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Abstract— Tokenisation has been adopted by the payment
industry as a method to prevent Personal Account Number (PAN)
compromise in EMV (Europay MasterCard Visa) transactions.
The current architecture specified in EMV tokenisation requires
online connectivity during transactions. However, it is not always
possible to have online connectivity. We identify three main
scenarios where fully offline transaction capability is considered
to be beneficial for both merchants and consumers. Scenarios
include making purchases in locations without online connectiv-
ity; when a reliable connection is not guaranteed; and when it is
cheaper to carry out offline transactions due to higher communi-
cation/payment processing costs involved in online approvals. In
this study, an offline contactless mobile payment protocol based
on EMV tokenisation is proposed. The aim of the protocol is
to address the challenge of providing secure offline transaction
capability when there is no online connectivity on either the
mobile or the terminal. The solution also provides end-to-end
encryption to provide additional security for transaction data
other than the token. The protocol is analysed against protocol
objectives and we discuss how the protocol can be extended to
prevent token relay attacks. The proposed solution is subjected to
mechanical formal analysis using Scyther. Finally, we implement
the protocol and obtain performance measurements.

Keywords—EMV Contactless, Mobile Payments, Tokenisation,
Ambient Sensor Data, Security, Cryptography, Offline Transaction
Tokens.

I. INTRODUCTION

Unlike a contactless smart card, a mobile1 has additional
capabilities including increased computing ability, a greater va-
riety of accessible Application Programming Interfaces (API),
and readily available communication channels via a Mobile
Network Operator (MNO) or Wi-Fi. Furthermore, modern
mobile devices typically feature Near Field Communication
(NFC) and hardware or software Secure Element (SE) tech-
nologies that provide secure execution environments in which
to execute sensitive applications [1]–[3]. Hardware SEs pro-
vide a secure storage environment for credentials and offer
tamper resistance against physical attacks [4]. Mobile payment
applications provide additional features including having a
number of virtual contactless payment cards issued by dif-
ferent financial institutions in one place; passcode unlocking
mechanisms to access virtual payment cards; and the ability
to block such cards if a mobile is lost or stolen.

The properties and features discussed above provide an
ideal platform for running mobile-based payment solutions.

1In this study, the payer’s contactless mobile payment device that emulates
a contactless smart card is referred to as the mobile.

In addition, at the time of writing, tokenisation is increas-
ingly being adopted by the payments industry. Until recently,
tokenisation was used by merchants and payment processing
service providers to store consumer card details in a tokenised
format to mitigate the risk of card data being hacked from
databases. Following the standardisation of EMV tokenisation
specification [5], there has been a dramatic move towards early
adoption of this technology in contactless mobile payment
applications. One example is the release of Apple Pay [6, 7].

Personal Account Number (PAN) compromise involves
obtaining PAN-related data for financial fraud. PAN data can
be compromised by adversaries during EMV transactions or
by hacking merchants’ databases that store consumer pay-
ment card details. Tokenisation, discussed in this paper, is
a method that replaces the sensitive PAN used during an
EMV transaction with a substitute value called the token2. An
adversary who captures the token cannot deduce the actual
PAN. Tokenised payments thus prevent PAN compromise in
EMV transactions.

The EMV Tokenisation Specification details the require-
ments for supporting payment tokenisation in EMV transac-
tions [5]. There are many challenges yet to be addressed in
the tokenisation landscape [7]. The lack of support for making
or accepting tokenised payments in an offline transaction
environment is the main focus of this paper. The current
tokenisation architecture requires online connectivity on the
terminal3 in order to reach the payment authorisation entity
during a tokenised transaction. However, it is not always
possible to have online connectivity in certain transaction
scenarios. In this paper, we identify three scenarios where a
fully offline transaction capability is considered beneficial.

1) Connectivity is not possible due to the geographical
location of a transaction, such as purchases made on
aeroplanes and underground subway systems.

2) Steady/continuous connectivity is not guaranteed. If a
business is operating in a non-stationary environment, it
is most unlikely that the merchant’s portable payment
acceptance terminal has continuous connectivity to the
payment network; for example, a merchant who sells
snacks on a fast-moving train using a portable payment
terminal. If the merchant is able to accept payments from
customers wanting to make tokenised contactless mobile

2A ‘token’ is a 13-19 digit numeric value that passes validation checks set
by the payment scheme. A token is generated such that it does not reveal or
conflict with the real PAN [5].

3In this study, the terminal is a stationary or a portable payment acceptance
device which accepts EMV contactless payments.
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payments, this may significantly improve the merchant’s
business on the day. Also, the consumers would be
protected by the security of being able to make tokenised
payments conveniently.

