
Space Bounds for Reliable Storage:

Fundamental Limits of Coding

Alexander Spiegelman
EE Department

Technion, Haifa, Israel
sashas@tx.technion.ac.il

+972547553558

Yuval Cassuto
EE Department

Technion, Haifa, Israel
ycassuto@ee.technion.ac.il

Gregory Chockler
CS Department

Royal Holloway, London, UK
gregory.chockler@rhul.ac.uk

Idit Keidar
EE Department

Technion, Haifa, Israel
idish@ee.technion.ac.il

Abstract

We study the inherent space requirements of reliable storage algorithms in asynchronous
distributed systems. A number of recent works have used codes in order to achieve a better
storage cost than the well-known replication approach. However, a closer look reveals that
they incur extra costs in certain scenarios. Specifically, if multiple clients access the storage
concurrently, then existing asynchronous code-based algorithms may store a number of copies
of the data that grows linearly with the number of concurrent clients. We prove here that this is
inherent. Given three parameters, (1) the data size – D bits, (2) the concurrency level – c, and
(3) the number of storage node failures that need to be tolerated – f , we show a lower bound of
⌦(min(f, c) · D) bits on the space complexity of asynchronous distributed storage algorithms.
Intuitively, this implies that the asymptotic storage cost is either as high as with replication,
namely O(fD), or as high under concurrency as with the aforementioned code-based algorithms,
i.e., O(cD).

We further present a technique for combining erasure codes with replication so as to obtain
the best of both. We present an adaptive f � tolerant storage algorithm whose storage cost
is O(min(f, c) ·D). Together, our results show that the space complexity of providing reliable
storage in asynchronous distributed systems is ⇥(min(f, c) ·D).

Regular submission. If not selected, please consider for the brief announcement format.

Eligible to be considered for the best student paper award: Alexander Spiegelman,
the primary contributor, is a ful-time student.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77298013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1 Introduction

In recent years we see an exponential increase in storage capacity demands, creating a need for big
data storage solutions. In this era, distributed storage plays a key role. Data is typically stored
on a collection of nodes accessed asynchronously by clients over a network. By storing redundant
information, data remains available following failures. The most common approach to achieve this
is via replication [4]; in asynchronous settings, 2f + 1 replicas are needed in order to tolerate f
failures [4]. Given the immense size of data, the storage cost of replication is significant. Previous
works have attempted to mitigate this cost via the use of erasure codes [3, 5, 9, 6, 15, 8].

Indeed, codes can reduce the storage cost as long as data is not accessed concurrently by multiple
clients. For example, if the data size is D bits and a single failure needs to be tolerated, erasure-
coded storage ideally requires (k+2)D/k bits for some parameter k > 1 instead of the 3D bits needed
for replication. But as concurrency grows, the cost of erasure-coded storage grows with it: when
c clients access the storage concurrently, existing asynchronous code-based algorithms [5, 9, 6, 8]
store O(cD) bits in storage nodes or communication channels. Intuitively, this occurs because coded
data cannot be reconstructed from a single storage node. Therefore, writing coded data requires
coordination – old values cannot be deleted before ensuring that su�ciently many blocks of the
new value are in place. This is in contrast to replication, where written values can always be read
coherently from a single copy, and so old values may be safely overwritten without coordination.

In this work we prove that this extra cost is inherent: Given three problem parameters: f, c,
and D, where f is the number of storage node failures tolerated (client failures are unrestricted),
c is the concurrency allowed by the algorithm, and D is the data size, we prove that the storage
complexity is ⇥(min(f, c) ·D). Asymptotically, this means either a storage cost as high as that of
replication, or as high as keeping as many versions of the data as the concurrency level.

Lower bound Our results are proven for emulations of a lock-free multi-reader multi-writer
regular register [12, 14]; see Section 2 for definitions. (Interestingly, the lower bound does not hold
for the weaker safe register semantics; see Appendix E). We consider algorithms that use (arbitrary)
black-box encoding schemes, i.e., produce and manipulate code blocks of a given value independently
of other values and meta-data; as formalized in Section 3. The storage consists of such code blocks,
in addition to possibly unbounded data-independent meta-data, (e.g., timestamps), which we do not
count as part of the storage cost. Our black-box assumption excludes storage-reduction techniques
like de-duplication, which do require data-dependent meta-data. This assumption holds for many
popular storage algorithms [3, 5, 9, 6, 8, 10]. Yet, the question whether there is a more storage-
e�cient algorithm that circumvents our result by taking stored values into consideration remains
open; see further discussion in Sections 3 and 6.

We prove the bound in Section 4: we first use a fundamental pigeonhole argument to show that
as long as no ongoing write operation contributes code blocks consisting of D or more bits to the
storage, no write operation can complete. We then define a parameter 0 < `  D. For a given `, we
devise a particular adversary behavior, which we prove drives the storage to a state where either
(1) f + 1 storage nodes hold at least ` bits each, or (2) the storage holds more than D� `+ 1 bits
in distinct code blocks for each of c di↵erent operations. Now, picking ` = D/2 implies our lower
bound.

Algorithm To prove our bound tight, we present in Section 5 a reliable storage algorithm whose
storage cost is O(min(f, c) · D). We achieve this by combining the advantages of replication and
erasure coding. Our algorithm does not assume any a priori bound on concurrency; rather, it uses
erasure codes when concurrency is low and adaptively switches to replication when it is high.

1

2 Model

We consider an asynchronous fault-prone shared memory system [2, 1, 11] consisting of set B =
{bo

i

, . . . , bo
n

} of n base objects (typically residing at distinct storage nodes) supporting arbitrary
atomic read-modify-write (RMW) access by clients from some infinite set ⇧ (see Figure 1a). Any f
out of n base objects and any number of clients may fail by crashing, for some predefined f < n/2.

We study algorithms that emulate a shared register [12], which stores a value v from some
domain V, where D = log2 |V|. Initially, the register holds some initial value v0 2 V. Clients
interact with the emulated register via high-level read and write operations. A client that performs
a write operation is called a writer, and a client performing a read is a reader.

To distinguish the high-level emulated operations from low-level base object access, we refer to
the latter as RMWs. We say that RMWs are triggered and respond, whereas operations are invoked
and return. A (high-level) operation is emulated via a series of trigger and respond actions on base
objects, starting with the operation’s invocation and ending with its return. In the course of an
operation, a client triggers RMWs separately on each bo

i

2 B. The state of each bo
i

2 B changes
atomically, according to the RMW triggered on it, at some point after the time when the RMW is
triggered but no later than the time when the matching response occurs. To distinguish incomplete
invocations to the emulated register from incomplete RMWs triggered on base objects, we refer to
the former as outstanding operations and to the latter as pending RMWs.

A parameter c defines the write concurrency level, that is, at most c write operations are
outstanding at a given time. We assume that c < |V|/2 = 2D�1. We use standard definitions of
algorithms, runs, etc, which, due to space limitations, are deferred to Appendix A. The emulated
register must satisfy the following two properties:

Lock-freedom If at some point in a fair run there is an outstanding operation of a correct
client, then some operation eventually returns.

Regularity Our safety requirement is regularity, which is weaker than atomicity. There are
a number of ways to extend Lamport’s notion of regularity [12] to multi-writer registers [14]; we
use the weakest one for our lower bound and the strongest for our algorithm, (called MWRegWeak
and MWRegWO in [14], resp.), as defined in Appendix A. Intuitively, regularity means that a read
r returns a value written by either (1) the last write w that completes before r is invoked, or (2)
some write that is concurrent to r or to w, or (3) v0 if no value is written before r.

3 Coded Storage Algorithms

In Section 3.1 we present the model and assumptions under which our bound holds, and in Sec-
tion 3.2 we discuss their relation to existing models and algorithms.

3.1 Model and assumptions

We first give a formal model for coded storage algorithms, then define the notion of storage cost in
this model, and finally state our assumptions that the encoding is symmetric and algorithms use
it as a black-box.

