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Abstract

We describe the Iraq Body Count Cor-
pus (IBC-C) dataset, the first substantial
armed conflict-related dataset which can
be used for conflict analysis. IBC-C pro-
vides a ground-truth dataset for conflict
specific named entity recognition, slot fill-
ing, and event de-duplication. IBC-C is
constructed using data collected by the
Iraq Body Count project which has been
recording casualties resulting from the on-
going war in Iraq since 2003. We de-
scribe the dataset’s creation, how it can
be used for the above three tasks and pro-
vide initial baseline results for the first
task (named entity recognition) using Hid-
den Markov Models, Conditional Random
Fields, and Recursive Neural Networks.

1 Introduction

Many reports about armed conflict related inci-
dents are published every day. However, these re-
ports on the deaths and injuries of civilians and
combatants often get forgotten or go unnoticed for
long periods of time. Automatically extracting ca-
sualty counts from such reports would help better
track ongoing conflicts and understand past ones.

Casualty counting, a subfield of conflict anal-
ysis, can be split into two distinct approaches
(Seybolt et al., 2013). A statistical approach
which uses sampling methods to infer total ca-
sualty counts (Burnham et al., 2006; Price et al.,
2014) and a direct recording approach which iden-
tifies and counts individual casualties.

One popular direct recording approach is to
identify incidents from textual reports and extract
casualty information from them. This can either
be done by hand or automatically. The Iraq Body
Count project (IBC) has been directly recording

casualties since 2003 for the ongoing conflict in
Iraq (IBC, 2016; Hicks et al., 2011). IBC staff col-
lect reports, link them to unique incidents, extract
casualty information, and save the information on
a per incident basis as can be seen in Table 2.

Direct recording by hand is a slow process and
notable efforts to do so have tended to lag behind
the present. Information extraction systems capa-
ble of automating this process must explicitly or
implicitly successfully solve three tasks: (1) find
and extract casualty information in reports (2) de-
tect events mentioned in reports (3) deduplicate
detected events into unique events which we call
incidents. The three tasks correspond to named
entity recognition, slot filling, and de-duplication.

In this work we introduce the report based IBC-
C dataset.1 Each report can contain one or more
sections; each section, one or more sentences;
each sentence, one or more words. Each word is
tagged with one of nine entity tags in the inside-
outside-beginning (IOB) style. A visual represen-
tation of the dataset can be seen in Figure 1 and its
statistics in Table 1.

To the best of our knowledge apart from the
significantly smaller MUC-3 and MUC-4 datasets
(which aren’t casualty-specific) there are no other
publicly available datasets made specifically for
tasks (1), (2) or (3). The IBC-C dataset can be
used to train supervised models for all three tasks.

We provide baseline results for task (1) which
we posit as a sequence-classification problem and
solve using an HMM, a CRF, and an RNN.

Since the 1990s the conflict analysis and
NLP/IE communities have diverged. With the
IBC-C dataset we hope to bring the two commu-
nities closer again.

1More information about the IBC-C dataset can be found
on: http://andrejzg.github.io/ibcc/
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Killed: 5
Injured: 2
Location: Baghdad

Killed: 22
Injured: 10
Location: Tikrit

Killed: 13
Injured: 5
Location: Baghdad
Date: March 12th

Killed: 1
Injured: 0
Location: Fallujah
Date: Last week

Figure 1: The IBC-C dataset visualised. A re-
port is split into one or more non overlapping sec-
tions. A section is comprised of sentences which
are comprised of words. Each section is linked to
exactly one incident which in turn can be linked to
one or more sections.

2 Related Work

Extracting information from conflict related re-
ports has been a topic of interest at various times
for both the conflict analysis, information extrac-
tion, and natural language processing communi-
ties.

The 1990s saw a series of message understand-
ing conferences (MUCs) of which MUC-3 and
MUC-4 are closely related to our work and contain
reports of terrorist incidents in Central and South
America. MUC data is most often used for slot
filling and although MUC-3 and MUC-4 contain
more slots than IBC-C they are at the same time
much smaller (MUC4 contains 1,700 reports) and
cannot be used for incident de-duplication.

Although various ACE, CoNNL, and TAC-KBP
tasks contain within them conflict-related reports,
none of them are specific to conflict and haven’t
been studied for conflict-related information ex-
traction specifically.

