
Secure Application Execution in Mobile Devices

Mehari G. Msgna, Houda Ferradi, Raja Naeem Akram, and Konstantinos
Markantonakis

Abstract Smart phones have rapidly become hand-held mobile devices capable of
sustaining multiple applications. Some of these applications allow access to services
including healthcare, financial and online social networks and are becoming com-
mon in the smart phone environment. From a security and privacy point of view,
this seismic shift is creating new challenges, as the smart phone environment is
becoming a suitable platform for security- and privacy-sensitive applications. The
need for a strong security architecture for this environment is becoming paramount,
especially from the point of view of Secure Application Execution (SAE). In this
chapter, we explore SAE for applications on smart phone platforms, to ensure appli-
cation execution is undertaken as expected by the application provider. Most of the
proposed SAE proposals are based on having a secure and trusted embedded chip
on the smart phone. Examples include the GlobalPlatform Trusted Execution En-
vironment, M-Shield and Mobile Trusted Module. These additional hardware com-
ponents, referred to as secure and trusted devices, provide a secure environment in
which the applications can execute security-critical code and/or store data. These
secure and trusted devices can become the target of malicious entities; therefore, we
need to have a strong framework to validate and secure the code execution on such
devices. This chapter discusses how we can provide an assurance that applications
executing on such devices are secure by validating the secure and trusted hardware.

Key words: Smart Phone, Apple iOS, Android, Mobile Trusted Manager, Glob-
alPlatform Trusted Execution Environment, Secure Application Execution.

M. G. Msgna, R. N. Akram & K. Markantonakis, Information Security Group, Smart Card Centre,
Royal Holloway, University of London, Egham, UK.
e-mail: \{mehari.msgna.2011,r.n,akram,k.markantonakis\}@rhul.ac.uk
e-mail: m.g.msgna@insa.gov.et
H. Ferradi, ’Ecole normale supérieure’ e-mail: houda.ferradi@ens.fr

1

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Royal Holloway - Pure

https://core.ac.uk/display/77298168?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

1 Introduction

Mobile phones have changed the way we communicate and stay in touch with
friends and family. This revolution, including ubiquitous voice communication and
Short Messaging Services (SMS), was pivotal in the early adoption of mobile de-
vices. However, smart phones went a step further and enabled consumers to carry
a powerful computing device in their pocket. This has changed the way we interact
with computer technology. With ubiquitous access to the internet and a range of ser-
vices being designed for the smart phone platform, they have not only inherited the
security and privacy issues of traditional computer- and internet-based technology,
but also amplified them due to the convergence of services like healthcare, banking,
and Online Social Networking (OSN) applications. Therefore, with ever-increasing
adoption of smart phones and their role as an integral part of daily life, the challenge
is to build such devices in a manner that provides a trusted and secure environment
for all sensitive applications. There have been many different proposals on how
such an environment can be built, including different architectures such as software
protection (including compile time and link time code hardening), application man-
agement, and hardware protection (e.g. ARM TrustZone, GlobalPlatform Trusted
Execution Environment, Trusted Platform Module, and Secure Elements). In this
chapter, we discuss most of the listed examples in order to highlight issues related
to Secure Application Execution (SAE) on smart phone platforms. Most of these
proposals rely on:

1. Pre-installation secure coding and analysis
2. Post-installation secure application management and analysis
3. Trusted hardware to provide software validation
4. Executing a portion of the activity (usually the most sensitive part of the appli-

cation code and associated data) on secure and trusted hardware.

A crucial issue regarding the secure execution of sensitive applications on smart
phone platforms is: how can we trust the execution environment? Most of the pro-
posals for SAE are based, one way or another, on secure hardware that will provide
some level of security, trust and possibly privacy, giving an assurance that the appli-
cation in execution (at runtime) on such hardware will be secure. This means that
the application code executing on the trusted hardware will run without interference
from attackers and that each line of code executes as intended by the application
developer (or application provider). For a secure and trusted hardware that will not
enable a malicious entity to interfere with the execution of an application, we require
a runtime protection mechanism. In this chapter, we will discuss such a mechanism,
explain its operation and show how it can achieve secure runtime monitoring of
sensitive applications on trusted hardware.

3

1.1 Structure of the Chapter

In section 2, we discuss the smart phone ecosystem and briefly describe the two ma-
jor smart phone platforms Apple iOS and Google Android. This leads us to a dis-
cussion of the SAE frameworks including code hardening, application management
and device attestation in section 3. We then discuss proposals for trusted execution
environments that are usually based on secure hardware in section 4. In section 5,
we address the issue of ensuring that the trusted execution environment will provide
a secure and trusted application execution. This section also describes application
runtime protection deployed in a trusted execution environment. Finally, in section
6 we provide concluding remarks on SAE for smart phone platforms along with
suggestions for future work.

2 Smart Phone Ecosystems

We will first describe the two major smart phone platforms currently in use: Apple’s
iOS and Google’s Android. The subsequent sections introduce the security-related
provisions present on these two platforms. It is important to note that Google An-
droid smart phones may feature varying security levels because of the large degree
of flexibility left by Google to their hardware manufacturers (design licensees).

2.1 Apple’s iOS Ecosystem

This section briefly outlines Apple’s security ecosystem. This security ecosystem is
meant to prevent insecure or malicious applications from being installed on handsets
in the field.

2.1.1 Secure Boot Chain

The secure boot is the process by which Apple ensures that only signed and trusted
software is loaded into iOS devices. Amongst other desirable features, this ensures
that the lowest levels of software are not tampered with, and allows iOS to run only
on validated Apple devices. The secure boot chain encompasses the bootloaders,
kernel, kernel extensions, and baseband firmware with each component verifying
the next. If any boot process component cannot be loaded or verified correctly, then
the boot sequence (also called boot-up) is stopped. Each component that is part of
the boot process must be signed by Apple. Boot chain sequence:

1. The Boot ROM is considered to be an implicitly trusted code embedded within
the A5 processor during chip manufacturing. The Boot ROM code contains the

4

public key of Apple’s Root CA, which is used upon iDevice power-up. This
public key allows verification that the Low-Level Bootloader has been signed
by Apple before allowing it to load.

2. The bootloaders are a piece of software executed whenever the hardware is
powered up. There are two bootloader components: the Low-Level Bootloader
(LLB) and iBoot. The LLB is the lowest-level code on an Apple device that
can be updated. The LLB runs several firmware setup routines. The bootloaders
attempt to verify the iOS Kernel’s signature; if this verification fails the device
enters into Recovery Mode (visible to the user as a ”connect to iTunes” mode).

