
A Surfeit of SSH Cipher Suites

Martin R. Albrecht
martin.albrecht@rhul.ac.uk

Jean Paul Degabriele
jean.degabriele@rhul.ac.uk

Torben Brandt Hansen
torben.hansen.2015@rhul.ac.uk

Kenneth G. Paterson
kenny.paterson@rhul.ac.uk

ABSTRACT
This work presents a systematic analysis of symmetric encryp-
tion modes for SSH that are in use on the Internet, providing
deployment statistics, new attacks, and security proofs for
widely used modes. We report deployment statistics based on
two Internet-wide scans of SSH servers conducted in late 2015
and early 2016. Dropbear and OpenSSH implementations
dominate in our scans. From our first scan, we found 130,980
OpenSSH servers that are still vulnerable to the CBC-mode-
specific attack of Albrecht et al. (IEEE S&P 2009), while we
found a further 20,000 OpenSSH servers that are vulnerable
to a new attack on CBC-mode that bypasses the counter-
measures introduced in OpenSSH 5.2 to defeat the attack of
Albrecht et al. At the same time, 886,449 Dropbear servers in
our first scan are vulnerable to a variant of the original CBC-
mode attack. On the positive side, we provide formal security
analyses for other popular SSH encryption modes, namely
ChaCha20-Poly1305, generic Encrypt-then-MAC, and AES-
GCM. Our proofs hold for detailed pseudo-code descriptions
of these algorithms as implemented in OpenSSH. Our proofs
use a corrected and extended version of the “fragmented de-
cryption” security model that was specifically developed for
the SSH setting by Boldyreva et al. (Eurocrypt 2012). These
proofs provide strong confidentiality and integrity guaran-
tees for these alternatives to CBC-mode encryption in SSH.
However, we also show that these alternatives do not meet ad-
ditional, desirable notions of security (boundary-hiding under
passive and active attacks, and denial-of-service resistance)
that were formalised by Boldyreva et al.

1. INTRODUCTION
SSH1 continues to be an indispensable tool for system

administrators. Originally designed as a secure replacement
for unencrypted remote login protocols such as Telnet, it has
since established itself as the primary protocol for remote
login to UNIX environments and has been extended to cover

1The current version of the protocol is version two and is
denoted SSHv2, but we will write SSH as a shorthand.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CCS’16, October 24 - 28, 2016, Vienna, Austria
c© 2016 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ISBN 978-1-4503-4139-4/16/10. . . $15.00

DOI: http://dx.doi.org/10.1145/2976749.2978364

bulk file transfers and other applications. Its growing impor-
tance is underlined by Microsoft’s announcement in late 2015
to ship OpenSSH in future versions of its Windows operating
system.2

In 2002, Bellare et al. proved a variant of SSH’s core com-
ponent — the Binary Packet Protocol (BPP) — to be secure
when it employs CBC-mode encryption [3] (see also [4]). This
strengthened our confidence in the then recently standardised
protocol. However, in 2009 Albrecht et al. [1] presented a
surprising yet simple plaintext recovery attack against SSH
in CBC-mode. Their attack applied to both SSH as analysed
in [3] (where random IVs for CBC-mode were assumed) and
as actually specified in RFC 4253 [25] and implemented in
OpenSSH, the then-leading implementation of SSH (where
chained IVs for CBC-mode are used).

The attack of [1] exploited the fact that in SSH, operations
on ciphertexts are not “atomic”, but instead an attacker can
deliver ciphertexts to be decrypted in a fragmentary fashion.
This network-oriented feature of SSH’s operation was omitted
from the model of [3], and indeed all models of symmetric
encryption up to that time. In addition, the attacks relied
on the SSH BPP’s use of an encrypted length field, rendering
the decryption process “plaintext-dependent”. The attacks
of [1] presented a clear illustration of the significant gap
between the theoretical community’s treatment of symmetric
encryption and its actual usage in building specific secure
channels.

The attack in [1] motivated significant follow-up work in
two distinct yet closely coupled directions — theoretical mod-
elling and the widespread deployment of improved encryption
modes in SSH.

In the first direction, Paterson and Watson [21] analysed
SSH’s use of CTR-mode, showing that it achieves security
in a prototypical model supporting ciphertext fragmenta-
tion. The paper [21] inspired the more general and mature
treatment of symmetric encryption supporting fragmented
decryption by Boldyreva et al. [10]. That paper introduced
general notions formalising confidentiality against fragmen-
tation attacks (which we further extend in the sequel). It
also showed that more advanced security notions considered
desirable by the designers of SSH, namely boundary hiding
security and resistance to certain types of denial-of-service
attack, could be achieved at the same time as confidentiality,
at low cost using only standard tools.

In the second direction, deployment of improved encryp-
tion modes, we have seen a proliferation of alternative modes

2http://arstechnica.com/information-technology/2015/06/
microsoft-bringing-ssh-to-windows-and-powershell/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

of encryption being introduced to SSH. First, the OpenSSH
implementation of CBC-mode was quickly patched to pre-
vent the specific attack in [1]. Then many implementations
(including OpenSSH and the increasingly popular Dropbear,
a lightweight SSH implementation) moved to making CTR-
mode the default choice, a selection well-supported by the
analysis in [21]. More recently, AES-GCM, generic Encrypt-
then-MAC (gEtM henceforth, see Section 2.2) constructions
and ChaCha20-Poly1305 have been added to OpenSSH. How-
ever, except for CTR-mode, these new modes have not yet
been subjected to any serious scrutiny by the research com-
munity in the SSH context, where, recall, additional attack
capabilities beyond those usually assumed in the symmetric
encryption setting must be taken into account.

Given the serious nature of the attacks in [1], and the
sensitive, high-value nature of at least some traffic protected
by SSH, we assert that it is an important problem to study
whether the newly introduced modes do lead to a secure
channel in SSH. This is also a particularly timely problem to
address, in view of ChaCha20-Poly1305 having been promoted
to default mode in OpenSSH 6.9 in mid-2015, meaning that
it can be expected to quickly become the dominant option.

In this paper, we address this problem and bring the
two directions described above — theoretical modelling and
deployment of improved modes of encryption — together.
We present a systematic analysis of symmetric encryption
modes for SSH, provide deployment statistics, new attacks,
and security proofs for all widely-used modes. Our main
contributions can be summarised as follows:

• After giving an overview of the SSH BPP in Section 2, Sec-
tion 3 reports deployment statistics based on two Internet-
wide scans of SSH servers that we conducted in late 2015
and early 2016. Our scans indicate that many Internet-
facing devices now run Dropbear, reducing the previous
dominance of OpenSSH in this metric. Overall, Dropbear
and OpenSSH implementations dominate in our scans.
From our first scan, we found 130,980 OpenSSH and
886,449 Dropbear servers that are still vulnerable to the
attack in [1]. Secondly, we observed significant usage of
AES-GCM, AES in CTR-mode, and gEtM. We also saw a
significant amount of support for ChaCha20-Poly1305. Of
these, only CTR-mode currently enjoys a formal security
analysis in a security model general enough to capture the
attack from [1]. To our surprise, we found 199 distinct
combinations of encryption and message authentication
code (MAC) algorithms being supported as first preference
by at least one server.

• In Section 4, we revisit the original attack from [1]. We
demonstrate that the fix implemented in OpenSSH to
prevent this attack leaves open a related attack in which
byte counting is switched for timing. The detailed attack
vector involves timing MAC computations and is reminis-
cent of the Lucky 13 attack on SSL/TLS [2]. The timing
differences are much larger, but the attack depends cru-
cially on an attacker being able to deliver data to the
server sufficiently quickly. The attack recovers a limited
amount of plaintext from an SSH connection with low
probability, but can be amplified over many connections;
variants of the attack trade higher success probabilities
for a partially known plaintext requirement. The main
timing signal exploited in this attack can be eliminated
with a simple change to the OpenSSH code base, but a

residual timing channel remains and would require more
careful patching to completely eliminate it; similarly del-
icate counter-measures to those for the Lucky 13 attack
are needed. Our scans found a further 20,000 OpenSSH
servers that are vulnerable to the new attack.

• In Section 5, we provide documentation and formal security
analyses for other popular SSH encryption modes, namely
ChaCha20-Poly1305, gEtM, and AES-GCM. Our proofs
hold for detailed pseudo-code descriptions (included in the
full version of the paper) of these modes as implemented
in OpenSSH. Extracting these mode descriptions from the
single and complex code-path presented by the OpenSSH
code-base is itself a contribution, since it renders the modes
amenable to formal analysis by us and others. Our proofs
use a corrected and extended version of the “fragmented
decryption” security model that was specifically developed
for the SSH setting by Boldyreva et al. [10]. In particular,
while Boldyreva et al. focused on confidentiality under
fragmentation attacks, here we extend their definitions
to also cover integrity. Our proofs, then, provide strong
confidentiality and integrity guarantees under standard
assumptions on the modes’ cryptographic components.