3) It is significantly cheaper to carry out offline transactions
due to the communication and processing costs involved
with establishing each online transaction individually. An
example is carrying out a number of transactions offline
and then forwarding all the transactions simultaneously
for batch payment processing at a later time.

From the above discussion and example scenarios, the
inability to make/accept tokenised payments in an offline
environment may act as a deterrent for both consumers and
merchants. This could hinder the wider adoption of contactless
mobile payment solutions based on tokenisation.

In this paper, we propose a contactless mobile payment
protocol based on EMV tokenisation that allows offline to-
ken payments when no online connectivity is present on
either the terminal or the mobile. The proposed solution also
provides end-to-end encryption between the secure element
of the mobile and the terminal. This provides security for
transaction data other than the token. The protocol is anal-
ysed against protocol objectives and subjected to mechanical
formal analysis using Scyther. In our analysis, we show that
while tokenised payments prevent PAN compromise during
transactions, they are still susceptible to token relay attacks
(discussed in Section V-A). We then discuss how the proposed
protocol can be extended to detect and prevent potential token
relay attacks using ambient sensing. Finally we implement the
protocol and provide performance measurements. The main
contributions of this paper are the following:

1) The protocol introduces the Offline Transaction Token
(OTT), providing the ability to make fully offline to-
kenised payments

2) End-to-end encryption between the secure element of
the mobile and terminal provides additional security for
transaction data other than the Token

The remainder of the paper is structured as follows.
In Section II, EMV tokenisation and the current operating
environment of tokenised EMV payments are presented. In
Section III, the prospective offline operating environment and
the adversary’s capability are discussed. The proposed protocol
is presented in Section IV. A security analysis of the protocol
is carried out in Section V and the protocol is subjected
to mechanical formal analysis in Section VI. The practical
implementation of the protocol and performance measurements
are given in Section VII. Finally, in Section VIII, the discussion
is concluded and further research directions are identified.

II. EMV TOKENISATION AND CURRENT OPERATING
ENVIRONMENT

In this section, an introduction to tokenisation and its
current online operating environment is presented. A generic
payment architecture and the transaction message flow for a
tokenised contactless mobile payment are shown in Figure 1
and explained according to [5, 7].

One potential security issue in contactless payments is
PAN compromise. The harvested PAN-related data is then

used to carry out cross-channel fraud4. Tokenisation has been
adopted by the payment industry as a method to prevent PAN
compromise by mapping the PAN with a substitute value.
EMV tokenisation is also in the interest of merchants, as
storing and managing tokens instead of PANs in merchants’
servers and databases can simplify compliance audits such
as the Payment Card Industry-Data Security Standard (PCI-
DSS) [8, 9]. The tokenisation discussed in this study refers
to replacing the PAN used during EMV transactions with a
token defined in EMV Tokenisation Specification [5]. This
paper does not refer to independent tokenisation methods used
by various merchants and their payment processors in order
to manage and store consumer payment card details in token
format.
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Fig. 1. Generic EMV Tokenised Payment Architecture

At the start of an online tokenised EMV contactless mobile
payment transaction, the secure element in the mobile passes
the payment token and token-related data to the terminal. The
terminal forwards the authorisation request to the acquirer, who
then forwards it to the payment network. The entities involved
in this process engage in a key translation process, which
means that two entities share a symmetric key to communicate,
as shown by connecting arrows on both ends in Figure 1.
When a message is forwarded to a particular entity, it is
deciphered and enciphered using the shared symmetric key
with the next entity. The payment network then communicates
with the Token Service Provider (TSP) to de-tokenise the
token in order to retrieve the PAN and validate the cryptogram
[5, 7]. Following this, the payment network forwards the
authorisation request with the mapped PAN details to the
bank for authorisation. The bank, after carrying out necessary
validations, sends an Authorisation Response Code (ARC) to
the payment network in an authorisation response [5, 10].
The payment network may or may not send a TSP-generated
response cryptogram in the authorisation response message to
the terminal via the acquirer [5]. As explained, the current
architecture requires online connectivity during transactions.

III. OFFLINE OPERATING ENVIRONMENT AND
ADVERSARY’S CAPABILITY

In this section, first the prospective offline operating envi-
ronment in order to provide offline payments based on EMV
tokenisation is provided. Then the capabilities of the adversary
in this environment and potential risk scenarios are discussed.

