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We propose a model for the theoretical description of a weak-link Josephson junction, in which the
weak link is spin-polarized due to proximity to a ferromagnetic metal (S-(F|S)-S). Employing Usadel
transport theory appropriate for diffusive systems, we show that the weak link is described within the
framework of Andreev circuit theory by an effective self-energy resulting from the implementation
of spin-dependent boundary conditions. This leads to a considerable simplification of the model,
and allows for an efficient numerical treatment. As an application of our model, we show numerical
calculations of important physical observables such as the local density of states, proximity-induced
minigaps, spin-magnetization, and the phase and temperature-dependence of Josephson currents of
the S-(F|S)-S system. We discuss multi-valued current-phase relationships at low temperatures as
well as their crossover to sinusoidal form at high temperatures. Additionally, we numerically treat
(S-F-S) systems that exhibit a magnetic domain wall in the F region and calculate the temperature-
dependence of the critical currents.

PACS numbers: 72.25.-b, 72.25.MK, 74.45.+c, 74.78.Fk

I. INTRODUCTION

The study of superconductivity in proximity with fer-
romagnetic materials has opened the path towards cre-
ation and control of spin-polarized Cooper pairs and
superconducting spin currents.1–10 Recent developments
show that also energy currents can be managed by using
spin-polarized Cooper pairs11–15. A considerable amount
of work has concentrated on spin-polarized supercur-
rents across ferromagnetic metals or insulators. Hybrid
structures in which superconductors are connected by
a weak link of a normal-metal/ferromagnet bilayer or a
ferromagnet/normal-metal/ferromagnet trilayer forming
a bridge between the superconducting banks have been
studied to a lesser extend. Theoretical proposals for such
structures16 have been followed by experimental work on
hybrid planar Al-(Cu|Fe)-Al submicron bridges17, and
by further theoretical investigations to optimize practical
performance.18

In the present work we study the case of a weak link
consisting of a superconductor/ferromagnetic-metal bi-
layer, where the superconducting material is the same as
in the leads, and where superconductivity is suppressed
due to proximity coupling to the ferromagnetic metal,
e.g. as in an Al-(Al|Co)-Al structure. A schematic illus-
tration of the system is depicted in Fig.1; an experimen-
tal realization could be a superconducting strip running
across a ferromagnetic disc. In our modeling, the struc-
ture consists in total of two blocks; the superconductor
and the ferromagnet which are connected by an inter-
face over a length df (dashed line in Fig. 1), building
the weak link. A superconductor in proximity with a
ferromagnet exhibits spin-polarized Cooper pairs, which
can be considered as a mixture between spin-singlet and
spin-triplet pairs. This in turn implies a spin-polarized
excitation spectrum, resulting in a spin-magnetization of
the superconductor in the region where it is proximity-

coupled to the ferromagnet19–21 (see dashed-dotted line
in Fig. 1). The singlet superconducting order parameter
is shown in Fig. 1 as full line, exhibiting the suppression
in the proximity-coupled region.

We employ a Green function technique for metals,
itinerant ferromagnets, and superconductors in the dif-
fusive limit. Within this theory, Green functions are
described by transport equations of the kind derived
by Usadel,22 generalized to spin-dependent phenomena
within a Riccati representation.2,23,24 The considered
structure makes it necessary to self-consistently calcu-
late the pair potential with the spectrum of excitations
(as encoded by the Green functions). Due to the pres-
ence of the ferromagnet, we supplement the transport
equations for the Green functions with spin-dependent

ds dsdf

x

z

I

SC

F

m(x)
�(x)ei�(x)

Figure 1: Model of an S-(S|F)-S junction. The dashed line
between the superconductor (SC) and the ferromagnet (F)
indicates a spin-active interface. The structure is of length
2ds+df , where ds is the length of the superconducting banks
on either side of the ferromagnet, and df is the length of
the superconductor/ferromagnet proximity block. The pair
potential ∆eiΦ (blue, solid) and the spin-magnetization m
(green, dot-dashed) are shown schematically as a function of
spatial coordinate x. A supercurrent I is driven by a spatially
varying superconducting phase Φ(x).
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boundary conditions.25 We propose a model in which
spin-dependent interface scattering phase shifts20,26 lead
to a spin-polarization of Cooper pairs in the supercon-
ducting regions of the weak link. Assuming the thickness
of the superconductor within the weak link much smaller
than the superconducting coherence length, we are able
to cast the boundary conditions in the form of an effec-
tive self-energy, which enters a one-dimensional transport
equation in direction of the weak link.

In Section II we present the theoretical framework to
describe our model. We supplement the Usadel equation
by a self-energy-like contribution that is derived in the
framework of an Andreev circuit theory to account for
the spin-dependent boundary conditions.

In Section III we calculate characteristic observables
such as the local density of states, the spin magnetiza-
tion of the system, the superconducting order parame-
ter, the characteristic current-phase relationship, and the
temperature-dependence of the critical Josephson cur-
rent. All calculations are performed self-consistently.

In Section IV we explicitly show that our model fulfills
the requirement of charge conservation.

In Section V we numerically investigate an S-F-S het-
erostructure that exhibits a magnetic domain wall. We
extend previous work23 by a self-consistent calculation
of the pair-potential, and calculate the local density
of states, current-phase relations, and the temperature-
dependent critical current.

II. THEORETICAL DESCRIPTION

We employ for our theoretical treatment Usadel the-
ory of diffusive superconductors,22,27 adapted for spin-
polarized systems (see e.g. Ref. 9). Usadel theory can be
derived from the theory of Eilenberger28 and of Larkin
and Ovchinnikov29 in the diffusive limit. The equilib-
rium physics is captured by the retarded Green function
(or propagator) ĜR ≡ Ĝ(R, ε) where R denotes the spa-
tial coordinate, R = (x, y, z), and ε the energy. Cur-
rent transport will be considered in x-direction, whereas
z denotes the direction perpendicular to the supercon-
ducting films. The propagator Ĝ(R, ε) has a total of 16
complex-valued components and is build up of four 2× 2
block spin-matrices, two of which are related to the other
two by particle-hole conjugation symmetry. This matrix
structure arises from the internal degrees of freedom: the
spin degree of freedom and the particle-hole degree of
freedom. The hat accent denotes the 2×2 block matrix
structure in particle-hole (Nambu-Gor’kov) space:

Ĝ =

(
G F

F̃ G̃

)
(1)

where G, F, G̃, and F̃ are 2×2 spin matrices, i.e. Fαβ has
spin indices α, β = {↑, ↓} etc. The off-diagonal elements
F and F̃ quantify the superconducting pair correlations.
The propagator can be analytically continued from the

real energy axis into the upper complex half plane, ε→ ε
with Im(ε) ≥ 0. The symmetry relation (particle-hole
conjugation) between the block spin-matrices is given by
the “tilde”-operation:

