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Abstract

The security of several homomorphic encryption schemes depends on the hardness of variants
of the Approximate Common Divisor (ACD) problem. We survey and compare a number of
lattice-based algorithms for the ACD problem, with particular attention to some very recently
proposed variants of the ACD problem. One of our main goals is to compare the multivariate
polynomial approach with other methods. We find that the multivariate polynomial approach is
not better than the orthogonal lattice algorithm for practical cryptanalysis.

We also briefly discuss a sample-amplification technique for ACD samples and a pre-processing
algorithm similar to the Blum-Kalai-Wasserman (BKW) algorithm for learning parity with noise.
The details of this work are given in the full version of the paper.

1. Introduction

The approximate common divisor problem (ACD) was first studied by Howgrave-
Graham [13]. Further interest in this problem was provided by the homomorphic encryption
scheme of van Dijk, Gentry, Halevi and Vaikuntanathan [9] and its variants [7, 8, 5]. The
computational problem is to determine a secret integer p when one is given many samples of
the form xi = pqi + ri for small error terms ri. More precisely, p is an η bit odd integer, the xi
are γ bits, and the ri are ρ bits, where ρ is significantly smaller than η. For a precise definition
see Section 2.

The original papers [13, 9] sketched a large number of possible lattice attacks on this problem,
including using orthogonal lattices and Coppersmith’s method. (For background on lattices
see Appendix A.) Further cryptanalytic work was done by [3, 6, 8, 10]. Our paper surveys
and compares the known lattice algorithms for the ACD problem. We study several recently
proposed variants of the ACD problem [4, 16, 5], and argue that they may offer greater security
than the original ACD proposal. Our main finding is that the orthogonal lattice approach is
better than the multivariate polynomial approach for practical cryptanalysis.

We also briefly discuss a pre-processing idea, motivated by the Blum-Kalai-Wasserman
algorithm for learning parity with noise (LPN), and a sample-amplification idea motivated
by work on LPN and learning with errors (LWE). The details can be found in the full version
of the paper [11].

We do not consider in this paper the variants of “exhaustive search” over the errors ri, as
proposed by Chen and Nguyen [3], Coron, Naccache and Tibouchi [8], and Lee and Seo [14].

2. Statement of the approximate common divisor problems

There are at least four variants of the approximate common divisor problem in the literature.
We now define these problems precisely. Fix γ, η, ρ ∈ N. Let p be an η-bit odd integer, so that

2η−1 < p < 2η. (2.1)
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It is not necessary for p to be prime, and in some applications (e.g., Appendix D of [9]) it is
definitely not prime. Define the efficiently sampleable distribution Dγ,ρ(p) as

Dγ,ρ(p) = {pq + r | q ← Z ∩ [0, 2γ/p), r ← Z ∩ (−2ρ, 2ρ)}. (2.2)

In practice we have ρ significantly smaller than η and so all samples from Dγ,ρ(p) will satisfy
xi < 2γ with overwhelming probability. Note also that if t is sufficiently large and x1, . . . , xt
are sampled from Dγ,ρ(p) then we expect there to be at least one index i such that

2γ−1 < xi < 2γ . (2.3)

Definition 1. Let notation be as above. The approximate common divisor problem
(ACD) is: Given polynomially many samples xi from Dγ,ρ(p), to compute p.

The partial approximate common divisor problem (PACD) is: Given polynomially
many samples xi from Dγ,ρ(p) and also a sample x0 = pq0 for uniformly chosen q0 ∈ Z ∩
[0, 2γ/p), to compute p.

In this paper we focus on the “computational” versions of the problems. There are also
“decisional” versions, but it is known (see [9]) that the computational and decisional problems
are equivalent. Furthermore, there are no known lattice attacks that directly solve a decisional
problem without first essentially solving the computational problem.

Suggested parameters in [9] are (ρ, η, γ) = (λ, λ2, λ5), where λ is a security parameter, so
one sees that ρ is extremely small compared with η.

Cheon et al [4] have given a homomorphic encryption scheme that uses the Chinese remainder
theorem to pack more information into a ciphertext. This system features ` η-bit primes pi.
Let π = p1 · · · p` and x0 = πq0, where γ ≥ `η. A ciphertext is an element c = πq + r where r is
congruent modulo each prime pj to a small integer rj , and information can be encoded in each
value ri (these are called CRT-components). The public key includes a number of ciphertexts
xi that are encryptions of 0, as well as a number of ciphertexts that are encryptions of 1 in a
single CRT component. For later use we introduce the notation xi = pjqi,j + ri,j for 1 ≤ i ≤ t
and 1 ≤ j ≤ `. We refer to [4] and Chapter 7 of Lepoint [16] for more details about parameters.
We call the problem of computing p1, . . . , p` from the public key the CRT-ACD problem.

An important detail about CRT-ACD is that, since π is very large compared with an
individual pi, one can use smaller values for the q. In terms of cryptanalysis, the problem
can be reduced to a standard PACD instance of the form x0 = p1q

′
0 and xi = p1q

′
i + r′i, and it

is these attacks that are used to specify the parameters. A reduction is given in Lemma 1 of [4]
that gives evidence that the CRT variant of the ACD problem is hard, but this reduction does
not preserve the sizes of parameters and so it is not very useful for setting concrete parameters.
It is an open problem to give an algorithm to solve the CRT-ACD problem that exploits the
CRT structure.