In the offline transaction environment considered in this
paper, online connectivity to reach the authorising entity is
not available on either the secure element or the terminal.
The secure element and the terminal are the only two parties
involved during the transaction. Therefore, in such a scenario
the terminal needs to decide whether to accept or decline a

4Cross-Channel Fraud, is capturing card details in a Point of Sale (POS)
transaction and using the details in other payment channels such as e-
commerce payments.



tokenised transaction. As the payment transaction is carried
out offline, it is paramount to secure the payment and the
communication between the secure element and the terminal.
The payment settlement phase is carried out when the terminal
has online connectivity at a later time.

Taking the potential offline-based operating environment
as discussed above into consideration, the capabilities of the
potential adversary who may compromise the tokenisation-
based payment system are listed below:

• Cannot break the standardised (strong) encryption algo-
rithms.

• Has the capability to eavesdrop unencrypted messages
passed between the secure element and the terminal.

• Cannot compromise the terminal’s public key certificate
introduced in IV-A. In Section VI, we discuss why the
terminal’s public key certificate is not in the adversary
knowledge in the adversary model.

• Cannot compromise the secure element, terminal, scheme
operator, token service provider or the bank.

Based on the adversary’s capability and the current op-
erating environment, an adversary who compromises token
transaction data during an offline transaction scenario may
carry out fraudulent transactions. The risk scenarios involved
may include the adversary changing the transaction amount to
a new value, capturing the OTT, or replaying the same OTT to
carry out multiple offline transactions with different terminals.
Therefore, as well as providing offline token transaction capa-
bility, it is vital to secure the sensitive token transaction data
communicated between the secure element and the terminal.

In order to store the OTT securely on the mobile phone for
offline use and to prevent the OTT being compromised, tamper
resistant storage and secure execution are needed. In our threat
model for the complete offline payment environment, the OTT
needs to be protected from the adversary. A mobile phone with
a software trusted execution environment such as Host Card
Emulation (HCE) does not offer tamper resistance. Therefore,
we consider a mobile phone with an embedded secure element
which offers both security guarantees in our proposal. In the
next section, we take these concerns into consideration and
propose our protocol.

IV. PROPOSED SOLUTION

In this section, an offline contactless mobile payment
protocol based on EMV tokenisation is proposed. The payment
protocol is used to make offline payments when there is
no online connectivity on either the terminal or the mobile
during a tokenised transaction. The objectives of the proposed
protocol are listed below.

1) The protocol should be able to make secure offline
payment transactions.

2) End-to-end encryption should be provided between the
SE and terminal. This offers additional security to protect
transaction data other than the Token.

A. Protocol Assumptions

The assumptions made in the proposed solution are listed
below:

• The Token Service Provider (TSP) is a trusted entity
that securely generates, issues and de-tokenise transaction
tokens on behalf of the bank.

• The TSP in the proposed protocol takes part in the same
payment scheme and the TSP generated signatures can be
verified by the terminal following the certificate hierarchy
shown in Figure 3.

• The terminal has been issued with a public key certificate
signed by the scheme operator.

• The Offline Transaction Token (OTT) and security-
sensitive data including the cryptographic keys are se-
curely stored in the secure element. It is not possible
for an adversary to steal/compromise the OTT or data
residing in the secure element.

• The nonces generated by the terminal are random and
unpredictable. An adversary cannot deduce the second
nonce by examining the first nonce.

The notation used in the proposed solution is included in
Table I. The tokenised contactless mobile payment architecture
of the proposed protocol is illustrated in Figure 2. The protocol
proposed in this study comprises a setup phase, a payment
phase and a settlement phase. In the Setup Phase, the payment
app and the Offline Transaction Token (OTT) are securely
provisioned to the secure element of the mobile. The payment
phase can be used to make an offline tokenised payment when
there is no online connectivity on either the terminal or the
mobile.

TSP
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 OperatorTerminal

Mobile
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Fig. 2. Tokenised Contactless Mobile Payment Architecture of the Proposed
Protocol

TABLE I. NOTATION USED IN THE PROPOSED PROTOCOL
T/SE/SO/x : Terminal/Secure Element/Scheme Operator/Identity of X.
TSP/OTT : Token Service Provider/Offline Transaction Token.
TATC : Token Application Transaction Counter, count of token

transactions since personalisation. It is shared between
mobile, bank & TSP and used during key derivations.

MaxV alue : Maximum value of the total offline token transactions allowed
per OTT. Predefined value set by the bank.

Tlimit : Transaction Limit is a record kept in the secure element. It is
the total value of previous offline token transactions.

KTo′ : Token Cryptogram Generation Symmetric Session Key derived
by a key derivation function used by TSP.