• However, in Section 6, we show that these alternative
modes do not meet the additional, desirable notions of
security (boundary-hiding under passive and active attacks,
and DoS resistance) that were formalised by Boldyreva et
al. [10]. By contrast, it is known from the work of [10],
that the complete list of desirable security goals can be
met using standard tools at low cost. This leaves an
opportunity to further enhance the encryption options
available in SSH, a topic that we defer to future work.

Table 1 provides a summary of our results — both positive
and negative — for the various encryption modes in SSH.

1.1 Vulnerability Disclosure
We notified the OpenSSH team of our new attack on

CBC-mode, applicable to OpenSSH versions 5.2–7.2, on
5/5/2016. We also notified the OpenSSH team of a flaw
in MAC processing in the gEtM mode on 22/5/2016. Both
issues were addressed in OpensSSH version 7.3, released
1/8/2016.3

2. SYMMETRIC ENCRYPTION IN SSH

2.1 The SSH Binary Packet Protocol
The Binary Packet Protocol (BPP) of SSH is defined in

Section 6 of RFC 4253 [25]. SSH packets are constructed
through a two-step process: payload encoding and crypto-
graphic processing. These are described below.

2.1.1 Encoding.
Encoding proceeds as follows. Firstly, if compression is

enabled then the payload (and only the payload) is com-
pressed; Secondly, a length field and a padding length field
are prepended to the payload and random padding appended.
The length field has 4 bytes and encodes the combined length
in bytes of the padding length field, payload and padding.
The padding length field has 1 byte and encodes the length
in bytes of the padding. The standard mandates that an
implementation must be able to support an uncompressed

3See http://www.openssh.com/txt/release-7.3.

IND-sfCFA INT-sfCTF BH-CPA BH-sfCFA n-DOS-sfCFA

CBC 7 7 3 7 7

fixed-CBC 7 7 3 7 7

CTR 3 3 3 7 7

fgEtM 3 3 7 7 7

AES-GCM 3 3 7 7 7

ChaCha20-Poly1305 3 3 3 7 7

Table 1: Security comparison of available encryption modes in SSH.

payload of at least 32,768 bytes and support a total packet
length — packet length field, padding length field, uncom-
pressed payload, padding and MAC — of at least 35,000
bytes. Padding must be between 4 and 255 bytes long and
must align the packet length to a multiple of the block size of
the underlying block cipher or 8, whichever is larger; stream
ciphers are instantiated with a block size of 8. A 4-byte
sequence number is initially set to 0 when a connection is
established and is incremented by 1 for each packet sent. The
sequence number is not sent over the wire, but maintained
separately and included in cryptographic computations on
packets. The packet layout after payload encoding is shown
in Fig. 1.

Length

4 bytes

Padding length

1 byte

Payload Padding

4 ≤ · ≤ 255

Seq. nr.

4 bytes

Length

Figure 1: SSH2 packet layout.

2.1.2 Cryptographic processing.
SSH provides confidentiality and integrity through symmet-

ric encryption and message authentication codes. RFC 4253
mandates that when encryption is applied, the length field,
padding length field, payload and padding must be encrypted.
In addition, RFC 4253 specifies that the MAC tag must be
computed over the concatenation of the sequence number
and the plaintext packet, enforcing an Encrypt-and-MAC
paradigm.

The SSH specifications support a variety of encryption
algorithms. RFC 4253 [25] defines 7 block ciphers running in
CBC mode: 3DES, Blowfish, Twofish, AES, Serpent, IDEA
and CAST. In CBC-mode the IV is, for each encryption, set
to be the final ciphertext block from the previous encryption;
the first IV is chosen uniformly at random. As pointed out
in [22, 12] for CBC-mode in general and in [3, 4] for SSH
specifically, this potentially makes SSH vulnerable to chosen-
plaintext attacks. However, these do not seem to be realisable
in practice due to details of the SSH packet encoding. Each
cipher may support several different key lengths, e.g. the
AES options includes support for key lengths of 128 and
256, denoted by AES128 and AES256, respectively. Of the
ciphers defined in RFC 4253, 3DES is required while AES128
is recommended.

In addition to block ciphers, the RC4 stream cipher is
supported (and denoted arcfour). RFC 4344 [5] defines

CTR-mode options for all the block ciphers mentioned in
RFC 4253. Additionally, RFC 5647 [14] defines AES-GCM, i.e.
how to use AES-GCM in SSH. In this option, the padding
length, payload and padding fields are encrypted and in-
tegrity protected. However, the length field is not encrypted,
but instead included as Additional Data. Formally, then,
AES-GCM deviates from the requirement of RFC 4253 to
encrypt the length field.

RFC 4253 specifies as MAC algorithms HMAC-SHA1,
HMAC-SHA1-96 (output truncated to 96 bits), HMAC-MD5
and HMAC-MD5-96. Of these, support for HMAC-SHA1 is
required and support for HMAC-SHA1-96 is recommended.
The later RFC 6668 [9] defines HMAC-SHA2-256 and HMAC-
SHA2-512, with the former being recommended and the latter
optional. A draft RFC [18] specifies UMAC-32, -64, -96 and
-128 for use in SSH. Here, the sequence number is passed as
a nonce to UMAC.

2.2 Further Algorithms in OpenSSH
OpenSSH supports additional encryption options beyond

those specified in the RFCs. As we shall see in Section 3,
these are quite widely adopted and therefore warrant analysis.

Since OpenSSH 6.2, it has been possible to run supported
algorithms in an Encrypt-then-MAC mode with the encryp-
tion and MAC processing being provided by any of the
supported algorithms. Usage is signalled by negotiating an
“etm”-MAC during key exchange (if an AE mode is specified,
then the special behaviour triggered when negotiating an
etm-MAC is disabled). We refer to this mode as gEtM. This
option is described briefly in the PROTOCOL file4 in the
OpenSSH codebase but does not seem to be formally docu-
mented in the form of an RFC. We have therefore extracted
our description of it directly from the OpenSSH source code.
The cryptographic processing in the gEtM mode is similar to
that of the AES-GCM mode, with the length field not being
encrypted but included in the MAC scope; for details, see
Section 5.

The RFC draft [17] defines ChaCha20-Poly1305 for SSH.
This mode combines ChaCha20, a high-speed stream ci-
pher [7], and Poly1305MAC, a high-speed one-time mes-
sage authentication code based on a design from [8]. Here,
the length field is encrypted using a separate instance of
ChaCha20, but the construction otherwise follows RFC 4253.
For details, see Section 5. This option has been supported
in OpenSSH since version 6.5.

There has been a steady trend towards the elimination of

4The PROTOCOL file documents OpenSSH’s deviations and
extensions to the SSH protocol as specified in RFCs.

weak algorithms from OpenSSH. OpenSSH 6.6 disabled CBC
mode and RC4 by default, while OpenSSH 6.9 promoted
ChaCha20-Poly1305 to be the default mode. OpenSSH 7.2
disabled Blowfish-CBC, Cast-CBC and RC4. OpenSSH 4.7
added support for UMAC-64 and OpenSSH 6.2 added support
for UMAC-128. OpenSSH 7.2 disabled the MD5-based and
truncated-HMAC algorithms.

3. SSH DEPLOYMENT STATISTICS
In this section, we report on SSH deployment statistics,

focussing on the mix of different SSH implementations and
versions supported by SSH servers with public IP addresses
and on their preferred symmetric encryption options.

We ran two IPv4-address-space-wide scans for SSH servers
using ZGrab/ZMap [13]. These were conducted from Novem-
ber 11, 2015 to December 1, 2015 and from January 22, 2016
to January 27, 2016. We found about 224 servers in each
scan.

In SSH, ciphersuites are negotiated based on the prefer-
ences of the client, not the server: the first option from the
client’s list that is also on the server’s list is used. Hence,
similarly to recent studies of algorithm deployment in TLS,
it is difficult to establish what ciphers and modes are actually
used to protect traffic in flight, because only servers and their
preferences can be easily queried. Still, the data presented in
this section should give a rough estimation of configurations
in the wild since the most prominent servers — OpenSSH and
Dropbear — share code and default configurations between
server and client.