3. The iOS Kernel includes an XNU kernel, system modules, services and appli-
cations. When the LLB and the iBoot finish their tasks, iBoot verifies and runs
the next kernel stage of the iOS. The iOS Kernel is the ultimate authority for
allowing the secure boot.

This process was designed by Apple to ensure the integrity of the booting process.
Each step is checked cryptographically: this means that each OS component, in-
cluding the bootloaders, kernel, kernel extensions, and baseband firmware must be
signed with a certificate in order to assemble into a chain of trust.

2.1.2 Hardware Encryption Features

The cryptographic operations that we have just described require modular expo-
nentiations and hashings of long data streams (executable code). These tasks are
resource-consuming and require efficient hardware processing. iOS provides access
to a specific API that, besides allowing the system to access such computational
resources, also allows developers to add custom cryptographic operations to their
applications. Such hardware acceleration features:

1. An AES [37] engine implemented on the DreamFactory Mobile Application”
(DMA) path between the flash storage and the main system memory.

2. An SHA-1 [35] API allowing high-speed hashing for integrity check purposes.
3. iOS devices have two fuse-protected (non-erasable) device keys burnt into the

processor during manufacturing. These keys, which are only accessible by the
AES crypto-engine, are:

a. The User ID (UID) key: a 256-bit AES key unique to each device. The
UID key is used to bind data to a given device.

b. The Group ID (GID) key: a 256-bit AES key common to all processors
using Apple A5 chips. the GID key is used if required by Apple to install
and restore software [39].

2.1.3 Data Security

To secure the data stored in flash memory, Apple has constructed a data protection
mechanism in conjunction with the hardware-based encryption. The data protection

5

mechanism allows the interaction of the device with incoming phone calls, which
are treated as incoming events from identified sources (called IDs) and includes a
remote wipe function, passcodes, and data protection, which are briefly described
as follows:

1. The Remote wipe feature allows the device owner to sanitize the device if it is
stolen or if too many passcode attempts fail. Remote wiping can be initiated via
MDM (Mobile Device Management), Exchange, or iCloud.

2. The Passcode serves two purposes: it protects the device’s accessibility by lock-
ing it and provides entry to the encryption/decryption keys stored on board. This
ensures that certain sensitive files can be decrypted only upon successful pass-
code presentation by the user.

3. In addition to the above features, Apple devices have also methods for collecting
and distilling entropy for creating new encryption keys on the fly. As attested
by many Apple patent applications, methods range from collecting application
data to the monitoring of device movements and hashing them into random
information.

4. The Key chain data protection uses a hardware encryption accelerator, shipped
with all 3GS or newer iPhone devices. The accelerator can encrypt selected
sensitive data fields that many apps need to handle (e.g. passwords, credentials
and keys). Data stored in the keychain is logically zoned to prevent applications
from accessing confidential information belonging to other applications. An ap-
plication developer can therefore easily manage his application’s data by simply
declaring it as private to his application.

2.1.4 Sandboxing

The kernel of iOS is the XNU kernel [40]. XNU is the OS kernel initially developed
for the Mac OS X operating system and subsequently released as free open source
software. The security model for iOS is therefore very similar to that of the Mac
OS, where code is secured using signatures, sandboxing and entitlement checking.
Sandboxing is a software environment where codes are isolated from each other, and
where an applications access to resources is controlled by the OS. Each application
has access to its own files, preferences, and network resources. The camera, GPS and
other system resources on the device are accessible through an interface of abstract
classes [38].

2.1.5 Application Code Signing (Vetting)

To guarantee the integrity of data stored in the mobile device, code signing (or
vetting) is a process allowing the application developer to certify that an applica-
tion was created by him. Once an application is signed, the system can detect any
changes (be these accidental or malicious) in the signed code. Apple signs all com-
ponents in the boot process (e.g. the bootloaders, kernel, kernel extensions, and

6

baseband firmware). Signatures are required for all programs running on the device
regardless of whether these are Apple codes or third-party applications (e.g. Safari).
Thereby iOS avoids loading unsigned codes or applications that may be malicious.

2.2 The Android Ecosystem

Because Linux is at the heart of Android [41], most Linux security concepts also
apply to Android.

2.2.1 Sandboxing

Android inherits a permission model from the Linux kernel that provides data isola-
tion based on UIDs and GIDs. Therefore, each user has an assigned UID and one or
more GIDs. To enforce data confidentiality, Android uses two concepts that permit
users to access only files that they own:

1. The Discretionary Access Control (DAC) concept is a Linux mechanism al-
lowing only the device owner to access her own files [44]

2. The Mandatory Access Control (MAC) is an OS protection mechanism that
constrains the ability to access or perform certain operations on specific ob-
jects or targets. Generally, the MAC is used to control access by applications to
system resources [44].

To differentiate one user from another or one user group from another, each appli-
cation within a Linux system is given a UID and a GID. Each file’s access rules are
specified for three sets of subjects: user, group and everyone. Each subject set has
valid or invalid permissions to read, write and execute a file. To restrict file access
to owners only, the Android kernel sandbox uses UIDs and GIDs to enforce DAC.

2.2.2 Applications permissions

By default an Android application has no specific permissions to access mobile re-
sources. This means that the application cannot do anything that would adversely
impact [43]. However, application developers can add permissions to their applica-
tions using tags in the AndroidManifest.xml file. These tags allow developers
to describe the functionality and the requirements of a target Android application
and thereby adapt security to increase functionality. For example, an application
that needs to monitor incoming SMS messages would specify:

uses-permission android:name="android.permission.RECEIVE SMS"

7

2.2.3 Application Code Signing

Android requires that all apps be digitally signed with a certificate before they can
be installed [42]. This functionality is used to:

• Identify the code’s author,
• Detect if the application has changed, and
• Establish trust between applications

However, applications signed using the same digital signature can grant each other
permission to access signature-based APIs. Such applications can also run in the
same process if they share user IDs, allowing access to each other’s code and data.

3 Secure Application Execution (SAE)

In this section, we briefly discuss existing secure application frameworks for smart
phone or embedded platforms.