Ã(R, ε) = A(R,−ε∗)∗ (2)

where (∗) denotes complex conjugation.
In addition to the discreet internal degrees of freedom,

there are continuous external degrees of freedom, which
are described by the energy ε and the spatial coordi-
nate R. The diffusive motion is described by a quan-
tum kinetic transport equation, in our case the Usadel
equation,22 which for the propagator within the super-
conductor, ĜSc(R, ε), takes the form[
ετ̂3 − ∆̂, ĜSc(R, ε)

]
+
D

π
∇
(
ĜSc(R, ε)∇ĜSc(R, ε)

)
= 0̂

(3)

where [Â, B̂] ≡ ÂB̂−B̂Â, the 4×4 matrix τ̂3 is the direct
product between the third Pauli matrix in particle-hole
space and the spin unit matrix, 0̂ is the 4×4 zero ma-
trix, ∇ ≡ ∂/∂R, and D is the diffusion constant. This
transport equation is supplemented by the normalization
condition

ĜSc(R, ε)
2 = −π21̂, (4)

where 1̂ ≡ 14x4 is the 4×4 unit matrix.
For the system depicted in Fig. 1 we make a simplify-

ing ansatz that allows us to transform the Usadel equa-
tion into a quasi-one dimensional differential equation,
supplemented by a self-energy-like contribution that ac-
counts for the influence of the ferromagnet on the su-
perconductor. This ansatz is motivated by assuming
that the superconductor of thickness d does not extend
significantly in the z direction, meaning that the spa-
tial variations of the superconducting order parameter in
the z-direction are small. This is justified for example
for a superconducting strip whose lateral dimensions are
much bigger than its vertical extension. Our perturba-
tive ansatz for the Green function of the system depicted
in Fig.1 is thus:

ĜSc(x, z, ε) = Ĝ0(x, ε) + Ĝ1(x, ε)(z − d)2 (5)

with the normalization condition

ĜSc(x, z, ε)
2 =

(
Ĝ0(x, ε) + Ĝ1(x, ε)(z − d)2

)2

= −π21̂ ∀(x, z, ε). (6)

Up to linear order in (z − d) this means

Ĝ0(x, ε)2 = −π21̂ ∀(x, ε). (7)

The surfaces at z = d border to an insulating (I) re-
gion. The boundary conditions at the S/I interface must
satisfies Nazarov’s boundary conditions32 ∂zĜSc(x, z =
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d, ε) = 0. A linear contribution of the form (z − d) in
Eq. (5) does not satisfy this condition and therefore the
ansatz for the spatial variation in the z-direction contains
only a quadratic contribution, proportional to (z − d)2.

To leading order in (z − d) the Usadel equation reads

[ετ̂3 − ∆̂, Ĝ0(x, ε)] +
D

π
∂x[Ĝ0(x, ε)∂xĜ0(x, ε)]

+ 2
D

π
Ĝ0(x, ε)Ĝ1(x, ε) = 0̂. (8)

The contribution Ĝ1(x, ε) will be determined from the
boundary conditions of the problem and will thus de-
pend on the structure of the ferromagnet. A detailed
derivation of this expression can be seen further below,
in Eq. (42). Here we note that we will show that the
Usadel Equation (8) can be cast into the form

[ετ̂3 − ∆̂− Σ̂(x, ε), Ĝ0(x, ε)]

+
D

π
∂x[Ĝ0(x, ε)∂xĜ0(x, ε)] = 0̂, (9)

where Σ̂(x, ε) formally appears like a self-energy contri-
bution to the system and captures the influence of the
ferromagnet. It is defined in Eq. (43) below.

A. Riccati Parameterization

The Green functions can be described in the framework
of the spin-dependent Riccati parameterization.30 This
parameterization allows to retain the full spin structure
of the Green function while automatically ensuring the
normalization condition. The power of this parameteri-
zation for diffusive systems was exemplified, for example,
by calculating the effects of the superconducting proxim-
ity effect through magnetic domain walls.23 Within this
framework the retarded Green function Ĝ0(x, ε) is pa-
rameterized by

Ĝ0 = −iπN̂
(

(1 + γγ̃) 2γ
−2γ̃ −(1 + γ̃γ)

)
(10)

where 1 is the spin unit matrix, and where

N̂ =

(
(1 − γγ̃)−1 0

0 (1 − γ̃γ)−1

)
(11)

automatically ensures the normalization condition (7).
The coherence functions γ and γ̃ are spin matrices, γαβ
with α, β = {↑, ↓}, where each element depends on the
energy ε and the spatial coordinate x.

We now write the transport equations Eq. (9) in the
Riccati parameterization. The 4×4 matrix Σ̂(x, ε) is only
non-zero in the range where the proximity effect between
the superconductor and the ferromagnet is in action, and
can be written in 2× 2 block structure

Σ̂(x, ε) =

(
A B

B̃ Ã

)
. (12)

With this definition, the Usadel equations for the coher-
ence functions γ and γ̃ are written as2,23

d2γ

dx2
+

(
dγ

dx

)
F̃

iπ

(
dγ

dx

)
=

i

D

[
γ(∆∗ + B̃)γ − (ε1 − A) γ − γ(ε1 + Ã)−∆−B

]
,

(13)
d2γ̃

dx2
+

(
dγ̃

dx

)
F

−iπ

(
dγ̃

dx

)
=

−i
D

[
γ̃ (∆ + B) γ̃ + (ε1 + Ã)γ̃ + γ̃(ε1 − A)−∆∗ − B̃

]
(14)

with

τ̂3 =

(
1 0
0 −1

)
, σ̂i =

(
σi 0
0 σ∗i

)
, ∆̂ =

(
0 ∆

∆∗ 0

)
(15)

where σi are the Pauli spin-matrices with i = x, y, z.
The (temperature-dependent) spin-singlet superconduct-
ing order-parameter is given by

∆(x) = ∆(x)iσy = ∆0(x)eiΦ(x) · iσy (16)

where ∆0(x) is the modulus of the order parameter, and
Φ(x) denotes a spatially dependent, real phase. The or-
der parameter ∆(x) = ∆0(x)eiΦ(x) must be determined
self-consistently as described further below, to ensure
current conservation across the weak link. The Usadel
equation must be supplemented by appropriate boundary
conditions. This will be addressed in the next section.