3.1 SSH Implementations and Versions
As Table 2 shows, amongst those servers our scan identi-

fied, those self-reporting as dropbear_2014.66 dominate, with
OpenSSH_5.3 being the second most popular. Overall, the
landscape is dominated by OpenSSH and Dropbear servers,
with ROSSSH being the only server in the top 20 not belong-
ing to either family. Overall, 57.97% (resp. 56.11%) of all
servers reported as some version of Dropbear and 37.17%
(resp. 39.22%) as some version of OpenSSH in the first (resp.
second) scan. In both scans, less than 5% of servers reported
as something other than Dropbear or OpenSSH.

software scan 2015–12 scan 2016–01

dropbear_2014.66 7,229k (42.0%) 8,334 (47.0%)
OpenSSH_5.3 2,108k (12.3%) 2,133 (12.0%)

OpenSSH_6.6.1p1 1,198k (7.0%) 1,124 (6.3%)
OpenSSH_6.0p1 554k (3.2%) 573 (3.2%)
OpenSSH_5.9p1 467k (2.7%) 500 (2.8%)

dropbear_2014.63 422k (2.5%) 197 (1.1%)
dropbear_0.51 403k (2.3%) 434 (2.5%)

dropbear_2011.54 383k (2.2%) 64 (0.4%)
ROSSSH 345k (2.0%) 333 (1.9%)

OpenSSH_6.6.1 338k (2.0%) 252 (1.4%)

Table 2: Deployment statistics for SSH servers.

3.2 CBC-mode Vulnerabilities

3.2.1 OpenSSH.
The CBC-mode vulnerability reported in [1] was fixed in

OpenSSH 5.2. We found 130,980 (resp. 166,572) servers still

running older versions of OpenSSH and preferring CBC-mode
in the first (resp. second) scan. All these servers are likely
to be vulnerable to the attack described in [1]. CTR-mode
is now by far the most popular mode offered by OpenSSH
servers, being preferred by about 94%.

Considering the attack from Section 4.3 the number of
likely vulnerable OpenSSH servers increases to 150,339 (resp.
187,964) in the first (resp. second) scan. These numbers
represent the totality of OpenSSH servers preferring CBC-
mode.

3.2.2 Dropbear.
Dropbear did not implement a counter-measure to the

CBC-mode attack of [1]. Instead dropbear_0.52 (released
12/11/2008) added support for CTR-mode and made it the
default. Hence, any Dropbear server preferring CBC-mode
is vulnerable to a variant of the attack from [1] (that is
described in the full version).

This includes any version of Dropbear prior to 0.52. We
found 886,449 (resp. 816,359) Dropbear servers that prefer
CBC-mode in our first (resp. second) scan. Of these all except
a few hundred are versions predating 0.52. Overall, then,
about 8.4% of Dropbear servers are vulnerable to the CBC-
mode attack. The remaining 91.6% prefer CTR-mode. An
option to disable CBC-mode ciphers was added in Dropbear
2015.67 (released 28/1/2015).

3.3 Cryptographic Algorithm Diversity
We show the preferred combinations of encryption and

MAC algorithms found in our second (January 2016) scan for
all OpenSSH, all Dropbear servers, and overall, in Tables 3, 4,
and 5. In total, we saw 199 different combinations as first
preference at one or more SSH servers, and 155 for OpenSSH.
Of course, many of these combinations are used by tiny
numbers of servers, but it is still noteworthy that there is so
much diversity in deployed algorithms for SSH. We consider
a small amount of diversity to be useful, but a large amount
to be dangerous, since it brings an increased risk of there
being obsolete or insecure options and a higher chance of
there being vulnerabilities in the complex code paths needed
to support so many options.

We also randomly sampled 2048 IPs which were reporting
dropbear_2014.66 resp. OpenSSH 5.3 to understand what kind
of systems were running these services. Based on nmap’s
OS fingerprinting [15] we speculate that these devices are
predominately embedded systems such as routers or firewalls.
We did not investigate these systems further. On February
25, 2016 the Shodan.io search engine reports 2,792,391 IPs
reporting dropbear_2014.66. Almost all of those IPs belonged
to an IP block owned by Comcast Cable. However, querying
the network block owned by Comcast Cable again on May 2,
we only found 83,486 devices listening on port 22.

encryption and mac algorithm count

aes128-ctr + hmac-md5 3,877k (57.7%)
aes128-ctr + hmac-md5-etm@ 2,010k (29.9%)
aes128-ctr + umac-64-etm@ 331k (4.9%)
aes128-cbc + hmac-md5 161k (2.4%)
chacha20-poly1305@ 115k (1.7%)

Table 3: Encryption & MAC Algorithms
(OpenSSH), @openssh.com abbreviated to @.

encryption and mac algorithm count

aes128-ctr + hmac-sha1-96 8,724k (90.4%)
aes128-cbc + hmac-sha1-96 478k (5.0%)
3des-cbc + hmac-sha1 321k (3.3%)
aes128-ctr + hmac-sha1 62k (0.7%)
aes128-ctr + hmac-sha2-256 36k (0.4%)
aes128-cbc + hmac-sha1 14k (0.2%)

Table 4: Encryption & MAC Algorithms (Drop-
bear).

encryption and mac algorithm count

aes128-ctr + hmac-sha1-96 8,762k (51.1%)
aes128-ctr + hmac-md5 3,887k (22.7%)
aes128-ctr + hmac-md5-etm@ 2,012k (11.7%)
aes128-cbc + hmac-sha1-96 570k (3.3%)
3des-cbc + hmac-sha1 413k (2.4%)
aes128-ctr + umac-64-etm@ 331k (1.9%)
aes192-cbc + hmac-sha1 258k (1.5%)
aes128-ctr + hmac-sha1 208k (1.2%)

Table 5: Encryption & MAC Algorithms (overall),
@openssh.com abbreviated to @.

4. ATTACKS ON SSH
We begin by recalling the plaintext recovery attack on

CBC-mode in SSH from [1]. In the full version, we give
a variant of the attack that applies to Dropbear. We go
on to describe the countermeasure to the attack that was
introduced in OpenSSH_5.2. Finally, we explain how the attack
from [1] can be extended to break that countermeasure.

4.1 The Albrecht-Paterson-Watson Attack
We recall the attack from [1] using its text. This attack

applied to OpenSSH up to and including version 5.1. Com-
pliant with SSH as described in Section 2.1, OpenSSH 5.1
(and earlier) uses CBC-mode with interpacket chaining and
random padding by default. OpenSSH 5.1 decrypts the
first block of a BPP packet as soon as it is received and
extracts the packet length field from the corresponding plain-
text block. OpenSSH 5.1 rejects any packets whose packet
length field (measured in bytes) is less than 5 or greater
than 256× 1024 = 218. OpenSSH 5.1 then verifies that the
total number of bytes expected in the packet is a multiple
of the block size and then continues to accept data on the
connection until sufficient data has arrived; here sufficiency
is determined by the content of the packet length field and
the size of the MAC field. MAC verification then takes place.
If the data has been tampered with, this will fail with high
probability, leading to a termination of the connection.

We will use K to denote the key of our block cipher, which
we can assume to be fixed for the duration of a connection,
and let FK , F

−1
K denote the encryption and decryption op-

erations of the block cipher in use. We let L denote the
block size of this block cipher in bytes (so L = 8 for 3des
and L = 16 for aes128). Then CBC-mode in OpenSSH 5.1
operates as follows: given a sequence p1, p2, . . . pn of plaintext
blocks making up a packet, we have:

ci = FK(ci−1 ⊕ pi), i = 1, 2, . . . , n

where c0, the IV, is taken as the last block of the previous
BPP ciphertext. Hence

pi = ci−1 ⊕ F−1
K (ci), i = 1, 2, . . . , n.

Assume now that an attacker collects a target ciphertext
block c∗i from an established SSH connection, from some
BPP packet. Let c∗i−1 denote the ciphertext block preceding
the target block, and let p∗i denote the corresponding target
plaintext block. We have p∗i = c∗i−1 ⊕ F−1

K (c∗i).
The attacker now simply injects the single block c∗i as the

first block of a new packet on the SSH connection. Hence
OpenSSH 5.1 will compute as the first block of plaintext for
this new packet p′1 = IV ⊕ F−1

K (c∗i), where IV is the last
ciphertext block of the preceding BPP packet.

Combining the two preceding equations, we have:

p∗i = c∗i−1 ⊕ p′1 ⊕ IV (1)

From an analysis of the OpenSSH 5.1 source code, it follows
that if, after injecting c∗i , the attacker sees either a termina-
tion of the TCP connection over which the SSH connection is
running without an SSH error message (indicating a failure
of the block length check) or the SSH connection enters a
state in which it is waiting for more data, then p′1 must have
passed the length check. But the latter only occurs if the
packet length field in p′1 lies between 5 and 218, which in
turn occurs only if the first 14 bits of p′1 are all zero.5 From
this information and equation (1), we can calculate the first
14 bits of p∗i .

To assess the success probability of this attack, we need
only calculate the probability that the length check passes.
We may assume that cn, obtained as the last ciphertext
block of the preceding BPP packet, acts as a random IV
with respect to the block c∗i . Hence the content of the packet
length field in p′1 can be regarded as being a random 32-bit
value. Therefore the length check will pass with probability
2−14 − 5/218 ≈ 2−14. This attack can be extended to recov-
ering 32 bits of plaintext by counting the number of bytes
consumed by the SSH server before it terminates the con-
nection because of a MAC failure. Now the attack’s success
probability is reduced to 2−18 because of the need to pass
both the length check and the block length check.

