
Two Rounds RFID Grouping-Proof
Protocol

Sarah Abughazalah, Konstantinos Markantonakis, Keith Mayes
Smart Card Centre-Information Security Group (SCC-ISG)

Royal Holloway, University of London
Email: {Sarah.AbuGhazalah.2012, K.Markantonakis, Keith.Mayes}@rhul.ac.uk

Abstract—In this paper, we focus on a par-
ticular RFID application called a grouping-
proof, where an entity such as an RFID
reader generates a proof that two or more
tags have been scanned simultaneously. This
proof is then verified by the server, which
processes the tags’ data in the system. How-
ever, designing a grouping-proof protocol
is challenging for two reasons. Firstly, in
some cases, the server that authenticates the
tags is offline during the scanning process,
thus the tags’ data need to be assembled
in a valid grouping-proof to be authenti-
cated later. Secondly, a number of recent
grouping-proof protocols are either prone to
attacks, or they are not efficient in terms of
performance. In this paper, we present an
offline two rounds grouping-proof protocol
that provides immunity against well-known
attacks on RFID protocols and improves
tag’s memory and computing performance.
We analysed our protocol using a mechanical
formal analysis tool called Scyther, which
did not find any feasible attack(s). Finally,
an implementation of the proposed protocol
is conducted to measure the tag’s memory
space and computing time cost using an
IAIK UHF RFID tag emulator.

Index Terms—RFID, Secuty, Privacy,
Scyther, Grouping-proof, Protocol

I. INTRODUCTION

Radio Frequency Identification (RFID)
is a wireless technology that uses radio
signals to identify tags attached to objects
[1]. Ultar-High Frequency (UHF) passive
tags are wireless transponders that do not
have any power of their own and only
respond to the electromagnetic fields gen-
erated by nearby reader(s), its frequency
band ranges from 860 MHz to 950 MHz.
The reader communicates with the server
that manages and processes tags’ data [1].

One of the RFID standards that is
widely-used and associated with pas-
sive RFID tags is the ISO18000-6C
mostly known as EPCglobal UHF Class-1
Generation-2 (hereinafter denoted as EPC
Gen2). This standard is used with appli-
cations that require long distance com-
munication up to 10 meters such as in
supply chain for tracking purposes [2]. The
RFID tools used in this paper support this
standard.

One of the important features of RFID
technology is its ability to generate a proof
that two or more legitimate tags have been
scanned simultaneously by an RFID reader
within its broadcast range. The first proof
was introduced by Juels [3]. It involved
only two tags and was called the “yoking-
proof”. Since its introduction, the yoking-
proof has evolved to include multiple tags
[4] and is now known as the “grouping-
proof”. A grouping-proof can be used in
many systems including [5]:
• Hospitals: proving that a certain pa-

tient has been given his/her medica-
tions at the same time.

• Manufacturing: proving that devices
have been sold with their attachments.

• Access control: establishing that a
group of people with legitimate RFID
token were present.

• Supply chain: proving that tagged
products were shipped together in a
group.

In such systems, the server, which can
be an auditing-body or a verifier, might not
participate in the scanning process, but at
a later time, it verifies the legitimacy and

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77297996?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

existence of the tags.
In a typical grouping-proof scenario

where there is n RFID tags in the group
[6], the ith tag (Ti), i.e. 1 ≤ i ≤ n,
sends a message (Mi) to the reader, then
the reader transfers Mi to the next tag
(Ti+1) in the same group and waits for its
response. The reader repeats this operation
n times. Finally, when the reader receives n
responses, it creates the proof and sends it
to the server. Hence, the number of rounds
is proportional to the number of tags in the
group [6]. In this paper, we minimised the
number of rounds from n rounds to two
rounds.

II. MOTIVATION

There are two modes of verifying the au-
thenticity of RFID tags; online and offline.
In the online mode, the server that verifies
the proof is running during the protocol
execution, while in the offline mode the
server is not present during the scanning
process. Where the server is online, the
solution is straightforward as each tag can
authenticate itself directly to the server. On
the other hand, if the server is offline the
solution is challenging from the security
side as the generated proof is verified later
[7].