K : SE generated Symmetric Session Key.
EK{Z} : Symmetric Encryption of data string Z using key K.
SX : Private Signature Key of entity X .
sSX [Z] : Digital signature outcome (without message recovery) from

applying the private signature transformation on data string Z
using SX of X .

PX , P−1
X : Public Encryption/Decryption Key Pair of entity X .

ePX{Z} : Encryption of data string Z using a public algorithm with PX .
CertY (X) : Public Key Certificate of X issued and certified by Y .
aX : Ambient sensor details issued by entity X .
h(Z) : Hash of data string Z.
nX / n2X : First / second nonce issued by entity X .
A||B : Concatenation of A and B in that order.

B. Setup Phase

During the setup phase, the personalisation of the
payment application and provisioning of OTT related data



is accomplished. The provision of payment application and
security-sensitive data to the secure element is carried out
using a secure Over-The-Air (OTA) channel [11]. Following
application personalisation, the payment application’s sensitive
data elements reside in the secure element and its user interface
is located in the mobile platform. The elements in the secure
element consist of all cryptographic keys needed by the
mobile, i.e. Smobile and Pmobile. The secure element also
stores: Certbank(TSP ), Certbank(SE), Token Application
Transaction Counter (TATC), OTT and the token service
provider’s digital signature on the hash of Static Token Data
(STD) which has the notation sSTSP [h(STD)]. The OTT is
generated by the TSP and has a strong cryptographic binding
with the bank, TSP , Token and ntsp. The OTT consists of
a TokenData part and an encrypted part (Token Cryptogram).
The construction of the OTT is shown below.

OTT = TokenData||TokenCryptogram

TokenData = Token||TokenExpiry||TokenR-ID5

TokenCryptogram = EKTo′{TokenData||MaxV alue
||CurrencyCode||ntsp}

The OTT is securely provisioned to the secure element
using an OTA channel. Once the OTA is provisioned the secure
element keeps a record of the MaxV alue and the Tlimit. The
MaxV alue is the total offline token transactions value allowed
for a particular OTT. This is a predefined value set by the
issuing bank, taking the liability involved in offline transactions
into consideration. This is similar to how a daily liability cap
on EMV contactless card transactions is set for offline use. The
Tlimit is the total value of previous offline token transactions
carried out using a particular OTT. In a given transaction
scenario, the secure element adds the prospective transaction
value to the Tlimit to check whether the combined value
exceeds the MaxV alue. The secure element only presents
the OTT to a terminal if the prospective transaction does not
exceed the MaxV alue.

However, whenever there is online capability and the
MaxV alue of a particular OTT has been reached, a new OTT
is provisioned automatically to the secure element using an
OTA channel. The provisioning of the new token simultane-
ously resets the Tlimit.

Following personalisation of the payment application, the
user is required to enter a passcode on first access. A strong
hash function such as an SHA256 hashing algorithm is then
applied to the passcode, and this hash H is placed in the secure
element for future authentication of the user with the payment
application.

Fig. 3. Certificate Hierarchy used in the Proposed Architecture

The certificate hierarchy used to verify the public encryp-
tion keys and signature verification keys of the entities is

5Token Requester ID: 11-digit unique numeric value, positions 1-3 indicat-
ing TSP and positions 4-11 indicating the requester and token domain [5].

shown in Figure 3. The scheme operator is at the top level
of the certificate hierarchy used in the proposal. Terminals and
secure elements participating in the payment scheme can verify
certificates issued by the scheme operator or entities that have
been certified to be trusted in the certificate hierarchy. The
TSP also takes part in the payment scheme. As illustrated in
Figure 3, the secure element’s public key is certified by the
bank and the terminal’s public key is certified directly by the
scheme operator. We have constructed the certificate hierarchy
in this manner because the number of secure elements that
need certifying is greater than the number of terminals. In
the current payment architecture, a terminal is deployed by
the merchant’s acquiring bank or by a subcontractor of the
acquiring bank. In our proposal, the scheme operator certifies
the terminal’s public key. However, on a practical note, in the
current payment architecture, terminal manufacturers need to
have their terminals certified by a scheme operator. Therefore,
it is within the capability of the scheme operator to certify
each terminal’s public key directly, probably at the same time.

C. Payment Phase

The protocol messages of the proposal are illustrated in
Table II and explained as follows. To make a contactless
mobile payment, the user opens the payment application by
entering the passcode and taps the device on the terminal’s
Near Field Communication (NFC) field.

TABLE II. OFFLINE TRANSACTION TOKEN PROTOCOL.