3.1 Code Hardening

A program code is a group of executable processor instructions designed to achieve
a desired output. During program execution each instruction performs a certain op-
eration. These instructions can be individually targeted by an attacker to force the
processor into generating a faulty output. An example of such an attack is a fault
injection attack, where the attacker uses equipment such as laser perturbations and
clock manipulators to induce a fault [34]. This type of attack can be prevented by
manipulating the code in such a way that either a makes it impossible for the at-
tacker to locate and target these instructions, or b enables the code to detect induced
faults during execution of the program. This code protection process is known as
code hardening. Yet another code hardening technique is obfuscation. Obfuscation
is defined in the Oxford Dictionary as “making something obscure, unclear and un-
intelligible” [?]. In a software development context, obfuscation is the deliberate
act of creating a source and/or machine code that is difficult for other programmers
to understand and manipulate. Program developers may deliberately obfuscate code
to conceal its purpose or logic in order to prevent tampering. Because the attacker
does not know exactly what each instruction does, it becomes harder to inject faults
into specific software functions. A further common method for avoiding faults is re-
dundancy. Redundancy in this context involves duplicating critical code parts. The
main principle behind this technique is that induced faults are detected by executing
the duplicate codes and checking whether execution results match or not. If both
codes generate identical results, then the execution is considered fault-free; other-
wise, execution is terminated. The redundant code may be inserted either into the

8

source code or into the machine code. In the case of source-level injection, source
code has to pass through a tool, called a source-to-source rewriter, which essentially
inserts redundancy by duplicating selected statements. Source-to-source rewriters,
however, suffer from major drawbacks. Firstly, modern compilers are equipped with
code optimisation tools. One such tool is the Common Subexpression Elimination
(CSE) tool [15], which removes redundant expressions/statements. During compila-
tion the CSE searches for identical expressions and removes them. One of the great
advantages of CSE is that it reduces the program size and speed by removing du-
plicated codes, but this risks undoing the security protection provided by redundant
code execution. To ensure that sufficient redundancy survives the CSE and remains
in the generated code, the source-to-source rewriter inserts either; i) Non-optimised
and non-analysed code by disabling the CSE or ii) a code that is complex enough
to withstand the compiler optimisation and analysis process. Secondly, source-to-
source rewriters are very dependent on the language and the compiler being used.
Hence, they need to be redeveloped (ported) for every programming language. In
other words, neither the protection nor the minimal performance overhead can be
ported between compilers and languages. As a result of these drawbacks, it still re-
mains a challenge to guarantee the presence of only the necessary degree of redun-
dancy with acceptable performance overheads. It can be very difficult or in some
cases impossible to have redundant source code statements that i) will survive
compiler optimisation, and ii) will not limit the compiler’s existing analysis and
optimisation scope. To avoid source-to-source rewriter problems, in certain cases
redundancy is inserted into the binary code of the program. Such tools are known as
link-time rewriters. These rewriters do not suffer from the drawbacks of source-to-
source code rewriters. However, they do suffer from a lack of high-level semantic
information such as symbol and type information. This lack of information limits
the precision and scope of protection provided by binary code rewriters. The best
example of a binary rewriter is Diablo [21].

3.2 Device Attestation

Device Attestation is a technique allowing a verifying entity V to check that the
hardware, the firmware and/or the software of a proving entity P are genuine. V is
called the verifier (or the challenger or the authenticator) whereas P is called the
prover (or the attestator). In this section, we will distinguish two common device
attestation method variants. The distinction between the two methods, called remote
attestation and local attestation, is based on V’s location and on V’s access to P.

3.2.1 Remote Attestation:

This concept was first promoted by the Trusted Computing Group (TCG) and imple-
mented in the Trusted Platform Module (TPM) specifications [9]. In most modern

9

telecommunication services remote attestation is widely used for authentication and
is referred to as Direct Anonymous Attestation (DAA) [11]. DAA is a method by
which one P can prove to another V that a given secret statement is true without
revealing any information about P’s secret apart from the fact that the statement is
indeed true. This attestation is the means by which trusted software proves to remote
parties that it is trustworthy, thereby confirming that a remote server is communicat-
ing with authentic software rather than malware. For instance, a remote bank server
could use DAA to ensure that the banking application in a particular OS has not
been changed. At present, there are several ways to provide a Secure Element (SE)
to allow the storage of a root-of-trust for mobile devices. The best known implemen-
tations are FreeScale’s i.MX53 and Texas Instruments M-Shield. There are three SE
categories:

• Embedded SEs, generally used to provide security for Near Field Communica-
tion (NFC);

• Embedded hardware SEs,
• and Removable hardware SEs implemented in form-factors such as smart-cards

and secure SD cards.

To allow the regeneration of security by replacing the system’s SE in case of breach,
the most popular SEs are tamper-resistant smartcards. In this section we will only
consider tamper-resistant security chips implementing remote attestation available
on trusted hardware modules such as TPMs. Remote attestation is a technique al-
lowing P to attest to V that Ps hardware, firmware and software are genuine. Re-
mote attestation allows a remote entity V to reach a level of trust concerning the
integrity of a second remote entity P. Because P and V are at a distance from each
other, cryptographic keys must be used to convince P and V that information is be-
ing exchanged between them and not between one of the parties and an opponent.
The remote authentication process breaks down into two steps. The first step, called
”integrity measurement” involves the measurement of different system parameters
by P. P might collect information such as BIOS, OS and kernel execution times,
system memory consumption, installed software, user access patterns, version num-
bers, stack level usage, and data hash imprints. This information µ can be monitored
under nominal conditions or under randomly chosen working conditions. µ can be
a system response to a challenge sent by V (e.g. compress file X using the built-in
compression function Y and measure the stack user imprint during the compression
process), jointly chosen with P, or can result from the processing and monitoring of
user-generated activity. After this data collection phase, P and V execute a remote
attestation protocol. This protocol is a public-key cryptographic interaction secure
against man-in-the-middle attacks, by which the P and V check each other’s knowl-
edge of respective secret keys and create a session key allowing P to safely transmit
µ to V. The µ allows V to ascertain that P is malware-free. When V is convinced
that µ matches good values (either known or re-computed), V issues a digital signa-
ture. The detailed description of remote attestation protocols falls beyond the goal
of this introductory discussion, but is briefly summarised as follows. Both parties
use public-key key exchange, public-key encryption and signatures to create a se-

10

cure channel through which µ will later transit. To prevent malware from emulating
P’s behavior, secret operations and measurement data storage do not take place in
P’s open hardware region but in P’s TPM PTMP whose public-keys are certified by
some certification authority A. A specific register bench of PTMP, called the Plat-
forms Configuration Register (PCR), is devoted to measurement data storage. Very
schematically, an application App running on P starts by generating public/private
encryption and signature key-pairs and submits these keys to PTMP to be certified.
PTMP hashes App, signs its digest and gets an Attestation Identity Key (AIK) (see
section 4.6) that PTMP returns to App.App uses P’s communication stack to send
the AIK and PTMP’s certificates to V, which checks that P is indeed known to V
(i.e. present in the database of devices with which V is entitled to communicate)
and that all aforementioned signatures and certificates are correct. If this succeeds,
P and V establish a secure channel and start communicating measurement informa-
tion. In general, the attestation protocol described above is usually run twice, with P
and V switching roles. For added security, the code of V that validates the measure-
ments is not published but is provided as a cloud-based security-service that does
not expose (to potential attackers) the models that reflect P’s structure [45]. Cloud-
based verifiers also have the advantage of allowing a complete (memory and time
consuming) virtual emulation of relatively complex P’s so as to infer their expected
measurements quickly and accurately.

