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Abstract

We present a novel cryptanalysis of the Algebraic Eraser primitive.
This key agreement scheme, based on techniques from permutation
groups, matrix groups and braid groups, is proposed as an underlying
technology for ISO/IEC 29167-20, which is intended for authentica-
tion of RFID tags. SecureRF, the company owning the trademark
Algebraic Eraser, markets it as suitable in general for lightweight en-
vironments such as RFID tags and other IoT applications. Our attack
is practical on standard hardware: for parameter sizes corresponding
to claimed 128-bit security, our implementation recovers the shared
key using less than 8 CPU hours, and less than 64MB of memory.

1 Introduction

The Algebraic Eraser™ is a key agreement scheme using techniques from
non-commutative group theory. It was announced by Anshel, Anshel, Gold-
feld and Lemieaux in 2004; the corresponding paper [1] appeared in 2006.
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The Algebraic Eraser is defined in a very general fashion: various algebraic
structures (monoids, groups and actions) need to be specified in order to
be suitable for implementation. Anshel et al. provide most of this extra in-
formation, and name this concrete realisation of the Algebraic Eraser the
Colored Burau Key Agreement Protocol (CBKAP). This concrete represen-
tation involves a novel blend of finite matrix groups and permutation groups
with infinite braid groups. A company, SecureRF, owns the trademark to the
Algebraic Eraser, and is marketing this primitive as suitable for low resource
environments such as RFID tags and Internet of Things (IoT) applications.
The primitive is proposed as an underlying technology for ISO/IEC 29167-
20, and work on this standard is taking place in ISO/IEC JTC 1/SC 31/WG
7. The company has also presented the primitive to the Internet Research
Task Force’s Crypto Forum Research Group (IRTF CFRG), with a view to-
wards standardisation. IoT is a growth area, where current widely-accepted
public key techniques struggle to operate due to tight efficiency constraints.
It is likely that solutions which are efficient enough for these applications will
become widely deployed, and the nature of these applications make system
changes after deployment difficult. Thus, it is vital to scrutinise the secu-
rity of primitives such as the Algebraic Eraser early in the standardisation
process, to ensure only secure primitives underpin standardised protocols.

In a presentation to the NIST Workshop in Lightweight Cryptography in
2015, SecureRF claims a security level of 2128 for their preferred parameter
sizes, and compares the speed of their system favourably with an implemen-
tation of a key agreement protocol based on the NIST recommended [14]
elliptic curve K-283. The company reports [3] a speed-up by a factor of 45–
150, compared to elliptic curve key agreement at 128-bit security levels. It
claims that the computational requirements of the Algebraic Eraser scales
linearly with the security parameter, in contrast to the quadratic scaling of
elliptic-curve-based key agreement.

Related work The criteria for choosing some global parameters of the
scheme (namely certain subgroups C and D of matrices over a finite field,
and certain subgroups A and B of a certain infinite semidirect product of
groups) are not given in [1], and have not been made available by SecureRF.
In the absence of this information, it is reasonable to proceed initially with
a cryptanalysis on the basis that these parameters are chosen in a generic
fashion. All previous cryptanalyses have taken this approach.
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Myasnikov and Ushakov [13] provide a heuristic length-based attack on
the CBKAP that works for the parameter sizes originally suggested [1]. How-
ever, Gunnells [10] reports that this attack quickly becomes unsuccessful as
parameter sizes grow; the parameter sizes proposed by SecureRF make this
attack impractical.1 Kalka, Teicher and Tsaban [11] provide an efficient
cryptanalysis of the CBKAP for arbitrary parameter sizes. The attack uses
the public key material of Alice and the messages exchanged between Alice
and Bob to derive an equivalent to the secret random information generated
by Bob, which then compromises the shared key, and so renders the scheme
insecure. In particular, the techniques of [11] will succeed when the global
parameters are chosen generically.

SecureRF uses proprietary distributions for global parameters, so the
cryptanalysis of [11] attack does not imply that the CBKAP as implemented
is insecure.2 Indeed, Goldfeld and Gunnells [9] show that by choosing the
subgroup C carefully one step of the attack of [11] does not recover the in-
formation required to proceed, and so this attack does not succeed when
parameters are generated in this manner.