1. T → SE : t||nt||CertSO(T )

2. SE → T : ePT {se||t||nse||nt||PDOL||K}

3. T → SE : EK{t||se||nse||n2t||amount||CurrencyCode}

4. SE → T : EK{se||t||n2se||n2t||OTT}||sSTSP [h(STD)] ||
sSSE [h(DAD)] ||Certbank(SE)

STD = se||OTT
DAD = n2t||n2se||OTT

a. T : SE read complete
b. T : offline token & dynamic data authentication
c. T : approved/declined - post-transaction clearing request

Message 1: In the first transaction message, the terminal
provides its identity, terminal-generated first nonce and the
terminal’s public key certificate to the secure element.

Message 2: The secure element then verifies CertSO(T )
and recovers PT . Only a genuine terminal can provide a public
key certificate that verifies correctly. The second message
includes; the identities, nSE , received nonce, the Processing
Options Data Object List (PDOL) [12] and the session key.
The message is enciphered using PT before sending to the
terminal. The PDOL instructs the terminal what information
to transmit back to the secure element.

Message 3: The terminal first deciphers the received mes-
sage and prepares to send the data requested in the PDOL. The
prepared message includes the identities, the secure element’s
nonce received previously, a fresh nonce, and the amount and
the currency code of the transaction. The message is then
enciphered using K before sending it to the secure element.

Message 4: The secure element deciphers the previous
message and then carries out the following verification steps
before constructing message 4:



• The secure element checks whether it has received the
expected nSE in order to detect any replay attempts.

• The secure element examines the prospective transac-
tion amount to check it is within the maximum value
of a single offline token transaction set by the issuer.
If the transaction amount exceeds the maximum value
the secure element declines the transaction, otherwise it
proceeds to the next verification.

• The secure element then verifies whether the amount of
the transaction is with the required limits. This is done by
examining the Transaction Limit Tlimit kept in the secure
element’s record. The Tlimit includes the total value of
previous offline token transactions. The secure element
adds the prospective transaction amount to the value in
the Tlimit and checks to see whether the final amount
exceeds the MaxValue, which is the total offline token
transaction value allowed for a particular OTT. If the
MaxValue has been reached, the secure element declines
the transaction; otherwise the secure element proceeds
to construct message 4. The secure element updates the
Tlimit record when message 4 is successfully issued.

The secure element uses the Offline Transaction Token
(OTT ) for the payment transaction and includes the following
data in the constructed message: the identities; n2se; n2t; and
the OTT . The message is enciphered using K. The n2t forms
part of the Dynamic Application Data (DAD) used by the
terminal to detect any replay attempts.

Message 4 also includes the sSTSP [h(STD)],
sSSE [h(DAD)] and the public key certificate. The TSP ′s
signature on static token data can be used by the terminal
to carry out offline token data authentication to verify the
authenticity of the OTT related data offline. The SE′s
signature on the DAD can be used by the terminal to carry
out offline dynamic data authentication to verify that it is
communicating with a genuine secure element. Finally the
public key certificate can be used to verify the signature
through the certificate hierarchy.

Once message 4 is successfully sent, the secure element
may leave the NFC field of communication. The terminal
then carries out the following four verification steps before
the OTT transaction is approved or declined:

• The terminal verifies sSTSP [h(STD)] by generating
h(SE||OTT ) and comparing it with the hash recovered
from sSTSP [h(STD)]. If the two hashes match, this
verifies that the TSP has signed the STD presented
to the terminal by the secure element. This provides
assurance to the terminal regarding the authenticity of
the OTT . If offline token data authentication fails, the
terminal declines the transaction.

• The terminal then verifies the sSSE [h(DAD)] produced
by the secure element. The terminal generates the hash of
the DAD received in message 4 and then compares this
with the hash recovered in the sSSE [h(DAD)]. If the
two hashes match, offline dynamic data authentication is
verified successfully, otherwise the transaction is declined
due to the potential of a replay attack. A replay of
OTT can be detected by the terminal due to a replayed
message 4 not having the terminal-generated n2t in the
sSSE [h(DAD)].

If the verification steps are completed successfully, then
the terminal approves the offline token transaction. If thay fail,
then the transaction is declined. In both cases, the outcome is
displayed to the user on the terminal and a printed transaction
receipt may be produced. The terminal issues a token payment
clearing request when the terminal is online capable at a
later time, following a successful transaction of an offline
token payment. In the event of an unsuccessful offline token
payment, the terminal declines the transaction, displays a
decline message on the terminal and a token payment clearing
request is not sent. The token payment clearing request starts
the settlement phase. The settlement process of the offline
token payment may follow the same transaction processing
channel as specified in the EMV tokenisation specification
[5] and discussed in section II. The terminal may forward
the token payment clearing requests which include: OTTs and
transaction details from a number of transactions, in bulk to the
acquirer. The acquiring bank then forwards the request to the
scheme operator who then communicates with the TSP. The
TSP is able to detokenise and validate the OTTs. The retrieved
PAN and transaction details are forwarded to the issuing bank
for payment clearing. The acquiring bank is settled via the
scheme operator.