B. Andreev circuit theory

We wish to employ spin-dependent boundary condi-
tions to couple the ferromagnet to the superconductor.
A crucial quantity at a boundary between a strongly
spin-polarized ferromagnet and a superconductor is the
spin-mixing parameter20, or spin-mixing conductance
Gφ11,25,26,31. This parameter is the crucial quantity
leading to spin-polarization of Cooper pairs as well as
to a spin-split local density of states at the contact,
and results from spin-dependent scattering phase shifts
during reflection and transmission at a superconductor-
ferromagnet interface.20,26,31

In order to implement boundary conditions, we uti-
lize a discretized (Andreev) quantum circuit theory32,33
where the system consists of terminals, nodes, and con-
nectors, as depicted in Figs. 2 and 3. Within the prox-
imity region, at each spatial point x the superconductor
is tunnel-coupled to a central node C. This coupling
is characterized by a boundary conductance GS . The
node itself is in contact to a ferromagnetic metal via a
spin-dependent coupling that is characterized by its po-
larization P, its boundary conductance value G, and the
spin-mixing parameter Gφ.
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Figure 2: Illustration of an Andreev circuit to calculate the
Green function ĜC of the central node C. It consists of a
central node C that is connected to a ferromagnetic terminal
by a connector that is characterized by a set of conductance
parameters G, P, Gφ (see text). The leakage terminal is char-
acterized by a Thouless energy εTh. The arrows between the
blocks indicate the flow of matrix currents that obey a Kirch-
hoff rule, see Eq. (17).

The loss of superconducting correlations is accounted
for by a leakage current that contains the Thouless en-
ergy εTh of the leakage terminal. The central node C is
responsible to model the behavior of the superconducting
correlations in the structure under the effect of leakages
and spin-polarized boundaries of the ferromagnet. As
has been shown by Nazarov32, the following generalized
Kirchhoff rule for the so-called matrix current holds (see
Fig. 2):

ÎS,C + Î↓,C + Î↑,C + ÎLeak = 0̂ (17)

where ÎS,C is the matrix current from the superconduc-
tor to the node C. The matrix currents from the ferro-
magnet into the central node C are denoted by Î↓,C , Î↑,C
whereas ÎLeak is the matrix current from the leakage ter-
minal going into the central node. Eq. (17) has to be
applied at each interface point (x, z) with z = 0 at the
interface between the superconductor and the ferromag-
net (see Fig. 3).

 SC    SC 
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Figure 3: The Green function ĜC of the central node has
to be calculated for every point x at the interface and for all
energies. The red blocks labeled C and F refer to the central
node C and the ferromagnet blocks discussed in Fig.2.

The leakage current is given by

ÎLeak(x, ε) =
Gq

4εTh
[ĜLeak(ε), ĜC(x, ε)] (18)

where ĜLeak(ε) = −πετ̂3 is an energy-dependent quantity
to account for a leakage of coherence. All information
about the leakage terminal is given by its Thouless energy
εTh.

The matrix current between the terminals j and the
central node C in linear order in Tn (see below) can be
written in the form of the following commutator11,13

Îj,C =
1

2

[
G0,j · Ĝj + GP,j · {κ̂j , Ĝj}

+ G1,j · κ̂jĜj κ̂j − πGφ,j · κ̂j , ĜC
]

(19)

where j ∈ {↑, ↓, S} labels the terminal. The bound-
ary conditions are specified by the set of conductance
parameters11,13

G0 = Gq
#Channels∑

n

Tn
(

1 +
√

1− P2
n

)
(20)

G1 = Gq
#Channels∑

n

Tn
(

1−
√

1− P2
n

)
(21)

GP = Gq
#Channels∑

n

TnPn (22)

Gφ = 2Gq
#Channels∑

n

δΦn. (23)

Here, the spin-mixing parameter is described by δΦn,
the spin polarization of the ferromagnet by Pn, the spin-
averaged transmission probability for channel n is given
by Tn and Gq = e2

h is the quantum conductance.
For a strongly spin-polarized ferromagnet the trans-

mission and reflection channels at the interface are com-
pletely spin-polarized (Pn = 1 and −1 for spin-up and
spin-down, respectively), such that we obtain

G0 = G1 = Gq
(

#↑∑
n

Tn +

#↓∑
n

Tn
)
≡ 1

2
(G↑ + G↓) (24)

GP = Gq
(

#↑∑
n

Tn −
#↓∑
n

Tn
)
≡ 1

2
(G↑ − G↓) (25)

Gφ = 2Gq
(

#↑∑
n

δΦn −
#↓∑
n

δΦn

)
≡ Gφ,↑ − Gφ,↓ (26)

where # ↑ is the number of spin-up channels and # ↓
the number of spin-down channels.

We obtain the matrix current between the supercon-
ductor and the central node C by setting G1,S = GP,S =
Gφ,S = 0 and defining G0,S = GS for the supercon-
ductor. The expression for the ferromagnetic contacts
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is simplified by [Ĝj , κ̂j ] = 0; thus, one can combine
G↑,(↓) = G0,↑(↓) + G1,↑(↓). Furthermore, we simplify the
notation by setting Îj,C ≡ Îj . The various matrix cur-
rents are then determined by the following boundary
conditions9,11:

Îα(x, ε) =
1

2

[
Gα · ĜFα + GP,α · {κ̂α, ĜFα}

− πGφ,α · κ̂α, ĜC(x, ε)
]

(27)

ÎS(x, ε) =
1

2
GS · [Ĝ0(x, ε), ĜC(x, ε)] (28)

where α ∈ {↑, ↓}, and
κ̂↑ = −κ̂↓ ≡ κ̂ = 12×2 ⊗ (m · σ), (29)

Ĝ
F
↑ = Ĝ

F
↓ = −iπτ̂3 ≡ ĜF . (30)

Here, ĜF is the solution to the Usadel equation (3) for
a non-superconducting material (∆̂ = 0̂). The direction
of the magnetization of the ferromagnet is described by
the spin-matrix κ̂, where m is the unit vector of magne-
tization of the interface and σ is the vector of spin Pauli
matrices. τ̂0 is the unit matrix in 2×2 Nambu-Gor’kov
space. The Green function Ĝ0(x, ε) is the Green function
defined in Eq. (10) that solves Eq. (13) and Eq. (14).