Our contribution There are no previously known attacks on the CBKAP
for the proposed parameter sizes, provided the parameters are chosen to
resist the attack of [11]. The present paper describes a new attack on the
CBKAP that does not assume any structure on the subgroup C. Thus, a
careful choice of the subgroup C will have no effect on the applicability of
our attack, and so the proposed security measure offered by Goldfeld and
Gunnells [9] to the attack of [11] is bypassed.

The earlier cryptanalyses of CBKAP ([13],[11]) attempt to recover parts
of Alice’s or Bob’s secret information. The attack presented here recovers
the shared key directly from Alice’s public key and the messages exchanged
between Alice and Bob.

SecureRF have kindly provided us with sets of challenge parameters of
the full recommended size, and our implementation is successful in recovering
the shared key in all cases. Our (non-optimised) implementation recovers the

1There is an analogy with the development of RSA here: the size of primes (200
digits) proposed in the original article [15] was made obsolete by improvements in integer
factorisation algorithms [4].

2The analogy with RSA continues: factorisation of a randomly chosen integer n is much
easier than when n is a product of two primes of equal size, which is why the latter is used
in RSA.
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common key in under 8 hours of computation, and thus the security of the
system is much less than the 2128 level claimed for these parameter sizes. The
attack scales well with size, so increasing parameter sizes will not provide a
solution to the security problem for the CBKAP.

Conclusion and recommendation Because our attack efficiently recov-
ers the shared key of the CBKAP for recommended parameter sizes, using
parameters provided by SecureRF, we believe the results presented here cast
serious doubt on the suitability of the Algebraic Eraser for the applications
proposed. We recommend that the primitive in its current form should not
be used in practice, and that full details of any revised version of the primi-
tive should be made available for public scrutiny in order to ensure a rigorous
security analysis.

Recent developments Since the first version of this paper was posted,
there have been two recent developments. Firstly, authors from SecureRF
have posted [2] a response to our attack, concentrating in the main on the
implications for the related ISO standard and providing some preliminary
thoughts on how they might redesign the primitive. Until the details are
finalised, it is too soon to draw any conclusions on the security of any re-
designed scheme, though there have already been some discussions on Cryp-
tography Stack Exchange [8]. Secondly, Blackburn and Robshaw [6] have
posted a paper that cryptanalyses the ISO standard itself, rather then the
more general underlying Algebraic Eraser primitive.

Structure of the paper The remainder of the paper is organised as fol-
lows. Sections 2 and 3 establish notation, and describe the CBKAP. We
describe a slightly more general protocol than the CBKAP, as our attack
naturally generalises to a larger setting. We describe our attack in Section 4.
In Section 5 we describe the results of our implementations and provide a
short conclusion.

2 Notation

This section establishes notation for the remainder of the paper. We closely
follow the notation from [11], which is in turn mainly derived from the no-
tation in [1], though we do introduce some new terms.
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Let F be a finite field of small order (e.g., |F| = 256) and let n be a
positive integer (e.g., n = 16). Let Sn be the symmetric group on the set
{1, 2, . . . , n}, and let GLn(F) be the group of invertible n× n matrices with
entries in F.

Let M be a subgroup of GLn(F(t1, . . . , tn)), where the elements ti are al-
gebraically independent commuting indeterminates. Indeed, we assume that
the group M is contained in the subgroup of GLn(F(t1, . . . , tn)) of matrices
whose determinant can be written as at for some non-zero element a ∈ F
and some, possibly empty, word t in the elements ti and their inverses. Let
M be the subgroup of GLn(F(t1, . . . , tn)) generated by permuting the inde-
terminates of elements of M in all possible ways.

Fix non-zero elements τ1, . . . , τn ∈ F. Define the homomorphism ϕ : M →
GLn(F) to be the evaluation map, computed by replacing each indeterminate
ti by the corresponding element τi. Our assumption on the group M means
that ϕ is well defined.