A variant of this attack can be applied to Dropbear. We
give the details in the full version of this paper.

4.2 The OpenSSH Countermeasure
Starting with version 5.2, OpenSSH implements a CBC-

mode-specific counter-measure against the attack described
in Section 4.1, as follows. If the packet length field has the
wrong size then a function ssh_packet_start_discard is called.
The same function is called if the block length check fails
and if the MAC check, when eventually performed, fails.

Calling the function ssh_packet_start_discard causes the
server to wait for a certain number discard bytes. After-
wards, once a total of PACKET_MAX_SIZE bytes have arrived,
ssh_packet_stop_discard is called. This function computes
a MAC over PACKET_MAX_SIZE bytes and then terminates the
connection. The overall intention of the countermeasure is
to mask the side-channel information used by the attacker
in the attack of [1]: now, whenever an error occurs, the im-
plementation waits until PACKET_MAX_SIZE bytes have arrived

5It is also possible that the packet length field is exactly
equal to 218, but this is much less likely given that IV can
be treated like a random block.

and only then disconnects. This is because of the differ-
ent settings of the value of discard in the different calls to
ssh_packet_start_discard.

Note that a MAC over PACKET_MAX_SIZE bytes is computed
in ssh_packet_stop_discard in all three cases when ssh_packet_-

start_discard is called. In two of the three cases, the function
is called at the start of packet processing (due to the length
check or block length check failing); in the third case it is
called only after a MAC verification has already failed.

4.3 New Attack on OpenSSH CBC Mode
Everything is now in place to describe the new attack.

Essentially, it replaces the byte-counting side-channel of [1]
with a timing side-channel.

As before, the attacker gathers any target ciphertext block
c∗i from an SSH connection and injects it so that it is inter-
preted at the server as the first ciphertext block of a new
SSH packet. The first 32 bits of the decryption of the tar-
get block will be used to construct the packet length field.
Then the attacker sends, as quickly as possible, a further
PACKET_MAX_SIZE bytes to the server.

There are two cases:

1. If either the length check or the block size check on the
packet length field fails, then when ssh_packet_start_-

discard is called, it performs a single MAC computation
over PACKET_MAX_SIZE bytes. For a 16-byte block cipher
(AES) this happens with probability roughly 1− 2−18 be-
cause PACKET_MAX_SIZE is set to 218 in the length check and
the block size check is a 4-bit condition.

2. If both checks pass, then a MAC verification over the
number of bytes indicated by the packet length field is
carried out, the MAC verification fails, and then ssh_-

packet_start_discard is called. This involves a second
MAC computation over PACKET_MAX_SIZE bytes. This case
arises with probability roughly 2−18.

In the second case, an additional MAC computation is
performed. Assuming that the attacker can deliver data fast
enough to the server that it does not stall while waiting for
incoming data to process, then the additional MAC compu-
tation will show up as a small delay in the time taken at
the attacker to observe an SSH connection termination. The
length of the delay is roughly proportional to amount of data
over which the MAC is computed, which in turn is closely
related to the content of the packet length field.

In the basic form of the attack, we assume that the packet
length field is randomised, so that with probability 1/2 its
size is at least 217 in the second case. (Here we rely on the
IV being effectively random.) Hence, the time difference
between the first and second cases is that needed for a MAC
computation over at least 217 bytes. For an HMAC-based
MAC algorithm with a 64-byte compression function (as
in MD5, SHA-1 and SHA-256), this equates to at least 211

compression function evaluations, with each one taking a
few hundred clock cycles on a modern CPU. Thus, the
time difference is on the order of a few hundred thousand
clock cycles, or a few hundred microseconds, which is easily
detectable remotely over a network. By comparison, the
Lucky 13 attack [2] on SSL/TLS, of which this attack is
reminiscent, showed that it is possible to remotely measure
timing differences equating to a single compression function
evaluation, albeit under ideal network conditions. Here the
timing signal is at least 211 times as big. On the other hand,

this attack assumes that reading 218 bytes from the network
as requested by ssh_packet_start_discard is sufficiently fast
to not drown this timing signal with network jitter.

In summary, with overall probability 2−19, the attacker
sees a measurable delay for SSH connection termination, in-
dicating that the length and block length checks have passed.
This leaks 18 bits of plaintext information to the attacker.
These bits correspond to the 14 MSBs and the 4 LSBs in the
32-bit packet length field. This basic form of the attack is
already better than random guessing because it provides con-
firmation of the unknown plaintext bits. Moreover, assuming
the target plaintext is sent in an identifiable ciphertext block
across many connections, then the attack can be repeated
over multiple connections to increase the success probability.

We describe a variant of this attack which recovers more
plaintext bits if more precise timing information is available,
and variants where the attacker uses partial knowledge of the
plaintext to recover further plaintext with higher probability,
in the full version of this paper.

4.4 Experimental Results
We verified the conditions of the attack using the current

OpenSSH 7.2 and Paramiko6. In particular, we verified that
under our attack, an OpenSSH server indeed processed 218

resp. ≈ 218 + 217 bytes with HMAC if the lengths checks
did not pass resp. the MAC check failed. We also performed
some basic timing experiments with the following results. If
we flipped a bit in the first block of a BPP packet to distort
the packet length field, it took about 600 microseconds to
compute the MAC on our test system and we waited for
209 microseconds for additional dummy data to arrive on a
loopback device (we started timing this in ssh_packet_start_-

discard). The overall time from checking the packet length
field to discarding the connection was about 880 microseconds.
If we flipped a bit in a later block so that only the MAC check
fails, OpenSSH computed two MACs, which took about 1200
microseconds on our target system. The overall time from
checking the length field to discarding the packet was about
1500 microseconds. All timings were done on the server and
packets from the client were sent over loopback. Hence, these
timings reflect a best case scenario for an attacker. Given
that the feasibility of timing side-channels over networks is
well established for timing signals much smaller than this
magnitude [2], we saw no need to pursue further experiments
in a more realistic network environment.

4.5 Practical Impact and Countermeasures
The attacks presented above are of low probability but

can be iterated to increase their success rates. They are
therefore potentially serious for any applications using SSH
which automatically reconnect and retransmit sensitive data
on SSH connections. Given the widespread usage of SSH for
controlling remote access to high security systems, we believe
the attacks should be mitigated in all SSH implementations.

The simplest mitigation is to stop using CBC-mode en-
cryption in SSH. As our statistics show, other modes that
are immune to this style of attack are widely available. In-
deed, from the work of [21], we know that CTR-mode is
invulnerable to such attacks. In the sequel, we will prove
that OpenSSH’s ChaCha20-Poly1305, gEtM and AES-GCM
modes are not vulnerable either.

6http://www.paramiko.org

The attacks can also be mitigated by making the num-
ber of bytes passed to HMAC in ssh_packet_stop_discard

depend on the number of bytes already processed by HMAC
prior to entering this function, so that the total amount
of bytes processed by HMAC always adds up to (roughly)
PACKET_MAX_SIZE. This would approximately equalise the to-
tal time spent on HMAC computations. However, it would
not eliminate the timing signal altogether because of the
low-level details of HMAC processing. Such small timing
differences may remain exploitable, as was the case in the
Lucky 13 attack on SSL/TLS [2]. A mitigation of this type
was added in OpenSSH version 7.3.

5. SECURITY PROOFS
In this section, we prove security for various symmetric

encryption schemes implemented in OpenSSH. We focus on
OpenSSH because of its rich variety of schemes and because
of its widespread use in practice. We do not consider CTR-
mode, because this mode is already covered by [21], but focus
on ChaCha20-Poly1305, gEtM and AES-GCM.

5.1 On the Choice of Security Model
Various models exist in the literature for assessing the se-

curity of AEAD (Authenticated Encryption with Associated
Data) schemes, the most popular being the nonce-based AE
security notion that grew out of [6, 23, 24]. However, we will
follow the security model put forward in [10], which in turn
builds on [3, 21]. Our choice is motivated by there being
a substantial gap between a nonce-based AE scheme and a
secure channel of the type that SSH aims to construct. While
the latter can be built from the former, such a construction
is certainly non-trivial, as the latter aspires for significantly
more complex functionality and stronger security goals. We
explain why in the sequel.