We consider algorithms that use (arbitrary) encoding schemes, which produce code blocks in
some domain E , so that each value is coded independently of other values. The coding scheme
is based on two functions: The encoding function E : V ⇥ N ! E maps value/natural number
pairs to code blocks. We denote the number of bits in block e 2 E as |e|. The decoding function
D : 2E ! V [{?} takes as a parameter a set of code blocks and returns a value in V, or ? in
case no value can be decoded. For example, in a replication approach, each block e can be a full
value v, so D({e}) simply returns v. Another example is k-of-n erasure codes, where for any value
v and any subset S of size k of the set {e

i

| e
i

= E(v, i), 1  i  n}, D(S) = v. We capture

2

(a) Clients and base objects. (b) A writer and its oracle. (c) A reader and its oracle.

Figure 1: A model for code-based storage. Encoding and decoding are captured by oracles.

rateless codes [13], in which an encoder can generate a limit-less sequence of blocks, by using N as
the domain for block numbers.

We encapsulate the encoder and decoder into two oracles, oracleE and oracleD as illustrated in
Figure 1. The interaction with these oracles is as follows:

Definition 1 (Encoding/Decoding Oracles). A w=write(v) (read()) invocation at a client c
i

ini-
tializes an oracleE(ci, w) (oracleD(ci, w), resp.), which expires when w completes. oracleE(ci, w)
exposes a get(i) operation, which returns E(v, i) for i 2 N; and oracleD(ci, w) exposes two oper-
ations, push(e, i) and done(i), such that for all i 2 N, if c

i

calls done(i), then its read operation
completes and returns D({e | push(e, i) previously occurred}). We omit the parameters c

i

, w when
they are clear from the context.

Writers produce code blocks via oracleE and store them in the storage, whereas readers try to
obtain enough blocks to decode legal values via oracleD. In addition to code blocks, clients and
base objects can store unbounded meta-data, e.g., program counters and timestamps. But to avoid
trivializing the problem, the meta-data must be data-independent, as formally defined below.

Information is represented as list of code blocks and meta-data, he1, e2, . . . , e
k

;mi, where 8i,
e
i

2 E and the meta-data m is from some arbitrary domain. The state of a client that has an
outstanding operation consists of the information stored at the client as well the parameters of its
pending RMWs that have not yet taken e↵ect. The state of a client with no outstanding operation
is empty. A base object’s state consists of the information stored at the base object and all the
responses of pending RMWs that took e↵ect on it. For a base object bo

i

(client c
i

), we denote the
list of code blocks in bo

i

’s (c
i

’s) state at time t in run r as bor
i

(t) (resp. cr
i

(t)).
Let S be an ordered set including all base objects and clients, i.e., B [⇧ ordered in some

arbitrary way. For S = {bo1, . . . , bo
k

, c1, . . .} ✓ S, Sr(t) is the list of lists bor1(t), . . . , bo
r

n

(t), cr1(t), . . .
sorted according to their order in S. A block instance b 2 Sr(t) is a triple hi, j, ei so that e is stored
in the jth position in the ith list in S. We refer to the block contents as b.e.

Storage cost We count the number of bits stored in blocks in base objects as well as in
clients, and neglect meta-data size. Note that oracle states are not counted as part of the storage
cost, since we wish to measure the additional space required for making the data available for
shared access, beyond its (trivial) existence at its sources and readers.

Definition 2 (Storage Cost). The storage cost at time t in a run r is ⌃
b2Sr(t)|b.e|. The storage

cost of an algorithm A is the maximum storage cost at any point t in any run r of A.

Assumptions To make sure that the encoding does not leak information using block sizes, we
assume symmetry, in the sense that output block sizes do not depend on input values. (Otherwise,
we could for example, represent three values 0, 1, and 10 using a single coded block e1 of size at
most 1 bit by having |e1| = 0 encode 10). Formally:

Definition 3 (Symmetric Encoding). An encoding function E is symmetric if for every v, v0 2 V
and for all i 2 N, |E(v, i)| = |E(v0, i)|. We denote size(i) , |E(v, i)|.

3

(a) Run r (b) Run rv

Figure 2: Black-box coding. Runs r and r
v

have the same trace except that write w is invoked
with u in r and with v in r

v

; and each base object bo
i

’s state (blocks and meta-data) is identical
at all times in both runs, except that blocks produced by w’s oracle in r are replaced in r

v

by the
corresponding blocks of v.

Note that di↵erent block numbers (of all values) may have di↵erent sizes.
We next state our assumption that the storage treats the coding as a black-box. First, we define

the notion of a source function, which we shall use to prohibit generation of code blocks by any
source other than oracleE:

Definition 4 (Source Function). A function is a source function for a run r if it maps every (b, t)
s.t. b 2 Sr(t) to a pair hw, ii s.t. b.e was returned by get(i) in oracleE(w).

We use a source function to trace blocks in the storage to operations that produced them. To
capture the restriction that the algorithm’s decision what to store does not rely on block contents,
we stipulate that we can replace the value written by a write operation w in a run r by an arbitrary
value v, yielding the same sequence of states and actions, except that all stored block instances
whose source is hw, ii are replaced with E(v, i). For clarity, we refer to the operation as w in both
runs (see Figure 2).

Definition 5 (Black-Box Coding). An algorithm A is black-box coding if for every run r there is
a source function sourcer for r s.t. for every w = write(v) operation in r, 8v 2 V, there is run r

v

satisfying the following:

1. r
v

has the same sequences of invocations and returns as r except that w is replaced by write(v)
(possibly with no change) and return values of read operations may be di↵erent; and

2. client and base object states at every time t in r
v

are the same as at time t in r except that
the contents of every b 2 Sr(t) s.t. sourcer(b, t) = hw, ii for some i is replaced by e0 = E(v, i).

In the following, we will only consider source functions satisfying Definition 5. In case multiple
such source functions for r exist, we fix an arbitrary one and refer to it as sourcer.

3.2 Relationship to existing models

Our model captures numerous existing distributed storage algorithms, including ones that use
replication [4], and erasure codes [3, 5, 9, 6, 8, 10]. We note that some of them report a storage
cost below O(cD) [3, 5, 15, 8]. This is sometimes achieved by assuming periods of synchrony [3].
Other works shift the cost from storage nodes to the network and keep unbounded information in
channels [8, 5]. However, since we define parameters and responses of pending RMWs to be part
of clients’ and base objects’ states, information in channels is counted in our storage cost model
and hence these algorithms are subject to our bound. The only non-black-box storage algorithm
we are aware of is [15], where multiple values are encoded jointly, saving space, but also forfeiting

4

regular register semantics. It is as of now unclear whether lifting the black-box assumption su�ces
in order to circumvent our result.

The challenge of providing a lower bound on stored data when meta-data is potentially unbound
was previously addressed in the context of byzantine storage [7]. That paper has shown that certain
storage algorithms cannot be “amnesic”, i.e., cannot “forget” values written to them. Like our
black-box assumption, the notion of amnesia was defined in terms of runs. However, it did not
yield explicit bound on storage cost.

4 Storage Lower Bound

We now show a lower bound of O(min(f, c) ·D) bits on the storage cost of any lock-free algorithm
that uses symmetric black-box coding to simulate a regular register:

Theorem 1. Consider a lock-free algorithm A that uses symmetric black-box coding to simulate a
regular register. The storage cost of A is ⌦(min(f, c) ·D).

For the sake of our proof, we quantify the blocks operation w by client c
i

contributes to the storage,
at base objects and clients other than c

i

, and quantify the number of bits stored therein.

Definition 6. Let S ⇢ S, and consider a time t and an operation w by client c
j

in a run r. We define
Sr(t, w) , {i 2 N | 9b 2 (S \ {c

j

})r(t): sourcer(b, t) = hw, ii}, and ||Sr(t, w)|| , ⌃
i2Sr(t,w)size(i).

For I ✓ N, we say that two values v0 6= v00 in V are I-colliding if 8i 2 I, E(v0, i) = E(v00, i). We next
use the pigeonhole argument and the assumption of symmetric black-box coding in order to show
that write operations cannot return until some write stores enough bits in di↵erent blocks in every
set of n� f base objects.

Claim 1. Let w be a write operation invoked in a run r of A, and t be a point in r. Consider a
set of values U ⇢ V, |U | < 2D�1, and a set of base objects S ⇢ S. If ||Sr(t, w)|| < D, then there
are two Sr(t, w)-colliding values u 6= u0 in V \ U .

Proof. Since |V \ U | > 2D�1 and ||Sr(t, w)|| < D, the claim follows from the pigeonhole argument.