More compactly, we can write:

ÎF (x, ε) = Î↓ + Î↑

=
1

2
[GĜF + GP {κ̂, ĜF } − πGφκ̂, ĜC(x, ε)], (31)

and the boundary of the ferromagnet to the superconduc-
tor is characterized by the three parameters P, G, and
Gφ, see Fig.2,

G = G↑ + G↓, (32)

GP = GP,↑ + GP,↓ =
1

2
(G↑ − G↓) =

1

2
GP, (33)

P =
G↑ − G↓
G↑ + G↓

, (34)

Gφ = Gφ,↑ − Gφ,↓. (35)

Here, GP and G refer to conductances given in terms of
spin-dependent boundary conductances G↑,↓. A spin-
polarized boundary necessarily leads to spin-dependent
scattering phases that are accounted for by a parameter
Gφ which is the most relevant parameter to modify the
superconducting correlations. This modification appears
in the pair amplitudes (F, F̃) of the structure. This can
be thought of as the ferromagnet imprinting its magnetic
correlations to the proximity coupled superconductor
in its immediate vicinity which influences the transport
properties of the structure.

C. Determination of the Green function ĜC of the
central node

The Green function ĜC is calculated within Andreev
circuit theory and is used to evaluate the ferromag-

netic influence on the transport properties of the system
through the superconductor via a self-energy contribu-
tion to the Usadel equation. From the Kirchhoff rule,
Eq. (17), the contact Green Function ĜC in the central
node C is determined by solution of the equation

[M̂(x, ε), ĜC(x, ε)] = 0̂ (36)

where M̂(x, ε) is given by

M̂(x, ε) =
Gq

4εTh
ĜLeak(ε) +

1

2
G · ĜF +

1

2
GP · {κ̂, ĜF }

− π

2
Gφ · κ̂+

1

2
GS · Ĝ0(x, ε). (37)

Eq. (36) is supplemented by the normalization condition

Ĝ
2
C = −π21̂, (38)

which means that (a) the matrix ĜC is diagonalizable
and (b) the only eigenvalues of ĜC are ±iπ. Eq. (36)
then ensures that if M̂ is diagonalizable (which in our
case holds true), then M̂ and ĜC can be diagonalized
simultaneously and have a common set of eigenvectors.
Additionally, we demand that the eigenvalues of the con-
tact Green function be continuously connected to those of
the normal state.13,32 With these constraints the Green
function ĜC is written as

ĜC(x, ε) = iπÛ−1
M sgn[Im(D̂M )]ÛM (39)

with D̂M , ÛM containing the eigenvalues and eigenvec-
tors of matrix M̂ , respectively, and sgn denoting the sign
function applied to the imaginary part of each eigenvalue.

One can now calculate measurable quantities such as
the density of states which depends on the set of param-
eters G,P,Gφ. The parameter Gφ has a similar effect on
the density of states as a ferromagnetic exchange field.
A non-zero value of Gφ spin-splits the density of states
in the central node C, see Fig. 4. On the left in this
figure we plot as an example the density of states inside
the central node C by taking the analytic value for a ho-
mogeneous superconductor Ĝ0(ε) (independent of spatial
coordinate x). This result agrees with the one shown in
Ref. 11. On the right hand side in Fig. 4 we show a typ-
ical example for the density of states inside the central
node C at coordinate x = 6ξ for the S-(F|S)-S system we
consider, for parameters shown in Table I.

D. Implementation of boundary conditions

In z-direction we have two interfaces, an S/F boundary
at z = 0 and an S/I boundary at z = d (see Fig.1), where

G ρSD/Ad Gφ P εTh/Gq ds df
0.1 GS 0.75 π 0.25 GS 0.9 0.51 ∆0/GS 5.0 ξ 2.0 ξ

Table I: If not explicitly stated otherwise, we calculate all
observables of our system for these parameters.
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Figure 4: Density of states (DOS) N(E) of the contact Green function ĜC in the central node C (see Fig. 2). N0 is the
density of states in the normal state at the Fermi energy. Left: Dependence on Gφ and on E/∆0 calculated for a homogeneous
superconductor for ∆Φ = 0. Right: N/N0 at x = 6ξ in the middle of the weak-link S-(S|F)-S structure for ∆Φ = 0.26π. In
addition, the spin-resolved DOS is shown, to illustrate the spin-splitting due to a non-zero Gφ. Parameters are as in Table I.

the Green function is subjected to boundary conditions.
We use Nazarov’s boundary condition for spin-active11,26
and spin-inactive interfaces32,33 to define the matrix cur-
rent ÎS in the superconductor in the vicinity of the S/F
and the S/I interface:

ÎS = ∓ A

ρS
ĜS(x, z, ε)

d

dz
ĜS(x, z, ε)

∣∣∣∣
z=0,(d)

(40)

where A is the contact area of the boundary and the
parameter ρS denotes the resistivity of the S material
and the minus (plus) sign refers to z = 0(d). At the
S/I boundary the matrix current IS has to vanish, which
in linear order is automatically ensured by the chosen
parameterization,

ÎS = Ĝ0(x, ε) 2Ĝ1(x, ε)(z − d)
∣∣∣
z=d

= 0̂.

At the S/F boundary at z = 0, the matrix current in
linear order in (z − d) is

ÎS = − A

ρS
Ĝ0(x, z, ε)2Ĝ1(x, ε) (z − d)|z=0

=
A · d
ρS

2Ĝ0(x, ε)Ĝ1(x, ε). (41)

Matrix current conservation32,33 requires this expression
to be equal to the one in Eq. (28), which leads to

Ĝ0(x, ε)Ĝ1(x, ε) = − GSρS
4A · d [ĜC(x, ε), Ĝ0(x, ε)]. (42)

Since the contact Green function ĜC(x, ε) is known from
the Kirchhoff rule Eq. (36) and Ĝ0(x, ε) is known from the
solution of the Usadel equation, this equation determines
the perturbation that is defined in Eq. (9) and Eq. (8),
as

Σ̂(x, ε) ≡ 1

2π

ρSD

A · dGS · ĜC(x, ε). (43)

We summarize the iterative procedure to self-
consistently calculate the pair potential ∆ and the Green
function ĜC below:

1. Numerically solve the Usadel equation Eq. (9) to
obtain Ĝ0(x, ε) ∀(x, ε)

2. Application of the Kirchhoff rules
∑
i Ii = 0 leads

to the Green function ĜC(x, ε).

3. Application of spin-conserving and spin-dependent
boundary conditions show that the Green function
ĜC determines a self-energy contribution to the Us-
adel equation written as Σ̂(x, ε)

4. Solve the Usadel equation with the new self-energy
contribution Σ̂(x, ε)

5. Calculate the order-parameter ∆(x) = ∆0(x)eiΦ(x)·
iσy by solving the mean-field self-consistency equa-
tion Eq. (48)

6. Repeat the iteration procedure until the order-
parameter satisfies a convergence criterion.

Note that in the iteration cycle the self-energy Σ̂(x, ε) as
well as the order-parameter ∆(x, T ) vary simultaneously.
The self-consistent iteration cycle is repeated until both
of them have converged.