To start with, a secure channel aims to protect against
replays and reordering of messages, whereas nonce-based AE
security does not. Secondly, protocols like SSH have to oper-
ate over TCP/IP which permits the delivery of ciphertexts to
the receiver in an arbitrarily fragmented manner. Extending
an AE scheme to operate over TCP/IP requires intrusive
changes to the decryption algorithm, to the point that even
its syntax must become significantly different. It is easy to
overlook this aspect and assume that such a transformation
is only cosmetic and will not affect security. As a pertinent
example, Bellare et al. [3] proved (in a very strong sense)
the security of a variant of CBC-mode as defined in the SSH
BPP, yet it was exactly the mechanism supporting ciphertext
fragmentation that allowed the subsequent plaintext-recovery
attack by Albrecht et al. [1] against both the original CBC-
mode construction used in SSH and the variant proven secure
by Bellare et al..

Furthermore, support for ciphertext fragmentation can
introduce new security vulnerabilities such as exposing ci-
phertext boundaries and thereby facilitating traffic analysis
as well as enabling certain types of denial-of-service attack.
Both of these issues were recognised by the SSH designers
in the relevant RFC [25] and later incorporated into formal
models in [10].

The stronger security guarantees that one obtains from
employing these extended security models come at the ex-
pense of added complexity in the security analysis. Finally,
we note that by considering the full SSH BPP, as opposed
to limiting our analysis to the underlying nonce-based AE

schemes, we are able to obtain quantitatively better security
bounds.

5.2 Notation
Unless otherwise stated, an algorithm may be randomised.

An adversary is an algorithm. For any adversary A and
algorithms X ,Y, . . . we use AX (·),Y(·),... to denote A’s output
after running it with oracle access to algorithms X ,Y, . . . and
fresh coins. By convention the running time of an adversary
refers to the sum of its actual running time and the size
of its description. We generically refer to the resources of
an adversary as any subset of the following quantities: its
running time, the number of queries that it makes to its
oracles, and the total length (in bits) of its oracle queries. If
S is a set then |S| denotes its size, and y � S denotes the
process of selecting an element from S uniformly at random
and assigning it to y.

For any positive integer n, {0, 1}n denotes the set of all
binary strings of length n, and {0, 1}∗ denotes the set of all
binary strings of finite length. The empty string is repre-
sented by ε. For any two strings u and v, |u| denotes the
length of u in bits, u ‖ v denotes their concatenation, u � v
denotes the prefix predicate which assumes the value true if
and only if there exists w ∈ {0, 1}∗ such that v = u ‖ w, and
u% v denotes the unique string w such that u = z ‖ w and
z is the longest string simultaneously satisfying z � u and
z � v. For any string array B, B[i] denotes its ith entry and
B[i . . . j] denotes B[i] ‖ . . . ‖ B[j] with the convention that
B[i . . . j] = ε if i > j. Finally, we use Pr [P : E] to denote
the probability of event E occurring after having executed
process P .

5.3 Symmetric Encryption Supporting Cipher-
text Fragmentation

5.3.1 Syntax.
A symmetric encryption scheme supporting fragmentation
SE = (K, E ,D) with an associated error set Q⊥ is specified
by three algorithms:

• The randomised key generation algorithm K that returns
a secret key K and initial states σ0 and %0.

• The stateful encryption algorithm E takes as input the
secret key K ∈ K, a plaintext m ∈ {0, 1}∗, and the current
encryption state σ, and returns a ciphertext in {0, 1}∗
together with an updated state.

• The deterministic and stateful decryption algorithm D
takes the secret key K, a ciphertext fragment f ∈ {0, 1}∗,
and the current decryption state % to return the correspond-
ing plaintext fragment m ∈ ({0, 1,¶} ∪ Q⊥)∗ together with
the updated state.

The error set Q⊥, where Q⊥ ∩ {0, 1,¶}∗ = ∅, represents
the set of possible errors that the decryption algorithm may
return to indicate a variety of possible decryption failures.
The symbol ¶ 6∈ ({0, 1} ∪ Q⊥)∗ is introduced to denote the
end of plaintext messages, thereby enabling an application
making use of the decryption algorithm to parse the output
uniquely into a sequence of plaintext messages and error
messages. For further details the reader is referred to [10].

5.3.2 Security Definitions.
A confidentiality notion for symmetric encryption support-

ing ciphertext fragmentation (IND-sfCFA) was introduced

in [10]. In the course of this work, we discovered that the
definition of [10] permitted trivial attacks against any scheme.
We carefully repair the definition of [10], with a full explana-
tion of the changes required to effect the repair to be found in
the full version. We also extend [10], giving an accompanying
stateful integrity notion, integrity of ciphertext fragments
(INT-sfCTF). We aim for the strongest possible notion in
that we require it to be infeasible for an adversary to produce
an out-of-sync sequence of ciphertext fragments that returns
a plaintext fragment. Note that this may be easier than
forging an entire plaintext, and such a notion is implied by
ours. Finally, note that unlike the standard setting of nonce-
based encryption it does not suffice to prove integrity and
chosen-plaintext security (IND-CPA), since without further
conditions they do not suffice to guarantee chosen fragment
security (IND-sfCFA). In fact such a relation is already inval-
idated when the decryption algorithm is allowed to return
more than one error message [11], as is the case for SSH.

Definition 1 (IND-sfCFA Security). Let SE = (K,
E ,D) be an encryption scheme supporting fragmentation.
Let algorithms LR and DEC be as specified in Fig. 2, where
the internal variables are initialised according to algorithm
INI. For any adversary A we define its IND-sfCFA advantage
as:

Advcfa
SE(A) = 2 Pr

[
INI : ALR(b,·,·),DEC(·) = b

]
− 1.

The scheme SE is said to be (ε, R)-IND-sfCFA secure, if for
any adversary A with resources at most R, its IND-sfCFA
advantage Advcfa

SE(A) is bounded by ε.

Note that we denote the resources consumed by an ad-
versary by R, without specifying them exactly. As usual,
they can be fully specified in terms of various oracle queries,
running time of the adversary, etc.

Definition 2 (INT-sfCTF Security). Let SE = (K,
E ,D) be an encryption scheme supporting fragmentation. Let
ENC and DEC be the algorithms specified in Fig. 2, where
the internal variables are initialised according to algorithm
INI. Let FORGE denote the event that DEC returns a value
in {0, 1,¶}+, then the INT-sfCTF advantage of an adversary
A is given by:

Advint
SE(A) = Pr

[
INI,AENC(·),DEC(·) : FORGE

]
.

The scheme SE is said to be (ε, R)-INT-sfCTF secure, if for
any adversary A with resources at most R, its IND-sfCFA
advantage Advcfa

SE(A) is bounded by ε.

5.4 Modelling the OpenSSH code
The encryption and decryption processes in OpenSSH

are mainly performed in functions ssh_packet_send2_wrapped

and ssh_packet_read_poll2. These present what is essen-
tially a single code-path for the various supported encryption
modes: CBC-mode, CTR-mode, ChaCha20-Poly1305, gEtM,
and AES-GCM. The code appears to have been developed in
a step-by-step fashion as counter-measures to the attack of [1]
and extra modes were added. This development approach
has arguably resulted in at least one potentially dangerous
error being made, concerning when the MAC is checked in
gEtM. This is discussed in detail in Section 5.6. One contri-
bution of this paper is to disentangle the various modes in

the OpenSSH code and to present them in a clean and self-
contained way, thereby rendering them amenable to formal
analysis.

In our analysis of OpenSSH’s implementation of the SSH
BPP symmetric encryption modes, we endeavoured to be as
faithful as possible to the OpenSSH code. However, in build-
ing our models, we had to make a few simplifications and
modifications which we now describe. We assume throughout
that both compression and extra padding are disabled.7 In
order to model connection tear-downs we introduce a flag
closed as part of the decryption state; once it is set, the
decryption algorithm will not return any output. Finally, in
our pseudo-code models, we append for every full message
returned by the decryption algorithm, a special end of mes-
sage symbol (¶). This is needed in the framework of [10] to
demarcate message boundaries, but of course does not exist
in the real code.

We next discuss two functions that are common for the
cryptographic processing across many encryption options,
relating to padding and sanity checking. The padding scheme
used is the same for all the options (including stream ciphers)
and hence for ChaCha20-Poly1305, AES-GCM and gEtM, de-
spite ChaCha20-Poly1305 and AES-GCM not strictly requiring
any padding, and gEtM possibly not needing it, depending
on the specific encryption mode negotiated. Padding is re-
quired to be random and, in OpenSSH, is computed using
the ChaCha20 stream cipher or by other methods depend-
ing on configuration. For our purposes, we simply assume
the padding to be a uniformly random string of appropriate
length. The sanity checks performed on the length field
when a BPP packet is received are the same for AES-GCM,
gEtM and ChaCha20-Poly1305. This consists of extracting
the length from the length field and check whether the length
is in the range [5, 218] and whether the length is a multiple
of the block size. For ChaCha20-Poly1305, the packet length
cannot be extracted directly from the BPP packet, because
the packet length field is encrypted, cf. Section 5.5.