V. ANALYSIS

In this section, the proposed solution is evaluated to see
whether it achieves the protocol objectives. The analysis dis-
cusses how the protocol can be extended to prevent token relay
attacks.

The analysis takes into consideration the operating envi-
ronments outlined in Section II, protocol assumptions outlined
in Section IV-A and those described during the setup stage in
Section IV-B.

1) Secure offline payment transactions: Achieving offline
transaction capability during a tokenised payment was
the main focus of the paper. The proposed contactless
mobile payment protocol based on EMV tokenisation
provides capability of making tokenised payments in
a fully offline environment. The proposed protocol,
in order to achieve the objective of making offline
token payments, uses the OTT which includes STD as
payment data.

The terminal carries out four verification steps to
verify whether the offline transaction is genuine. The
terminal carries out offline token data authentication,
by verifying sSTSP [h(STD)]. This gives an assurance
regarding the authenticity of the OTT . The terminal
does offline dynamic data authentication by verifying
the sSSE [h(DAD)]. By doing this, a replay of OTT
is detected by the terminal as the message would not
include n2t if it is not genuine. If these verifications fail,
the terminal declines the transaction.

2) End-to-end encryption to protect transaction data:
The protocol provides end-to-end encryption between the
terminal and the secure element. This provides confi-
dentiality by preventing adversaries from eavesdropping
on sensitive token transaction-related data during trans-
actions. The end-to-end encryption provides security for



transaction-related data other than the token. We further
establish this in Section VI where we analyse the protocol
in Scyther. Scyther did not find any feasible attacks
including attacks on the secrecy of transaction data.

A. Token Relay Attack

Relay attacks during EMV contactless payment transac-
tions have been examined in [13]–[15]. Even though tokeni-
sation prevents PAN compromise during an EMV transaction,
the current EMV tokenisation architecture specified in [5] does
not address concerns about relaying EMV tokenised payments.
Consider the example of a token relay attack where a genuine
consumer makes a token-based contactless mobile payment at
a compromised terminal. The transaction is then relayed to a
rogue secure element elsewhere, which makes a payment at a
genuine terminal simultaneously.

Our proposed protocol can be extended to detect and
prevent token relay attacks by adopting ambient sensing, as
discussed and illustrated in Figure 4. An introduction to
ambient sensing and the explanation of how this can be used is
given in Section A. A mobile device and a supported terminal
capture their own ambient environment-related data on each
device using on-board sensors. In the protocol, the mobile
sends its ambient sensor data amobile in message 4 as shown
below.

TABLE III. EXTENDED PROTOCOL MESSAGES.

4. SE → T : EK{SE||n2se||n2t||OTT ||amobile}||
sSTSP [h(STD)] ||sSSE [h(DAD)]

DAD = n2t||n2se||OTT ||amobile

b. T : offline token relay detection

In the protocol stage, any attempted token relay attacks are
detected offline by the terminal. This is due to the transaction
being offline and a trusted third party, such as the TSP ,
being unavailable to act as a comparing party. To this end,
the terminal generates its own ambient sensor data aterminal

and compares it with the amobile received in message 4.
This verification can be completed in step b of the protocol.
As amobile forms part of the DAD, it provides data origin
authentication of amobile and other dynamic application data
to the terminal by verifying sSSE [h(DAD)]. If the two
components match or meet the expected threshold, then the
terminal proceeds to the next verification stage; otherwise the
terminal declines the offline token transaction because of the
potential of a token relay attack.

VI. MECHANICAL FORMAL ANALYSIS

In this section, the proposed protocol is subjected to
mechanical formal analysis using Scyther [16].

The description of a protocol was modelled and provided
as input to Scyther using the Security Protocol Description
Language (spdl) defined in [17]. The spdl provides three
main protocol modelling features: roles, events and claims.
The entities in a protocol are described using a set of roles,
which characterise events. The send and receive operations
are classed as send and recv events respectively; each
corresponding send and recv event has the same sequence
number. The security goals and objectives of a protocol that
require verification are specified using claim events.