Cheon and Stehlé [5] have given a scale-invariant homomorphic encryption scheme that
permits a very different flavour of parameters. Furthermore, they give an explicit hardness
result for their parameters, by showing that if one can solve the (decisional) approximate
common divisor problem then one can solve the (decisional) learning with errors problem. The
parameters in [5] are set as

(ρ, η, γ) = (λ, λ+ d log(λ),Ω(d2λ log(λ))),

where d is the depth of the circuit to be evaluated homomorphically. Note that ρ is no longer
extremely small compared with η. We will sometimes refer to these parameters as the Cheon-
Stehlé approximate common divisor problem. We draw the reader’s attention to a typo
in [5]: regarding the security of the parameters against the multivariate polynomial attack the
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authors wrote γ < η2 but should have written γ > η2; in any case the condition γ > η2 is not
required to have secure parameters.

We will see that the lattice algorithms for ACD seem to work less well for the CRT-ACD
and Cheon-Stehlé-ACD. In particular, the Cheon-Stehlé-ACD seems to offer a higher degree
of security, which is not surprising since that problem enjoys some evidence for its hardness.

3. Simultaneous Diophantine approximation approach (SDA)

This section recalls the simplest, and still one of the most effective, lattice attacks on ACD.
It was first described by Howgrave-Graham (see Section 2 of [13]) and was further developed
in Section 5.2 of [9]. For the benefit of non-expert readers we present all the details.

The basic idea of this attack is to note that if xi = pqi + ri for 0 ≤ i ≤ t, where ri is small,
then

xi
x0
≈ qi
q0

for 1 ≤ i ≤ t. In other words, the fractions qi/q0 are an instance of simultaneous Diophantine
approximation to xi/x0. If one can determine such a fraction qi/q0 then one can solve the
ACD problem by computing r0 ≡ x0 (mod q0) and hence (x0 − r0)/q0 = p. We will see that
this attack does not benefit significantly from having an exact sample x0 = pq0, so we do not
assume that such a sample is given.

Following [9] we build a lattice L of rank t+ 1 generated by the rows of the basis matrix

B =


2ρ+1 x1 x2 · · · xt

−x0
−x0

. . .

−x0

 . (3.1)

Note that L contains the vector

v = (q0, q1, · · · , qt)B
= (q02ρ+1, q0r1 − q1r0, · · · , q0rt − qtr0)

Since qi ≈ 2γ−η the Euclidean norm of v is approximately
√
t+ 1 2γ−η+ρ+1 (we give a more

precise estimate in Lemma 3.1). We call this vector the target vector.
Since the basis matrix B of the lattice L is given in upper triangular form, the determinant

of L is easily computed as det(L) = 2ρ+1xt0. Hence, if

√
t+ 1 2γ−η+ρ+1 <

√
t+ 1

2πe
det(L)1/(t+1)

then we expect by the Gaussian heuristic that the target vector v is the shortest non-zero
vector in the lattice. The attack is to run a lattice basis reduction algorithm to get a candidate
solution w for the shortest non-zero vector. One then divides the first entry of w by 2ρ+1 to
get a candidate value for q0 and then computes r0 = x0 (mod q0) and p = (x0 − r0)/q0. One
can then “test” this value for p by checking if xi (mod p) are small for all 1 ≤ i ≤ t. We call
this the SDA algorithm.

3.1. Heuristic analysis of the SDA Algorithm

The method is analysed in Section 5.2 of [9], where it is argued that if t < γ/ρ then there
are likely many vectors of around the same size or smaller as the desired vector. Hence it is
argued that we need t > γ/ρ to have any chance for this method to succeed, even disregarding
the difficulties of lattice reduction methods to find the shortest vector.
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We now refine the analysis of [9], with an eye to the Cheon-Stehlé-ACD parameters. First we
state and prove Lemma 3.1, which gives an improved estimate of the size of the target vector.

Lemma 3.1. The expected length of the target vector v has a tight upper bound of

0.47

√
t+ 1

p
2ρ+γ .

Proof. Note that both the qi and the ri are random variables on Z with distributions

qi ← Uni{0, . . . , bp−12γc} and ri ← Uni{−2ρ, . . . 2ρ},

where Uni denotes the uniform distribution and ← represents sampling from a distribution. It
follows that E

(
q2i
)
≈ 1

3p
−222γ , E(ri) = 0 and E

(
r2i
)
≈ 1

322ρ. Furthermore, all of these random
variables are independent, so we have

E
(
(q0ri − qir0)2

)
= E

(
q20r

2
i

)
+ E

(
q2i r

2
0

)
− 2E (q0riqir0)

= E
(
q20
)
E
(
r2i
)

+ E
(
q2i
)
E
(
r20
)
− 2E (q0qi) E (ri) E (r0)

≈ 2
9p
−222(ρ+γ).

It follows that the root mean squared length of v is given by

E
(
|v|2

) 1
2 ≈

(
2
9

) 1
2 (t+ 1)

1
2 p−12(ρ+γ) ≈ 0.47 (t+ 1)

1
2 p−12(ρ+γ).

Jensen’s Inequality shows that E(|v|) ≤ E(|v|2)
1
2 , and this bound is tight for large dimension

t. This completes the proof.