Lemma 1. Consider a run r of algorithm A that begins with the invocation of c concurrent write
operations. Let S be a set of at least n � f base objects and assume that at every time t in r for
every operation w in r, ||Sr(t, w)|| < D. Then no write operation returns in r.

Proof. Let W
ops

= {w1, . . . , wc

} be the set of c concurrent writes invoked in r. Assume by con-
tradiction that there exists a complete write in W

ops

. Let w be the first such write, and t be the
time when it returns. Next we inductively build a sequence of sets of values U0, U1, . . . , Uc

, where
|U

i

| = i:

• U0 = {}

• 8i 2 {0, . . . , c� 1}, we use U
i

to build U
i+1. By the lemma premise, ||Sr(t, w

i+1)|| < D. Now
since |U

i

| < c < 2D�1, by Claim 1, there are two Sr(t, w
i+1)-colliding values u

wi+1 6= u0
wi+1

in
V \ U

i

. We let U
i+1 = U

i

[{u
wi+1}.

The set U
c

contains exactly c (di↵erent) values s.t. for every operation w
i

2 W
ops

there is a
value u

wi 2 U
c

that has a Sr(t, w
i

)-colliding value u0
wi
2 V. By applying Definition 5 (c times),

there is a run r0 that begins with the invocation of c concurrent write operations, in which every
operation w

i

2 W
ops

writes u
wi s.t. w returns at time t, and for every operation w

i

2 W
ops

,

5

Sr(t, w
i

) = Sr

0
(t, w

i

). Next, let clients with outstanding operations and all base objects in B \ S
fail at time t in r0 (note that by assumption |S| � n � f , so |B \ S|  f), and let some client c

j

invoke a solo read operation at time t+ 1. By lock-freedom, c
j

’s read operation completes, and by
regularity, it returns a value u 2 U

c

at some time t0 > t.
Let w0 be the operation that writes u in r0. Since u has a Sr(t, w0)-colliding value u0 and

since Sr(t, w0) = Sr

0
(t, w0), u and u0 are Sr

0
(t, w0)-colliding. By Definition 5, there is a run r00

with the same operations as in r0 except that w0 writes u0 (instead of u) s.t. every client’s and
base object’s state at time t in r0 is identical to its state at time t in r00 (note that clients with
outstanding operations and all base objects in B \ S fail at time t) except that for every block
instance b 2 Sr

0
(t) s.t. sourcer

0
(b, t) = hw0, ii, b.e is replaced with a block E(u0, i). In particular,

states of base objects in S at time t are identical to their states at time t in r0 except that for every
block instance b 2 Sr

0
(t) s.t. sourcer

0
(b, t) = hw0, ii, b.e is replaced with a block E(u0, i).

Now since u and u0 are S
r

0(t, w0)-colliding, states of base objects in S at time t in r00 are identical
to their states at time t in r0. In addition, since clients with outstanding operations and all base
objects in B \ S fail at time t, the solo reader c

j

cannot distinguish between r0 and r00, and thus,
it pushes the same blocks to its oracle and calls done with the same number in r00 as in r0, and
therefore, its read operation returns u at time t00 in run r00. However, since the clients invoke write
operations with di↵erent values in r0, u is not written in r00. A contradiction to regularity.

Having shown a condition under which write operations cannot complete, we define an (unfair)
adversary behavior that takes advantage of this in order to prevent progress. We introduce some
notation, and then use it in order to define the adversary. We define a parameter 0 < `  D, and
for any time t in a run r of algorithm A we define the following sets, as illustrated in Figure 3 in
Appendix B. For clarity, from now on we omit the superscript r.

• C(t): the set of outstanding write operations at time t.

• C�
`

(t) = {w 2 C(t) | ||S(t, w)||  D � `}: The set of write operations each of which has
at most D � ` bits in blocks, produced by its oracle with di↵erent numbers, in the storage
(excluding the client performing it) at time t.

• C+
`

(t) = C(t) \ C�
`

(t).

• F
`

(t) = {bo
i

2 B | ⌃
b2{boi}(t)|b.e| � `}. Base objects that store blocks that consist (together)

of more than ` bits at time t. These are base objects that we will “freeze” in our counter-
example because they are already “full”, i.e., consume enough space for our lower bound.

We fix the parameter ` throughout the proof and omit subscript ` from the notation. The next
observation on storage cost immediately follows from the definitions.

Observation 1. At any point t in every run r of A, the storage cost is at least |C+(t)|(D� `+1).

We next define a particular adversary behavior that schedules actions in a way that prevents
progress. Note that the adversary controls the scheduling of client actions and RMW responses.

Definition 7. (Ad) At any time t, Ad schedules an action as follows:

1. If there is a pending RMW on a base object in B \ F (t) by a client performing an operation
in C�(t), then choose the longest pending of these RMWs, allow it to take e↵ect on the
corresponding base object, and schedule its response.

6

2. Else, choose in a fair order an operation by a client c
i

2 ⇧ and schedule its action (trigger
RMW, call its oracle, get response from its oracle, or return), without allowing it to a↵ect
the base object yet. By fair order we mean any order in which every client is chosen infinitely
often (e.g., c1, c1, c2, c1, c2, c3 . . .).

In other words, Ad delays RMWs triggered by operations in C+(t) (for which the storage already
holds D � ` bits) as well as RMWs on “frozen” base objects in F (t) (which store at least ` bits),
and fairly schedules all other actions. We demonstrate Ad’s behavior in Figure 3 in Appendix B.
Though this behavior may be unfair, in every infinite run of Ad, every correct client gets infinitely
many opportunities to take steps. We use Ad to build an unfair run with no progress (no write
returns), and then build an indistinguishable fair run to contradict lock-freedom. The following
observation immediately follows from the adversary’s freezing of base objects in F .

Observation 2. Assume run r of algorithm A in which the environment behaves like Ad. For each
base object bo, if bo 2 F (t) at some time t, then bo 2 F (t0) for all t0 > t in r.

Another consequence of Ad’s behavior is captured by the following:

Lemma 2. Consider a run r of algorithm A. If the adversary behaves like Ad, then for every time
t and for every write operation w in r, ||(S \ F (t))(t, w)|| < D.

Proof. Assume by way of contradiction that there is time t and write operation w performed by
client c

j

s.t. ||(S \F (t))(t, w)|| � D. The definition of (S \F (t))(t, w) takes into account only blocks
returned by w’s oracle that are stored outside of c

j

(t). Thus, w triggered at least one RMW that
has a matching response before time t0 in r. Let t0  t be the time when the last RMW triggered
by w responded, and denote this RMW by rmw and the base object on which rmw was triggered
by bo. By Ad, w 2 C�(t0 � 1), and therefore, by definition, ||(S \ F (t0 � 1))(t0 � 1, w)||  D � `.
Now consider two cases:

• First, rmw adds blocks (possibly overwriting other blocks) with less than ` bits to bo. In this
case, since bo is the only storage component that changed at time t0, |(S \ F (t0))(t0, w)| < D.

• Second, rmw adds blocks (possibly overwriting other blocks) with at least ` bits to bo. In this
case, bo 2 F (t0). Now since ||(S\F (t0�1))(t0�1, w)||  D, by Observation 2, F (t0�1) ✓ F (t0),
and given bo 2 F (t0) and it is the only storage component that changed at time t0, we get
||(S \ F (t0))(t0, w)||  ||(S \ F (t0 � 1))(t0 � 1, w)|| < D.

So far we showed that ||(S \ F (t0))(t0, w)|| < D. By Observation 2, and since no RMW by w
takes e↵ect after time t0, (S \ F (t00))(t00, w) ✓ (S \ F (t0))(t0, w), 8t00 � t0. Therefore, we get
||(S \ F (t))(t, w)|| < D. A contradiction.

The next corollary uses Lemmas 1 and 2 in order to conclude that Ad can prevent progress of write
operations.

Corollary 1. Consider a run r of algorithm A that begins with the invocation of c concurrent write
operations. If the adversary behaves like Ad and |F (t)|  f for all t in r, then no write operation
returns in r.