In this paper, we aim to propose
a grouping-proof protocol that is prov-
ably secure against well-known attacks on
RFID systems, and to improve tag’s perfor-
mance by providing the following features:
• Minimise the number of rounds to

reduce time delay.
• Concurrency, where each tag does not

need to wait for the Ti−1 message to
respond. Hence, dependency between
tags is omitted.

• Reading order independent, where the
tags can be verified by the server
in any order. This approach reduces
failure rates [8].

Many researchers have proposed RFID
yoking/grouping-proof protocols over the
last decade [3]–[16]. However, most of
them are shown to be insecure as illustrated
in [12], [17], and/or do not provide forward

secrecy as shown in [5]. In addition, the
proposed RFID grouping-proof protocols
are not efficient from a performance per-
spective as they require the tags to partic-
ipate in n rounds, the tags’ responses de-
pend on the predecessor tags, and require
large memory and computing costs such as
in [4], [5], [7], [13]–[15]

Moriyama et al. [16] proposed two
rounds RFID grouping-proof protocol,
however their protocol is vulnerable to
reader impersonation attack and did not
provide forward secrecy. Hence, develop-
ing a secure and efficient RFID grouping-
proof protocol is still challenging and
ongoing. A comparison between recent
grouping-proof protocols and our protocol
is shown in Section V.

A. Contributions

The main contributions of this study are:
1) Our proposed protocol is the only

two rounds grouping-proof proto-
col that is provably secure against
well known attacks on RFID tags
namely, replay attacks, imperson-
ation attacks, desynchronisation inci-
dents, location tracking and forward
secrecy invasion.

2) To the best of our knowledge, RFID
grouping-proof in previous attempts
did not combine the features stated
in the previous section to generate
an efficient RFID grouping-proof.

3) The proposed protocol is provably
secure against passive RFID well-
known attacks.

4) We implemented our proposed pro-
tocol to measure the tag’s operat-
ing performance, and we found that
our protocol consumes low memory
space and low computing time cost.

B. Structure of the paper

The rest of this paper is organised as
follows: In Section III, the protocol’s main
goals are discussed. In Section IV, the
protocol is explained in detail. In Section
V, the protocol is informally and formally

analysed. Section VI presents the exper-
imental work and performance measure-
ment. In Section VII, we offer concluding
remarks.

III. PROTOCOL GOALS

The proposed protocol should meet the
following goals:

1) Forward secrecy: The proposed pro-
tocol should ensure that if an attacker
successfully compromises the tag’s
memory, he/she will not be able to
trace previous communication ses-
sion(s) using previously known mes-
sages.

2) Protection against replay attacks:
An adversary can eavesdrop on the
communications between reader and
tag, obtain exchanged messages and
resend these messages repeatedly.
Therefore, any generated message
should be fresh to the protocol ses-
sion to protect against replay attacks.

3) Protection against desynchronisa-
tion: The proposed protocol should
recover from desynchronisation inci-
dents, when the attacker blocks the
exchanged message(s) or when mes-
sages are lost during transmission
due to system malfunction or com-
munication error.

4) Protection against location tracking:
The proposed protocol should con-
firm that the tag’s responses are not
static or linkable in order to prevent
attackers from tracking the tag’s lo-
cation.

5) Protection against reader/tag im-
personation attacks: The proposed
protocol should guarantee that the
reader’s and tag’s secret values can-
not be obtained by any attacker, thus
preventing an attacker from imper-
sonating the reader or the tag.

6) Authentication: The reader and each
tag in the grouping-proof should
confirm their legitimacy to the
server.

7) Matching: Only tags that belong to
a group participate in the proof, thus

reducing the time needed for the
server to verify the existence of each
tag.