3.2.2 Local Attestation:

Without strict control over the boot process of an operating system, unauthorised
software can be introduced via the boot sequence or the BIOS and attack the plat-
form in devastating ways [48, 46, 47]. In comparison to remote attestation, which is
done by a remote V, in local attestation, the verification is a sort of security self-
test, allowing a platform P+V to protect itself from infection. This is achieved
using a variety of techniques ranging from code hash values to real-time hardware
watchdogs. Because it is impossible to enforce security if the boot process is com-
promised, local attestation tries to carefully ascertain that that the boot process does
not feature any anomalous warning signs. This is done in two steps: Authenticated
Boot: Upon power-up the system is executed and measured to infer µ . Then the
PCRs are initialized with µ using a specific PCR extension function that updates
(extends) the PCR value using the formula:

PCRi+1← SHA1(PCRi|µi+1)

where the vertical bar | stands for data concatenation. Upon reboot, the system will
re-perform all the measurements µ1, . . . ,µ` (where ` is the number of PCR exten-
sions done so far, and ascertain that at least the previously measured features remain
unaltered. Secure Boot: The previous accumulation idea can also be applied to the
”measurements” µi consisting of the digital signatures of the various software com-
ponents present in the platform. These signatures are recorded in the TPM upon

11

software installation. Here the accumulation process is not a simple hash but a sig-
nature accumulation and screening process [49, 51, 50] allowing accumulation of
` individual RSA signatures s1, . . . ,s` into one ”global” RSA signature s checked
together:

s =
`

∏
i=1

si mod n

Note that when program k is uninstalled, s must be corrected by updating it as fol-
lows s← s× s−1

k mod n. The above assumes that the code implementing the signa-
ture verification is itself secure. To that end, a small part of P’s code is saved in an
inerasable (immutable) ROM space called the boot-ROM. The boot-ROM measures
the OS loader’s components and, upon successful measurement, hands over exe-
cution to the OS loader. The OS loader will measure the OS and again, hand over
execution to the OS and its drivers, which, ultimately, will measure the applications
installed in the platform. All these measurements are done by verifying a tree of
digital signatures where the ancestor is the measuring code and where the offspring
are measured codes. When the process ends, the entire platform has been attested
and is considered as having reached an approved configuration.

4 Trusted Execution Environment

In this section we briefly introduce some of the proposals for a secure and trusted
application execution and data storage.

4.1 Mobile Trusted Module (MTM)

The growth of mobile computing platforms has encouraged the Trusted Computing
Group (TCG) to propose the Mobile Trusted Module (MTM). In this section, we
briefly discuss the MTM architecture and its operations along with how this dif-
fers from the TPM. In section 4.6, we will discuss the proposed TPM MOBILE
whose origins lie in the TPM v1.2. The ecosystems of mobile computing platforms
(e.g mobile phones, tablets, and PDAs) are fundamentally different from traditional
computing platforms. Therefore, the architecture of the MTM has some features
from the TPM specification, but it introduces new features to support its target envi-
ronment. The main changes introduced in the MTM that make it different from the
TPM specification are:

1. The MTM is required not only to perform integrity measurements during the
device boot up sequence, but also to enforce a security policy that prevents the
system from initiating securely if it does not meet the trusted (approved) state
transition.

12

2. The MTM does not have to be in the hardware; it is considered as a function-
ality, which can be implemented by device manufacturers as an add-on to their
existing architectures.

3. The MTM specification supports parallel installations of MTMs associated with
different stakeholders.

MTM MTM MTM MTM

Device Services

Trusted Services

Trusted

Resources

Cellular Services

Trusted Services

Trusted

Resources

Application

Services

Trusted Services

Trusted

Resources

User Services

Trusted Services

Trusted

Resources

Device Engine Cellular Engine Application Engine User Engine

Fig. 1: Possible (Generic) Architecture of Mobile Trusted Platform

The MTM specification [6] is dynamic and scalable to support the existence of mul-
tiple MTMs interlocked with each other, as shown in Figure 1. The MTM refers to
them as engines, where each of these engines is under the control of a stakeholder.
Stakeholders may include the device manufacturer (Device Engine), the mobile net-
work operator (Cellular Engine), the application provider (Application Engine), and
the user (User Engine); as illustrated in Figure 1. Each engine is an abstraction of
trusted services associated with a single stakeholder. Therefore, on a mobile plat-
form there can be a single hardware that supports the MTM functionality and is
accessed by different engines. Each mobile platform abstract engine supports:

1. Provision to implement trusted and non-trusted services (normal services) asso-
ciated with a stakeholder.

2. Self-test to ascertain the trustworthiness of its own state.
3. Storage of Endorsement Key (EK) (which is optional in MTM) and/or Attesta-

tion Identification Keys (AIKs).
4. Key migration.

We can further dissect abstract engines as components of different services as shown
in Figure 2. The non-trusted services in an engine cannot access the trusted re-
sources directly. They have to use the Application Programming Interfaces (APIs)
implemented by the trusted services. The trusted resources, including reporting,
verification and enforcement, are new concepts that are introduced in the MTM
specifications. The MTM measurement and storage services shown in Figure 2 are

13

Non-Trusted Services

Trusted Services

D
e

v
ic

e

E
n

g
in

e

External Non-Trusted ServicesExternal Trusted Services External Non-Trusted Resources

