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Pseudogap and superconductivity in two-dimensional doped charge-transfer insulators
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Université de Sherbrooke, Sherbrooke, Québec, Canada, J1K 2R1
3Canadian Institute for Advanced Research, Toronto, Ontario, Canada, M5G 1Z8

(Received 27 February 2016; revised manuscript received 18 April 2016; published 24 June 2016)

High-temperature superconductivity emerges upon doping a state of matter that is insulating because of
interactions. A widely studied model considers one orbital per CuO2 unit cell on a square lattice with a strong
intraorbital repulsion that leads to a so-called Mott-Hubbard insulator. Here we solve a model that takes into
account, within each unit cell, two oxygen orbitals where there is no electron-electron repulsion and a copper
orbital with strong electron-electron repulsion. The insulating phase is a so-called charge-transfer insulator, not a
Mott-Hubbard insulator. Using cluster dynamical mean-field theory with continuous-time quantum Monte Carlo
as an impurity solver and 12 atoms per cluster, we report the normal and superconducting phase diagram of
this model as a function of doping, interaction strength, and temperature. As expected, the three-orbital model
is consistent with the experimental observation that doped holes are located predominantly on oxygens, a result
that goes beyond the one-orbital model. Nevertheless, the phase boundary between pseudogap and correlated
metal, the Widom line, and the origin of the pairing energy (kinetic vs potential) are similar to the one-orbital
model, demonstrating that these are emergent phenomena characteristic of doped Mott insulators, independently
of many microscopic details. Broader implications are discussed.
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The appearance of high-temperature superconductivity
upon doping an interaction-driven insulator is one of the most
surprising phenomena in nature. A major goal of research in
that field is to chart the phase diagram in the hope of providing
key insights into an unconventional pairing mechanism and
into the nature of the strongly correlated states of matter
observed. With experiments driving this quest, and revealing a
complex phase diagram [1], theory is challenged to provide a
framework to explain such complexity. The challenge comes
from the fact that the insulating phase that is doped arises
from interactions so strong [2] that tools to describe such a
nonperturbative regime are needed. Significant progress has
been made in this area by novel theoretical approaches such
as cluster extensions [3–5] of dynamical mean-field theory
(DMFT) [6].

The physics that must be understood is that of a square
lattice made of CuO2 unit cells where electrons on copper
interact strongly. Intense effort devoted to study the case of a
single orbital per unit cell with an on-site repulsion, i.e., the
two-dimensional Hubbard model, has shown that this simple
model captures the basic phenomenology of cuprates [7,8].

A more realistic model for the cuprates includes three
orbitals per CuO2 unit cell [9,10]. The necessity of this
model is demonstrated by numerous experiments that show
that doped holes are found on oxygen [11]. The ability to
delocalize on oxygen allows electrons to feel a much weaker
effective interaction, but at one hole per unit cell and strong
enough repulsion on copper, one obtains a charge-transfer
insulator [12]. It is this kind of interaction-driven insulator
of the three-orbital model that becomes a high-temperature
superconductor upon doping. Hence this is the model we study.

Previous single-site DMFT calculations [13–21] provided
important insights on the phase diagram. However, the
inclusion of short-range correlations is still a formidable
theoretical problem. Despite pioneering investigations using

cluster methods [22–25], the precise form of the temperature-
doping T -δ phase diagram is largely unexplored and several
of its key aspects are uncertain. Notably, the finite temperature
behavior of the metal to charge-transfer insulator transition
driven by hole doping is unknown.

Here we chart the cellular DMFT solution of the whole
T -δ phase diagram of a doped charge-transfer insulator. We
focus on four possible phases of the model, namely, the charge-
transfer insulator, the pseudogap, the correlated metal, and a d-
wave superconducting state, along with their phase boundaries.
Our goal is to establish if the basic phenomenology of cuprates
found in the one-orbital model survives in the more realistic
three-orbital model and which phenomena are emergent, i.e.,
independent of such details as number of orbitals per unit cell,
shape of the Fermi surface, redistribution of spectral weight,
and location of holes within the unit cell.