The attacker hopes that the lattice is a “gap lattice” in the sense that the first minimum
λ1(L) = ‖v‖ is much shorter than the length λ2(L) of the next shortest vector in L independent
of v. We apply the Gaussian heuristic to estimate

λ2(L) ≈
√

(t+ 1)/(2πe) det(L)1/(t+1) ≈
√

(t+ 1)/(2πe)2(ρ+1+γt)/(t+1).

We know LLL succeeds in finding v if λ2(L) > 2t/2λ1(L), but we replace this with heuristics.
Hence, using equation (A.2), the target vector is the shortest vector in the lattice and is found
by LLL if

0.47
√
t+ 1(1.04)t+12γ+ρ−η <

√
(t+ 1)/(2πe)2(ρ+1+γt)/(t+1). (3.2)

Ignoring constants and the (1.04)t+1 term in the above equation, we find that a necessary
(not sufficient) condition for the algorithm to succeed is

t+ 1 >
γ − ρ
η − ρ

. (3.3)

For the Cheon-Stehlé variant we may have ρ close to η (e.g., ρ = λ and η = λ+ 10 log(λ)),
which means the required dimension can grow very fast even with relatively small values for γ.
This suggests the Cheon-Stehlé variant of ACD is significantly harder than the original variant
from [9], which is consistent with the fact that [5] contains a reduction from their variant of
ACD to the LWE problem.

The above analysis ignored some terms, we refer to the full version of the paper [11] for a
more careful analysis.

It is interesting to consider this attack in the context of the CRT-ACD. In this variant we
have xi = pjqi,j + ri,j for 1 ≤ j ≤ ` where each ri,j is small. It follows that the lattice contains
the vectors

(q0,j2
ρ+1, q0,jr1,j − q1,jr0,j , · · · , q0,jrt,j − qt,jr0,j)
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for all 1 ≤ j ≤ ` and these all have similar length. It is important to note that any one of
these vectors allows to compute one of the prime factors pj , by computing q0,j from the first
component of the vector and then pj = bx0/q0,je. But if (u12ρ+1, u2, . . . , ut) is a short linear
combination of several of these vectors then there is no reason to expect x0 (mod u1) to be a
small integer, or that bx0/u1c is one of the primes in the private key.

4. Orthogonal based approach (OL)

Nguyen and Stern (see for example [19]) have demonstrated the usefulness of the orthogonal
lattice in cryptanalysis, and this has been used in several ways to attack the ACD problem.
Appendix B.1 of [9] gives a method based on vectors orthogonal to (x1, . . . , xt). Their idea is
that the lattice of integer vectors orthogonal to (x1, . . . , xt) contains the sublattice of integer
vectors orthogonal to both (q1, . . . , qt) and (r1, . . . , rt). Later in Appendix B.1 of [9] a method is
given based directly on vectors orthogonal to (1,−r1/R, . . . ,−rt/R), where R = 2ρ. Ding and
Tao [10] have given a method based on vectors orthogonal to (q1, . . . , qt). Cheon and Stehlé [5]
have considered the second method from Appendix B.1 of [9].

Our analysis (as with that in [9]) and experiments suggest all these methods have essentially
the same performance in both theory and practice. Indeed, all three methods end up computing
short vectors that are orthogonal to both the vector (q1, . . . , qt) and some vector related to the
error terms ri, for example see Lemma 4.2. Hence, in this paper we follow [9, 5] and study the
use of vectors orthogonal to (1,−r1/R, . . . ,−rt/R). The attacks do not benefit significantly
from having an exact sample x0 = pq0 so we do not use it.

Let R = 2ρ be an upper bound on the absolute value of the errors ri in xi = pqi + ri. Let L
be a lattice in Zt+1 with basis matrix

B =


x1 R
x2 R
x3 R
...

. . .

xt R

 . (4.1)

Clearly the rank of B is t. The lattice volume was estimated in previous works, but we give an
exact formula (the proof is given in the full version of the paper [11]).

Lemma 4.1. The Gram matrix BBT of L is of the form R2It + xTx where x = (x1, . . . , xt)
and It is the t× t identity matrix. The volume of the lattice is Rt−1

√
R2 + x21 + · · ·+ x2t .

Any vector v = (v0, v1, · · · , vt) ∈ L is of the form

v = (u1, · · · , ut)B =

(
t∑
i=1

uixi, u1R, u2R, · · · , utR

)
,

where ui ∈ Z. The main observation of Van Dijk et al. [9] is

v0 −
t∑
i=1

vi
R
ri =

t∑
i=1

uixi −
t∑
i=1

uiR

R
ri =

t∑
i=1

ui(xi − ri) = 0 (mod p). (4.2)

Since we don’t know p, we wish to have a linear equation over Z. The equality holds over Z if
|v0 −

∑t
i=1

vi
R ri| < p/2. The following lemma gives a bound on v that implies we get an integer

equation as desired.
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Lemma 4.2. Let B be as in equation (4.1). Let v = (u0, u1, u2, · · · , ut)B. Let ‖v‖ ≤
2η−2−log2(t+1). Then

|v0 −
t∑
i=1

uiri| < p/2 and

t∑
i=1

uiqi = 0.

Proof. Let v = (v0, v1, · · · , vt) =
(∑t

i=1 uixi, u1R, u2R, · · · , utR
)

and let N = ‖v‖. Then

|v0| ≤ N and |uiri| ≤ |uiR| ≤ N for 1 ≤ i ≤ t. Thus∣∣∣∣∣v0 −
t∑
i=1

uiri

∣∣∣∣∣ ≤ |v0|+
t∑
i=1

|uiri| ≤ (t+ 1)N.