Trusted Resources

Reporting Verification Enforcement

MTM

Measurement Storage

Fig. 2: Generic Architecture of an Abstract Engine

similar to the TPMs discussed in previous sections. The MTM specification defines
two variants of the MTM profile depending upon who is the owner of a particular
MTM. They are referred as Mobile Remote Ownership Trusted Modules (MRTMs)
and Mobile Local Ownership Trusted Modules (MLTMs). The MRTM supports the
remote ownership, which is held either by the device manufacturer or the mobile
network operator, while the MLTM supports the user ownership. The roots of trust
in the MTM include those discussed in TPM, including Root of Trust for Stor-
age (RTS), Root of Trust for Measurement (RTM), and Root of Trust for Report-
ing (RTR); however, the MTM introduces two new roots of trust known as Root
of Trust for Verification (RTV) and Root of Trust for Enforcement (RTE). During
MTM operations on a trusted mobile platform, we can logically group different
roots of trust; for example, RTM and RTV are grouped together to perform an ef-
ficient measure-verify-extend operation illustrated in Figure 5. Similarly, RTS and
RTR can be grouped together to deal with secure storage and trustworthiness of the
mobile platform. The MTM operations as shown in Figure 5 begin when a process

RTM

(1) Integrity Measurement

Process Initiated

Program Code

Configuration

Event

Event Data

Integrity

Measurement

RTV
(2') Execution Transfer

(3) Read Event

and Measurement

Reference Integrity Metric (RIM)

Events

Integrity Measurements

(4) Retrieve

Associated

 Measurement

Process Executes

Program Code

Configuration

(7) Sanction execution

Stored

Measurement

Log

(5) Store the Event Log

MTM (6) Extend PCR

(2) Event Generation

Fig. 3: MTM Measurement and Verification Process

starts execution, and they are:

1. The RTM performs integrity measurements on the initiated process.
2. The RTM registers an event that includes the event data (application/process

identifier) and associated integrity measurement. The RTM then transfers the
execution to the RTV.

14

3. The RTV reads the event registered by the RTM.
4. The RTV then searches the event details via the Reference Integrity Metric

(RIM). This includes the trusted integrity measurements associated with indi-
vidual events, populated by the engine owner. This operation makes the MTM
different from the TPM, as the latter does not make any decision regarding the
trustworthiness of the application or process. However, MTM does so via the
comparison performed by the RTV to verify that the integrity measurement per-
formed by the RTM matches the one stored in the RIM. If the integrity measure-
ment does not match, the MTM terminates the execution or disables the process.
If the verification is successful then it proceeds with steps 5 and 6 along with
sanctioning the execution (step 7).

5. The RTV registers the event in the measurement logs. These logs give the order
in which the measurements were made to generate the final (present) value of
the associated PCR.

6. The RTV extends the associated PCR value that is stored in the MTM.
7. If verification is successful, the execution of the process is sanctioned.

4.2 M-Shield

Texas Instruments has designed the M-Shield as a secure execution environment
for the mobile phone market [5]. Unlike ARM TrustZone, the M-Shield is a stand-
alone secure chip, and it provides secure execution and limited non-volatile memory.
It also has internal memory (on-chip memory) to store runtime execution data [13]
and this makes it less susceptible to attacks on off-chip memory or communication
buses1 [12].

4.3 ARM TrustZone

Similar to the MTM, the ARM TrustZone also provides the architecture for a trusted
platform specifically for mobile devices. The underlying concept is the provision of
two virtual processors with hardware-level segregation and access control [14, 7].
This enables the ARM TrustZone to define two execution environments described
as Secure world and Normal world. The Secure world executes the security- and
privacy-sensitive components of applications and normal execution takes place in
the Normal world. The ARM processor manages the switch between the two worlds.
The ARM TrustZone is implemented as a security extension to the ARM processors
(e.g. ARM1176JZ(F)-S, Cortes-A8, and Cortex-A9 MPCore) [7], which a developer
can opt to utilise if required.

1 The memory or communication buses mentioned are between a TPM and other components on a
motherboard, rather than the on-chip memory and communication buses.

15

N
o

rm
al

 W
o

rl
d

Normal World
User Mode

Normal World
Privileged Modes

Secu
re W

o
rld

Secure World
User Mode

Secure World
Privileged Modes

Monitor Mode

Fig. 4: Generic architectural view of ARM TrustZone

4.4 GlobalPlatform Trusted Execution Environment (TEE)

The TEE is GlobalPlatform’s initiative [3, 4, 8] for mobile phones, set-top boxes,
utility meters, and payphones. GlobalPlatform defines a specification for interoper-
able secure hardware, which is based on GlobalPlatform’s experience in the smart
card industry. It does not define any particular hardware, which can be based on
either a typical secure element or any of the previously discussed tamper-resistant
devices. The rationale for discussing the TEE as one of the candidate devices is to
provide a complete picture. The underlying ownership of the TEE device still pre-
dominantly resides with the issuing authority, which is similar to GlobalPlatform’s
specification for the smart card industry [1].

4.5 Secure Elements

A secure element is an electronic chip which can securely store and execute pro-
grams. Examples are the Universal Integrated Circuit Card (UICC), the Embedded
Secure Element, and Secure Memory Cards. Secure elements available on most of
the Google Android supported devices conform to the Java Card specifications [2].
A generic framework to use the secure elements (or even Subscriber Identity Mod-
ule: SIM card) is shown in Figure 5 and discussed below. An application installed
on a smart phone platform can have a collaborative application available on the se-
cure element. The collaborative application has the responsibility for executing and
storing security- and/or privacy-preserving functionality and data. The application,
once installed and executing on the smart phone platform, provides a feature-rich
interface to the user, while communicating with collaborative applications when re-
quired.

16

Secure Element Smart Phone Platform

Application
Non Sensitive Code and Data

Smart Phone Operating System

Smart Phone Hardware

Collaborative Application
Sensitive Code and Data

Smart Element Operating
System

Secure Element Hardware

Fig. 5: Generic architectural view of Secure Element-based Framework

4.6 TPM MOBILE

The TPM chip, whose specification is defined by the Trusted Computing Group
[10], is known as a hardware root-of-trust into the trusted computing ecosystem.
Currently it is deployed to laptops, PCs, and mobiles and is produced by manu-
facturers including Infineon, Atmel and Broadcom. At present, the TPM is avail-
able as a tamper-resistant security chip that is physically bounded to the computers
motherboard and controlled by software running on the system using well-defined
commands. The TPM MOBILE with Trusted Execution Environment has recently
emerged; its origin lies in the TPM v1.2 a with some enhancements for mobile de-
vices [9] . The TPM provides:

1. The Roots of trust include hardware/software components that are intrinsically
trusted to establish a chain of trust that ensures only trusted software and hard-
ware can be used (see the Mobile Trusted Module (MTM) section).

2. The Platform Configuration Register ”PCR” in the most modern TPM in-
cludes 24 registers. It is used to store the state of system measurements. These
measurements are represented normally by a cryptographic hash computed
from the hash values (SHA-1) of components (applications) running on the
platform. PCRs cannot be written directly; data can only be stored by a pro-
cess called extending the PCR.