Proof. By Lemma 2, for every time t for every write operation w in r, ||(S \F (t))(t, w)|| < D. And
since B ⇢ S, for every time t for every write operation w in r, ||(B \ F (t))(t, w)|| < D. Now since
|F (t)|  f for every time t in r, |B \ F (t)| � n � f . Therefore, by Lemma 1, no write operation
returns in r.

7

We have shown that Ad can prevent completion of write operations in algorithms that store `
bits in less than f+1 base objects. However, this does not directly imply a storage bound, since Ad
is nor fair. In the next lemma we use the fact that lock-freedom must be satisfied in fair runs, i.e.,
operations invoked by correct clients must eventually complete, in order to blow up the storage. We
show that for every algorithm, we can build a run where at some point the algorithm either stores
` bits in each of f + 1 base objects (namely, 9t : |F (t)| > f), or there are c concurrent operations
each of which adds at least D � `+ 1 bits to the storage cost (i.e., |C+(t)| = c).

Lemma 3. There is a run r of A and a time t in r when |C+(t)| = c or |F (t)| > f .

Proof. Assume by way of contradiction that there is no such run of algorithm A. We build a run
r of A with c clients that concurrently write di↵erent values, in which the environment behaves
like adversary Ad. By the contradiction assumption, |C+(t)| < c and |F (t)|  f for all t in r. We
start with the invocation of c concurrent write operations, and allow the run to proceed indefinitely
according to Ad. We say that a client c, which performs write operation w, is stuck in r if there is
a time t in r s.t. for all t0 � t, w 2 C+(t0) (and so no RMWs triggered by c take e↵ect after time
t). By Observation 2 and the assumption that |F (t)|  f for all t, there is a time t1 in r s.t. for
every time t2 � t1, F (t1) = F (t2).

Now we build a run r0 that is identical to r but every base object bo 2 F (t1) fails at time t1
(|F (t1)|  f), and every stuck client fails after its last RMW takes e↵ect. Since by Ad, RMWs
do not take e↵ect on base objects in F (t1) after time t1, runs r and r0 are indistinguishable to all
correct clients and base objects. Now notice that by the adversary’s behavior, each correct client
in r0 gets infinitely many opportunities to trigger RMWs. In addition, since (1) for every correct
client c

i

in r0 there are infinitely many times t when c
i

2 C�(t), (2) Ad picks responses from base
objects not in F (t) in the order they are triggered, and (3) there are no correct base objects in F (t0)
for all t0 > t1, every RMW triggered by a correct client on a correct base object has a matching
response in r0. Therefore, run r0 is fair.

By the contradiction assumption |C+(t)| < c for all t in r. Therefore, there is at least one
client that is not stuck in r, and thus, there is at least one client that is correct in r0. Hence, by
lock-freedom, some client eventually completes its write operation in r0. Now since r and r0 are
indistinguishable to all clients that are correct in both, the same is true in r. However, by Corollary
1, no write operation completes in r. A contradiction.

So far we have shown that every algorithm has a run where at some point either ` bits are stored
in f +1 base objects, or there are c concurrent operations each of which adds at least D� `+1 bits
to the storage cost. We now combine this result with Observation 1 to conclude our lower bound:

Proof (Theorem 1). Let ` = D/2. By Lemma 3, there is a run r of A and a time t in r when
|C+(t)| = c or |F (t)| > f . If |F (t)| > f , then the storage cost at time t in r is (f + 1)` =
(f + 1)D/2 = ⌦(fD). Otherwise, |C+(t)| = c, and so by Observation 1, the storage cost at time t
in r is at least c(D � `) = cD/2 = ⌦(cD). The theorem follows.

By picking ` = D, we get a second conclusion from Lemma 3 and Observation 1.

Corollary 2. The storage cost of any algorithm that uses a black-box coding scheme to simulate
a regular lock-free register, and does not store D bits (enough to represent a full replica) in f + 1
base objects, grows linearly with the concurrency.

8

5 Regular Register Emulation

We present a storage algorithm that combines full replication with erasure coding in order to achieve
the advantages of both. A k-of-n erasure code takes a value from V and produces a set S of n blocks
from E s.t. the value can be restored from any subset of S that contains no less than k di↵erent
blocks. We assume that the size of each block is D/k. OracleE and OracleD are encapsulated by
two functions encode and decode, respectively: encode gets a value v 2 V and returns a set of n
ordered elements W = {he1, 1i, . . . , hen, ni}, where e1, . . . , en 2 E , and decode gets a set W 0 ⇢ E⇥N
and returns v0 2 V s.t. if |W 0| � k and W 0 ✓W , then v = v0. We use k = n� 2f . Note that when
k = 1, we get full replication.

The main idea behind our algorithm is to have base objects store blocks from at most k di↵erent
writes, and then turn to store full replicas. Our algorithm satisfies strong regularity and FW-
termination, which is a stronger liveness property than lock-freedom (see Appendix A). In Appendix
D, we prove the following:
Theorem 2. There is an FW-terminating algorithm that simulates a regular register, whose stor-
age cost is min((c+ 1)(2f + k)D/k, (2f + k)2D) bits. Moreover, in a run with a finite number of
writes, if all the writers are correct, the storage is eventually reduced to (2f + k)D/k bits.

Notice that k is a parameter of the algorithm, and if we pick k = f , then asymptotically the storage
cost of our algorithm is O(min(cD, fD)) = O(min(c, f) ·D).

The algorithms pseudocode appears in Algorithms 1-3 (Appendix C). The algorithm uses a set
of n shared base objects bo1, . . . , bon each of which holds three fields V

p

, V
f

, and storedTS.
The V

p

field holds a set of timestamped code blocks so that the ith block of a value can be stored in
the V

p

field of object bo
i

. The V
f

field stores a timestamped replica of a single value, (represented
as a set of k code blocks). And storedTS holds a timestamp, as explained below.

Write operation and storage e�ciency The write operation (lines 3–15) consists of 3
sequentially executed rounds: read timestamp, update, and garbage collection; and, the read consists
of one or more sequentially executed read rounds. At each round, the client invokes RMWs on all
base objects in parallel, and awaits responses from at least n � f base objects. The read rounds
of both write and read rely on the readValue routine (lines 23–31) to collect the contents of the
V
p

and V
f

, fields from n� f base objects, as well as to determine the highest storedTS known to
these objects. The implementations of the update and garbage collection rounds are given by the
update (lines 32–39) and GC (lines 40–45) routines, respectively.

The write implementation starts by encoding v into k code blocks (line 4) and invoking the read
round where the client uses the combined contents of the V

p

, V
f

and storedTS fields returned by
readValue to determine the timestamp ts to be stored alongside v’s code blocks on the base object;
ts is set to be higher than all returned timestamps thus ensuring that the order of the timestamps
associated with the stored values is compatible with the order of their corresponding writes, (which
is essential for regularity).

The client then proceeds to the update round where it attempts to store the ith code block
he, ii of v in bo

i

.V
p

if the size of bo
i

.V
p

is less than k (lines 36), or its full replica in bo
i

.V
f

if ts is
higher than the timestamp associated with the value currently stored in bo

i

.V
f

(line 38). Storing
he, ii in bo

i

.V
p

coincides with an attempt to reduce its size by removing stale code blocks of values
whose timestamps are smaller than storedTS (line 36). This guarantees that the size of V

p

never
exceeds the number of concurrent writes, which is a key for achieving our adaptive storage bound.
Lastly, the client updates bo

i

.storedTS so as its new value is at least as high as the one returned
by the readValue routine. This allows the timestamp associated with the latest complete update
to propagate to the base object being written, in order to prevent future writes of old blocks into
this base object.

9

In the write’s garbage collection round, the client attempts to further reduce the storage usage
by (1) removing all code blocks associated with timestamps lower than ts from both bo

i

.V
p

and
bo

i

.V
f

(lines 41–42), and (2) replacing a full replica (if it exists) of its written value v in bo
i

.V
f

with its ith code block he, ii (line 44). It is safe to remove the full replica and values with older
timestamps at this point, since once the update round has completed, it is ensured that the written
value or a newer written value is restoreable from any n� f base objects. This mechanism ensures
that all code blocks except the ones comprising the value written with the highest timestamp are
eventually removed from all objects’ V

p

and V
f

sets, which reduces the storage to a minimum in
runs with finitely many writes, which all complete. The garbage collection round also updates the
bo

i

.storedTS field to ensure its value is at least as high as ts.
Key Invariant and read operation The write implementation described above guarantees

the following key invariant: at all times, a value written by either the latest complete write or a
newer write is available from every set consisting of at least n� f base objects (either in the form
of k code blocks in the objects’ V

p

fields, or in full from one of their V
f

fields). Therefore, a read
will always be able to reconstruct the latest completely written or a newer value provided it can
successfully retrieve k matching blocks of this value. However, a read round may sample di↵erent
base objects at di↵erent times (that is, it does not necessarily obtain an atomic snapshot of the
base objects), and the number of blocks stored in V

p

is bounded. Thus, the read may be unable
to see k matching blocks of any single new value, as long as new values continue to be written
concurrently with the read.