Studies more directly related to our dataset in-
clude work by Tanev and Piskorski (Tanev et al.,
2008) who use pattern matching to count casu-
alties. They report a 93% accuracy on count-
ing the wounded. However, they have access to

Element Count
incidents 9,184
sections 18,379
reports 16,405
sentences 35,295
words 857,465
KNUM 13,597
INUM 6,689
KSUB 14,395
ISUB 1,036
KOTHER 1,192
IOTHER 495
LOCATION 25,251
DATE 4,765
WEAPON 35,617

Table 1: Dataset statistics. Fully capitalised words
indicate named entity tags.

only 29 unique conflict events. Other non-casualty
conflict-related work in the domain also suffers
from a lack of data, for example, (King and Lowe,
2003) only deal with 711 reports.

Despite work in the NLP and IE communities,
the conflict analysis community is still reliant on
datasets created by hand. These include IBC (IBC,
2016), ACLED (Raleigh et al., 2010), EDACS
(Chojnacki et al., 2012), UCDP (Gleditsch et al.,
2002), and GTD (GTD, 2015).

To the best of our knowledge there are no efforts
to fully automate casualty counting. However, ef-
forts using NLP/IE tools to automate incident de-
tection do exist but their ability to de-deduplicate
incidents has been called into question (Weller and
McCubbins, 2014).

Three notable such efforts originating in the
conflict analysis community are GDELT (Lee-
taru and Schrodt, 2013), ICEWS (Obrien, 2010),
and OEDA (Schrodt, 2016). All three use pat-
tern matching software such as TABARI (Schrodt,
2001) and to categorise reports using the CAMEO
coding scheme (Schrodt et al., 2008).

3 Creating the IBC-C Dataset

3.1 Preprocessing

The Iraq Body Count project (IBC) has been
recording conflict-related incidents from the Iraq
war since 2003. An incident is a unique event re-
lated to war or other forms of violence which led
to the death or injury of people. An example can
be seen in Table 2.

The recording of incidents by the IBC works
as follows: IBC staff first collect relevant reports
before highlighting sections of them which they
deem relevant to individual incidents. Parts of



Incident ID Start date End date
d3473 22 Mar 2003 22 Mar 2003

Min killed Max killed Min injured
2 2 8

Max injured Location Cause of death
9 Khurmal Suicide car bomb

Sources Town Province
BBC 23 Mar
DPA 23 Mar Khurmal Sulaymaniyah

Alt. province District Alt district
/ Halabja /

Killed Subjects
Person 1, Person 2, ...

Injured Subjects
Person 3, Person 4, ...

Report Sections
BBC: “On Saturday Person 1 died in Khurmal ...”

DPA: “2 people died yesterday afternoon...”

Table 2: An example of an incident hand coded
by IBC staff. Min and max values represent the
minimum and maximum figures quoted in report
sections linked to the incident.

the report outside the highlighted sections are dis-
carded. Sections can be seen in Figure 1. Because
of the way IBC staff highlight sections there are no
overlapping sections in the IBC-C dataset. Events
are then recognised from the highlighted sections
and de-duplicated into incidents. A final descrip-
tion of the incident (e.g. death and injury counts,
location and date) is agreed upon after multiple
rounds of human checking.

In the preprocessing step we gathered all inci-
dents which occurred between March 20th, 2003
and December 31st, 2013. We removed spuri-
ous incidents (e.g. where the minimum number
killed is larger than the maximum number killed)
and cleaned the section text by removing all for-
matting and changing all written-out numbers into
their numeric form (e.g. ‘three’ to 3).

3.2 Annotation

Using the information extracted by the IBC (see
Table 2) we annotated each section word with one
of ten tags: KNUM and INUM for numbers repre-
senting the number killed and injured respectively;
KSUB and ISUB for named individuals were killed
or injured; KOTHER and IOTHER for unnamed
people who were killed or injured (for example
“The doctor was injured yesterday.”); LOCATION
for the location in which an incident occurred;
WEAPON for any weapons used in an attack;
DATE for words which identify when the incident
happened; and, O for all other words.