3. The RSA keys: There are two types of RSA keys that TPM generates and which
are considered as root keys (they never leave the TPM):

a. Endorsement Key (EK): This key is used in its role as a Root of Trust
for Reporting. During the installation of an owner in the TPM, this key is
generated by the manufacturer with a public/private key pair built into the
hardware. The public component of the EK is certified by an appropriate
CA, which assigns the EK to a particular TPM. Thus, each individual TPM
has a unique platform EK. For the private component of the EK, the TPM

17

can sign assertions about the trusted computer’s state. A remote computer
can verify that those assertions have been signed by a trusted TPM.

b. Storage Root Key (SRK): This key is used to protect other keys and data
via encryption.

c. Attestation Identity Keys (AIKs): The AIK is used to identify the plat-
form in transactions such as platform authentication and platform attesta-
tion. Because of the uniqueness of the EK, the AIK is used in remote at-
testation by a particular application. The private key is non-migratable and
protected by the TPM and the public key is encrypted by a storage root key
(or other key) outside the TPM with the possibility to be loaded into the
TPM. The security of the public key is bootstrapped from the TPM’s EK.
The AIK is generally used for several roles: signing/reporting user data;
storage (encrypting data and other keys); and binding (decrypting data, used
also for remote parties).

4.7 Overseeing the Overseer

In the proposals discussed in this chapter, the burden of SAE is moved to the trusted
execution environment in one way or another. The security and reliability of the
trusted execution environment has to be not only adequate, but in certain cases prov-
able. We need to build a trusted environment that can ensure all application code
being executed on it will be protected from any runtime tampering by a resourceful
malicious entity. In the subsequent sections, we address the security and reliability
of the trusted execution environment and how we can ensure a trusted application
execution.

5 Remaining Security Challenges of Application Execution

Before we begin a detailed discussion of this section we summarise what has been
presented so far. Mobile devices are composed of hardware, operating system and
applications. Techniques such as code hardening and centralised vetting try to pro-
tect mobile applications from malicious intruders by inserting clues, such as re-
dundant statements, into the application executables and verifying them centrally
before they are installed. However, they cannot protect against attacks targeting the
operating system or the underlying hardware. To counteract such attacks, device
attestation is needed. Device attestation such as TPM ensures only that the neces-
sary components of the operating system are started securely during device booting.
However, this does not provide any protection against attacks that can take place
after the operating system is up and running. Manufacturers try to tackle this chal-
lenge by using various techniques including MTM, ARM TrustZone, M-Shield and
GlobalPlatforms TEE. The common theme of these protections is to provide a se-

18

cure execution space for critical applications, for example PIN verification, which
is segregated from the main execution space. In spite of all the efforts to secure
embedded systems, there still remain significant threats/vulnerabilities that can be
exploited by dedicated attackers. The questions one may ask regarding the security
of embedded systems are:

1. How do we make sure that the hardware processor is secure and free of mali-
cious entities such as hardware Trojans?

2. If we only execute selected applications/programs inside the secure zone, what
happens to the other applications?

In the subsequent sections we discuss these security challenges and their possible
solutions.

5.1 Pre-deployment/Post-production Device Verification

Recent economic conditions have forced embedded system manufacturers to out-
source their production processes to cheaper cost structure countries. While this
significantly reduces the total production cost, it also makes it much easier for an at-
tacker to compromise the supply chain for components used in critical business and
military applications, and replace them with defective components. This threat to
the electronic components supply chain is already a cause for alarm in some coun-
tries [18, 20]. For this reason, some governments have been subsidising high-cost
local foundries to produce components used in military applications [19]. However,
this is not an affordable solution for most developing countries and commercial ap-
plications. According to [23], the incidence of defective components increased from
3,868 in 2005 to 9,356 in 2008. Such defective electronic components have at least
the following ramifications: 1) original component providers incur an irrecover-
able loss due to the sale of often cheaper counterfeit components; 2) low perfor-
mance of defective products (that are often of lower quality and/or cheaper older
generations of a chip family) affects the overall efficiency of the integrated systems
that unintentionally use them, which could in turn harm the reputation of authentic
providers; 3) unreliability of defective devices could render the integrated systems
that unknowingly use the parts unreliable, potentially affecting the performance of
weapons, airplanes, cars or other crucial applications [24]; and 4) untrusted defec-
tive components may have intentional malware or some backdoor for spying, re-
motely controlling critical objects and/or leaking secret information. These ramifi-
cations and their growing presence in the market make them important problems
to address. Traditionally, the integrity of software codes on personal computers and
other platforms is verified by using hash values and digital signatures. The software
developer hashes the entire software code and signs it with his private key. Later,
the person using it verifies the signature before installing it. This scheme, however,
suffers from a major drawback in embedded devices. The reason is that hashing the
entire program memory is often impossible due to the read protection countermea-

19

sures that embedded systems implement. In certain scenarios the software developer
can provide users with the source code so the users can manually check it before
using it. However, for commercial and intellectual property reasons this is not pos-
sible in many cases. Sometimes it may be necessary to verify the hardware before
installing the software. In this case the easiest way of doing it would be to verify the
integrity of the netlist1 of the target device. A definition of the term netlist can also
be found in [36]. However, as with software codes this is generally impossible as
companies do not reveal such information for commercial and intellectual property
reasons. Therefore, to verify an embedded system before it is deployed/inserted into
larger electronic equipment we need to find alternative but reliable methods that
can help us verify its integrity. In [28] Paul et al. demonstrated that side channel
information, such as power consumption, carries information about the data pro-
cessed at runtime. Furthermore, it is possible that the same information can reveal
much more information about the internal state of the device than just runtime data.
In [30, 29, 31] the authors demonstrated that the side channel leakage of an em-
bedded device contains information about the executed instructions and that it can
be used to partially reverse engineer them. In [32] Mehari et al. have improved the
recognition rate to fully reverse engineer them. The authors of [25] also demonstrate
that side channel information can be used to spot additional modules that were not
part of the original design of the device, such as hardware Trojans. From the above
work it is reasonable to conclude that side channel information can be effectively
used to verify embedded devices before they are deployed. In the context of em-
bedded system software integrity verification, Mehari et al. have demonstrated its
possibility in their paper [33].