Nevertheless, for FW-Termination, the reads are only required to return in runs where a finite
number of writes are invoked. Our implementation of read (lines 16–22) proceeds by invoking
consecutive rounds of RMWs on the base objects via the readValue routine. After each round, the
reader examines the collection of returned values and timestamps to determine if any value has
k code blocks and is also associated with a timestamp that is at least as high as storedTS (line
18). If any such value is found, the one associated with the highest timestamp is returned (line
21). Otherwise, the reader proceeds to invoke another round of base object accesses. Note that
returning values associated with older timestamps may violate regularity, since they may have been
written earlier than the write with timestamp storedTS, which in turn may have completed before
the read was invoked.

6 Discussion

We studied the inherent space requirements of reliable storage in asynchronous distributed settings.
We proved an asymptotic bound of ⌦(min(f, c) ·D) for any storage algorithm using a symmetric
black-box coding scheme, which produces code blocks of values independently of other values. We
then presented an algorithm that combines replication and erasure codes, whose storage cost is
O(min(f, c) ·D).

Our work leaves open questions for future work. First, it is unclear whether the same lower
bound still applies when stored bits are allowed to depend on multiple concurrent write values. The
main requirement for extending our proof to general coding is a model that correctly accounts for
the information stored in the storage when the clients code jointly. Second, while asymptotically
optimal, the constants in our bound are not tight, and it could be interesting to close this gap.
Finally, we believe that our model and adversary definitions can yield additional lower bounds.

Acknowledgements

We thank Dahlia Malkhi, Yoram Moses, and Rotem Oshman for insightful comments.

10

References

[1] Ittai Abraham, Gregory Chockler, Idit Keidar, and Dahlia Malkhi. Byzantine disk paxos:
optimal resilience with byzantine shared memory. Distributed Computing, 18(5):387–408, 2006.

[2] Yehuda Afek, Michael Merritt, and Gadi Taubenfeld. Benign failure models for shared memory.
In Distributed Algorithms, pages 69–83. Springer, 1993.

[3] Marcos Kawazoe Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. Using erasure codes
e�ciently for storage in a distributed system. In Dependable Systems and Networks, 2005.
DSN 2005. Proceedings. International Conference on, pages 336–345. IEEE, 2005.

[4] Hagit Attiya, Amotz Bar-Noy, and Danny Dolev. Sharing memory robustly in message-passing
systems. Journal of the ACM (JACM), 42(1):124–142, 1995.

[5] Christian Cachin and Stefano Tessaro. Optimal resilience for erasure-coded byzantine dis-
tributed storage. In Dependable Systems and Networks, 2006. DSN 2006. International Con-
ference on, pages 115–124. IEEE, 2006.

[6] Viveck R Cadambe, Nancy Lynch, Muriel Medard, and Peter Musial. A coded shared atomic
memory algorithm for message passing architectures. In Network Computing and Applications
(NCA), 2014 IEEE 13th International Symposium on, pages 253–260. IEEE, 2014.

[7] Gregory Chockler, Rachid Guerraoui, and Idit Keidar. Amnesic distributed storage. In Dis-
tributed Computing, pages 139–151. Springer, 2007.

[8] Partha Dutta, Rachid Guerraoui, and Ron R. Levy. Optimistic erasure-coded distributed
storage. In Proceedings of the 22Nd International Symposium on Distributed Computing, DISC
’08, pages 182–196, Berlin, Heidelberg, 2008. Springer-Verlag.

[9] Garth R Goodson, Jay J Wylie, Gregory R Ganger, and Michael K Reiter. E�cient byzantine-
tolerant erasure-coded storage. In Dependable Systems and Networks, 2004 International Con-
ference on, pages 135–144. IEEE, 2004.

[10] James Hendricks, Gregory R Ganger, and Michael K Reiter. Low-overhead byzantine fault-
tolerant storage. In ACM SIGOPS Operating Systems Review, volume 41, pages 73–86. ACM,
2007.

[11] Prasad Jayanti, Tushar Deepak Chandra, and Sam Toueg. Fault-tolerant wait-free shared
objects. Journal of the ACM (JACM), 45(3):451–500, 1998.

[12] Leslie Lamport. On interprocess communication. Distributed computing, 1(2):86–101, 1986.

[13] Heverson Borba Ribeiro and Emmanuelle Anceaume. Datacube: A p2p persistent data storage
architecture based on hybrid redundancy schema. In Parallel, Distributed and Network-Based
Processing (PDP), 2010 18th Euromicro International Conference on, pages 302–306. IEEE,
2010.

[14] Cheng Shao, Jennifer L Welch, Evelyn Pierce, and Hyunyoung Lee. Multiwriter consistency
conditions for shared memory registers. SIAM Journal on Computing, 40(1):28–62, 2011.

[15] Zhiying Wang and Viveck Cadambe. Multi-version coding in distributed storage. In Informa-
tion Theory (ISIT), 2014 IEEE International Symposium on, pages 871–875. IEEE, 2014.

11

A Formal definitions

An algorithm defines the behavior of clients as deterministic state machines, where state transitions
are associated with actions such as RMW trigger/response. A configuration is a mapping to states
from system components, i.e., clients and base objects. An initial configuration is one where all
components are in their initial states.

A run of algorithm A is a (finite or infinite) alternating sequence of configurations and actions,
beginning with some initial configuration, such that configuration transitions occur according to
A. For a run r, trace(r) is the subsequence of r consisting of all the operation invocation and
returns in r. We use the notion of time t during a run r to refer to the configuration reached
after the tth action in r. A run fragment is a contiguous subsequence of a run starting and ending
with a configuration. We assume that runs are well-formed, in that each client’s first action is an
invocation, and a client has at most one outstanding operation at any time.

We say that a base object or client is faulty in a run r if it fails any time in r, and otherwise, it
is correct. A run is fair if (1) for every RMW triggered by a correct client on a correct base object,
there is eventually a matching response, (2) every correct client gets infinitely many opportunities
to trigger RMWs.

Liveness There is a range of possible liveness conditions, which need to be satisfied in
fair runs. A wait-free object is one that guarantees that every correct client’s operation completes,
regardless of the actions of other clients. A lock-free object guarantees progress: if at some point in a
run there is an outstanding operation of a correct client, then some operation eventually completes.
An FW-terminating [1] register is one that has wait-free write operations, and in addition, if there
are finitely many write invocations in a run, then every read operation completes.

Safety In order to define regularity, we first introduce some terminology: Operation op
i

precedes operation op
j

in a run r, denoted op
i

�
r

op
j

, if op
i

’s return occurs before op
j

’s invoke
in r. Operations op

i

and op
j

are concurrent in a run r if neither one precedes the other. A run
with no concurrent operations is sequential. Two runs are equivalent if every client performs the
same sequence of operations in both, where operations that are outstanding in one can either be
included in or excluded from the other. A linearization of a run r is an equivalent sequential run
that preservers r’s operation precedence relation and the object’s sequential specification. The
sequential specification for a register is as follows: A read returns the latest written value, or v0 if
none was written. A write w in a run r is relevant to a read rd in r [14] if rd 6�

r

w; rel-writes(r, rd)
is the set of all writes in r that are relevant to rd.