I. MODEL AND METHOD

We consider the three-band Hamiltonian for copper 3dx2−y2

and oxygen 2px ,2py orbitals. Ordering the corresponding
annihilation operators as (dkσ ,px,kσ ,py,kσ ), where k is the
wave vector and σ the spin, the noninteracting part of the
Hamiltonian for the infinite lattice reads [26]

h0(k) =

⎛
⎜⎝

εd Vdpx
Vdpy

V
†
dpx

εp + Wpxpx
Wpxpy

V
†
dpy

W
†
pxpy

εp + Wpypy

⎞
⎟⎠, (1)

with Vdpx
= tpd (1 − eikx ), Vdpy

= tpd (1 − eiky ), Wpxpx
=

2tpp(cos kx − 1), Wpypy
= 2tpp(cos ky − 1), and Wpxpy

=
tpp(1 − e−ikx )(1 − eiky ). Here tpd (tpp) is the oxygen-copper
(oxygen-oxygen) hopping amplitude, and εd (εp) is the copper
(oxygen) on-site energy. The copper-copper distance and tpp

are taken as unity. h0 leads to the Fermi surface observed
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FIG. 1. (a) Local density of states N (ω) at ntot = 5 and β = 50 for
several values of Ud . From left to right: total, projected N (ω) on the p

and d orbitals. Other model parameters are |εp − εd | = 9,tpp = 1, and
tpd = 1.5. (b) Double occupancy D as a function of Ud at ntot = 5 for
β = 25 (squares) and β = 50 (circles). Hysteresis region is shaded.
(c) T versus Ud phase diagram at ntot = 5. A first-order transition
at finite Ud between a correlated metal (CM) and a charge-transfer
insulator (CTI) is bounded by the jumps in the double occupancy and
terminates at a critical end point.

experimentally in the overdoped region of the cuprates (see
Supplemental Material (SM) Fig. 2 [27]). For the interacting
part, only the on-site repulsion on d orbitals Ud is retained.

We solve this model with cellular dynamical mean-field
theory (CDMFT), which isolates a cluster of 12 lattice
sites with (Nd,Np) = (4,8) and replaces the missing lattice
environment by a self-consistent noninteracting bath. The
cluster plus bath impurity model is solved with continuous-
time quantum Monte Carlo for the hybridization expansion
[28]. (See SM Sec. I for details [27].)

II. OPENING OF THE CHARGE-TRANSFER GAP

As described by the Zaanen-Sawatzky-Allen scheme [12]
(ZSA), this model accounts for different correlated insulating
states when the total occupation is ntot = nd + 2np = 5 (one
hole per CuO2 unit): the charge-transfer insulator and the Mott-
Hubbard one. The former is relevant for the cuprates and is the
focus of the present work.

Figure 1(a) shows the local density of states (DOS) N (ω) =
−1/π ImG(ω) at ntot = 5 for several values of Ud at the inverse
temperature β = 50 (from left to right: total, projected DOS
on the p and d orbitals). The zero of energy is the Fermi level.
To set the system in the charge-transfer regime, we take εd = 0
and εp = 9 so that the localized d orbital is beneath the oxygen
band. The bandwidth originating from tpp alone is 8. By virtue
of the hybridization term, here tpd = 1.5, the d electrons
acquire a finite dispersion, and, for the noninteracting case,
form a narrow band centered at ω ≈ −11. (See upper red curve
and SM Sec. I [27]). As described by the ZSA scheme [12], for
Ud > |εp − εd | and |εp − εd | > tpd a correlation gap opens
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FIG. 2. (a) Partial occupation nd (circles), np (triangles) versus
δ = 5 − ntot at β = 25 and Ud = 0,12 (full and open symbols,
respectively). (b) δ versus μ for Ud = 12, for different temperatures.
A plateau at δ(μ) = 0 signals the CTI. Hysteresis appears at finite
doping at the lowest T . (c) Charge compressibility κ versus δ for
different temperatures at Ud = 12. κ diverges at the end point (δp,Tp)
of the PG-CM first-order transition. (d) Ud versus δ phase diagram.
The boundary between CTI and PG is second order. The boundary
between CTI and CM at δ = 0 is first order. The green line is drawn
at T = TMIT. The boundary between PG and CM is first order. The
blue line denotes δp versus Ud . Since Tp decreases with increasing
Ud , we show as blue solid circles the position δp of the end points
and as blue open circle the position of κmax at our lowest T . The full
data set for (b) and (c) is in SM Fig. 3 and Fig. 4. respectively [27].
Model parameters are |εp − εd | = 9, tpp = 1, and tpd = 1.5.