5.2 Runtime Security Protection

As discussed in the previous sections, several techniques have been proposed and
deployed to secure embedded systems. However, they still remain vulnerable to a
range of attacks. This is true partly because security was not the main criterion of
the original processor design and it has not changed much since then. On some oc-
casions researchers have tried to address this problem by integrating security into
the processor design. Integrated hardware protections are implemented by hardware
manufacturers. One of the hardware protections is hardware block redundancy, in
which selected or all hardware blocks on the embedded chip are implemented more
than once. During runtime the program is executed by all blocks and a comparator
compares the results. In [34], several varieties of this protection are discussed in de-
tail. Figure 6 illustrates a simple duplicate of a hardware block. The decision block
either resets the device or invokes a specifically designed reaction algorithm when
a fault is detected by the comparator. In another approach Arora et al. [26] demon-
strated that the control flow jumps and instruction integrity of embedded programs

1 a list of logic gates and a textual description of their interconnections which make up an electronic
circuit.

20

	
 Hardware	
 Block	
 1	

Hardware	
 Block	
 2	

Comparator	

Decision	

Block	

Program	

Result	

Reset	

Fault	
 Detected	

Reaction	
 Trigger	

Result	
 1	

Result	
 2	

Fig. 6: A simple hardware redundancy with two identical blocks.

can be verified on the fly with minimal overhead by integrating a security module
into the core design. They discussed the idea that if the security attributes of the
program can be extracted during compilation, then these attributes can be used at
runtime to ensure the program is behaving correctly. If problems are detected, either
shutdown or reset signals will be generated. Krutartha et al. [27] discussed a similar
approach, designing a security module as part of the processor code, to secure mul-
tiprocessors against code injection attacks. They introduced a new module called
the monitor processor that monitors communication between the individual proces-
sors. In an N-processor core the individual processors communicate with each other
through a First In First out (FIFO) queue structure. In their approach the program
is broken down to basic blocks. The basic blocks are then attributed with two FIFO
instructions that notify the monitor processor of the start and finish of each basic
block. Although these approaches show some success in securing embedded system
application at runtime, they are not exhaustively researched to be a viable commer-
cial solution.

6 Conclusion

In this chapter, we discussed the importance of SAE for mobile devices, especially
smart phones. The chapter also briefly described the Apple iOS and Google An-
droid ecosystem, along with how they secure not only their respective platforms but
also the applications running on them. Different proposals put forward to provide a
secure and trusted environment for execution and data-storage of sensitive applica-
tions were discussed. These proposals included MTM, TPM MOBILE, M-Shield,
GlobalPlatform TEE, ARM TrustZone and Secure Elements. One thing in common
to most of these proposals is a secure and trusted hardware-based execution environ-
ment that serves the smart phone platform and applications. These trusted execution
environments have to protect the application and its sensitive data from tamper-

21

ing during application execution. We therefore discussed potential runtime security
protection systems that ensure an application executes without interference and/or
tampering from any external entity (malicious or otherwise). Our next research di-
rection in attempting to secure embedded applications is designing and integrating
a hardware module into the core processor that is capable of protecting program
attributes, such as control flow jumps, runtime data and executed instructions. Other
important issues that we will attempt to solve are IP protection and hardware attes-
tation issues in embedded environments.

Acknowledgement

Mehari G. Msgna is sponsored by the Information Network Security Agency, Addis
Ababa, Ethiopia.

References

1. GlobalPlatform: GlobalPlatform Card Specification, Version 2.2, (2006)
2. Java Card Platform Specification; Application Programming Interface, Runtime Environ-

ment Specification, Virtual Machine Specification (2006). URL http://java.sun.com/
javacard/specs.html

3. GlobalPlatform Device: GPD/STIP Specification Overview. Specification Version 2.3, Glob-
alPlatform (2007)

4. GlobalPlatform Device Technology: Device Application Security Management - Concepts and
Description Document Specification. Online (2008)

5. M-Shield Mobile Security Technology: Making Wireless Secure. Whilte Paper, Texas
Instruments (2008). URL http://focus.ti.com/pdfs/wtbu/ti_mshield_
whitepaper.pdf

6. TCG Mobile Trusted Module Specification. Online (2008)
7. ARM Security Technology: Building a Secure System using TrustZone Technology. White

Paper PRD29-GENC-009492C, ARM (2009)
8. GlobalPlatform Device Technology: TEE System Architecture. Specification Version 0.4,

GlobalPlatform (2011)
9. Trusted Platform Module Main Specification.
10. Tusted Computing Group. http://www.trustedcomputinggroup.org

Online (2011). URL http://www.trustedcomputinggroup.org/resources/
tpm_main_specification

11. Brickell, E., Camenisch, J., Chen, L.: Direct Anonymous Attestation. In: Proceedings of
the 11th ACM Conference on Computer and Communications Security, CCS ’04, pp. 132–
145. ACM, New York, NY, USA (2004). DOI 10.1145/1030083.1030103. URL http:
//doi.acm.org/10.1145/1030083.1030103

12. Halderman, J.A., Schoen, S.D., Heninger, N., Clarkson, W., Paul, W., Calandrino, J.A., Feld-
man, A.J., Appelbaum, J., Felten, E.W.: Lest we remember: cold boot attacks on encryption
keys. In: Proceedings of the 17th conference on Security symposium, pp. 45–60. USENIX
Association, Berkeley, CA, USA (2008)

13. Kostiainen, K., Ekberg, J.E., Asokan, N., Rantala, A.: On-board credentials with open provi-
sioning. In: Proceedings of the 4th International Symposium on Information, Computer, and

22

Communications Security, ASIACCS ’09, pp. 104–115. ACM, New York, NY, USA (2009).
DOI http://doi.acm.org/10.1145/1533057.1533074

14. Wilson, P., Frey, A., Mihm, T., Kershaw, D., Alves, T.: Implementing Embedded Security on
Dual-Virtual-CPU Systems. IEEE Design and Test of Computers 24, 582–591 (2007)

15. Steven S. Muchnick: Advanced Compiler Design and Implementation Morgan Kaufmann
(1997), pp. 378–396.

16. Hagai Bar-El, Hamid Choukri, David Naccache and Michael Tunstall and Claire Whelan: The
Sorcerer’s Apprentice Guide to Fault Attacks In: IACR Cryptology ePrint Archive, 2004.

17. Jonas Maebe, Ronald De Keulenaer, Bjorn De Sutter and Koen De Bosschere: Mitigating
Smart Card Fault Injection with Link-Time Code Rewriting: A Feasibility Study Financial
Cryptography, pp. 221–229, 2013.

18. Defense Advanced Research Projects Agency: DARPA BAA06-40, A TRUST for Integrated
Circuits Visited, September 2014.

19. Defense Science Board Task Force: High Performance Microchip Supply URL http://
www.acq.osd.mil/dsb/reports/ADA435563.pdf Visited, September 2014.