Following Lamport [12], we consider a hierarchy of safety notions. Lamport [12] defines regular
and safe single-writer registers. Shao et al. [14] extend Lamport’s notion of regularity to MWMR
registers, and give four possible definitions. Here we use two of them. The first is the weakest
definition, and we use it in our lower bound proof. The second, which we use for our algorithm, is
the strongest definition that is satisfied by ABD [4] in case readers do not change the storage (no
write-back):

A MWMR register is weakly regular, (called MWRegWeak in [14]), if for every run r and read
rd that returns in r, there exists a linearization of the subsequence of r consisting of rd and the
writes in r. A MWMR register is strongly regular, (called MWRegWO in [14]), if it satisfies weak
regularity and the following condition: For all reads rd1 and rd2 that return in r, for all writes w1

and w2 in rel-writes(r, rd1)\ rel-writes(r, rd2), it holds that w1 �Lrd1
w2 if and only if w1 �Lrd2

w2.
We extend the safe register definition and say that a MWMR register is strongly safe if there

exists a linearization �
w

of the subsequence of r consisting of the write operations in r, and for
every read operation rd that has no concurrent writes in r, it is possible to add rd at some point
in �

w

so as to obtain a linearization of the subsequence of r consisting of the write operations in r
and rd.

12

B Illustration of Ad’s behavior

(a) Time t (b) Time t+ 3

Figure 3: Example scenario in run of a storage algorithm with adversary Ad. Writers c1, . . . , c4
perform w1, . . . , w4; dashed lines represent triggered RMWs with no matching responses, and blocks
are tagged (in dashed circles) by their sources. In this example, 2D/5 < ` < D. (a) Only w2 and
w4 are in C�(t) at time t, where w4 has no pending RMWs and w2 has one triggered RMW on
b1 2 F (t) and one triggered RMW on b3 62 F (t). Therefore, by the first rule, Ad schedules the
response on the RMW triggered by w2 on b3. In this example w2 overwrites w3’s block in b3, thus
w3 moves from C+ to C�. Then, at time t+1, no response can be scheduled by rule 1 (no operation
in C�(t + 1) has a pending RMW on a base object in N \ F (t + 1)), so by rule 2, Ad chooses w2

and lets it trigger an RMW on base object b2. (b) Now since w2 is the only operation that has a
pending RMW on a base object not in F (t+2), Ad schedules the response on the RMW triggered
by w2 on b2 at time t+ 2. In this example w2 adds a block with ` bits to b2. Thus, c2 is included
in C+(t+ 3). In addition, b2 stores more than ` bits at time t+ 3, so it belongs to F (t+ 3).

C Definitions and Pseudocode

Here is the pseudocode of the algorithm in Section 5.

Algorithm 1 Definitions.

1: T imeStamps = N⇥⇧, with selectors num and c, ordered lexicographically.
2: Pieces = (E ⇥ N)
3: Chunks = Pieces⇥ T imeStamps, with selectors val, ts
4: encode : V! 2E⇥{1,2,...,n}, decode : 2E⇥{1,2,...,n} ! V
5: s.t. 8v 2 V, encode(v) = {h⇤, 1i, . . . , h⇤, ni}^
6: 8W 2 2E⇥N, if W ✓ encode(v) ^ |W | � k, then decode(W) = v

7: base objects:
8: 8i 2 {1, . . . , n}, boi = hstoredTS, Vp, Vf i s.t. Vf , Vp ⇢ Chunks, and storedTS 2 T imeStamps,
9: initially hh0, 0i, {hh0, 0i, hv0i , iii}, {}i.

13

Algorithm 2 Strongly regular register emulation. Algorithm for client c
j

.

1: local variables:
2: storedTS, ts 2 T imeStamp, WriteSet 2 Pieces
3: operation Write(v)
4: WriteSet encode(v)
5: hstoredTS, ReadSeti readValue() . round 1: read timestamps
6: n max(storedTS.num, max{n0 | hhn0, ⇤i, ⇤i 2 ReadSet})
7: ts hn+ 1, ji
8: || for i=1 to n . round 2: update
9: update(boi,WriteSet, ts, storedTS, i)

10: wait for n� f responses
11: || for i=1 to n . round 3: garbage collect
12: GC(boi,WriteSet, ts, i)
13: wait for n� f responses
14: return “ok”
15: end
16: operation Read()
17: hstoredTS, ReadSeti readValue()
18: while @ts � storedTS s.t. |{hts, vi | hts, vi 2 ReadSet}| � k
19: hstoredTS, ReadSeti readValue()
20: ts0 max

ts�storedTS

(|{hts, vi | hts, vi 2 ReadSet}| � k)

21: return decode({v | hts0, vi 2 ReadSet})
22: end

Algorithm 3 Functions used in strongly regular register emulation.

23: procedure readV alue()
24: ReadSet {}, T {}
25: || for i=1 to n
26: tmp read(boi)
27: ReadSet ReadSet [tmp.Vf [tmp.Vp

28: T T [{tmp.storedTS}
29: wait for n� f responses
30: return hmax(T),ReadSeti
31: end procedure
32: update(bo,WriteSet, ts, storedTS, i) ,
33: if ts  bo.storedTS
34: return
35: if |bo.Vp| < k . write a piece and remove old pieces
36: bo.Vp bo.Vp \ {hts0, vi 2 bo.Vp | ts0 < storedTS} [{hts, he, iii | he, ii 2WriteSet}
37: else if bo.Vf = {} _ 9ts0 < ts : hts0, ⇤i 2 bo.Vf . write a full replica
38: bo.Vf {hts, he, jii | he, ji 2WriteSet ^ j 2 {1, . . . , k}}
39: bo.storedTS max(bo.storedTS, storedTS)
40: GC(bo,WriteSet, ts, i) ,
41: bo.Vp {hts0, vi 2 bo.Vp|ts0 � ts} . keep only new pieces
42: bo.Vf {hts0, vi 2 bo.Vf |ts0 � ts}
43: if hts, ⇤i 2 bo.Vf . if Vf holds a full replica of my write
44: bo.Vf {hts, he, iii | he, ii 2WriteSet} . keep only one piece of it
45: bo.storedTS max(bo.storedTS, ts)

14

D Algorithm’s Correctness Proofs

Here we prove correctness of the algorithm in Section 5. Note that we prove here that the algorithm
satisfies strong regularity and FW-termination, which are stronger safety and liveness properties
than the one used in our lower bound (see Appendix A for details).

We start by proving the storage cost.

Observation 3. For every run of the algorithm, for every base object bo
i

, bo
i

.ts monotonically
increasing.

Lemma 4. Consider a run r of the algorithm, and two writes w1, w2, where w1 writes with times-
tamp ts1. If w1 �r

w2, then w2 sets its t̂s, to a timestamp that is not smaller than ts1.

Proof. By Observation 3, for each base object bo, bo.ts is monotonically increasing. Therefore, after
w1 finishes the garbage collection phase, there is a set S consisting of n � f base objects s.t. for
each bo

i

2 S, bo
i

.ts � ts. Recall that n = 2f + k, thus every two sets of n� f base objects have at
least one base object in common. Therefore, w2 gets a response from at least one base object in S
in its first phase, and thus sets t̂s = ts0 s.t. ts0 � ts.

Lemma 5. For any run r of the algorithm, for any base object bo at any time t in r, bo.V
p

does
not store more than one piece of the same write.

Proof. The writes perform the second phase at most one time on each base object bo, and in each
update they store at least one piece in bo.V

p

. And since they does not store in bo.V
p

during the
third phase, the lemma follows.

Lemma 6. Consider a run r of the algorithm in which the maximum number of concurrent writes
is c < k � 1. Then the storage at any time in r is not bigger than (2f + k)(c+ 1)D/k bits.

Proof. Recall that we assume that n = 2f + k and the size of each piece is D/k. Thus it su�ces to
show that there is no time t in r s.t. some base object stores more than c+ 1 pieces at time t.

Assume by way of contradiction that the claim is false. Consider the time t when some bo 2 N
stores c+2 pieces for the first time. Notice that |bo.V

p

|  c+1 < k till time t, and therefore, bo.V
p

does not contain more then one piece from the same write, and bo.V
f

= ? till time t0. Now consider
the write w that was invoked last among all the writes that store pieces in bo.V

p

at time t, denote
its piece by p. Since bo stores c+2 pieces at time t0, by Lemma 6, there must be two writes w1 and
w2 whose pieces p1, p2 are stored at time t in bo.V

p

, and both returns before w is invoked. Denote
their timestamps ts1 and ts2, and assume without loss of generality that ts1 > ts2. By Lemma 4,
w sets its t̂s to ts0 s.t. ts0 � ts1 > ts1. Now consider two cases. First, if p was added before p2,
then bo.ts > ts2 when p2 was added. A contradiction. Otherwise, p was added after p2. Thus, p2
was deleted in line 36 of the update when p was added. A contradiction.