The adversarial model used in this analysis is the Dolev-
Yao model in [18]; Scyther is capable of supporting additional
adversarial models. The following security claims are veri-
fied in the analysis: Secrecy of data (Secret), Aliveness
(Alive), Weak agreement (Weakagree), Non-injective
agreement (Niagree) and Non-injective synchronisation
(Nisynch) [16, 17]. In addition to the claim types defined
above, the verify automatic claims feature on Scyther was used
to verify other claims [16]. In the adversary model, we have
excluded the terminal’s public key certificate from the adver-
sary’s knowledge. This is because only a genuine terminal is
able to provide its public key certificate to the secure element
and the adversary is unable compromise a genuine public key
certificate that follows a certificate hierarchy.

Following successful execution of the script, the security of
data in the claim events were verified and Scyther did not find
any feasible attacks other than the secrecy of the terminal’s
first generated nonce (nt) sent in Message 1. The Scyther
script is available in Appendix B and can be downloaded
from [19]. This is because, in our protocol construction, (nt)
is sent in clear text in Message 1. However, according to
the protocol assumptions in Section IV-A, nonces are random
and unpredictable. Therefore, an adversary cannot deduce the
second generated nonce (nt2) by examining (nt). As a result,
knowledge of (nt) is of no value to the adversary because for
the construction of the DAD, only the second nonce (nt2) is
used.

VII. PRACTICAL IMPLEMENTATION

In this section, we provide details of the protocol imple-
mentation, our experience, and performance measurements for
the protocol.

The protocol was implemented to obtain performance mea-
surements and to provide a comparison with other protocols.
In our implementation, a Java application was developed to
run as the terminal on a Microsoft Windows 7 PC with a
3.2GHz processor and an 8GB RAM. Then a separate Java
card applet was developed to run the payment application
on the mobile. The applet was provisioned to the 16-bit
hardware secure element of a Nokia 6131 mobile phone.
For our implementation, obtaining a mobile phone with an
embedded secure element that gave read/write permissions to
the secure element was a challenging task. The only mobile
phone with an embedded secure element with read/write access
to provision our payment applet that was available at the time
was the Nokia 6131 mobile phone. In our applet development
phase, we found that Java card frameworks v2.2.2 or above
were not supported by the secure element. In order to provide
compatibility with the secure element, the Java card applet was
compiled using Java card framework v2.2.1.

All four messages of our proposed protocol detailed in
Table II were implemented. The communication between the
terminal and the secure element was carried out by command
and response Application Protocol Data Units (APDU) [20,
21]. In our implementation for asymmetric encryption, we used
plain RSA [22] with 1024-bit key and recommended padding.
We used MD5 [23] as the hashing algorithm and the RSA
Digital Signature Algorithm for signatures [24].



During our implementation, we found that the secure
element and the Java card framework v2.2.1 did not support
the Advanced Encryption Standard (AES). Because of this
limitation on the secure element, we used double-length key
Triple DES [25] in Electronic Codebook mode for symmetric
encryption. The algorithm was also supported by default in
the Java card framework v2.2.1. It is important to note that,
double-length key Triple DES is an approved cryptographic
algorithm and electronic codebook is an approved mode of
operation in the EMV specification [26, see: p135-145].

The protocol is scalable to use other advanced algorithms,
modes of operations and hashing algorithms. If the implemen-
tation had been carried out on a modern mobile phone with
an embedded secure element, we would have used AES for
symmetric encryption and SHA256 as the hashing algorithm.

TABLE IV. PERFORMANCE MEASUREMENTS COMPARISON IN
MILLISECONDS

Measures Proposed Protocol SSL [27] TLS [28] P-STCP [29] STCP [30]
OTT

Specification 16bit 32bit 32bit 16bit 16bit
Time to complete 3971ms 4200ms 4300ms 4344ms 3875ms

A performance measurements comparison between the
proposed Offline Transaction Token (OTT) protocol and some
other protocols implemented on smart cards is shown in
Table IV. At the time of writing, we could not find any offline
token protocols or their timing measurements in published
literature to enable us to carry out a more accurate comparison.
In order for us to understand the performance of the protocol,
we choose performance measurements from four different
protocols available in the literature. The chosen protocols were
also implemented on smart cards for measurements in their
corresponding papers.

Three different timing measurements were obtained from
our implemented protocol. We recorded timing measurements
for Message 2, Message 4 and the total time for the protocol
to complete. For Messages 2 and 4, timing was measured
from the time the command APDU [20] was sent from the
terminal to the time it received the response APDU [20] from
the secure element. The overall protocol completion time was
measured from the time the applet selection command APDU
was sent from the terminal to the time it completed all the
verifications after receiving Message 4. The measurements for
Message 2 and Message 4 were 751 milliseconds and 3086
milliseconds respectively. The overall protocol completed in
3971 milliseconds. The overall time it took to complete the
protocol fell in the same performance range as the compared
protocols in Table IV. Another point to note is that, the 16bit
hardware secure element on the Nokia 6131 mobile phone used
in our implementation was released in 2006. A more recent
32bit secure element on a modern smart phone would most
probably give improved performance measurements.