8) Concurrency: The tags should only
depend on the reader’s message to
respond, and should not wait for the
predecessor tags messages.

9) Reading order independent: The
server verifies the proof regardless
of the order in which the tags were
scanned.

IV. THE PROPOSED PROTOCOL

The proposed protocol is discussed in
detail in this section.

A. System Scenario

The proposed system scenario is shown
in Fig. 1, and summarised as follows:

1) The server sends an encrypted times-
tamp t to the reader.

2) The reader acts as a filter that sepa-
rates the tags belonging to the group
from the tags that do not belong
to the group. It computes a Group
message to link the tags in the group.
Then, it broadcasts the Group mes-
sage to the tags.

3) The ith tag, i.e. 1≤ i≤ n, verifies the
Group message, if succeeds, it sends
two messages, namely the Group
message to prove its belonging to the
group, and the Server message to be
authenticated by the server.

4) When the reader receives n responses
within a pre-defined time window, it
verifies the Group message for each
tag, and generates the Proof con-
taining all the received Server mes-
sages. Then, it sends the Proof to the
server for validating the grouping-
proof later.

B. Assumptions

We present an RFID grouping-proof
protocol, which operates under the follow-
ing assumptions:
• We consider a passive adversary, who

has a complete control over all com-
munications in the protocol. However,

1- Timestamp(t) 2- t, Group msg

3- Group msg

3-Server msg4- Proof=Server-msgs

Fig. 1: System scenario

active attack, where the attacker phys-
ically tampers with the tag, is beyond
the scope of this paper.

• The tag can compute XoR, generate
a pseudo-random number (PRNG),
and calculate hash functions. Such
assumption can be implemented on
an IAIK UHF RFID tag emulator
discussed in detail in Section VI.

• The tags store the received readers’
random numbers to avoid replay at-
tacks.

• The reader contacts the tag through a
wireless channel that is susceptible to
attacks.

• The communication channel between
the reader and the server is secure,
for example it uses a secure HTTPS
connection.

• All the operations in the tag are
atomic, i.e., either all of the oper-
ations or none are processed. This
mechanism protects the tags if an
attacker disrupts the electromagnetic
field between the reader and the tag
or if the tag simply removed from the
proximity of the reader.

• The groups are pre-defined and static.
• The reader is a trusted entity and

tamper-resistant, for example, it has
a secure memory and a rigid access
control mechanism.

C. Notation

The notation used in the proposed pro-
tocol is as follows:
• The secret data stored in the ith tag

(Ti) are:
IDG: denotes the shared group unique
identity

TSG: denotes the shared group secret
value
IDi: denotes the ith tag’s unique iden-
tity
TSi: denotes the ith tag’s secret value

• The secret data stored in the reader
(R) are:
IDi: denotes the ith tag’s unique iden-
tity
KSR: denotes the reader’s private key
KPR: denotes the reader’s public key

• Other notation includes:
rx: denotes a random number gener-
ated by entity x
KS : denotes the server’s secret key
H(Z): the result of generating a hash
of data Z, where H: {0,1}∗ → {0,1}l
SignKSx

(Z): A signature on data Z,
signed using entity x private key
ts: denotes the server’s timestamp
tn : denotes an encrypted timestamp
n: denotes the number of tags in the
group

D. Protocol Description

The proposed protocol is divided into
two phases, the setup phase and the
grouping-proof phase.
• Setup phase: The manufacturer’s

server assigns the initial values in
the tags, the reader and the server.
For a specific group (G), each tag
stores (IDG, IDi, TSG, TSi), the
reader stores (IDi, KSR, KPR) for all
ith tag belong to group G, and the
server stores (IDG, IDi, TSG, TSi,
KS , KPR) for all ith tag belong to
group G.