Since N ≤ 2η−2−log2(t+1), we have (t+ 1)N < 2η−2 < p/2 since p > 2η−1. Hence |v0 −∑t
i=1 uiri| < p/2.
To prove

∑t
i=1 uiqi = 0, suppose

∑t
i=1 uiqi 6= 0 so that p|

∑t
i=1 uiqi| ≥ p > 2η−1. Since xi =

pqi + ri, we have

p

∣∣∣∣∣
t∑
i=1

uiqi

∣∣∣∣∣ =

∣∣∣∣∣
t∑
i=1

ui(xi − ri)

∣∣∣∣∣
≤

∣∣∣∣∣
t∑
i=1

uixi

∣∣∣∣∣+

∣∣∣∣∣
t∑
i=1

uiri

∣∣∣∣∣ .
But, by the previous argument, this is ≤ (t+ 1)N < 2η−1, which is a contradiction.

In other words, every short enough vector v in the lattice gives rise to an inhomogeneous
equation v0 =

∑
uiri in the t variables ri, and a homogeneous equation

∑
i uiqi = 0 in the t

variables qi.
There are therefore two approaches to solve the system. Both [9, 5] use t inhomogeneous

equations and solve for the ri, but we believe it is simpler and faster to use t− 1 equations
and then find the kernel of the matrix formed by them to solve for (q1, . . . , qt). We call these
methods the OL algorithm.

Following the analysis in [9, 5], if one ignores constants and assumes the lattice reduction
algorithm is perfect then a necessary condition on the dimension is t ≥ (γ − ρ)/(η − ρ), which
is the same as equation (3.3) for the SDA method. Hence, we deduce that the OL method
has essentially the same power as the SDA method. Our experimental results (see Table B.2)
confirm this, though they suggest the OL method is slightly faster (due to the smaller size of
entries in the basis matrix defining the lattice). For more details about the analysis we refer
to the full version of the paper [11], and also [9, 5].

5. Multivariate polynomial approach (MP)

Howgrave-Graham [13] was the first to consider reducing the approximate common divisor
problem to the problem of finding small roots of multivariate polynomial equations. The idea
was extended in Appendix B.2 of van Dijk et al [9]. Finally, a detailed analysis was given by
Cohn and Heninger [6]. This approach has some advantages if the number of ACD samples
is very small (the original context studied in [13]), but we focus on the use of this method
in practical cryptanalysis where the number of samples is large. Our heuristic analysis and
experimental results suggest that, assuming sufficiently many ACD samples are available, the
best choice of parameters for the multivariate approach is to use linear polynomials, in which
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case the algorithm is equivalent to the orthogonal lattice method. In other words, we find that
the multivariate approach seems to have no advantage over the orthogonal lattice method.

The multivariate approach can be applied to both the full and partial ACD problems, but it
is simpler to explain and analyse the partial ACD problem. Hence, in this section we restrict
to this case only.

We change notation from the rest of the paper to follow more closely the notation used
in [6]. Note that the symbols Xi are variables, not ACD samples. Hence, let N = pq0 and let
ai = pqi + ri for 1 ≤ i ≤ m be our ACD samples, where |ri| ≤ R for some given bound R. The
idea is to construct a polynomial Q(X1, X2, . . . , Xm) in m variables such that Q(r1, · · · , rm) ≡
0 (mod pk) for some k. The parameters m and k are optimised later. In [6], such a multivariate
polynomial is constructed as integer linear combinations of the products

(X1 − a1)i1 · · · (Xm − am)imN `

where ` is chosen such that i1 + · · ·+ im + ` ≥ k.
An additional generality is to choose a degree bound t ≥ 1 (do not confuse this with the

use of the symbol t previously) and impose the condition i1 + · · ·+ im ≤ t. The value t will be
optimised later.

The lattice L is defined by the coefficient row vectors of the polynomials

f[i1,...,im](X1, . . . , Xm) = (RX1 − a1)i1 · · · (RXm − am)imN `, (5.1)

such that i1 + · · ·+ im ≤ t and ` = max(k −
∑
j ij , 0). It is shown in [6] that L has dimension

d =
(
t+m
m

)
and determinant

det(L) = R(t+mm ) mt
m+1N(k+mm ) k

m+1 = 2d
ρmt
m+1+(k+mm ) γk

m+1

where we use the natural choice R = 2ρ. There is no benefit to taking k > t, as it leads to the
entire matrix for the case t = k being multiplied by the scalar Nk−t.

Let v be a vector in L. One can interpret v = (vi1,··· ,imR
i1+···+im) as the coefficient vector

of a polynomial

Q(X1, . . . , Xm) =
∑

i1,··· ,im

vi1,··· ,imX
i1
1 · · ·Xim

m .

If |Q(r1, · · · , rm)| < pk then we have Q(r1, · · · , rm) = 0 over the integers, so we need to bound
|Q(r1, · · · , rm)|. Note that

|Q(r1, · · · , rm)| ≤
∑

i1,··· ,im

|vi1···im ||r1|i1 · · · |rm|im

≤
∑

i1,··· ,im

|vi1···im |Ri1 · · ·Rim

= ‖v‖1.