5.5 ChaCha20-Poly1305 in OpenSSH
ChaCha20 is the stream cipher defined in [7], which takes

a 32-byte key K, an 8-byte nonce nonce, an 8-byte initial
block counter block ctr, a variable-length plaintext M and a
positive integer len and outputs an encryption C of the first
len bytes of the plaintext M. Internally, it makes use of a
fixed-output-length pseudorandom function, the ChaCha20
block function, a fact which we use in our proofs. We write
C ← ChaCha20(K, nonce, block ctr,M, len). Reversing the
roles of M and C yields the corresponding decryption process.
Note that the OpenSSH code combines the nonce and the
initial block counter into a single field called the IV, a practice
that we think is prone to error. For this reason and better
clarity we chose to maintain these two values separate in our
code while still accurately reflecting the OpenSSH code.

Poly1305MAC is the one-time MAC defined in [20] which
is in turn based on Poly1305-AES from [8]. On input of
a 32-byte key K, variable-length string str and a positive
integer strlen specifying the size of the string, it returns a
16-byte tag τ . We write τ ← Poly1305MAC(K, str, strlen).

The generic composition of ChaCha20 and Poly1305MAC
is described in RFC 7539 [20] and adapted to SSH in the RFC

7An option in OpenSSH allows adding extra padding. This
is only used for user password authentication. This option is
not modelled in our work.

alg. INI

sync← true

i← 0, j ← 0

C ← [],M ← []

F ← ε,M
′ ← ε

b � {0, 1}
(K,σ, %)← K
return

alg. LR(b,m0,m1)

if |m0| 6= |m1| return ε

(c, σ)← EK(mb, σ)

i← i+ 1, C[i]← c

M [i]← mb ‖ ¶
return c

alg. ENC(m)

(c, σ)← EK(m,σ)

i← i+ 1, C[i]← c

M [i]← m ‖ ¶
return c

alg. DEC(f)

(m, %)← DK(f, %)

F ← F ‖ f,M ′ ←M
′ ‖ m

if sync = true

j ← min({n |C[1 . . . n] � F} ∪ {i})

if F � C[1 . . . j]

m← ε

else

m←M
′
%M [1 . . . j − 1]

if C[1 . . . j] � F

m←M
′
%M [1 . . . j]

if m 6= ε

sync← false

return m

Figure 2: Algorithms for defining IND-sfCFA and INT-sfCTF security.

draft [17] which defines ChaCha20-Poly1305. In OpenSSH,
ChaCha20-Poly1305 is denoted chachapoly1305@openssh.com

and utilises a 64-byte key and an 8-byte nonce. The nonce
consists of a 4-byte sequence number stored as an 8-byte
type. The scheme produces a 16-byte MAC tag an encrypts
in 64-byte blocks.

Encryption proceeds in three steps: First, the length field
is encrypted using ChaCha20, using the first 32 bytes of the
key and the initial block counter set to zero. Second, the
remaining part of the packet is encrypted using the last 32
bytes of the key and the initial block counter set to one.
(That is, two distinct instances of the ChaCha20 algorithm
are used to encrypt the two parts.) Third, a MAC tag is
computed over the entire encrypted packet. The key used
here is obtained from a call to ChaCha20 keyed with the last
32 bytes of the key, the 32-bit sequence number (cast to a
64-bit type) as nonce and an initial block counter value of
0, and an all-zero 32-byte plaintext. Note that the sequence
number is not in the MAC scope but is integrity protected
implicitly through its role in deriving the MAC key.

Decryption supports ciphertext fragmentation by first de-
crypting the length field and checking that it satisfies the
usual length requirements. Successive ciphertext fragments
are then accumulated until the received MAC tag can be
verified against the ciphertext. If the MAC tag is valid the
remaining portion of the ciphertext is decrypted and the
padding removed. A detailed description of ChaCha20-Poly-
1305 in pseudo-code is provided in the full version of this
paper.

We are now ready to state our theorems regarding the se-
curity of ChaCha20-Poly1305 as described above. We provide
proofs in the full version of this paper.

Theorem 1 (ChaCha20-Poly1305 is INT-sfCTF secure).
Let ChaCha20-Poly1305 be the scheme described above. Then
for any INT-sfCTF adversary Aint against ChaCha20-Poly-
1305, making at most qe encryption queries totalling µe bits,
there exists a prf adversary Aprf against the ChaCha20 block
function such that:

Advint
ChaCha20-Poly1305(Aint) ≤ Advprf

ChaCha20(Aprf) +
1

289
, (2)

where Aprf runs in time similar to Aint and makes at most
(d µe

29qe
e+ 1) queries.

Theorem 2 (ChaCha20-Poly1305 is IND-sfCFA secure).
Let ChaCha20-Poly1305 be the scheme described in above.
Then for any IND-sfCFA adversary Acfa against ChaCha20-
Poly1305, making at most qe encryption queries totalling µe
bits, there exists a prf adversary Aprf against the ChaCha20
block function such that:

Advcfa
ChaCha20-Poly1305(Acfa) ≤ Advprf

ChaCha20(Aprf) +
1

289
, (3)

where Aprf runs in time similar to Acfa and makes at most
(d µe

29qe
e+ 1) queries.

It is worth pointing out that the security bounds in the
above theorems are independent of the number of decryption
queries. These can be contrasted for instance with the bounds
obtained in [8], which for the typical parameter values of
SSH can become uncomfortably large. Our tighter bounds
are a direct consequence of our choice of security definitions,
which, albeit offering stronger security, can capture better
the extra security that stateful encryption schemes can offer.
In Theorems 1 and 2, the Poly1305MAC algorithm can be
replaced by any MAC algorithm that is SUF-CMA-secure,
with minor modifications to the proofs being required.

5.6 generic-EtM in OpenSSH
The generic Encrypt-then-MAC construction in OpenSSH

allows any combination of supported encryption and MAC
algorithms to be run in Encrypt-then-MAC mode. However,
we note that the actual implementation of gEtM in OpenSSH
prior to version 7.3 does not implement Encrypt-then-MAC
in the expected way. While the MAC tag of a received
ciphertext is computed before decryption commences, it is
only compared to the received MAC tag after decryption is
complete. Presumably this is as a result of the gEtM mode
having been implemented on top of the legacy Encrypt-and-
MAC mode in OpenSSH. As a consequence, the decryption
function could produce a plaintext-dependent error before
the MAC is checked, opening the code up to attacks involving
ciphertext manipulation. For example, suppose CBC-mode
using PKCS#7 padding were to be at some point added to
the roster of available encryption algorithms in OpenSSH.
Then the late MAC check would enable a padding oracle
style attack to be mounted. We stress, however, that at this
point no attack is known exploiting the late MAC check.

It would be possible to prove gEtM secure in our model
assuming that any errors thrown by the decryption algo-
rithm can be simulated without knowledge of the secret key
(formally, by assuming the existence of an efficient keyless
decryption error simulator). But such an approach would
neglect the potential vulnerabilities just highlighted. We
therefore chose to prove security of a modified gEtM construc-
tion, fixed-gEtM (fgEtM) that is identical to gEtM except
that it checks the MAC before decryption. We recommended
to the developers of OpenSSH that they adopt fgEtM, and
they have done so in OpenSSH version 7.3.

The generic Encrypt-then-MAC construction is instan-
tiated with a symmetric encryption scheme and a MAC
algorithm, and inherits these schemes’ parameters. The
construction is formalised as follows.
SE = (Kc, E ,D) is any symmetric encryption scheme sup-

ported by OpenSSH (not including AES-GCM and ChaCha20-
Poly1305). Kc is the (probabilistic) key generation algorithm,
which outputs a keylenc-byte length key Kc, encryption state
σc and decryption state %c. We write (Kc, σc, %c) ← Kc. E
is the encryption algorithm, which on the input of a key
Kc, variable-length plaintext M, positive integer ptlen and
encryption state σc encrypts the first ptlen bytes of M, and
outputs a ciphertext C and updated encryption state σc.
We write (C, σc) ← E(Kc,M, ptlen, σc). D is the decryp-
tion function, which on the input of a key Kc, ciphertext
C, positive integer clen and decryption state %c decrypts the
first clen bytes of C, and outputs a plaintext M or an er-
ror message ⊥, and updated decryption state %c. We write
(M, %c)← D(Kc,C, clen, %c). If SE is stateless σc and %c are
both equal to ε.
MA = (Km,MAC,V) is any MAC scheme supported by

OpenSSH. Km is the (probabilistic) key generation algorithm,
which outputs a keylenm-byte length key Km. We write
Km ← Km. MAC is the tag generation algorithm, which
on the input of a key Km and variable-length string str
outputs a `tag-byte length tag τ . We write τ ← MAC(Km, str).
V is the verification algorithm, which on the input of a
variable-length message str and tag τ outputs 1 if and only
if MAC(Km, str) = τ , and 0 otherwise. In cases where umac
is negotiated, the inputs to the MAC algorithm MAC and
verification algorithm V are augmented with a nonce which
is always set to be the sequence number.