Our data generation process can be thought of
as a form of distant supervision (Mintz et al.,
2009) where we use agreed upon knowledge about
an incident to label words contained within its

Incident FiltrationPreprocessing + Annotation

IBC data

IBC-C dataset

Section FiltrationSentence Filtration

Figure 2: A visualisation of the different steps
taken to create the dataset.

sections instead of having hand-labeled individual
words. This inevitably introduces errors which we
try to mitigate using a filtration step where we re-
move ambiguous data.

3.3 Filtration
Simply annotating words based on the information
in Table 2 can lead to wrong annotations. For ex-
ample, if two people were recorded as having died
in an incident, then, if another number two appears
in the same sentence, this might lead to a wrong
annotation. The sentence, “2 civilians were killed
after 2 rockets hit the compound” could lead to the
second ‘2’ being annotated as a KNUM. The ac-
tual cardinality of a number makes little difference
to a sequence classifier compared to the difference
a misannotated number would make. To min-
imise such misannotations we remove sentences
and reports which do not pass all filtration criteria.
Our filtration criteria consist of boolean functions
over sentences, sections and incidents which re-
turn false if a test isn’t passed.

The goal of filtration is to remove as much am-
biguously labelled data as possible without bias-
ing against any particular set of linguistic forms.
There is thus a tradeoff which must be struck be-
tween linguistic richness and the quality of anno-
tation.

In our case we found that simple combinations
of pattern matching and semantic functions, as in
3, worked well. No syntactic functions were used.

3.3.1 Incident Filtration
Incidents are filtered using a single criterion: if the
minimum number of people killed or injured does
not equal the maximum number of people killed
or injured, respectively, (Table 2) then the inci-
dent is removed. We do this so as to minimise any
ambiguity in our named entity tagging (the only
task for which we provide baseline results). This
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- + - + - - 67,402
- + - - + + 3,360
- + - - - + 43,006
- - - + + + 7,573
- - - + - + 47,736
- - - - + + 19,749
- - - - - + 125,010

Table 3: Filtration criteria. An example of a set of
boolean functions (columns one through five) ap-
plied to sentences to filter out ambiguous KNUM
annotations. Sentences which we wish to allow are
identified by a ‘+’ in the toConsider column. Sen-
tence counts are given in the last column. Only
rows with non-zero counts are shown. Shaded
rows indicate sentences which are ambiguous are
shaded and identified by a ‘-’. We show only the
KNUM table due to lack of space.

has the adverse effect of removing any incidents
where reports mention different casualty counts.
To compile a dataset which disregards this crite-
rion, or considers a permissible window of casual-
ties, a parameter in our dataset generating program
may be changed.

3.3.2 Sentence Filtration

Filtering sentences is by far the hardest step. It
is here where we must be careful to not bias
against any linguistic forms. A separate set of
boolean functions are applied to each sentence for
the KNUM and INUM entity tags. An example for
the KNUM tag can be seen in Table 3. Every sen-
tence passes through four boolean functions (the
first four columns) and is then labeled as either
having passed or failed the test (fifth column). The
fifth column was decided upon by us in advance.

In the case of Table 3: hasKNUM indicates

whether the sentence contains a word tagged as
KNUM; isKillSentence indicates whether any of
its words are connected to death or killing (by
matching them against a list of predefined words);
hasOneTaggedAsKNUM indicates whether the
number ‘1’ is tagged as a KNUM (remember that
we convert written out numbers such as ‘three’
to ‘3’ and that ‘one’, and thus ‘1’, can also be
a pronoun); hasNumber indicates whether a sen-
tence has a number; and, otherKNUMsInSection
indicates whether there are other words tagged as
KNUM in the section.

3.3.3 Report Filtration
Report filtering is simple and again done using
only one rule. If any sentence a report contains
fails to pass a single sentence-level test, then the
whole report is removed.

3.4 Tasks

3.4.1 Named Entity Recognition
Each word in the IBC-C dataset is tagged with one
of nine (excluding O) entity tags as can be seen in
Table 1 which can be thought of as subsets of more
common named entity tags such as person or loca-
tion. The dataset can be used to train a supervised
NER model for conflict-specific named entity tags.
This is important for relationship extraction which
relies on good named entity tags.

3.4.2 Slot Filling and Relationship Extraction
Each IBC-C event can be thought of as a 9-slot
event template where each slot is named after an
entity tag. The important thing to keep in mind is
that a report may contain more than one section so
just correctly recognising the entities isn’t enough
to solve the slot filling task. Instead, if a report
mentions two events then two separate templates
must be created and their slots filled.