Lemma 7. The storage is never more than (2f + k)2D bits at any time t in any run r of the
algorithm.

Proof. Each base object stores no more than 2k pieces at any time t in r. The lemma follows.

Lemma 8. Consider a run r of the algorithm with finite number of writes, in which all writes
correct. Then the storage is eventually reduced to (2f + k)D/k bits.

15

Proof. Consider a write w with the biggest timestamp ts in r. Since w is correct, and since writes
are wait-free, w returns, and eventually performs free on every base object. Consider a base object
bo s.t. w performs free on bo at time t. Notice that w deletes all pieces with smaller timestamps
than ts and set bo.ts = ts at time t. Now recall that bo ignore all updates with timestamp less than
bo.ts, and therefore, bo store only w’s piece at any time after time t. The lemma follows.

From Lemmas 6, 7, and 8 we get:

Corollary 3. The storage of the algorithm is bounded by (2f+k)2D bits, and in runs with at most
c < k concurrent writes the storage is bounded by (c+1)D/k bits. Moreover, in a run with a finite
number of writes, if all the writes are correct, the storage is eventually reduced to (2f +k)D/k bits.

We next prove the liveness property.

Lemma 9. Consider a fair run r of the algorithm. Then every write w invoked by a correct client
c
i

eventually completes.

Proof. Consider a correct client c
i

. The write w is divided into three phase s.t. in each phase, c
i

invokes operations on all the base objects, and waits for n�f responses. The run r is fair, so every
action invoked by c

i

on a correct base object eventually returns, and no more than f base objects
fail in r. Therefore, eventually c

i

receives n� f responses in each of the phases and returns.

Observation 4. When a piece from bo.V
p

is deleted, bo.ts is increased.

Lemma 10. If at time t, c
i

completes the second phase of write with timestamp ts, then for every
t0 > t for every S ✓ N s.t. |S| � n � f , exist write w with ts0 � ts s.t. at least k pieces of w are
stored in S.

Proof. Consider time t0. Let t̂s be the highest timestamp written by a write w that completed the
second phase by time t. It is su�cient to show the lemma hold for t̂s.

First note that 8bo, bo.ts  t̂s before time t, because no write with a larger timestamp than t̂s
started the third phase. This means that w’s update left at lest one piece in which bo it occurred.
Now consider a set S of n � f base objects, and since n = 2f + k, w’s update occurred in set S0

that contains at least k base objects in S.
If w wrote to V

p

, it was not overwritten by time t, because (1) no other write began free with
timestamp bigger than t̂s, and (2) since there is no base object bo s.t. bo.ts � t̂s, no write delete
w’s piece in the second phase. Therefore if w wrote to V

p

in all base objects in S0, the lemma holds.
Otherwise, w wrote k pieces to V

f

in base objects in some set S00 ✓ S0. Consider two cases:
First, there is base object bo0 2 S00 s.t. some write overwritten w’s pieces in bo0.V

f

before time t.
Since there is no write with timestamp bigger than t̂s that started the third phase before time t,
it is guarantee that k pieces with timestamp ts0 > t̂s stored in bo0.V

f

at time t, and the lemma
holds. Else, since w’s pieces stored in S0 \ S00 does not overwritten before time t, the lemma holds
(no matter if w performed the third phase or not).

Invariant 1. For any run r of the algorithm, for any time t in r, for any set S of n � f base
objects. Let ˆts

s

= max{bo.ts | bo 2 S}. Then there is a timestamp ts0 � ˆts
s

s.t. there are at least
k di↵erent pieces associated with ts0 in S.

16

Proof. We prove by induction. Base: the invariant holds at time 0. Induction: Assume that the
induction holds before the tth action is scheduled, we show that it holds also at time t. Assume
that the tth action is RMW on a base object bo, and consider any set S of n � f base objects. If
bo /2 S then the invariant holds. Else, consider the two possible RMW actions:

• The tth action is update. If no pieces are deleted, the invariant holds. If bo.ts is increased,
then consider the write with timestamp ts that is the the biggest timestamp among all writes
that complete the second phase before time t. Notice that bo.ts  ts at time t, and by Lemma
10, the invariant holds. The third option is that a piece p with timestamp ts0 > bo.ts of a
write w is deleted and bo.ts is not increased. Note that by Observation 4, such piece can be
deleted only from bo.V

f

, and since p is overwritten by k pieces with bigger timestamp, the
invariant holds.

• The tth action is free. If bo.ts is not changes, then the invariant holds. Else, Consider the
write with the biggest timestamp ts among all writes that complete the second phase before
time t. Note that bo.ts is set to a timestamp ts0  ts, so by Lemma 10, the invariant holds.

Lemma 11. Consider a fair run r of the algorithm. If there is a finite number of write invocations
in r, then every read operation rd invoked by a client c

i

eventually returns.

Proof. Assume by way of contradiction that rd does not return in r. By Lemma 9, the writes are
wait-free, and since the number of write invocations in r is finite, there is a time t in r s.t. no write
performs actions after time t. Therefore, any read that invokes readV alue() procedure after time
t receives a set S of values that is stored in a set of n � f base objects at time t. By invariant 1,
there is a timestamp ts s.t. there is at least k di↵erent pieces in S associated with ts, and ts > bo.ts
for all bo 2 S. Now since the every correct read rd invokes readV alue() infinitely many times in r,
rd returns. A contradiction.

The next corollary follows from Lemmas 9, 11.

Corollary 4. The algorithm satisfies the WF-termination property.

We now prove that the algorithm satisfies strong regularity.

Definition 8. For every run r, �
r

is a sequential run s.t. the writes in r are ordered in �
r

by their
timestamp, and every read in r that returns a value associate with timestamp ts, is ordered in �

r

immediately after the write that is associate with timestamp ts.

For simplicity we say the that v0 was written by write w0 that associated to timestamp 0 at time
0.

Lemma 12. Consider a run r, and a read rd that returns a value v. Consider also the timestamp
ts0 that rd obtains in line 20 (Algorithm 2). Then v is the value written by a write associated with
timestamp ts0 or v0 if ts0 = 0.

Proof. By the code, if ts0 = 0, then rd returns v0. Now notice that rd obtains at least k di↵erent
pieces associated with timestamp ts0, thus by decode definition, rd returns v.

Corollary 5. For every run r, �
r

satisfies the sequential specification.

17

Observation 5. Consider a write w that obtains ts and t̂s in the first phase, then ts > t̂s.

Lemma 13. For every run r, for every two writes w1, w2 with timestamp ts1, ts2. If w2 was invoked
after w1 finished the second phase, then ts1 < ts2.

Proof. First notice that for every base object bo, if a write w overwrites pieces of a write w0 in
bo, V

f

, that w’ timestamp is bigger than w0’s. And by Observation 5, if w deletes w0’s piece from
bo.V

p

, then it stores a piece with bigger timestamp than w0’s timestamp. Therefore, the maximal
timestamp in each base object is monotonically increasing. Now recall that in the second phase w1

performed update on n � f base object, and notice that after w1 performs update on base object
bo the maximal timestamp in bo is at lest as big as ts1. Now since two sets of n � f base object
have at least one base object in common, w2 picks ts > ts1.

Lemma 14. For every run r, for every two writes w1, w2 in r, if w1 �r

w2, then w2 is not ordered
before w1 in �

r

.

Proof. Follows immediately from Lemma 13.

Lemma 15. For every run r, for every read rd and write w1, if rd �r

w1, then w1 is not ordered
before rd in �

r

.

Proof. Assume that rd returns value that is associated with timestamp ts belonging to some write
w, and w1 is associated with timestamp ts1. Since rd returns w’s value, w begins the third phase
before rd returns. And since w1 was invoked after rd returns, w1 was invoked after w’s second
phase. Therefore, by Lemma 13, ts1 > ts, and thus w1 is ordered after w in �

r

. Recall that by the
construction of �

r

, rd is ordered immediately after w in �
r

, hence, rd is ordered before w1 in �
r

.