up and the system becomes a charge-transfer insulator. The
lower violet curve shows this dramatic effect of correlations.
At low temperature, the interaction-driven transition between
the metal and the charge-transfer insulator is first order. At
intermediate values of Ud , there is a coexistence between a
metallic and insulating solutions to the CDMFT equations
(green and blue curve, respectively).

The first-order nature of the transition is best shown by
the double occupancy D of d orbitals as a function of Ud [cf
Fig. 1(b)]. D shows hysteresis loops between two solutions,
with sudden jumps at Ud,c1(T ), where the insulating solution
ceases to exists, and at Ud,c2(T ), where the metallic solution
disappears. Hysteresis loops become wider with decreasing
T . The behavior of D allows us to construct the temperature
versus Ud phase diagram in Fig. 1(c). The first-order transition
between a correlated metal and a charge-transfer insulator
occurs within the coexistence region, bounded by the spinodals
Ud,c1 and Ud,c2 (open circles and squares, respectively), and
terminates in a critical end point, where dD/dUd diverges.
Our results extend to finite temperature the previously obtained
T = 0 phase diagram [25].

III. HOLE-DOPING-DRIVEN METAL-INSULATOR
TRANSITION

Figure 2(a) shows the partial occupation of oxygen and cop-
per as a function of hole doping δ = 5 − ntot for Ud = 12 and
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β = 25 (open symbols). In the undoped system, comparison
with Ud = 0 (full symbols) shows that at finite Ud electrons
are transferred from copper to oxygen. Lowering the chemical
potential μ results in an essentially doping-independent nd ,
while np decreases, indicating that the holes mainly enter the
oxygen, as expected in the charge-transfer regime and found
experimentally [11].

Figure 2(b) shows the doping as a function of μ for Ud = 12
and different temperatures. The plateau in the curves at δ(μ) =
0 reveals the onset of the incompressible charge-transfer insu-
lator. By lowering μ until we obtain a compressible state, the
isotherms δ(μ) evolve continuously, i.e., without hysteresis.
Hence we conclude that the transition between charge-transfer
insulator and compressible phase is of second order at T = 0.
The latter has the characteristics of a pseudogap phase, as
discussed below. Upon doping further, a first-order transition
occurs between that pseudogap phase and a more conventional
correlated metal. Indeed, as T decreases, the isotherms
δ(μ) develop a sigmoidal shape and eventually hysteresis
between two compressible solutions. This transition ends in a
second-order critical point at (δp,Tp), at which thermodynamic
response functions, such as the charge compressibility κ =
1/n2

tot(dntot/dμ)T , shown in Fig. 2(c) versus δ, diverge. For
T > Tp, the two phases merge in a single supercritical phase,
and the divergence in κ is replaced by a maximum value,
which decreases with increasing T . It is striking that either
below or above Tp, (dδtot/dT )μ changes sign, from positive at
small doping to negative at large doping, as can be seen from
Fig. 2(b).