III. OBSERVABLES

If not explicitly stated otherwise, we calculate all ob-
servables of our system for the parameters that are given
in Table I. We apply a finite phase difference ∆Φ ≡
Φ(x = L)− Φ(x = 0) to the outer superconducting elec-
trodes, which gives rise to a Josephson current through
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Figure 5: Left: Self-consistently calculated pair potential with Eq. (48) for various temperatures with small external phase
difference ∆Φ = 0.26π. Each Plot has been normalized to the homogeneous value ∆0(T ) such that all curves are normalized.
The pair potential is suppressed in the ferromagnetic region that is located at x ∈ (5, 7)ξ. Inset: Temperature-dependence
of the pair potential for a homogeneous BCS-superconductor. Right: Phase evolution across the system for different applied
phase differences at a temperature of T = 0.58TC

.

the weak link. Formally, this is introduced by the sub-
stitution:

∆(x, T )→ ∆0(x, T )eiΦ(x), Φ(x) ∈ R, (44)

Φ(x =Left border) = −∆Φ

2
, (45)

Φ(x =Right border) =
∆Φ

2
. (46)

A. Pair potential and phase evolution

The pair potential ∆(x, T ) is calculated by solving a
self-consistency equation. Here, we are concerned with
the following 4×4 matrix structure arising from particle-
hole and spin degrees of freedom:

∆̂(x, T ) =

(
0 ∆(x, T )

∆∗(x, T ) 0

)
(47)

where ∆(x, T ) = ∆(x, T )iσy.
The self-consistency equation reads

∆(x, T ) = lim
εc→∞

1
2πi

εc∫
−εc

dε tanh (ε/2T )F (x, ε, T )

εc∫
−εc

dε
2ε tanh (ε/2T ) + ln(T/Tc)

. (48)

The equation is numerically evaluated with a sufficiently
large, temperature-independent, energy cut-off εc. Apart
from the usual suppression of superconductivity with in-
creasing temperature, the pair potential is strongly sup-
pressed in the region of the ferromagnet, see on the left
hand side of Fig. 5. When applying a fixed phase dif-
ference ∆Φ to the outer superconducting electrodes, the
spatial evolution of the phase is determined by the self-
consistency equation Eq. (48). The self-consistent evolu-
tion of the phase across the system is shown on the right

hand side of Fig. 5. In the numerical iteration process,
we fix the phase difference as well as the absolute value
of the pair potential at the left and the right-hand side
of our structure. The latter is given by the well-known
temperature-dependence of a homogeneous BCS-type su-
perconductor (see inset, Fig.5)

B. (Local) Density of states

The local density of states for the system is given by

N(x, ε) = −N0

2π
Im (Tr2[G(x, ε)]) . (49)

In Fig. 6 the spatial variation of the local density of states
is shown. It can be seen that the DOS retains its char-
acteristic structure far from the (S|F) weak link. In the
(S|F) weak-link region additional subgap Andreev bound

Figure 6: Density of states as a function of energy E and
spatial coordinate x. The (S|F) weak link extends from x = 5ξ
to 7ξ. The DOS is calculated for ∆Φ = 0.26π, at T = 0.1TC .
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Figure 7: Left: Local density of states at x = 6ξ in the weak-link structure. The LDOS is spin-split into a spin-up and a
spin-down contribution due to a non-zero Gφ component. The lines corresponding to temperatures TC,↑(↓) refer to the local
spin-density of states N↑/N0, N↓/N0, respectively, with the total density of states defined as N = N↑ + N↓ and N0 as the
density of states at the Fermi energy in the normal state. Right: Variation of the density of states at x = 6ξ in the middle of
the structure with an applied phase-difference ∆Φ.

states appear. These are present also in the supercon-
ducting electrodes within a coherence length from the
weak-link region, in particular below the gap edges of
the bulk density of states.

The local density of states at x = 6ξ (the middle of
the structure) is shown in Fig. 7. In the middle of the
investigated structure, the local density of states for the
system shows a proximity induced narrowing in its spec-
trum that is reminiscent of proximity induced minigaps
in S-N-S systems. This narrowing is induced by a spin-
split DOS as can be seen in Fig. 7. The presence of the
ferromagnet, which is encoded in a non-vanishing spin-
mixing parameter Gφ shifts spin-up and spin-down con-
tributions to the density of states energetically apart. An
additionally applied phase difference to the outer super-
conducting electrodes leads to a gradual reduction of the
gap size. This is due to additional subgap Andreev bound
states35, which are shifted in the presence of a superflow,
see Fig.7 right. A zero-bias peak appears for sufficiently
large phase differences.

C. Spin-Magnetization

We make use of the usual notation to express the nor-
mal and anomalous pair amplitudes G and F, respec-
tively,

G = G01 +G · σ (50)
F = (F01 + F · σ)iσy. (51)

A general feature of SF-proximity influenced systems is
that the presence of non-zero triplet amplitudes F entails
the presence of a non-zero G.34 This means that through
a non-zero Gz, the spin-up and spin-down contribution
to the local density of state are not degenerate any more.
Thus, due to proximity to the ferromagnet, the super-
conductor develops a spin-magnetization in the vicinity

of the S|F interface.19–21 The induced spin-magnetization
m(x) can be calculated in the following way9

m(x) =2N0T

∞∫
−∞

dε

4πi

[
G(x, ε+ iδ) tanh

(
ε+ iδ

2T

)

− (G(x, ε+ iδ))
†

tanh

(
ε− iδ

2T

)]
(52)

where N0 is the density of states at the Fermi energy.
A plot of mx(x) can be seen in Fig.8. A non-zero spin-

magnetization is induced in the superconducting mate-
rial that sits on top of the ferromagnetic material, i.e.
at x ∈ (5, 7)ξ. Due to the inverse proximity effect, a
non-zero magnetization can penetrate into the adjacent
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Figure 8: Induced spin-magnetization by a non-zero G com-
ponent. It can be seen that the system obtains a finite spin-
magnetization that is restricted to the contact region of the
ferromagnet and the superconductor. Due to the inverse prox-
imity effect and the penetration of the triplet amplitudes in
the superconducting region, there is a finite magnetization
for x > 7ξ and for x < 5ξ. The applied phase-difference is
∆Φ = 0.26π.
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superconducting blocks as it is indicated in Fig. 8. The
calculations show that the ferromagnet imprints its mag-
netic structure onto the superconductor.