Hence, if ‖v‖1 < pk then we have an integer polynomial with the desired root. We call a
vector v ∈ L such that ‖v‖1 < pk a target vector. We will need (at least) m algebraically
independent target vectors to be able to perform elimination (using resultants or Gröbner
basis method) to reduce to a univariate polynomial equation and hence solve for (r1, . . . , rm).
One then computes p = gcd(N, a1 − r1). Note that solving multivariate polynomial equations
of degree greater than one in many variables is very time consuming and requires significant
memory. In practice, the elimination process using Gröbner basis methods is faster if the system
is overdetermined, so we generally use more than m polynomials. We call this process the MP
algorithm.

Note that the case (t, k) = (1, 1) gives essentially the same lattice as in equation (4.1) and
so this case of the MP algorithm is the same as the orthogonal lattice attack (this was already
noted in [9]). Our concern is whether taking t > 1 gives rise to a better attack. We will argue
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that, when the number of ACD samples is large, the best choices for the MP algorithm are
(t, k) = (1, 1), and so the MP method seems to have no advantage over the orthogonal lattice
method.

5.1. Heuristic Analysis

Cohn and Heninger [6] give a heuristic theoretical analysis of the MP algorithm and suggest
optimal parameter choices (t,m, k). We briefly recall the ideas, and refer to [6] for details. The
symbols � and � do not have a precise technical meaning, but are supposed to convey an
informal assurance of “significantly less (greater) than”.

The MP algorithm succeeds if it produces m vectors in the lattice such that ‖v‖1 < pk. Using
‖v‖1 ≤

√
d‖v‖ (where the latter is the Euclidean norm) and the bounds from Assumption A.1

we have that an LLL-reduced basis satisfies

‖bi‖1 ≤ d(1.02)d det(L)1/d

where d is the dimension of the lattice. If this bound is less than pk ≈ 2ηk then we will have
enough target vectors. Hence we need

dd(1.02)d
2

det(L) < 2ηkd

and so we need

d log2(d) + d2 log2(1.02) + dρ
mt

m+ 1
+ γ

(
k +m

m

)
k

m+ 1
< kηd. (5.2)

Cohn and Heninger [6] introduce a parameter β = η/γ � 1 so that p ≈ Nβ . They work with
the equation

mtρ

(m+ 1)k
+

γkm

(m+ 1)tm
< η = βγ (5.3)

which is a version of equation (5.2), with some terms deleted and approximating
(
k+m
m

)
≈ km

and d =
(
t+m
m

)
≈ tm.

Their analysis assumes m is fixed and considers taking t large. They choose t ≈ β−1/mk,
which means that t� k. Their method allows errors up to R = 2ρ = Nβ(m+1)/m

.
The main “heuristic theorem” of [6] can be stated as: for fixed m, if β = η/γ where η2 � γ

and ρ = log2(R) < η(1 + o(1))β1/m then one can solve the ACD problem.
Note that the dimension in their method is approximated as tm ≈ β−1km ≥ β−1 = γ/η, so

we yet again we encounter the same dimension bound as the previous methods (at least, when
ρ is small).

5.2. Further Analysis

We now consider the parameters more generally, unlike in [6] where it was assumed that the
optimal solution would be to take t, k > 1.

Section 2.1 of [6] suggests k ≈ (β1+ε log2(N))1/(2εm). Taking m→∞ with these parameters
results in (t, k) = (1, 1), which is consistent with our claim that (t, k) = (1, 1) is optimal when
m may be chosen to be large. However, one could speculate that a general analysis could lead
to different asymptotics. So we give a more general analysis.

We now derive some useful necessary conditions from equation (5.2) for the algorithm to
succeed. Noting that, for large m, mt

m+1 ≈ t we see that it is necessary to have

tρ < kη, (5.4)
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and so t cannot grow too fast compared with k. Similarly, we see it is necessary that
γ
(
k+m
m

)
k

m+1 < kηd which is equivalent to

d =

(
t+m

m

)
>
γ

η

(
k +m

m

)
1

m+ 1
. (5.5)

When k = 1 then the right hand side is equal to γ/η, but it gets steadily larger as k grows. This
provides some evidence that k > 1 may not lead to an optimal attack. The bound also shows
that the MP method does not overcome the minimal degree bound γ/η we already saw for
the SDA and OL methods, at least when ρ is small. (In the case (t, k) = (1, 1) equation (5.2)
essentially becomes d+ 1 > γ/(η − ρ) which we have already seen in Sections 4 and 3.)

More generally, equation (5.2) implies, when m is large,

dρt + γ

(
k +m

m

)
k

m+1 < kηd.

Dividing by k and re-arranging gives

d >
γ

η − t
kρ

(
k +m

m

)
1

m+ 1
.

Since t
k ≥ 1 and

(
k+m
m

)
1

m+1 ≥ 1 we see that this is never better than the lattice dimension
bound d > γ

η−ρ from equation (3.3). Hence, there seems no theoretical reason why, when
m is large, the MP method should be better than the SDA or OL methods. Our practical
experiments confirm this (see below).

5.3. Comments

A further major advantage of the SDA and OL methods compared with the MP approach
with t > 1 is that the MP method with t > 1 requires solving systems of multivariate polynomial
equations, and the cost of this stage can dwarf the cost of the lattice stage.