The group Sn acts on M by permuting the indeterminates ti. Let M o
Sn be the semidirect product of M and Sn induced by this action. More
concretely, if we write ga for the action of an element g ∈ Sn on an element
a ∈M , then the elements of M oSn are pairs (a, g) with a ∈M and g ∈ Sn,
and group multiplication is given by

(a, g)(b, h) = (a gb, gh)

for all (a, g), (b, h) ∈M o Sn.
Let C and D be subgroups of GLn(F) that commute elementwise: cd = dc

for all c ∈ C and d ∈ D. The CBKAP specifies that C is a subgroup
consisting of all invertible matrices of the form `0 +`1κ+ · · ·+`rκ

r where κ is
a fixed matrix, `i ∈ F and r ≥ 0. So C is the group of units in the F-algebra
generated by κ. Moreover, the CBKAP specifies that D = C. But we do not
assume anything about the forms of C and D in this paper, other than the
fact that they commute.

Let Ω = GLn(F)× Sn and let Ŝn = M o Sn. We have two actions on Ω.

Firstly, there is the right action of the group Ŝn on Ω via a map

∗ : Ω× Ŝn → Ω,

as defined in [1, 11]. So

(s, g) ∗ (b, h) = (sϕ(gb), gh)
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for all (s, g) ∈ Ω and all (b, h) ∈ Ŝn. Secondly, there is a left action of the
group GLn(F) on Ω via the map

• : GLn(F)× Ω→ Ω

given by matrix multiplication:

x • (s, g) = (xs, g)

for all x ∈ GLn(F) and all (s, g) ∈ Ω. Note that for all x ∈ GLn(F), all ω ∈ Ω

and all ĝ ∈ Ŝn we have that

(x • ω) ∗ ĝ = x • (ω ∗ ĝ).

Also note that the left action is F-linear, in the sense that if x ∈ GLn(F) can
be written in the form

x =
r∑

i=1

`ici

for some ci ∈ GLn(F) and `i ∈ F, then for all (s, g) ∈ Ω we have

x • (s, g) =
r∑

i=1

`i(ci • (s, g)).

To interpret the right hand side of the equality above: the subset of Ω whose
second component is a fixed element of Sn is naturally an F-vector space,
where addition and scalar multiplication takes place in the first component
only.

Finally, letA andB be subgroups of Ŝn that ∗-commute: for all (a, g) ∈ A,
(b, h) ∈ B and ω ∈ Ω,

(ω ∗ (a, g)) ∗ (b, h) = (ω ∗ (b, h)) ∗ (a, g).

3 The CBKAP protocol

3.1 Overview

The CBKAP is unusual in that the parties executing it, Alice and Bob,
use different parts of the public key in their computations: neither party
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needs to know all of the public key. The security model assumes that one
party’s public key material is known to the adversary: say Alice’s public key
material is known, but Bob’s ‘public’ key (which is better thought of as part
of his private key material) is not revealed. The adversary, Eve, receives just
Alice’s public information, and the messages sent over the insecure channel.
Security means that Eve cannot feasibly compute any significant information
about K. The attack in [11] works in this model. The same is true for the
attack we describe below.

In a typical proposed application, the protocol might be used to enable a
low-power device, such as an RFID tag, to communicate with a central server.
Data on an RFID tag is inherently insecure, as is system-wide data. So
the above security model is realistic (and conservative) for these application
settings.

3.2 The protocol

Public parameters (for Alice) include the parameters n, F, M , τ1, . . . , τn, C
and A. The groups M , C and A are specified by their generating sets. For
efficiency reasons, the generators of the group A are written as words in a
certain standard generating set for the group Ŝn. We discuss this further in
Section 5, but see the TTP algorithm in [1] for full information. It is assumed
that Eve knows the parameters n, F, M , τ1, . . . , τn, C and A. Bob needs to
know the groups B and D, rather than the groups A and C. Eve does not
need to know the subgroups B and D for our attack to work.

We write e for the identity element of Sn. We write In for the identity
matrix in GLn(F), and write 1 = (In, e) ∈ Ω.