VIII. CONCLUSION & FUTURE WORK

In this paper, an Offline Transaction Token (OTT) protocol
based on EMV tokenisation was proposed. The proposed
solution achieves the two main objectives of the protocol:
to be able to make secure offline token transactions and
to provide end-to-end security between the terminal and the
secure element. The proposal was analysed and we further
identified how the protocol could be extended to prevent

potential token relay attacks. Finally, we subjected the protocol
to mechanical formal analysis using Scyther and provided
performance measurements from a practical implementation.
At the time of writing, apart from [31, 32], there is no publicly
available academic research based on EMV tokenisation. To
the authors’ knowledge, the work carried out in this study
is the first to propose an offline transaction token protocol
with mechanical formal analysis, practical implementation and
performance measurements.

In further research, we aim to explore other transaction
scenarios such as making an offline token payment when the
terminal is online-capable. We also aim to implement our
protocol on a 32bit secure element on a modern smart phone
to compare performance variations.
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APPENDIX A
AMBIENT SENSING

Figure 4 illustrates how ambient sensing can be used in the
proposed EMV tokenisation-based offline contactless mobile
payment protocol to detect and prevent token relay attacks.
Previous work related to relay attacks detection between an
NFC mobile phone and a reader using ambient sensing can

be found in [33, 34]. Considering two different ambient
environments, AE1 and AE2, a token relay from a genuine
mobile in AE1 to a genuine terminal in AE2 via a rogue
terminal and mobile can be detected by the genuine terminal
or a trusted third party acting as a comparing entity.

Rogue
Terminal

Genuine
Mobile
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Terminal

Rogue
Mobile

a terminal =AE2

a mobile = AE1a mobile = AE1

Ambient 
Environment 1

(AE1) 

Ambient 
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Fig. 4. Ambient Sensing as a Token Relay Attack Prevention Countermeasure

As illustrated in Figure 4, this detection is possible due
to ambient sensor data aterminal generated by the genuine
terminal in AE2 being significantly different to the relayed
amobile produced by the genuine mobile in AE1. The differ-
ence in ambient sensor data is detected when the comparison
is made. The attributes collected as ambient sensor data may
include atmospheric pressure, ambient noise, ambient light,
Global Positioning System (GPS) data, and others [34].

APPENDIX B
SCYTHER SCRIPT - OFFLINE TOKEN PROTOCOL

usertype Data;
hashfunction h;
usertype SessionKey;
const Cert: Function;
secret Cert1: Function;

protocol ot2(SE,T)
{
role SE {
fresh nse: Nonce; fresh PDOL: Data;
var nt: Nonce;
fresh OTT: Data; fresh TSPsig: Data;
macro DAD = nt2, OTT;
fresh K: SessionKey; fresh nse2: Nonce;
var X: Ticket; var nt2: Nonce;

recv_1(T,SE, T,nt,Cert1(T));
send_2(SE,T, {SE,T,nse,nt,PDOL,K}pk(T));
recv_3(T,SE, {T,SE,nse,nt2,X}K);
send_4(SE,T, {SE,T,nse2,nt2,DAD,TSPsig}K,
{h(DAD)}sk(SE),Cert(SE) );

claim(SE, Alive);
claim(SE, Secret, K);
claim(SE, Niagree);
claim(SE, Nisynch);
claim(SE, Secret, OTT);
claim(SE, Secret, X);
}

role T {
var nse: Nonce; var PDOL: Data;
fresh nt: Nonce; fresh TTQ: Data;
fresh amount: Data; fresh nt2: Nonce;
fresh CurrencyCode: Data;
var K: SessionKey; var Y: Ticket;
macro m1 = amount,CurrencyCode;
var TSPsig: Data; var nse2: Nonce;

send_1(T,SE, T,nt,Cert1(T));
recv_2(SE,T, {SE,T,nse,nt,PDOL,K}pk(T));
send_3(T,SE, {T,SE,nse,nt2,m1}K);
recv_4(SE,T, {SE,T,nse2,nt2,Y,TSPsig}K,
{h(Y)}sk(SE),Cert(SE) );

claim(T, Alive);
claim(T, Secret, K);
claim(T, Niagree);
claim(T, Nisynch);
claim(T, Secret, Y);
}
}