Note that the heuristics differ between the cases t = 1 and t > 1. When t > 1 the number of
target vectors required is much smaller than the dimension d = dim(L) =

(
t+m
m

)
, however we

require the corresponding polynomials to be algebraically independent which is a much stronger
assumption than linear independence of the corresponding vectors. On the other hand, when
t = 1 we require m = d− 1 short vectors so need a stronger assumption on the shape of the
lattice basis.

Table A.1 at the end of the paper gives a comparison of different parameters for the MP
method with η = 100 and varying values of γ. For different choices of (t, k) we determine the
maximal ρ such that the MP algorithm with parameters (t, k) can solve the problem with high
probability. This table shows that (t, k) = (1, 1) allows to solve a wider range of parameters than
other choices, which confirms our argument that (t, k) = (1, 1) is better than other parameter
choices. Table B.1 considers larger values for γ (still with η = 100) and the aim of this table is
to emphasise the considerable increase in the running time when using t > 1.

It is also important to consider the parameters of interest in the Cheon-Stehlé scheme.
Hence we now suppose ρ ≈ η (e.g., ρ/η = 0.9) and ask if the MP method can be better than
the OL method in this setting. The condition tρ < kη implies that t ≈ k, (recall that t ≥ k)
in which case

(
k+m
m

)
≈ d =

(
t+m
m

)
. In the case t = k, dividing equation (5.2) by dt implies

d ≥ m+ 1 > γ/(η − ρ). Again, this suggests the MP approach has no advantage over other
methods for parameters of this type. Our experimental results confirm this (see Table A.1).
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6. Pre-processing of the ACD samples

The most important factor in the difficulty of the ACD problem is the ratio γ/η, which is
the size of the integers xi relative to the size of p. If one can lower γ for the same p and without
changing the size of the errors then one gets an easier instance of the ACD problem.

Hence, it is natural to consider a pre-processing step where a large number of initial samples
xi = pqi + ri are used to form new samples x′j = pq′j + r′j with q′j significantly smaller than
qi. The main idea we consider for doing this is by taking differences xk − xi for xk > xi and
xk ≈ xi. The essential property is that if xk ≈ xi then qk ≈ qi but rk and ri are not necessarily
related at all. Hence xk − xi = p(qk − qi) + (rk − ri) is an ACD sample for the same unknown
p but with a smaller value for q and a similar sized error r. It is natural to hope† that one can
iterate this process until the samples are of a size suitable to be attacked by the orthogonal
lattice algorithm.

This idea is reminiscent of the Blum-Kalai-Wasserman (BKW) algorithm [2] for learning
parity with noise (LPN). In that case we have samples (a, b) where a ∈ Zn2 is a vector of length
n and b = a · s + e, where s ∈ Zn2 is a secret and e is a noise term which is usually zero. We
wish to obtain samples such that a = (1, 0, 0, . . . , 0), or similar, and we do this iteratively by
adding samples (ak, bk) + (ai, bi) where some coordinates of ak and ai agree. The result is
an algorithm with subexponential complexity 2n/ log(n), compared with the naive algorithm
(guessing all s ∈ Zn2 ) which has complexity 2n. In our context we do not have (qi, pqi + ri) but
only xi = pqi + ri, however we can use the high-order bits of xi as a proxy for the high order
bits of qi and hence perform a similar algorithm. A natural question is whether this leads to a
faster algorithm for the ACD problem.

There are several approaches one might attempt. Let x1, . . . , xτ be the initial list of γ-bit
ACD samples.

(1) (Preserving the sample size) Fix a small bound B (e.g., B = 16) and select B samples
(without loss of generality call them x1, . . . , xB) such that the leading coefficients in base
B are all distinct. For each of the remaining τ −B samples, generate a new sample by
subtracting the one with the same leading coefficient. The result is τ −B samples each
of size γ − log2(B) bits.

(2) (Aggressive shortening) Sort the samples x1 ≤ x2 ≤ · · · ≤ xτ and, for some small
threshold T = 2γ−µ, generate new samples by subtracting xi+1 − xi when this difference
is less than T . The new samples are of size at most γ − µ bits, but there are far fewer of
them.

6.1. Preserving the sample size

Suppose B = 2b. After k iterations we have generated approximately τ − kB samples, each of
γ − kb bits. However, we must consider the size of the errors. The original samples xi = pqi + ri
have errors |ri| ≤ 2ρ, and the samples at iteration k are of the form

x =

2k∑
i=1

cixi where ci = ±1

and so the error terms behave like a “random” sum of 2k ρ-bit integers. Since the ri are
uniformly distributed in [−2ρ, 2ρ], for large k the value r =

∑
i ciri has mean 0 and variance

†At first glance this approach may not seem to have any advantage over directly forming a lattice from the
samples. But we stress that this is not the case. Imagine that one has τ > 106 ACD samples. One would not
work with a lattice of dimension greater than a million. Instead the idea is to construct a smaller list of “better
quality” samples from the original ones, and then solve a lattice problem corresponding to the smaller set of
samples.
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1
322ρ+k. So we expect |r| ≤ 2ρ+k/2. Once ρ+ k/2 > η then the errors have grown so large
that we have essentially lost all information about p. Hence, an absolute upper limit on the
number of iterations is 2(η − ρ). After that many iterations the samples are reduced to around
γ − 2b(η − ρ) bits.