D. Weak-link Current-Phase Relationships

A finite phase difference ∆Φ 6= 0 gives rise to a Joseph-
son current through the system. The Josephson currents
themselves are spatially conserved, ∂xJ(x) = 0, only if
the system fulfills the self-consistency equations for the
pair potential, see Eq. (48). The current conservation
in the presence of the self-energy correction to the Us-
adel Equation can be shown analytically (see section IV).
The total current through the superconducting leads is
denoted as J(x) and is evaluated as

J = −eN0

+∞∫
−∞

dε

2π

D

π

Tr4
2

(
τ̂3Re

[
Ĝ0∂xĜ0

])
tanh

ε

2T

(53)

=
σN
2e

+∞∫
−∞

dεTr2
[
Re
({

(1 − γγ̃)−1∂xγ(1 − γ̃γ)−1, γ̃
}

+

−
{

(1 − γ̃γ)−1∂xγ̃(1 − γγ̃)−1, γ
}

+

)]
tanh

ε

2T
(54)

where σN = e2N0D is the conductivity in a normal metal
with diffusion coefficient D and the density of states at
the Fermi level N0. Here {A,B}+ = AB + BA, and in
the last line we have written the current in terms of the
Riccati amplitudes.
The critical current is the maximum current that is real-
ized in the system as function of phase differences ∆Φ,

Js(T ) = max∆Φ [J(∆Φ, T )] . (55)

The phase-dependence for the weak link structure (S-
(F|S)-S) in general strongly deviates from a sinusoidal
relation at low temperatures. In particular, it can be-
come multi-valued in certain ranges of the phase differ-
ence ∆Φ.3 If the current-phase relation is single-valued,
then for symmetry reasons J(∆Φ = π) = 0. In the case of
a multi-valued current-phase relation it is however possi-
ble that the current reaches its maximum value for phases
∆Φ > π, before the current jumps to its negative branch
at a critical value of ∆Φ.

Typical current-phase relationships are depicted in Fig.
9. At low temperatures, shortly after the current reaches
its maximum value, the system can occupy two different
Josephson states that only slightly differ in energy. For
the numerical calculation it means that the system can
oscillate between the two solutions which makes it nu-
merically difficult to converge to a solution. Stable, con-
verged solutions are therefore shown as symbols, whereas
dotted lines show the most likely continuation for the un-
stable branches. For increasing temperature, the current-
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Figure 9: Crossover from a multi-valued to a sinusoidal cur-
rent as the temperature is increased. As indicated by the
arrows, the graphs from the upper half are calculated for an
increasing phase difference, the graphs from the lower half for
a decreasing phase difference. The dotted lines are schematic
and indicate the most likely continuation of the current-phase
relationship, as the current-phase relationship becomes unsta-
ble shortly after the maximum is reached as multiple solutions
for the current become possible. We show here only the sta-
ble, converged solutions.

phase relation approaches a sinusoidal form. The max-
imum of the current is shifted to lower values of ∆Φ
as the temperature is increased until they reach a value
of ∆Φ = 0.5π. We track numerically the temperature-
dependence of the phase χ(Js) where the critical current
is reached, and depict the result in Fig.10 (left), where it
can be seen that for all three lengths of the ferromagnet,
critical currents are reached for phase differences ∆Φ > π
at low temperatures. A temperature-dependence of the
critical currents for different lengths of the ferromagnetic
block is shown in Fig.10 (right). As expected, we observe
that shorter weak links generally increase the critical cur-
rents.

IV. CURRENT CONSERVATION

The Usadel equation entails a spatial conservation law
for the Josephson currents. Here, we review that the cur-
rent is spatially conserved in the presence of the effective
self-energy contribution Σ̂(x, ε). For this we introduce
Keldysh matrices

Ǧ0 =

(
ĜR0 ĜK0

0̂ ĜA0

)
, Ĝ

K
0 =

(
GK FK

−F̃K −G̃K
)

(56)

where R, A, and K refer to retarded, advanced, and
Keldysh components, respectively. Similarly, we have

∆̌ =

(
∆̂ 0̂

0̂ ∆̂

)
, Σ̌ =

(
Σ̂R Σ̂K

0̂ Σ̂A

)
. (57)
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Figure 10: Left: Dots represent the superconducting phase difference at which the maximal (critical) current occurs as function
of temperature. At high temperatures the critical current appears at a value of π/2 (approximately sinusoidal current-phase
relationship), whereas for low temperatures the current-phase relationship is non-sinusoidal. The shaded area indicates the
range where the critical current is achieved for ∆Φ > π. The error bars indicate the numerical uncertainty in determining the
extrema in the current-phase relationship. Right: Critical current for different system sizes. The current is determined by the
maximum of the current-phase relationship Eq. (55). In both plots lines are guides to the eye.

We also define τ̌3 = 12×2 ⊗ τ̂3. The Usadel equation
reads:

[ετ̌3 − ∆̌− Σ̌, Ǧ0] +
D

π
∂x[Ǧ0∂xǦ0] = 0̌ (58)

where 0̌ is an 8×8 zero matrix. Furthermore, the nor-
malization condition generalizes to

Ǧ
2
0 = −π21̌ (59)

where 1̌ ≡ 18×8 is the 8×8 unit matrix. This condition
is very powerful, as it means that the Keldysh matrix Ǧ0

in Eq. (56) is diagonalizable and its only eigenvalues are
±iπ.

To derive a current conservation law from the Usadel
equation, one has to express the physical current in terms
of the Green functions,

J(x) = −eN0

+∞∫
−∞

dε

4π

D

π

Tr4
2

(
τ̂3
[
Ǧ0(x, ε)∂xǦ0(x, ε)

]K)
(60)

where Tr4 is a trace over particle-hole and spin space,
e = −|e| the charge of the electron, and N0 the density
of states per spin at the Fermi level in the normal state.
The Usadel equation (58) then leads to

−eN0

+∞∫
−∞

dε

4π

Tr4
2

(
τ̂3[ετ̌3 − ∆̌− Σ̌, Ǧ0]K

)
+ ∂xJ = 0.

