrease (red) and not detected (white) shown in the 571 

legend. Results were means of five replicates. 572 

Fig. 4. Heat map of metabolite levels measured over Phase III. M. smegmatis, M. phlei, M. bovis BCG, 573 

M. avium and M. intracellulare. Those mycobacteria were grown under hypoxic conditions from log 574 

phase onwards and sampled over this period until 28d. The reference point for metabolite levels was 575 

the first sampling point at log phase. Metabolites were grouped in polar (nucleotides, amino acids, 576 

organic acids and saccharides) and non-polar (fatty acids, glycerol, -esters, -phosphates and 577 

isoprenoids) extracts. Changes are indicated as increase (green), no change (grey), decrease (red) and 578 

not detected (white) shown in the legend. Results were means of five replicates. 579 

Fig. 5 Lipid secretion of M. smegmatis under hypoxic cultivation. (a) The secretion layer occurred 580 

after three to four days of hypoxic cultivation of M. smegmatis. The translucent secretion layer (arrow) 581 

was collected and analysed with MALDI for metabolite composition. (b) An average MALDI spectrum is 582 

presented. 583 

Fig. 6. Schematic representation of metabolic processes of mycobacteria over Phase I, II and III. 584 
Mycobacterial cells were schematically displayed for Phase I, II and III. Arrows represented the 585 
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transition from Phase I to Phase II or III with depletion (cross) of oxygen (O2) and/or nutrients. 586 
Intracellular metabolic processes were indicated with black arrows and utilisation of compound classes 587 
for the cell wall (grey circle) with grey arrows. The same changes of compound classes for all 588 
mycobacteria tested were highlighted as up- and down- regulated (green and red, respectively).  589 
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