Alice chooses elements c ∈ C and ĝ = (a, g) ∈ A. She computes the
product

c • 1 ∗ ĝ = (cϕ(a), g) ∈ Ω

and sends it to Bob over an insecure channel.
Bob, who knows the groups B and D, chooses elements d ∈ D and

ĥ = (b, h) ∈ B. He computes the product

d • 1 ∗ ĥ = (dϕ(b), h) ∈ Ω

and sends it to Alice over the insecure channel.
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Note that cd = dc because c ∈ C and d ∈ D, and the groups C and D
commute elmentwise. Thus,

d • (c • 1 ∗ ĝ) ∗ ĥ = (dc) • (1 ∗ ĝ) ∗ ĥ
= (cd) • (1 ∗ ĝ) ∗ ĥ
= (cd) • (1 ∗ ĥ) ∗ ĝ

(as ĝ ∈ A, ĥ ∈ B, and A and B ∗-commute)

= c • (d • 1 ∗ ĥ) ∗ ĝ.

The common key K is defined by

K = d • (c • 1 ∗ ĝ) ∗ ĥ = c • (d • 1 ∗ ĥ) ∗ ĝ.

Alice can compute the key K using the right hand expression in the equation
above; Bob can compute K by computing the middle expression.

4 The proposed attack

Eve, the adversary, sees all public information, and also sees the elements
(p, g) := c • 1 ∗ ĝ ∈ Ω and (q, h) := d • 1 ∗ ĥ ∈ Ω that are transmitted
between Alice and Bob. Eve’s goal is to compute the shared key. Rather
than attempting to compute Alice’s private key material c and ĝ, or Bob’s
private key material d and ĝ, our attack will recover the shared key directly.

An overview of our attack is as follows. We first argue that the group
C can be replaced by a ‘linearised’ version of C: this makes it easier to test
membership in C. We then show that Eve does not need to compute Alice’s
or Bob’s secret information in order to derive the shared key: more limited
information suffices. (This information is specified in equations (1) and (2)
below.) Finally, we show how Eve can compute this information.

For a group H of n×n matrices over a field F, we write Alg(H) for the F-
algebra generated by H [5]. So Alg(H) is the set of all F-linear combinations
of matrices in H. We write Alg∗(H) for the set of all invertible matrices in
Alg(H).

The groups C proposed in the CBKAP satisfy C = Alg∗(C). More gen-
erally, we may assume that this is always the case. To see this, first note
Alg∗(C) and D commute elementwise since every element of Alg∗(C) is a
linear combination of elements in C. Thus, C may be replaced by Alg∗(C)
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to obtain a valid new instance of the protocol. Moreover, since C ⊆ Alg∗(C)
the new instance of the protocol is more general than the original protocol:
Alice can choose her matrix c from the larger group Alg∗(C). So if we suc-
cessfully recover the common key in every new instance of the protocol, we
can successfully recover the common key in the original instance.

Thus, from now on, we assume that C = Alg∗(C). Let κ1, κ2, . . . , κr ∈ C
be a basis for Alg(C). Such a basis is not difficult to compute, using standard
techniques. Our assumption means that any invertible linear combination of
the matrices κi lies in C.

Let P E A be the pure subgroup of A, defined by

P = { (α, g) ∈ A : g = e }.

Then ϕ(P ) is a subgroup of GLn(F). Consider the subgroup Alg∗(ϕ(P )) of
GLn(F). Concretely, an element α′ ∈ Alg∗(ϕ(P )) is an invertible matrix of
the form

α′ =
k∑

i=1

`iϕ(αi)

where k ≥ 0, `i ∈ F and (αi, e) ∈ P .

Suppose that Eve finds elements c̃ ∈ C, α′ ∈ Alg∗(ϕ(P )) and (ã, g) ∈ Ŝn

such that
(p, g) = c̃ • (α′, e) ∗ (ã, g). (1)

Moreover, suppose that Eve can find an elements (αi, e) ∈ P and `i ∈ F such
that

k∑
i=1

`iϕ(αi) = α′. (2)

Then Eve can compute the common key, as follows. Firstly, she computes
the matrix

β′ =
k∑

i=1

`iϕ(hαi).