Encryption proceeds by first encrypting the padding length
field, payload and padding using E . Then, a MAC is com-
puted over the resulting ciphertext prepended with the length
field and the sequence number. Hence, the OpenSSH imple-
mentation of fgEtM does not strictly comply with Section 6.3
of [25], which mandates that the length field be encrypted.
In fgEtM, this is because the MAC should be checked before
decryption can commence, and the length field is the only
indicator of where the MAC tag is located in the stream of
ciphertext bytes, so it has to appear in unencrypted form.
Decryption is the same process as for ChaCha20-Poly1305
except that we can skip the first step involving decrypting
the length field using a separate key. Detailed pseudo-code
for fgEtM can be found in the full version of this paper.

We are now ready to state our theorems showing that
fgEtM is IND-sfCFA and INT-sfCTF secure. We use the nota-
tion fgEtM(SE ,MA) to indicate that the algorithm pairing
(SE ,MA) has been negotiated. The proofs of these theorems
can be found in the full version.

Theorem 3 (fgEtM is IND-sfCFA secure). Let SE =

(Kc, E ,D) be a symmetric encryption scheme supported by
OpenSSH and let MA = (Km,MAC,V) be a message au-
thentication code supported by OpenSSH. Then for any
IND-sfCFA adversary Acfa against fgEtM(SE ,MA), there
exists an IND-CPA adversary Acpa against SE, a PRF ad-
versary Aprf against MAC and a SUF-CMA adversary Asuf

against MA such that

Advcfa
fgEtM(SE,MA)(Acfa) ≤ Advind-cpa

SE (Acpa) (4)

+ 2 ·Advsufcma
MA (Asuf) + 2 ·Advprf

MAC(Aprf),

where adversaries Acpa, Aprf and Asuf use resources similar
to Acfa.

Theorem 4 (fgEtM is INT-sfCTF secure). Let SE =
(Kc, E ,D) be a symmetric encryption scheme supported by
OpenSSH and let MA = (Km, T ,V) be a message authentica-
tion code supported by OpenSSH. Then for any INT-sfCTF ad-
versary Aint against fgEtM(SE ,MA), there exists a SUF-CMA
adversary Asuf against MA such that

Advint
fgEtM(SE,MA)(Aint) ≤ Advsufcma

MA (Asuf), (5)

where adversary Asuf uses resources similar to Aint.

5.7 AES-GCM in OpenSSH
The AES-GCM AEAD scheme is specified in [16]. The

use of AES-GCM in SSH is described in RFC 5647 [14] and
OpenSSH follows this specification. We refer to the use of
AES-GCM in SSH by AES-GCM.

For AES-GCM, OpenSSH utilises the AES-GCM encryp-
tion and decryption functions from OpenSSL. To accom-
modate this in our models, we define a nonce-based AEAD
scheme SEn = (Kn,AES-GCM-Eopenssl,AES-GCM-Dopenssl) that
replicates the relevant algorithms of the OpenSSL library.
Specifically, the three algorithms will have the following
interfaces:
Kn is a probabilistic key generation algorithm, which out-

puts a keylenn-byte key Kn (keylenn ∈ {16, 32}) and a 12-byte
initialisation vector IV. We write (Kn, IV) � Kn. The key
generation algorithm is not explicitly used in OpenSSH but
we include it here as we need it below.

AES-GCM-Eopenssl takes a key Kn, a 12-byte initialisation
vector IV, a variable-length plaintext M, a positive integer
ptlen, some variable-length additional data adata and a pos-
itive integer adatalen. It encrypts the first ptlen bytes of
M, and integrity protects the first ptlen bytes of M and
the first adatalen bytes of adata. AES-GCM-Eopenssl outputs
a ciphertext C and an authentication tag τ . We write
(C, τ)← AES-GCM-Eopenssl(Kn, IV,M, ptlen, adata, adatalen).

AES-GCM-Dopenssl takes a key K, a 12-byte initialisation
vector IV, a variable-length ciphertext C, a positive inte-
ger clen, some variable-length additional data adata and a
positive integer adatalen. It decrypts the first clen bytes
of C, and verifies the integrity of the first clen bytes of
C and the first adatalen bytes of adata. AES-GCM-Dopenssl

outputs a string M, or one of two error messages: ⊥mac=
SSH ERR MAC INVALID or ⊥error. The former is returned if
the MAC check failed and the latter is returned if the under-
lying OpenSSL library reports any other error. If an error
message is not returned, it means that the MAC tag contained
in the ciphertext verified successfully. We write M/ ⊥mac

/ ⊥error← AES-GCM-Dopenssl(Kn, IV,C, clen, adata, adatalen).
Now we turn to describing the AES-GCM mode in SSH as

per the specification in [14] and as implemented in OpenSSH.

During encryption, in calls to AES-GCM-Eopenssl, the addi-
tional data adata is set to the length field after packet en-
coding, while the plaintext M is set to the concatenation
of the padding length field, the payload and the padding.
The initialisation vector IV is set to be a 4-byte fixed field
and an 8-byte invocation counter field (ICF), both of which
are generated uniformly at random during setup. For each
encryption and decryption operation, the ICF is incremented
by one while the fixed field is invariant. As with the gEtM
construction (and for the same reason), the SSH specifica-
tion of AES-GCM deviates from Section 6.3 of [25] by not
encrypting the length field. Decryption for AES-GCM mode
in SSH extracts the length field from the stream of received
bytes, sanity checks it, and then calls the AES-GCM-Dopenssl

algorithm once sufficient bytes have arrived.
We are now ready to state our theorems regarding the

security of AES-GCM. Both theorems rely on the nonce-
based AEAD security of the AES-GCM AEAD scheme SEn
defined previously; for a formal definition of this security
notion, see [19]. The proofs of these results are provided in
the full version.

Theorem 5 (AES-GCM is IND-sfCFA secure). For any
IND-sfCFA adversary Acfa against AES-GCM, there exists an
nAE adversary Anae against SEn such that

Advcfa
AES-GCM(Acfa) ≤ 2 ·AdvnAE

SEn (Anae), (6)

where Anae use resources similar to Acfa.

Theorem 6 (AES-GCM is INT-sfCTF secure). For any
INT-sfCTF adversary Aint against AES-GCM, there exists an
nAE adversary Anae against SEn such that

Advint
AES-GCM(Aint) ≤ AdvnAE

SEn (Anae),

where Anae use resources similar to Aint.

Theorems 5 and 6 still hold true if the nonce-based en-
cryption scheme SEn is replaced by any other nonce-based
encryption scheme that meets the nAE notion.

6. ADVANCED SECURITY PROPERTIES
As mentioned previously, in addition to confidentiality

and integrity, the relevant SSH RFC [25] aims to mitigate
against traffic analysis and denial of service. Encrypting the
length field in basic SSH modes (such as CBC-mode and
CTR-mode) is designed to make traffic analysis based on
packet lengths more difficult for passive attackers. However,
an active attacker can manipulate ciphertext bits after the
length field and observe the number of bytes injected before
a MAC error is produced.8 Denial of service here refers to an
attacker flipping bits in the (encrypted) packet length field,
causing the receiver to expect a very long ciphertext, leading
to a long delay in interaction for the sender and allocation
of resources on the receiver’s end, cf. [21]. Indeed, the RFC
states that implementations “SHOULD check that the packet
length is reasonable” and OpenSSH imposes an upper limit
of 218 on the 32-bit packet length field.

Boldyreva et al. [10] introduced formal security notions
to capture these goals, namely BH-CPA, BH-sfCFA, and
n-DOS-sfCFA. We discuss these informally here, referring

8When CBC-mode is used, OpenSSH’s counter measure
to [1] prevents this simple byte-counting attack, but a timing
channel still exists as described in Section 4.3.

to [10] for the details. Completely hiding plaintext lengths is
impossible unless some efficiency is sacrificed. Indeed, simply
encrypting the length field does not conceal plaintext lengths,
at least not in a sense that is easy to formalise. However,
one can hope to hide ciphertext boundaries, meaning that
a sequence of ciphertext packets will look like a stream of
random bits, which can help to mitigate traffic analysis. In-
tuitively, the boundary hiding notions of [10] say that, given
a concatenation of ciphertexts, an adversary is unable to
determine the ciphertext boundaries, and hence can neither
determine the number of ciphertexts included in the con-
catenation nor their individual sizes. Boundary hiding is
defined in [10] for passive (BH-CPA) and active (BH-sfCFA)
adversaries. In the latter, the adversary additionally has ac-
cess to an oracle supporting fragmented decryption. On the
other hand, n-DOS-sfCFA security as defined in [10] requires
that no adversary be able to forge a sequence of ciphertext
fragments, totalling n bits, such that the decryption of the
sequence returns no output. One can always trivially achieve
n-DOS-sfCFA security by imposing an upper limit on the
ciphertext size, but this is not ideal as it would necessarily
limit the maximum message size. Thus, the technically in-
teresting (and useful) case is when n is significantly smaller
than the longest possible ciphertext.