Lemma 16. For every run r, for every read rd and write w1, if w1 �r

rd, then rd is not ordered
before w1 in �

r

.

Proof. Consider a write w1 with timestamp ts1 and a read rd s.t. w1 �r

rd. Assume by way of
contradiction that rd is ordered before w1 in �

r

. Then rd returns a value with a timestamp ts that
is associated with a write w that is ordered before w1 in �

r

. By the construction of �
r

, ts1 > ts.
Now since w1 completed the third phase before rd invoked, and since by Observation 3, for each
bo, bo.ts is monotonically increasing, when rd invoked, for every set S of n � f base objects, the
maximal bo.ts of all bo 2 S is bigger than or equal to ts1, and thus bigger than ts. Therefore
rd set t̂s, in the first phase, to timestamp bigger than ts, and thus does not return w’s value. A
contradiction.

The next corollary follows from Corollary 5, and Lemmas 14, 15, 16.

Corollary 6. The algorithm simulates a strongly regular register.

The following theorem stems from Corollaries 3, 4, and 6.

Theorem 2. There is a FW-terminating algorithm that simulates a strongly regular register, which
storage is bounded by (2f+k)2D bits, and in runs with at most c < k concurrent writes, the storage
is bounded by (c+ 1)D/k bits. Moreover, in a run with a finite number of writes, if all the writes
are correct, the storage is eventually reduced to (2f + k)D/k bits.

18

E A (Simple) Safe and Wait-free Algorithm

We present here a simple storage-e�cient algorithm that ensures safe semantics, but not regularity.
Although this algorithm has no practical use, it shows that the impossibility result of Section 4
does not apply to a weaker safety property.

E.1 Algorithm

This algorithm simulates a wait-free and strongly safe MWMR register (see Appendix A) using
erasure codes (see Section 5). It stores exactly n pieces of the data, one in each base object. The
algorithm’s definitions are presented in Algorithm 4, and the algorithm of client c

j

can be found in
Algorithm 5.

We define T imestamps to be the set of timestamps hnum, ci, s.t. num 2 N and c 2 ⇧, ordered
lexicographically. We define Pieces to be the set of pairs consisting of an element from E (possible
outputs of the encode function) and a number, and Chunks = Pieces ⇥ T imestamps. Each base
object bo

i

stores exactly one value from Chunks, initially hhv0i , ii, h0, 0ii, where v0i is the ith piece
of v0.

Since memory is fault-prone, actions are triggered in parallel on all base objects. This parallelism
is denoted using ||for in the code. Operations then wait for n� f base objects to respond. Recall
that n = 2f + k, so every two sets of n� f base objects have at least k pieces in common. Thus, if
a write completes after storing pieces on n� f base objects, a subsequent read accessing any n� f
base objects finds k pieces of the written value (as needed for restoring the value), provided that
they are not over-written by later writes.

A write(v) operation (lines 1–9) first produces n pieces from v using encode, then reads from
n� f base objects to obtain a new timestamp, and finally, tries to store every piece together with
the timestamp at a di↵erent base object. For every base object bo, c

j

triggers the update RMW
function, which overwrites bo only if c

j

’s timestamp is bigger than the timestamp stored in bo.
A read (lines 13–19) reads the values stored in n � f base objects, and then tries to restore

valid data as follows. If c
j

reads at least k values with the same timestamp, it uses the decode
function, and returns the restored value. Otherwise, it returns v0. The latter occurs only if there
are outstanding writes, that had updated fewer than n � f base objects before the reader has
accessed them. Therefore, these writes are concurrent with c

j

’s read, and by the safety property,
any value can be returned in this case. The algorithm’s correctness is formally proven in Appendix
E.2.

Algorithm 4 Definitions.

1: T imeStamps = N⇥⇧, with selectors num and c, ordered lexicographically.
2: Pieces = (E⇥ N)
3: Chunks = Pieces⇥ T imeStamps, with selectors val, ts
4: encode : V! 2E⇥{1,2,...,n}, decode : 2E⇥{1,2,...,n} ! V
5: s.t. 8v 2 V, encode(v) = {h⇤, 1i, . . . , h⇤, ni}^
6: 8W 2 2E⇥N, if W ✓ encode(v) ^ |W | � k, then decode(W) = v

19

Algorithm 5 Safe register emulation. Algorithm for client c
j

.

1: operation write(v)
2: W encode(v)
3: R readValue()
4: ts hmax({ts|hhts, ⇤i, ⇤i 2 R}) + 1, ji
5: || for all hv, ii 2W
6: update(boi, hv, ii, ts) . trigger RMW on boi
7: wait for n� f responses
8: return “ok”
9: end

10: update(bo, w, ts) ,
11: if ts > bo.ts
12: bo hw, tsi

13: operation read()
14: R readValue()
15: if 9ts s.t. |{v | hts, vi 2 R}| � k
16: ts0 ts s.t. |{v | hts, vi 2 R}| � k
17: return decode({v | hts0, vi 2 R})
18: return v0
19: end
20: procedure readV alue()
21: R {}
22: || for i=1 to n
23: R = R [read(boi)
24: wait until |R| � n� f
25: return R
26: end procedure

E.2 Correctness proof

Lemma 17. The storage of the algorithm is nD/k.

Proof. The size of each piece is D/k. We have n base objects, and each base object stores exactly
one piece.

Lemma 18. The algorithm is wait-free.

Proof. There are no loops in the algorithm, and the only blocking instructions are the waits in lines
7 and 24. In both cases, clients wait for no more than n� f responses, and since no more than f
base objects can fail, clients eventually continue. Therefore, a client that gets the opportunity to
perform infinitely many actions completes its operations.

We now prove that the algorithm satisfies strongly safety. We relay on the following single
observation.

Observation 6. The timestamps in the base objects are monotonically increasing.

Definition 9. For every run r, we define the sequential run �
wr as follows: All the completed write

operations in r are ordered in �
wr by their timestamp.

Lemma 19. For every run r, the sequential run �
wr is a linearization of r.

Proof. Since �
wr has no read operations, the sequential specification is preserved in �

wr . Thus, we
left to show the real time order: For every two completed writes w

i

, w
j

in r, we need to show that
if w

i

�
r

w
j

, then w
i

�
�r w

j

.
Denote w

i

’s timestamp by ts. By Observation 6, at any point after w
i

’s return, at least n� f
base objects store timestamps bigger than or equal to ts. When w

j

picks a timestamp, it chooses a
timestamp bigger than those it reads from n�f base objects. Since, n > 2f , w

j

picks a timestamp
bigger than ts, and therefore w

j

is ordered after w
i

in �
rd

.

20

Definition 10. For every run r, for every read rd that has no concurrent write operations in r,
we define the sequential run �

rrd by adding rd to �
wr after all the writes that precede it in r.

In order to show that the algorithm simulates a safe register, we proof in Lemmas 20 and 21
that the real time order and sequential specification respectively, are preserved in �

rrd .

Lemma 20. For every run r, for every read rd that has no concurrent write operations in r, �
rrd

preserves r’s operation precedence relation (real time order).

Proof. By Lemma 19, the order between the writes in �
rrd are preserved, and by construction of

�
rd

the order between rd and write operations is also preserved.

Lemma 21. Consider a run r and any read rd that has no concurrent writes in r. Then rd returns
the value written by the write with the biggest timestamp that precedes rd in r, or v0 if there is no
such write.

Proof. In case there is no write before rd in r, since there are also no writes concurrent with rd,
rd reads pieces with timestamp h0, 0i from all base objects, and thus, returns v0. Otherwise, let w
be the write(v) associated with the biggest timestamp ts among all the writes invoked before rd in
r. Let t be the time when rd is invoked. Recall that rd has no concurrent writes, so all the writes
invoked before time t complete before time t and store there pieces in n � f base objects unless
the base objects already hold a higher timestamp. By Observation 6 and the fact that w has the
highest timestamp by time t, we get that at time t there are at least n� f base objects that store
a piece of v. Since n = 2f + k, every two sets of n� f base objects have at least k base objects in
common. Therefore, rd reads at least k pieces of v, and thus, restores and returns v.

Corollary 7. There exists an algorithm that simulates a safe wait-free MWMR register with a
worst-case storage cost of nD/k = (2f/k + 1)D.

21