• Grouping-proof phase: a protocol is
shown in Table I and works as fol-
lows:

1) The server (S) computes en-
crypted timestamps tn=EKS

(ts).
Each timestamp is valid for a
limited time-window, where the
reader should respond within
this time-window. The server
stores the encrypted timestamps
and time-window. Since the
communication channel between
the server and the reader is se-
cure, the server sends the current
encrypted timestamp (tn), IDG

and TSG to the reader.
2) The reader generates a fresh ran-

dom number rR, i.e.
rR ∈ {0,1}l, where l is the se-
curity parameter.

3) The reader computes two mes-
sages to link the tags chain, the
first message is MR

G=H(IDG, rR,
TSG), and the second message
is K= TSG ⊕ H(IDG ⊕ rR) to
inform the tags about the current
value of TSG in case of a desyn-
chronisation incident occurred.

4) The reader broadcasts rR, tn,
MR

G and K.
5) The ith tag Ti generates a fresh

random number ri,
i.e. ri ∈ {0,1}l.

6) Ti re-computes MR
G to check

that it belongs to the group. If it
succeeds, Ti performs the next
step. If it fails, this implies ei-
ther:
a) Ti has been desynchronised

in the previous session(s) re-
sulting in not updating the
value of TSG. In this case,
it needs to obtain the current
value of TSG from message
(K). If succeeds, Ti performs
the next step.

b) Ti does not belong to the
group if it fails to re-compute
message (K), therefore it
aborts the session.

7) Ti calculates:
Mi= H(IDi, ri, rR, TSi, tn) to be
included in the grouping-proof
and verified by the server.

8) Ti calculates:
Mi

G= H(IDG, ri, rR, TSG, IDi)
to prove to the reader that it
belongs to the group.

9) Ti updates TSj+1
i ← H(TSj

i),
where j is the current session,
and TSj+1

G ← H(TSj
G) to be

used in the next session j+1.
10) Ti sends ri, Mi and Mi

G to the
reader.
These steps are performed to
each ith tag in the group until
the reader receives n responses.

11) When the reader receives n
responses within a pre-defined
time window, it re-computes the
received messages (Mn

G) for all
n tags to confirm that only tags
belonging to the group are in-
cluded in the proof.

12) For each tag belonging to
the group, the reader gener-
ates Proof containing the re-
ceived messages (Mi ... Mn),
i.e. Proof= SignKSR

(tn, rR, r1 ...
rn, IDG, M1⊕...⊕Mn), and then
sends it to the server.

13) Later, the server verifies the
reader’s signature, checks the
timestamp and retrieves tags’
data based on the value of
IDG. Then, it computes the ex-
pected grouping-proof (Proof′ =
M1⊕...⊕Mn) regardless of the
order the tags were scanned,
and compares the result of
Proof′ with the received value of
(M1⊕...⊕Mn) in Proof. If there
is a match, the server believes
that all the tags in the grouping-
proof are present and legitimate.

14) The server updates:
TSj+1

i ← H(TSj
i) for all the

legitimate tags in the group, and
updates TSj+1

G ← H(TSj
G).

TABLE I: The proposed grouping-proof protocol (successful run)

Server Reader Ti

1- Generates tn
tn,IDG,TSG−−−−−−−−−−→

2- Generates rR
3- Computes:
MR

G=H(IDG,rR,TSG)
K= TSG ⊕ H(IDG ⊕ rR)

rR,tn,MR
G,K

−−−−−−−−−−→
5- Generates ri
6- Computes MR

G (and
K⊕H(IDG ⊕ rR) in case of no-
matching)
7- Mi= H(IDi,ri,rR,TSi,tn)
8- Mi

G= H(IDG,ri,rR,TSG,IDi)
9- Updates:
TSj+1

i ← H(TSj
i)

TSj+1
G ← H(TSj

G)
ri,Mi,M

i
G←−−−−−−−

11- Waits for n responses
Re-computes Mn

G
12- Generates Proof=
SignKSR

(tn,rR,r1...rn,IDG,M1⊕...⊕Mn)
Proof←−−−−

13- Verifies reader
and Checks:
Proof′=M1⊕...⊕Mn

14- Updates:
TSj+1

i ← H(TSj
i)

TSj+1
G ←H(TSj

G)

V. PROTOCOL ANALYSIS

In this section, we analyse the proposed
protocol in terms of both informal, and
formal analysis using Scyther tool [18].