Since both gEtM and AES-GCM expose the length field in
the clear it is trivial for an adversary to determine cipher-
text boundaries. In contrast, it can easily be shown that
ChaCha20-Poly1305 produces ciphertexts that are indistin-
guishable from random strings (IND$-CPA) which in turn
implies that it is BH-CPA-secure according to a result of [10].
However, ChaCha20-Poly1305 is not BH-sfCFA-secure due to
the bit-flipping attack outlined above. As for denial-of-service
security, none of the three schemes achieves n-DOS-sfCFA
for n smaller than the maximum ciphertext size, since even
though the packet length field is integrity protected in all
three cases, the MAC tag is only verified after the complete
ciphertext (as indicated by the packet length field) has been
received. Thus, an adversary could change the contents of
the length field to the maximum accepted value (218 for
OpenSSH) and the receiver would experience a connection
hang until it had received 256 kbytes of ciphertext, at which
point the connection would be dropped.

Bringing together the results of this section with those of
the previous section justifies the contents of Table 1.

7. CONCLUSIONS
We have provided statistics on the deployment of symmet-

ric encryption options in SSH, and have provided attacks
and formal security analysis for the most important options
currently implemented in OpenSSH: CBC-mode, ChaCha20-
Poly1305, gEtM and AES-GCM (with analysis of the very
popular CTR-mode being provided earlier in [21]). Our
results are summarised in Table 1. Given the continuing at-
tacks on CBC-mode, our recommendation is that this mode
should now be deprecated in SSH.

It is notable that none of the analysed schemes possesses
all of the security properties that one might consider desir-
able for SSH, namely confidentiality and integrity against
an adversary with access to a fragmented decryption oracle;
boundary hiding against active attacks; and resistance to
denial-of-service attacks. Yet such schemes do exist. For
example, in [10], Boldyreva et al. propose a scheme InterMAC
which simultaneously achieves all these properties. Further-

more it is easy to show that InterMAC also achieves our new
INT-sfCTF notion. InterMAC is relatively efficient both in
terms of computation and ciphertext overhead. At heart, it
adds an incremental MACing feature to a generic Encrypt-
then-MAC construction. In future work, we plan to explore
this scheme and possible variants. We will implement it as an
additional method in OpenSSH and evaluate its performance
in comparison to existing SSH schemes.

Acknowledgments
Degabriele was supported by EPSRC grant EP/M013472/1
(UK Quantum Technology Hub for Quantum Communica-
tions Technologies).

Hansen was supported by the EPSRC and the UK gov-
ernment as part of the Centre for Doctoral Training in
Cyber Security at Royal Holloway, University of London
(EP/K035584/1).

Paterson was supported in part by a research programme
funded by Huawei Technologies and delivered through the In-
stitute for Cyber Security Innovation at Royal Holloway, Uni-
versity of London, and in part by EPSRC grant EP/M013472/1.

The authors would like to thank Martijn Stam for helpful
discussions on security models for the IND-sfCFA setting.

8. REFERENCES
[1] Albrecht, M. R., Paterson, K. G., and Watson,

G. J. Plaintext recovery attacks against SSH. In 2009
IEEE Symposium on Security and Privacy (May 2009),
IEEE Computer Society Press, pp. 16–26.

[2] AlFardan, N. J., and Paterson, K. G. Lucky
thirteen: Breaking the TLS and DTLS record protocols.
In 2013 IEEE Symposium on Security and Privacy
(May 2013), IEEE Computer Society Press,
pp. 526–540.

[3] Bellare, M., Kohno, T., and Namprempre, C.
Authenticated encryption in SSH: Provably fixing the
SSH binary packet protocol. In ACM CCS 02 (Nov.
2002), V. Atluri, Ed., ACM Press, pp. 1–11.

[4] Bellare, M., Kohno, T., and Namprempre, C.
Breaking and provably repairing the SSH authenticated
encryption scheme: A case study of the
encode-then-encrypt-and-mac paradigm. ACM Trans.
Inf. Syst. Secur. 7, 2 (2004), 206–241.

[5] Bellare, M., Kohno, T., and Namprempre, C. The
Secure Shell (SSH) Transport Layer Encryption Modes.
RFC 4344 (Proposed Standard), Jan. 2006.

[6] Bellare, M., and Namprempre, C. Authenticated
encryption: Relations among notions and analysis of
the generic composition paradigm. In
ASIACRYPT 2000 (Dec. 2000), T. Okamoto, Ed.,
vol. 1976 of LNCS, Springer, Heidelberg, pp. 531–545.

[7] Bernstein, D. Chacha, a variant of salsa20.
http://cr.yp.to/chacha/chacha-20080128.pdf, 2008.

[8] Bernstein, D. J. The poly1305-AES
message-authentication code. In FSE 2005 (Feb. 2005),
H. Gilbert and H. Handschuh, Eds., vol. 3557 of LNCS,
Springer, Heidelberg, pp. 32–49.

[9] Bider, D., and Baushke, M. SHA-2 Data Integrity
Verification for the Secure Shell (SSH) Transport Layer
Protocol. RFC 6668 (Proposed Standard), July 2012.

[10] Boldyreva, A., Degabriele, J. P., Paterson,
K. G., and Stam, M. Security of symmetric

encryption in the presence of ciphertext fragmentation.
In EUROCRYPT 2012 (Apr. 2012), D. Pointcheval
and T. Johansson, Eds., vol. 7237 of LNCS, Springer,
Heidelberg, pp. 682–699.

[11] Boldyreva, A., Degabriele, J. P., Paterson,
K. G., and Stam, M. On symmetric encryption with
distinguishable decryption failures. In FSE 2013 (Mar.
2014), S. Moriai, Ed., vol. 8424 of LNCS, Springer,
Heidelberg, pp. 367–390.

[12] Dai, W. SSH2 attack.
http://www.weidai.com/ssh2-attack.txt, 2002.

[13] Durumeric, Z., Wustrow, E., and Halderman,
J. A. Zmap: Fast internet-wide scanning and its
security applications. In Usenix Security (2013),
vol. 2013.

[14] Igoe, K., and Solinas, J. AES Galois Counter Mode
for the Secure Shell Transport Layer Protocol. RFC
5647 (Informational), Aug. 2009.

[15] Lyon, G. F. Nmap network scanning: The official
Nmap project guide to network discovery and security
scanning. Insecure, 2009.

[16] McGrew, D., and Viega, J. The galois/counter
mode of operation (gcm). Submission to NIST Modes
of Operation Process, 2004.

[17] Miller, D., and Josefsson, S. The
chacha20-poly1305@openssh.com authenticated
encryption cipher. Working Draft, Nov 2015.

[18] Miller, D., and Valchev, P. The use of umac in the
ssh transport layer protocol.
https://tools.ietf.org/html/draft-miller-secsh-umac-01,
September 2007.

[19] Namprempre, C., Rogaway, P., and Shrimpton, T.
Reconsidering generic composition. In
EUROCRYPT 2014 (May 2014), P. Q. Nguyen and
E. Oswald, Eds., vol. 8441 of LNCS, Springer,
Heidelberg, pp. 257–274.

[20] Nir, Y., and Langley, A. ChaCha20 and Poly1305
for IETF Protocols. RFC 7539 (Informational), May
2015.

[21] Paterson, K. G., and Watson, G. J.
Plaintext-dependent decryption: A formal security
treatment of SSH-CTR. In EUROCRYPT 2010 (May
2010), H. Gilbert, Ed., vol. 6110 of LNCS, Springer,
Heidelberg, pp. 345–361.

[22] Rogaway, P. Problems with proposed ip cryptography.
http://www.cs.ucdavis.edu/˜rogaway/papers/
draft-rogaway-ipsec-comments-00.txt, April 1995.

[23] Rogaway, P. Nonce-based symmetric encryption. In
FSE 2004 (Feb. 2004), B. K. Roy and W. Meier, Eds.,
vol. 3017 of LNCS, Springer, Heidelberg, pp. 348–359.

[24] Rogaway, P., and Shrimpton, T. A
provable-security treatment of the key-wrap problem.
In EUROCRYPT 2006 (May / June 2006),
S. Vaudenay, Ed., vol. 4004 of LNCS, Springer,
Heidelberg, pp. 373–390.

[25] Ylonen, T., and Lonvick, C. The Secure Shell (SSH)
Transport Layer Protocol. RFC 4253 (Proposed
Standard), Jan. 2006. Updated by RFC 6668.