A common sub-problem of slot filling is rela-
tionship extraction. Because we know which in-
cident every section refers to, generating ground-
truth relationships is trivial because we may be
sure that an entity which appears in one of the
sections is related to every other entity in that
same section. For example, finding a KSUB
and a LOCATION means that we can build a
killed in(KSUB, LOCATION) relationship.

3.4.3 Event De-duplication
Since the IBC-C dataset preserves the links be-
tween sections and incidents it may be used as



HMM CRF 13-window RNN 13-window
Tag Precision Recall F1 Precision Recall F1 Precision Recall F1

KNUM 0.63 0.86 0.73 0.91 0.94 0.92 0.90 0.85 0.88
INUM 0.50 0.39 0.44 0.95 0.93 0.94 0.87 0.91 0.89
KSUB 0.73 0.68 0.70 0.82 0.76 0.79 0.86 0.53 0.66
ISUB 0.00 0.00 0.00 0.89 0.24 0.38 0.80 0.06 0.12

KOTHER 0.39 0.19 0.25 0.83 0.54 0.66 0.41 0.36 0.38
IOTHER 0.00 0.00 0.00 0.80 0.61 0.69 0.55 0.50 0.52

LOCATION 0.75 0.70 0.73 0.85 0.77 0.80 0.86 0.70 0.77
DATE 0.75 0.64 0.69 0.75 0.64 0.69 0.41 0.30 0.35

WEAPON 0.98 0.89 0.93 0.98 0.90 0.94 0.97 0.87 0.92
Overall 0.57 0.53 0.55 0.88 0.73 0.78 0.74 0.57 0.61

Table 4: Results for various models

a ground-truth training set for training event de-
duplication models.

4 Experiments

Baseline results were computed for the named en-
tity recognition task using an 80:20 tag split across
sentences (we ignore report or section bound-
aries). We compare three different sequence-
classification models as seen in Table 4: a Hid-
den Markov Model (Zhou and Su, 2002), a Con-
ditional Random Field (McCallum and Li, 2003),
and a Elman-style Recursive Neural Network sim-
ilar to the one used in (Mesnil et al., 2013).

For the HMM we use bigram features in combi-
nation with the current word and the current base
named entity features2. We trained the HMM in
CRF form using LBFGS.

For the CRF we find that using bigram fea-
tures and a 13-word window, across words and
base named entities, gives us the best result. We
train the CRF using LBFGS. All CRF training,
including the HMM, was done using CRFSuite
(Okazaki, 2007).

For the Elman-style recurrent network we use
randomly initialised 100 dimensional word vec-
tors as input, the network has 100 hidden units,
and we use a 13-word context window again. The
RNN was implemented using Theano (Bastien et
al., 2012). We train the RNN using stochastic gra-
dient descent on a single GPU.

4.1 Evaluation

The first thing which strikes us is how low the
ISUB scores are. The CRF returns a recall score of
0.24. At the same time, the precision is relatively
high at 0.89. Low recall indicates a lot of false

2Base named entities such as PERSON and LOCATION
were found using Stanford’s named entity recogniser (Finkel
et al., 2005).

negative classifications - i.e. there were many in-
jured people who were mistakingly tagged as un-
injured. A high precision rate means a low false
positive rate - i.e. most uninjured people were cor-
rectly tagged as uninjured. In short, the classifier
was too generous with tagging people as having
been injured. Looking at the dataset we realise
that in contrast to KSUBS, words which we asso-
ciate with injury such as “wounded” or “injured”
are often very far away from an ISUB. Increasing
the window size with the CRF didn’t help (such
large features are often never expressed during the
test phase).

Low recall scores across multiple tags indi-
cate that long-distance dependencies determine a
word’s classification. K/INUM recall is excep-
tionally high because K/INUMs are usually sur-
rounded by words such as “killed”. We were sur-
prised to see the RNN perform relatively poorly
and expected it to be able to factor in long-distance
dependencies. We believe this has more to do with
our hyper-parameter settings than deficiencies in
the actual model.

5 Conclusion

We present IBC-C, a new dataset for armed con-
flict analysis which can be used for entity recogni-
tion, slot filling, and incident de-duplication.
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