The emergent first-order transition at finite doping is
connected to the charge-transfer insulator-to-metal transition
in the undoped case. This can be deduced by tracking the
position δp of the critical end point as a function of Ud , as
shown by blue circles in Fig. 2(d). This line of critical end
points (where the pseudogap-correlated metal transition ends)
starts out at the metal-to-charge-transfer insulator transition at
δ = 0 and Ud � 11.6 and moves progressively to high doping
and lower T as Ud increases.

IV. PHASE DIAGRAM

The temperature-doping phase diagram shown in Fig. 3(a)
summarizes the normal-state properties investigated so far.
At zero doping, a second-order transition separates a charge-
transfer insulating phase from a pseudogap phase. At finite
doping, there is a first-order transition between two normal-
state phases: the pseudogap and the correlated metallic state.
[Lines with triangles are an estimate for the spinodal bound-
aries determined from the jumps in δ(μ).] As the temperature
increases, the first-order transition ends in a second-order
critical point at (Tp,δp), where the thermodynamic response
functions, such as the charge compressibility κ discussed
above, diverge. For T > Tp, only one supercritical phase
exists, but the first-order transition generates a crossover, the
Widom line TW , at which thermodynamic response functions
show maxima. [The red line with circles is the line of maximum
of κ computed in Fig. 2(c).] Quite generally, TW marks
also the border between different dynamic behaviors [29,30]:
the drop in the local DOS goes through an inflection point
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FIG. 3. (a) Temperature versus hole-doping phase diagram.
Model parameters are |εp − εd | = 9, tpp = 1, tpd = 1.5, and Ud =
12. Four phases are shown. The d-wave superconducting phase is
determined by a nonzero superconducting order parameter and is
delimited by T d

c (orange squares). The three normal-state phases are
determined by the behavior of δ(μ): CTI at δ = 0, PG, and CM.
Below T d

c the normal state is metastable. PG and CM are separated
by a first-order transition at finite doping (red triangles denote the
jump in the occupation curves), terminating at a critical end point
(δp,Tp) (full circle). Emanating from it is TW , the crossover line of
the maxima of the charge compressibility κ (open red circles), which
is a proxy for the Widom line. Its high-temperature precursor is T ∗, the
line where the DOS at the Fermi level drops as a function of T (blue
triangles). Color corresponds to the magnitude of the normal-state
scattering rate 	 at cluster momentum K = (π,0). Green diamonds
indicate the maximum of 	(δ)|T at low T and δ > 0. (b) Difference
in kinetic and potential energies between the superconducting and
normal states (blue and red lines, respectively) versus δ at β = 64.
Shaded regions give standard errors.

at TW (SM Fig. 7 [27]). The onset of the drop in such
quantity commonly defines the onset of the pseudogap T ∗
and occurs at the higher precursory temperature (see line
with blue triangles and SM Fig. 7(c) [27]). This is quali-
tatively consistent with experiments [31]. The development
of the pseudogap is characterized by the growth of intersite
self-energies or, equivalently, by a strong momentum space
differentiation of the electronic lifetimes (see SM Figs. 5 and
6 [27]). The first-order transition at finite doping between
pseudogap and correlated metal, and its associated crossover,
is the unifying feature of self-energy anisotropy, as can be
seen by the ridge of large scattering rate 	K=(π,0), shown
as color plot in Fig. 3(a), emerging from δc1(T → 0) and
bent toward the charge-transfer insulator (line with green
diamonds).