(61)

Under cyclic invariance of the trace, the term involving
ετ̌3 vanishes immediately:

ε
Tr4
2

([
Ǧ0(x, ε)− τ̌3Ǧ0(x, ε)τ̌3

]K)
= 0. (62)

The second term, involving ∆̌, vanishes only when ∆
fulfills the self-consistency equation

∆(x, T ) = lim
εc→∞

1
4πi

εc∫
−εc

dε FK (x, ε, T )

εc∫
−εc

dε
2ε tanh (ε/2T ) + ln(T/Tc)

. (63)

The corresponding contribution in Eq. (61) then reads

+∞∫
−∞

dε

4π

Tr4
2

(
τ̂3[∆̌, Ǧ0(x, ε)]K

)

= lim
εc→∞

+εc∫
−εc

dε

4π

Tr2
2

(
{FK ,∆∗}+ {∆, F̃K}

)
= 0 (64)

where Tr2 is a trace over spin, and Eq. (63) was substi-
tuted for ∆ and ∆∗, as well as

F̃K(x, ε, T ) =
(
FK(x,−ε, T )

)∗
= −

(
FK(x, ε, T )

)†
(65)

used. Due to the cyclic invariance of the trace, the third
contribution from the commutator in Eq. (61) vanishes
as well:

+∞∫
−∞

dε

4π

Tr4
2

(
τ̂3[Σ̌(x, ε), Ǧ0(x, ε)]K

)
= 0. (66)

To proof this, we note that the self energy Σ̌ is propor-
tional to ǦC , see Eq. (43), and that, in generalization of
Eq. (36), [

M̌(x, ε), ǦC(x, ε)
]

= 0̌, (67)
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where (see Eq. (37))

M̌(x, ε) =

( Gq
4εTh

ǦLeak(ε) +
1

2
GǦF

+
1

2
GP {κ̌, ǦF } −

π

2
Gφκ̌+

1

2
GSǦ0(x, ε)

)
(68)

where ǦLeak = 12×2 ⊗ ĜLeak, ǦF = 12×2 ⊗ ĜF , and
κ̌ = 12×2 ⊗ κ̂, which all three commute with τ̌3. We
will assume that M̌ has distinct eigenvalues (if not, we
can always add an infinitesimal term to make them dis-
tinct; in fact, it suffices that each characteristic value
occurs in only one Jordan block in the Jordan normal
form of the matrix). Then, a well-known mathematical
theorem ascertains that ǦC can be written uniquely as a
polynomial in M̌ of at most degree 7 (for 8×8 matrices).
Consequently, we can expand ǦC in the following way,

ǦC = λ1̌ + µM̌ + νM̌2 + ρM̌3 + · · · (69)

As M̌ is of the form M̌ = Ď + αǦ0 where Ď com-
mutes with τ̌3, and because of the condition (59), any
power of M̌ will only have terms that are of the form
Ďn or ĎnǦ0Ď

m + ĎmǦ0Ď
n or

∑
P[nmk] Ď

nǦ0Ď
mǦ0Ď

k

etc. (up to maximally terms containing four Ǧ0’s), where
P[nmk] means a permutation of [nmk], and n, m, and k
are integers≥ 0. The cyclic property of the trace together
with condition (59) then leads to vanishing contributions
for each term in Eq. (69) when introduced into Eq. (66)
using Eq. (68). For example,

τ̌3
∑
P[nmk]

(Ďn
Ǧ0Ď

m
Ǧ0Ď

k · Ǧ0 − Ǧ0 · Ďn
Ǧ0Ď

m
Ǧ0Ď

k)

turns, when using cyclic permutation under the trace and
commutation between Ď and τ̌3, into

τ̌3
∑
P[nmk]

(Ďn
Ǧ0Ď

m
Ǧ0Ď

k
Ǧ0 − Ďk

Ǧ0Ď
n
Ǧ0Ď

m
Ǧ0),

and as [knm] is a permutation of [nmk], the two terms
cancel when summing over all permutations (we use
[τ̌3Ǎ]K = τ̂3[Ǎ]K ≡ τ̂3ÂK),

Consequently, collecting all results together, it follows
that for our theory

∂xJ(x) = 0, (70)

which is the (stationary) charge conservation law.

V. S-F-S STRUCTURE WITH A MAGNETIC
DOMAIN WALL

We numerically investigate an S-F-S structure that ex-
hibits a magnetic domain wall, see Fig.11. Such a struc-
ture was treated previously in the Ref. 23, and later in
Ref. 36. We extend the results in Ref. 23 by (a) cal-
culating the pair potential self-consistently, and by (b)

ds dsdf

Figure 11: Illustration of the SFS structure. The ferromag-
netic block exhibits a non-trivial magnetic domain wall struc-
ture. The solid line shows a typical variation of the pair-
potential within the structure.

calculating the current-phase relationships as well as the
temperature-dependence of the critical currents. In ad-
dition, we chose a different, normalized, domain wall pa-
rameterization, such that the the magnetization vector
J at the start (end) of the ferromagnetic block is always
fully polarized in the +(−) x-direction. We keep |J | con-
stant and spatially vary the orientation, J → J(x), by
using the following domain wall parameterization,

Jx = J cos

 arctan
(
x−x0

dw

)
arctan

(
ds−x0

dw

) π
2

 , (71)

Jz = J sin

 arctan
(
x−x0

dw

)
arctan

(
ds−x0

dw

) π
2

 (72)

where dw is the domain wall width, Jy = 0.0 and
x0 = ds + df/2 denotes the middle of the S-F-S struc-
ture. The ferromagnetic region extends from x = ds to
x = ds + df .
We point out that the domain-wall parameterization in
Ref. 23 had a fixed rotation pitch given by the domain
wall thickness, but independent of the thickness of the
ferromagnet layer.37 Therefore, for higher domain-wall
widths the magnetization was already tilted at the inter-
faces between the ferromagnetic block and the supercon-
ductors. Here, we chose a different parameterization by
normalizing the argument in the expressions (71)-(72) for
the magnetization. This is appropriate for the case that
the direction of the magnetic moment at the interfaces is
determined by magnetic shape anisotropy.
The transport equation is given by Eq. (3) with the re-
placement ε→ (ε− J · σ) to account for the spatial vari-
ation of the magnetization. In the Riccati parameteriza-
tion, see Eq. (10) and Eq. (11), the equations read:

d2γ

dx2
+

(
dγ

dx

)
F̃

iπ

(
dγ

dx

)
=

i

D
[γ∆∗γ − (ε1 − J · σ) γ − γ (ε1 + J · σ∗)−∆], (73)

d2γ̃

dx2
+

(
dγ̃

dx

)
F

−iπ

(
dγ̃

dx

)
=

−i
D

[γ̃∆γ̃ + (ε1 + J · σ) γ̃ + γ̃ (ε1 − J · σ)−∆∗]. (74)
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Figure 12: Suppression of the pair potential for several tem-
peratures illustrated for an S-F-S structure without phase gra-
dients. The solid line (Initial) is the step-like pair potential
without a self-consistent calculation, depicted for comparison.