20. Joseph I. Lieberman: The national security aspects of the global migration of the U.S.
semiconductor industry URL http://www.fas.org/irp/congress/2003_cr/
s060503.html Visited, September 2014.

21. Diablo: Diablo Is A Better Link-Time Optimizer URL https://diablo.elis.ugent.
be/ Visited, October 2014.

22. Oxford Dictionaries: Definition of obfuscate URL http://www.
oxforddictionaries.com/definition/english/obfuscate

23. U.S. Department Of Commerce: Defense Industrial Base Assessment: Counterfeit Elec-
tronics Bureau of Industry and Security, Office of Technology Evaluation, Visited January,
2010, URL http://www.bis.doc.gov/defenseindustrialbaseprograms/
osies/defmarketresearchrpts/final_counterfeit_electronics\
_report.pdf

24. Koushanfar, F., Sadeghi, A.-R. and Seudie, H.: EDA for secure and dependable cyber-
cars: Challenges and opportunities In: Design Automation Conference (DAC), 2012 49th
ACM/EDAC/IEEE, pp. 220–228, 2012.

25. D. Agrawal and S. Baktir and D. Karakoyunlu and P. Rohatgi and B. Sunar: Trojan Detection
using IC Fingerprinting In: Security and Privacy, 2007. SP ’07. IEEE Symposium on, pp.
296–310, 2007.

26. Arora, D., Ravi, S. and Raghunathan, A. and Jha, N.K.: Secure embedded processing through
hardware-assisted run-time monitoring In: Design, Automation and Test in Europe, 1, pp.
178–183 (2005). DOI 10.1109/DATE.2005.266

27. Patel, K., Parameswaran, S. and Seng Lin Shee: Ensuring secure program execution in multi-
processor embedded systems: A case study In: IEEE/ACM/IFIP International Conference on
Hardware/Software Codesign and System Synthesis (CODES+ISSS), pp. 57–62 (2007).

28. Paul Kocher, Joshua Jaffe and Benjamin Jun: Differential Power Analysis In: Michael J.
Wiener, editors, CRYPTO ’99, 1666 of LNCS, pp. 388–397, 1999. Santa Barbara, California
USA. Springer.

29. Dennis Vermoen, Marc F. Witteman and Georgi Gaydadjiev: Reverse Engineering Java Card
Applets Using Power Analysis In: Damien Sauveron and Constantinos Markantonakis and
Angelos Bilas and Jean-Jacques Quisquater, editors, WISTP, 4462 of Lecture Notes in Com-
puter Science, pp. 138–149, 2007. Heraklion, Crete, Greece. Springer.

30. Jean-Jacques Quisquater and David Samyde: Automatic Code Recognition for Smartcards
Using a Kohonen Neural Network In: CARDIS, November 21-22, 2002. San Jose, CA, USA.
USENIX.

31. Thomas Eisenbarth, Christof Paar and Björn Weghenkel: Building a Side Channel Based Dis-
assembler In: Marina L. Gavrilova and Chih Jeng Kenneth Tan and Edward D. Moreno,
editors, Transactions on Computational Science, 6340 of Lecture Notes in Computer Science,
pp. 78–99, 2010. Springer.

23

32. Mehari Msgna, Konstantinos Markantonakis and Keith Mayes: Precise Instruction-Level Side
Channel Profiling of Embedded Processors In: 10th International Conference Information
Security Practice and Experience (ISPEC), pp. 129–143. Fuzhou, China, May 5-8, 2014. DOI
10.1007/978-3-319-06320-1 11

33. Mehari Msgna, Konstantinos Markantonakis, David Naccache and Keith Mayes: Verifying
Software Integrity in Embedded Systems: A Side Channel Approach In: 5th International
Workshop Constructive Side-Channel Analysis and Secure Design (COSADE), pp. 261–280.
Paris, France, April 13-15, 2014. DOI 10.1007/978-3-319-10175-0 18

34. Hagai Bar-El, Hamid Choukri, David Naccache, Michael Tunstall, and Claire Whelan: The
Sorcerer’s Apprentice Guide to Fault Attacks In: IACR Cryptology ePrint Archive, Volume
2004 (2004). URL http://eprint.iacr.org/2004/100

35. What is SHA-1 https://en.wikipedia.org/wiki/SHA-1
36. Netlist Definition. Xilinx http://www.xilinx.com/itp/xilinx10/help/

iseguide/mergedProjects/constraints_editor/html/ce_d_netlist.
htm

37. What is SHA-1 https://en.wikipedia.org/wiki/SHA-1
38. iOS Security Sandbox white paper https://www.cs.auckland.ac.nz/courses/

compsci702s1c/lectures/rs-slides/6-iOS-SecuritySandbox.pdf
39. URL https://www.apple.com/privacy/docs/iOS_Security_Guide_Oct_

2014.pdf
40. http://en.wikipedia.org/wiki/XNU
41. http://en.wikipedia.org/wiki/Android
42. http://developer.android.com/tools/publishing/app-signing.html
43. http://developer.android.com/guide/topics/security/permissions.html
44. What is MAC/DAC https://www.internetsociety.org/sites/default/

files/02_4.pdf
45. http://www.tclouds-project.eu/downloads/factsheets/

tclouds-factsheet-07-attestation.pdf
46. T. Zeller, The ghost in the CD; Sony BMG stirs a debate over software used to guard content,

The New York Times, c1, November 14, 2005.
47. http://en.wikipedia.org/wiki/CIH_(computer_virus)
48. Vanessa Gratzer, David Naccache, Alien vs. Quine, the Vanishing Circuit and Other Tales

from the Industrys Crypt, Advances in Cryptology - EUROCRYPT 2006, Lecture Notes in
Computer Science Volume 4004, 2006, pp 48-58

49. Benoı̂t Chevallier-Mames, David Naccache, Pascal Paillier, David Pointcheval, How to Dis-
embed a Program? Cryptographic Hardware and Embedded Systems - CHES 2004, Lecture
Notes in Computer Science Volume 3156, 2004, pp 441-454

50. Mihir Bellare, Juan A. Garay, Tal Rabin, Fast batch verification for modular exponentiation
and digital signatures, Advances in Cryptology EUROCRYPT’98, Lecture Notes in Computer
Science Volume 1403, 1998, pp 236-250

51. Josh Benaloh, Michael de Mare, One-way accumulators: a decentralized alternative to digi-
tal signatures, EUROCRYPT ’93 Workshop on the theory and application of cryptographic
techniques on Advances in cryptology, Pages 274-285, Springer-Verlag.