Proximity to Mott physics often entwines with bro-
ken symmetry states. While speculating that along the
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FIG. 4. Low-frequency part of the local DOS N (ω). Each DOS is normalized to unity. N (ω)tot = 2
3 N (ω)p + 1

3 N (ω)d . (a,b) N (ω) for
different dopings at constant inverse temperature (a) β = 40 < 1/Tp and (b) β = 64 > 1/Tp . (c) N (ω) for different temperatures at constant
doping δ ≈ 0.02. (d) N (ω) in the superconducting state at β = 64 for different dopings. In this panel, color corresponds to the magnitude of
the superconducting order parameter.

charge-compressibility maxima TW , the charge should be
most susceptible to develop charge density modulations, we
restrict our study to d-wave superconductivity. The dynamical
mean-field superconducting transition temperature T d

c [orange
line in Fig. 3(a)] marks the temperature below which the
superconducting order parameter is nonzero (see SM Fig.
13 [27]) and corresponds to the temperature below which
Cooper pairs develop within the cluster. Complex behavior
in the superconducting state originates from the underlying
normal-state first-order transition: (a) T d

c forms an asymmetric
dome as a function of doping, whose broad maximum occurs
close to the intercept of maximum 	 (green line). (b) TW

intercepts T d
c , indicating that superconductivity and pseudogap

are distinct phenomena, although they are entwined ones, since
in our approach the origin of both phenomena is rooted in
Mott physics. (c) For δ < δp, pairing is driven by kinetic
energy, while for δ > δp it is driven by potential energy,
as illustrated in Fig. 3(b) by the difference of potential and
kinetic energy between superconducting and normal states as a
function of doping. This is qualitatively consistent with optical
measurements [32,33].

The local DOS, shown in Fig. 4 (for the entire frequency
spectrum, see SM Figs. 9–12 [27]), helps define the various
phases. Figures 4(a) and 4(b) show the doping evolution
of the normal-state DOS above and below Tp, respectively.
Note the following: (i) At δ = 0, N (ω) shows a correlation
gap of charge-transfer type. (ii) Upon hole doping, a dra-
matic redistribution of spectral weight occurs in N (ω) as
a consequence of electronic correlations. At low frequency
N (ω) develops a pseudogap having a large Cu character
with significant O component [22,34]. The frequency profile
has a large particle-hole asymmetry, qualitatively similar
to experimental observation [35]. (iii) Increasing δ further,
particle-hole asymmetry is reduced, the spectral weight inside
the pseudogap progressively fills in, eventually the pseudogap
disappears, and a broad peak at the Fermi level takes
shape.

Figure 4(c) shows the temperature evolution of N (ω) for
δ < δp and demonstrates that the pseudogap gradually fills

in upon raising T , in qualitative agreement with experiment
[36]. Last, Fig. 4(d) shows N (ω) in the superconducting state
for several dopings. The coherence peaks are visible both
in Cu and O partial DOS, demonstrating that Cooper pairs
are composite objects of mixed d-p character. This feature is
reminiscent of “Zhang-Rice singlet” physics [34].

The present study shows that an antiferromagnetic quantum
critical point [37] is not necessary to obtain pseudogap or
d-wave superconductivity. The interplay with other broken-
symmetry phases, such as charge density waves [38–40] or
loop currents [41–46], are important issues to be considered
in subsequent investigations.

V. SUMMARY

In summary, we charted the phase diagram of a hole-doped
charge-transfer insulator using a three-band model solved
with CDMFT. We revealed the structure of both the normal
and superconducting phases, and fingerprinted their organiz-
ing principle as a normal-state first-order transition below
the superconducting dome. This transition is analog to the
one found in the single-band Hubbard model [30,47–51],
despite the large differences in microscopic details, namely,
the presence of oxygen, the different band structure, and the
energy redistribution of spectral weight. This suggests the
emergent character of the phenomenon, solely produced by
Mott physics plus short-range correlations, and thus leads to
the following conjecture: a first-order transition, even when
hidden by another phase, here superconductivity, can act as
a general organizing principle of strongly coupled matter. In
solids this is now clear for systems described by Hubbard-like
models [30,51–56], in fluids it has been suggested before
[29,57,58], and in quark matter the putative critical end
point in the T vs baryon chemical potential that appears
in the QCD phase diagram may be another manifestation
of the generality of this phenomenon in strongly interacting
systems [59–61].
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