This computation is possible for Eve, since h is part of the message (q, h) =
(dϕ(b), h) ∈ Ω transmitted from Bob to Alice. Now, (αi, e) ∈ P ≤ A, and so
(αi, e) ∗-commutes with all elements in B. Thus,

(qϕ(hαi), h) = d • 1 ∗ (b, h) ∗ (αi, e) = d • 1 ∗ (αi, e) ∗ (b, h).
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Eve then computes c̃ • (qβ′, h) ∗ (ã, g). We claim that this is equal to the
common key K. To see this, first note that

(qβ′, h) =
k∑

i=1

`i(qϕ(hαi), h)

=
k∑

i=1

`i(d • 1 ∗ (αi, e) ∗ (b, h))

=
k∑

i=1

`i(dϕ(αi)ϕ(b), h)

= (d
k∑

i=1

`iϕ(αi)ϕ(b), h)

= (dα′ϕ(b), h)

= d • (α′, e) ∗ (b, h).

Hence

c̃ • (qβ′, h) ∗ (ã, g) = c̃ • d • (α′, e) ∗ (b, h) ∗ (ã, g)

= d • c̃ • (α′, e) ∗ (b, h) ∗ (ã, g)

(since c̃ ∈ C and d centralises C)

= d • c̃ • (α′, e) ∗ (ã, g) ∗ (b, h)

(as (ã, g) ∈ A and (b, h) ∈ B ∗-commute)

= d • (p, g) ∗ ĥ
= d • (c • 1 ∗ ĝ) ∗ ĥ
= K.

So it suffices to show that Eve can find elements αi, `i, ã, c̃ and α′ so that
Equations (1) and (2) are satisfied.

Precomputation stage: Find the αi. Eve computes a collection of ele-
ments (αi, e) such that the matrices ϕ(αi) form a basis of Alg(ϕ(P )). Once
this is done, any α ∈ Alg∗(ϕ(P )) can easily be written in the form (2). Eve
does not need to know the messages (p, g) and (q, h) in this stage, so this
stage can be carried out as a precomputation. Eve proceeds as follows.
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Eve generates, as in [11], short products (a′, g′) of generators of A such
that the order r of the permutation g′ is small (n or less), and computes
α1 = (a′, g′)r = (a′′, e). She repeats this procedure to generate α2, α3 . . ..
(Eve may also take products of some of the previously generated elements
(α1, e), (α2, e), . . . , (αi−1, e) to define (αi, e).) Eve stops when the dimension
of the F-linear span of the matrices ϕ(αi) stops growing, and fixes a linearly
independent subset of these matrices.

At the end of this process (relabelling after throwing linearly dependent
elements ϕ(αi) away), Eve has α1, α2, . . . αr such that ϕ(α1), ϕ(α2), . . . , ϕ(αr)
are a basis for a subspace V of Alg(ϕ(P )). Indeed, we expect (with high
probability) that V = Alg(ϕ(P )). We assume that this is true from now on.

Stage 1: Find ã. Find a product of generators in A whose second com-
ponent is equal to g, using the method in [11]. Let (ã, g) be this product.
Define γ ∈ GLn(F) by

(γ, e) = (p, g) ∗ (ã, g)−1.

Stage 2: Find c̃. Recall that Eve knows κ1, κ2, κ3, . . . , κr ∈ C that form a
basis of Alg(C). She finds (see below) field elements x1, x2, . . . , xr ∈ F such
that

γ−1(x1κ1 + x2κ2 + · · ·+ xrκr) ∈ V, and (3)

x1κ1 + x2κ2 + · · ·+ xrκr is invertible. (4)

Set c̃ = x1κ1 + x2κ2 + · · ·+ xrκr. Since c̃ is an invertible element of Alg(C),
we see that c̃ ∈ C.