In terms of lattice attacks, an attack on the original problem requires a lattice of dimension
roughly γ/η (assuming ρ� η). After k iterations of pre-processing we would need a lattice of
dimension

γ − bk
η − (ρ+ k/2)

.

Even in the best possible case when one can take k = 2(η − ρ) and keep the denominator
constant at (η − ρ), we see that the lattice dimension is lowered from γ/η to (γ/η)− 2b. Since
a typical value for b is 8 or 16, this approach can make very little difference to the problem.

6.2. Sample amplification

First experiments may lead one to believe that the aggressive shortening approach is fruitless.
It is natural to choose parameters so that the lists are reduced at each iteration by some
constant factor, and so the number of samples decreases exponentially in terms of the number
of iterations. Eventually one has too few samples to run any of the previously mentioned lattice
algorithms.

However, it turns out that a very simple strategy can be used in practice to increase the
number of samples again. The idea is to generate new samples (that are still about the same
bitlength) by taking sums/differences of the initial list of samples. Precisely, if {x1, . . . , xτ} is
a list of ACD samples, then we can generate m new ACD samples as

Sk =
∑
i∈Ik

xi [k = 1, . . . ,m],

where Ik ⊆ {1, . . . , τ} are randomly chosen sets of size l (small). This is similar to ideas used
to amplify the number of samples for solving LPN or LWE [17].

The idea is then to sort these new samples as S(1) ≤ · · · ≤ S(m) and then take successive
differences or spacings Tk = S(k+1) − S(k) for k = 1, . . . ,m− 1. The statistical distribution of
spacings arising from a general distribution is considered by Pyke [20]. The full version of the
paper [11] describes these statistics in detail and analyses the resulting algorithm.

Our analysis shows that a neighbouring difference approach, whilst initially appearing
promising, can only reduce the essential magnitude and variability of the samples produced
at each iteration by a factor that depends linearly on the number of sums considered at each
iteration. For the parameter sizes required for a cryptographic system, this means that the
resulting errors grow too rapidly for this approach to be useful.

It is natural to wonder why the BKW algorithm is a useful tool for LPN, and yet similar
ideas are not useful for ACD. One answer is that ACD is actually a much easier problem than
LPN: The naive attack on LPN takes 2n operations, whereas one can solve ACD in vastly fewer
than 2γ steps.
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Appendix A. Lattice basis reduction

The algorithms considered in this paper make use of lattice basis reduction algorithms such
as LLL [15]. Recall that a lattice of rank n is a discrete subgroup of Rm that has rank n
as a Z-module. In this paper we write elements of a lattice as row vectors. Denote by 〈u,v〉
the Euclidean inner product on Rm and ‖v‖ = 〈v,v〉1/2 the Euclidean norm. We sometimes
use the norm ‖(v1, . . . , vn)‖1 = max{|vi|}. A lattice L is described by giving n basis vectors
v1, . . . ,vn, such that L = {

∑n
i=1 aivi : ai ∈ Z}.

The volume of a lattice L, denoted det(L), is the volume of the paralleliped formed by any
basis of the lattice. The successive minima λi(L) are the smallest real numbers such that L
contains i linearly independent vectors all of Euclidean norm less than or equal to λi(L). So
λ1(L) is the length of the shortest non-zero vector in the lattice L. The Gaussian heuristic
states that, for a “random lattice”, the shortest non-zero vector in the lattice has Euclidean
norm approximately

√
n/(2πe) det(L)1/n. For details of the Gaussian heuristic see Ajtai [1]

(formalising what is meant by a “random lattice” is non-trivial and is beyond the scope of
this paper). A commonly used heuristic is that if L is a lattice that contains a vector v of
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Euclidean norm less than det(L)1/n then v is (a multiple of) the shortest vector in the lattice.
A further consequence of [1] is that, for a “random” lattice of rank n, there exists a lattice
basis b1, . . . ,bn of L such that ‖bi‖ ≈

√
n/(2πe) det(L)1/n for all 1 ≤ i ≤ n.

Let 1/4 < δ < 1. A basis b1, . . . ,bn for a lattice L is δ-LLL-reduced if the Gram-Schmidt
vectors b∗i satisfy |µi,j | ≤ 1/2 for 1 ≤ j < i ≤ n and

‖b∗i ‖2 ≥
(
δ − µ2

i,i−1
)
‖b∗i−1‖2

for 2 ≤ i ≤ n, where µi,j = 〈bi,b∗j 〉/〈b∗j ,b∗j 〉. It is known that an LLL-reduced lattice basis
satisfies

det(L) ≤
n∏
i=1

‖bi‖ ≤ 2n(n−1)/4 det(L)

and ‖b1‖ ≤ 2(n−1)/2λ1(L), where λ1(L) is the length of the shortest non-zero vector of L.
Furthermore, it is known that an LLL-reduced basis satisfies

‖bi‖ ≤
(

2n(n−1)/4 det(L)
)1/(n+1−i)

(A.1)

for 1 ≤ i ≤ n.
It is folklore that LLL performs better on average than these worst-case bounds suggest.

Nguyen and Stehlé [18] have studied the behaviour of LLL on “random” lattices and have
hypothesised that an LLL-reduced basis satisfies the improved bound

‖b1‖ ≤ (1.02)n det(L)1/n.