At the S/F interfaces (xSi , x
F
i ) we connect the γ, γ̃ by

continuity conditions:23

γ(xSi ) = γ(xFi ) (75)
d

dx
γ(xSi ) =

d

dx
γ(xFi ). (76)

The pair potential ∆(T, x) is calculated self-consistently
according to Eq. (48). This takes into account the sup-
pression of the order parameter close to the ferromagnetic
material (inverse proximity effect). In Fig. 12 we show
the typical behavior of the order parameter as the tem-
perature of the system is varied for a ferromagnet that
hosts a domain wall.
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Figure 13: Self-consistent LDOS, Ntot, as a function of energy
E, normalized to its normal state value N0, for several domain
wall widths dw calculated in the middle of the F region in an
S-F-S structure. The case of an S-N-S structure (J = 0)
is shown for comparison as a solid line. Inset: Ntot at the
chemical potential (E = 0) as function of domain wall width
dw for self-consistent pair potential (full line) and for non-
self-consistent (step-like) pair potential (dashed lines).

The effect of the domain wall on the local density of
states in the system can be seen in Fig. 13. In com-
parison to the normal metal (J = 0) the minigap is
populated with additional Andreev bound states that
stem from spin-triplet correlations that are sensitive to
the direction of the magnetization. Non-zero Jx and Jz
components convert singlet into triplet amplitudes.7 A
non-vanishing Jx induces spin-flips and breaks up a spin-
singlet Cooper pair and converts it into an unequal spin-
triplet state ∼ (|↑↑〉 − |↓↓〉) whereas Jz induces equal
spin-triplet pairings ∼ (|↑↓〉+ |↓↑〉). In the case of in-
creasing domain wall widths, the magnetic domain wall
encourages such spin-flip processes and thus creates new
Andreev bound states. As the domain wall width in-
creases, spectral weight from the shoulders fills up the
minigap, as illustrated in Fig. 13. The inset of Fig. 13
shows the value of the local density of states at the chem-
ical potential as function of domain wall width. There is
a characteristic value d∗w at which a step-like feature oc-
curs in this plot. In comparison to the case of a non-self-
consistent pair potential23, shown as dashed line, this
characteristic value d∗w is shifted upwards. When the
magnetic domain wall extends over the whole ferromag-
netic region, J varies slowly with x. This case is similar
to the case for a fully polarized ferromagnet. The mini-
gap thus vanishes and local minima appear at approxi-
mately ±J/∆. The same effect can be observed for the
(S-(F|S)-S) structure, where the local density of states is
spin-split, see Fig.7.

For a given domain wall width, we investigate the de-
pendence of the local density of states on the applied
phase gradient, see Fig. 14. When a finite phase differ-
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Figure 14: Self-consistent LDOS, Ntot(E), in an S-F-S struc-
ture with domain wall as a function of energy for several phase
differences ∆Φ between the superconductors, calculated in the
middle of the F region, and normalized to the normal state
value N0. Left inset: current-phase relationship. Right in-
set: Ntot at the chemical potential, E = 0. Full line for
self-consistent pair potential. The dashed line shows for com-
parison the result for a non-self-consistent pair potential.
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ence is present at the outer elements, supercurrents can
flow in the S-F-S-structure. A finite phase difference ∆Φ
modifies the local density of states as it adds to the phase
that is picked up by the quasiparticles during the diffu-
sive motion through the ferromagnet. In particular the
zero-energy density of states is influenced strongly by the
applied phase difference, as it can be seen in the right in-
set of Fig. 14. It increases smoothly until a maximum
value for ∆Φ < π is reached. The plot is mirror symmet-
ric around ∆Φ = π (only values for ∆Φ < π are shown).
For comparison we also reproduce the non-self-consistent
result of Ref. 23 as a dashed line in the inset. We ob-
serve that self-consistency of the order parameter gives
pronounced corrections to the local density of states, in
particular its value at the chemical potential. Experi-
mentally, tunnel current measurements provide access to
the zero-energy density of states.

We also present here self-consistent supercurrents in
the S-F-S structure. Supercurrents have not been stud-
ied in Ref. 23. In Fig. 15 we plot the temperature-
dependence of the critical currents for both a S-N-S struc-
ture (full lines) and a S-F-S structure that hosts a domain
wall (dashed lines). Additionally, we numerically track
the temperature-dependence of the phase difference that
leads to the critical current, see inset in Fig. 15. The
critical currents in the S-F-S structure are lowered by a
magnetic domain wall in comparison to the case when a
magnetic structure is missing, such as is the case in a S-N-
S structure. The current-phase relationship in both cases
becomes sinusoidal at high temperatures, where the max-
imum current is reached at a phase difference ∆Φ = π/2.
This is reflected in the critical currents as well, as the
curves for the S-N-S and the S-F-S structure collapse
onto each other approximately when for both cases a si-
nusoidal current-phase relationship is established. In the
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Figure 15: Critical Josephson currents for the parameters
ds = 5.0ξ, df = 2.0ξ,and a domain-wall of length dw = 0.3ξ.
The inset shows the phases for which the maximal (critical)
current is reached. The error bars indicate the numerical
uncertainty in determining the extrema in the current-phase
relationship. Lines are guides to the eye.

low-temperature-regime, the critical currents in the S-N-
S structure are offset to higher values than in the case for
the S-F-S structure with a domain wall. In both struc-
tures however the maximum current is achieved for phase
gradients ∆Φ < π, see the inset of Fig.15. This should be
compared to the S-(F|S)-S structure where critical cur-
rents are reached for phase differences ∆Φ > π.

VI. CONCLUSION

Using the model for an S-(S|F)-S Josephson junction
depicted in Fig. 1, we have transformed spin-dependent
boundary conditions within the (S|F) bilayer into an ef-
fective self energy that enters the Usadel transport equa-
tion. This allows for a numerically very effective han-
dling of the transport equation. We have used our model
to calculate important measurable quantities such as the
density of states, spin-magnetizations, the pair potential,
and the critical Josephson currents through the system.
We also proved that our theory explicitly fulfills the conti-
nuity equation, expressing charge conservation, provided
self-consistently determined order parameter profiles are
used.

We have in particular studied the weak link behavior of
such an S-(S|F)-S Josephson junction, showing the char-
acteristic hysteretic current-phase relation3, as indicated
by a multi-valued solution. In our case the suppression of
superconducting order in the weak-link region is achieved
via proximity coupling to a strongly spin-polarized fer-
romagnet. We study long weak-link structures with a
length comparable or larger than the superconducting
coherence length. We present a detailed quantitative so-
lution for this problem. We find that self-consistency of
the order parameter profile across the weak link is nec-
essary in order to be able to determine the Josephson
current in a sensible way.

We also consider a second geometry, an S-F-S junction
in which a magnetic domain wall is situated in the center
of the F region. We have extended previous work23,38–45
by studying in particular the effect of self consistency of
the order parameter in the superconducting leads. We
find that self-consistency of the order parameter leads to
pronounced modification of the results, in particular the
functional dependence of the density of states on domain
wall width. We also calculated the critical Josephson
current and find that it is considerably reduced at low
temperatures by the presence of a domain wall.
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