To find a solution to Equations (3) and (4), Eve randomly generates so-
lutions xi that satisfy (3), which is easy, as the conditions are linear. She
stops when (4) is also satisfied. We claim that the proportion of solutions
to (3) that satisfy (4) is bounded below by 1− n/|F|, which is a non-trivial
proportion for the parameters that are proposed. The claim follows by ap-
plying the Invertibility Lemma [16, Lemma 9], which states that the propor-
tion of invertible matrices in any F-subspace of matrices over F is at least
1− (n/|F|), provided that the subspace contains at least one invertible ma-
trix. We note that the elements of the form x1κ1 + x2κ2 + · · · + xrκr that
satisfy (3) are a subspace of matrices. So it remains to show that there exists
an invertible element of this form. But let x1, x2, . . . , xr ∈ F be such that

11



x1κ1 + x2κ2 + · · · + xrκr = c. The elements xi exist since c ∈ C ⊆ Alg(C).
Clearly c̃ = c is invertible. Moreover (3) holds, because we may show that
γ−1c ∈ ϕ(P ) ⊆ V as follows. Firstly,

(γ, e) = (p, g) ∗ (ã, g)−1 = (cϕ(a), g) ∗ ( g−1

(ã−1), g−1) = (cϕ(a)ϕ(ã−1), e),

so γ = cϕ(a)ϕ(ã−1) and therefore γ−1c = ϕ(ã)ϕ(a)−1. And secondly, we see
that ϕ(ã)ϕ(a)−1 = ϕ(ãa−1) ∈ ϕ(P ), since

(ã, g)(a, g)−1 = (ã, g)( g−1

a−1, g−1) = (ãa−1, e)

and (ã, g), (a, g) ∈ A.

Stage 3: The remaining parameters. Eve sets α′ = c̃−1γ. Since
(α′)−1 ∈ V , we see that α′ (being a power of (α′)−1) also lies in V . So
Eve can easily calculate coefficients `i such that

k∑
i=1

`iϕ(αi) = α′.

Hence, Equation (2) holds. We may also verify that Equation (1) holds:

c̃ • (α′, e) ∗ (ã, g) = c̃ • (c̃−1γ, e) ∗ (ã, g) = (γ, e) ∗ (ã, g)

= ((p, g) ∗ (ã, g)−1) ∗ (ã, g) = (p, g).

5 Experiments and conclusion

We have implemented our attack in Magma [7], running on one 2GHz core
of a multi-core server. We used 5 sets of actual challenge parameters kindly
provided by SecureRF. These parameters all used the values |F| = 256 and
n = 16. The subgroup A is specified by a generating set; each generator for
A is given as a word of length approximately 650 (notice the large parameter
setting!) in the generating set X = { (xi(t), si) : 1 ≤ i ≤ n− 1 } for M n Sn

defined in [1]. In all 5 cases, our attack terminated successfully, producing
the exact shared key. Our attack used less than 64MB of memory, and
terminated in less than 8 hours. We would like to emphasise that our code
is far from being optimised; we estimate an improvement in CPU time by a
significant factor in an optimised version of the attack.
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Let Bn be a braid group on n strands, and let σ1, σ2, . . . , σn−1 be the Artin
generators forBn. (See, for example, [12] for an introduction to braid groups.)
There is a homomorphism ψ : Bn → M n Sn such that ψ(σi) = (xi, si) for
1 ≤ i ≤ n − 1, which gives rise to the coloured Burau representation. Thus
we could (and did) use standard routines for computing with braids in Bn,
rather than dealing with words in X directly.

The most computationally intensive part of the attack is the computing
of ϕ(a) where (a, g) ∈M nSn is given as a word in the generators of A. The
long length of the generators in A as words in X is the cause of difficulty here;
we were computing with words of length approximately 20,000 in Stage 1 of
our attack.

To decide when the precomputation stage should terminate, we use the
criterion that the F-dimension of the algebra generated by the matrices ϕ(αi)
should not grow when 4 generators (αi, e) in a row are considered.

Not surprisingly, this attack is highly parallelisable. We did not exploit
this fact since for the actual parameters a single CPU core sufficed.

It remains open how to immunise the Algebraic Eraser against the pre-
sented cryptanalysis. The only hope seems to be to make the problem of
expressing a permutation as a short product of given permutations difficult,
by working with very carefully chosen distributions. However, for the in-
tended applications, the computational constraints necessitate small values
of n. In this case, Schreier–Sims methods solve this problem efficiently, no
matter how the permutations are used. See the discussion around [11, Ta-
ble 4].
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