By analogy with the relationship between the worst-case bounds ‖b1‖ < 2n/4 det(L)1/n and
‖b1‖ < 2n/2λ1(L) it is natural to suppose that

‖b1‖ ≤ (1.04)nλ1(L). (A.2)

Figure 4 of [18] shows that ‖b∗i+1‖ ≤ ‖b∗i ‖ almost always, and certainly ‖b∗i+1‖ ≤ 1.2‖b∗i ‖
with overwhelming probability. Hence, we make the heuristic assumption that, for “random”
lattices, ‖b∗i ‖ ≤ ‖b∗1‖ for all 2 ≤ i ≤ n. From this it is easy to show that, for 2 ≤ i ≤ n,

‖bi‖ ≤
√

1 + (i− 1)/4‖b1‖.

In other words, on average LLL produces a basis that behaves close to the Gaussian heuristic.
The analysis of lattice attacks in [9, 5] is under an assumption of this type. We formalise this
with the below heuristic assumption.

Assumption A.1. Let L be a “random” lattice of rank n and let b1, . . . ,bn be an LLL-
reduced basis for L. Then

‖bi‖ ≤
√
i(1.02)n det(L)1/n.

for all 1 ≤ i ≤ n.

In practice one uses lattice reduction algorithms such as BKZ that give better approximation
factors. But the above heuristics are sufficient for our analysis.

Appendix B. Experimental Results

[TO BE SHORTENED IF THE CHAIRS REQUIRE]
We have conducted extensive experiments with the SDA, OL and MP methods. For a brief

comparison of the SDA and OL see Table B.2. As with all lattice attacks, the running time
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depends mostly on the dimension of the lattice, and then on the size of the integers in the
basis for the lattice. In general our experiments confirm that the OL method is the fastest and
most effective algorithm for solving the ACD problem. For many more tables of experimental
results we refer to Chapter 5 of [12].

The parameters (ρ, η, γ) in Table B.2 are selected according to the formula (λ, λ+
d log(λ), d2λ log(λ)) from [5], where λ is a security parameter and d > 0 is the depth of a
circuit to allow decryption of depth d. We took λ = 80 and vary d from 1 to 5. Of course, we
did not expect to solve this system quickly for the choice ρ = λ (and our experiments confirmed
this). We only report timings for slightly smaller values for ρ.
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Table A.1. Comparison between different parameter choices (t, k) in the multivariate polynomial
(MP) algorithm. We have η = 100 and list the largest value for ρ (denoted ρmax) that can be solved
with reasonable probability for the given choice (γ, η, t, k,m). dim(L), TLLL, and TGRB refer to the

lattice dimension, running time (seconds) of the LLL algorithm and running of the Gröbner basis
algorithms to solve the resulting polynomial systems respectively.

γ ρmax t k m dim(L) TLLL TGRB

150 95 1 1 30 31 0.020 0.020
90 3 2 8 165 0.350 0.070
85 4 3 4 70 0.220 0.040

300 90 1 1 30 31 0.030 0.130
60 3 2 5 56 0.310 0.770
60 4 3 4 70 4.150 15.150

600 80 1 1 30 31 0.070 0.020
35 3 2 4 35 1.020 0.170
10 4 3 3 35 2.930 4.640
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Table B.1. Comparison between different parameter choices (t, k) in the multivariate polynomial
algorithm with η = 100. dim(L), TLLL, and TGRB refer to the lattice dimension, running time

(seconds) of the LLL algorithm and running of the Gröbner basis algorithms to solve the resulting
polynomial systems respectively. The notation ‘**’ indicates that the computation was aborted

before a result was found after the fixed time period of a few minutes.

γ ρ t k m dim(L) TLLL TGRB

300 10 1 1 4 5 0.020 0.000
3 2 4 35 0.300 0.050

50 1 1 6 7 0.010 0.010
3 2 4 35 0.110 0.030

600 10 1 1 7 8 0.020 0.000
3 2 4 35 1.070 6.100

30 1 1 9 10 0.030 0.010
3 2 4 35 1.020 5.330

1200 10 1 1 14 15 0.030 0.010
3 2 5 56 14.130 347.200

20 1 1 15 16 0.030 0.010
3 2 5 56 13.890 297.820

2400 10 1 1 27 28 0.190 0.010
3 2 5 56 32.710 **

20 1 1 30 31 0.260 0.020
3 2 5 56 32.480 **

5000 15 1 1 119 120 102.660 0.675
2 1 10 66 10.380 **

30 1 1 72 120 84.070 0.680
2 1 11 78 18.010 **

8000 10 1 1 119 120 136.530 0.670
2 1 14 120 219.140 **
3 1 6 84 74.490 **

15 1 1 119 120 145.770 0.670
2 1 14 120 226.370 **

20 1 1 1 120 164.750 0.670
2 1 14 120 300.100 **

Table B.2. Comparison of orthogonal lattice (OL) and simultaneous Diophantine approximation
(SDA) algorithms (note that the MP method with (t, k) = (1, 1) is the same as the OL method).

η γ ρ dim(L) OL time (seconds) SDA time (seconds)

86 480 75 120 1.700 2.380
70 40 0.110 0.200
50 24 0.030 0.050

92 1920 50 56 1.540 5.020

98 4320 50 200 1242.640 4375.120

104 7680 50 200 3047.500 14856.630

110 12000 20 200 5061.760 27578.560
10 200 3673.160 23428.410