A. Informal Protocol Analysis

Before start analysing the proposed pro-
tocol, there are some incidents that might
occur, and hence changing the execution of
the protocol such as:
• Missing tag(s): If the reader does not

receive a response from the 4th tag for
example, the reader informs the server
about the missing tag by including
the missing tag’s ID4 value, which
uniquely identifies the 4th tag, within
Proof. The reader generates Proof=
SignKSR

(t, rR, rn−1, IDG, M1 ⊕...⊕
Mn−1, ID4), then, sends Proof to the
server. The server retrieves the miss-
ing tag data based on IDG and ID4

values, and calculates Proof′ without
taking into account the 4th tag. The
server should also alert the system
about the missing tag.

• Generating an incomplete proof: If
the reader receives more than the ex-
pected n tags (for instance, the at-
tacker sends random messages), after
a specified time-window, the reader
will generate Proof without contain-
ing all the legitimate tags’ messages.
However, in this case, we recom-
mend that the reader continues the
verification process after sending the
first message Proof and then noti-
fies the server about the missed le-
gitimate tags’ messages that should
be included in Proof. For example,
the reader computes another message
Proof2= SignKSR

(rR, ri, IDG, Mi,
IDi), where ri and Mi were received
after sending Proof, and sends Proof2
to the server. Later, the server veri-
fies Proof2 first and authenticates the
missing tag(s) separately, then com-
putes the expected grouping-proof
Proof′ without taking into account
those tags within Proof2.

The proposed protocol attempts to meet

the goals discussed in Section III as fol-
lows:

1) Forward secrecy: The values of TSi

and TSG are updated after each run
in order to prevent forward secrecy
invasion using a hash function that
is irreversible. If an adversary com-
promises the tag Ti memory, he/she
will not be able to trace the previ-
ous communications of the tag as
(Mi)

j−1, (Mi
G)

j−1, (MR
G)

j−1 and
(K)j−1 involve the use of previous
secret values TSi and/or TSG, which
are not stored in the tag. The stored
updated values of TSi and TSG are
used in the calculation of the next
session and cannot be irreversible
as a result of using a hash func-
tion. Hence, the attacker cannot re-
compute the previous messages.

2) Protection against replay attacks: All
the messages contain random num-
bers to prevent the probability of
launching a replay attack success-
fully. The tags should confirm first
that the received reader’s random
number is not received previously.
The inclusion of the random num-
bers in the messages is vital to con-
firm that the messages are intended
for a specific reader or tag, which
originally generate rR and ri respec-
tively. Moreover, since ri and rR are
fresh random numbers, it is impos-
sible for the attacker to predict them
in the next session.
The messages MR

G and K sent from
the reader involve the reader’s ran-
dom number (rR) and an updated
value of (TSG), so if the attacker
re-sends the previous messages of
(MR

G)j−1 and (K)j−1, the tag will not
authenticate these messages as the
tag has received rR within MR

G)j−1

and (K)j−1 before, and the tag’s up-
dated value of TSG will not match
the old TSG within (MR

G)j−1.
Regarding the timestamp, the mes-
sage Mi contains a timestamp that
is encrypted by the server to avoid

predictable timestamps and is valid
for a limited time during the ses-
sion. Hence, the attacker cannot re-
send the previous Mi message as the
timestamp will not be valid.

3) Protection against desynchronisation
incidents: There are two scenarios,
where a desynchronisation of data
might occur, but the proposed pro-
tocol tackles these incidents as fol-
lows:
• If the attacker blocks the ith

tag messages (ri, Mi, Mi
G), the

server will not update TSi caus-
ing a desynchronisation of data
in the next session. However,
in the case of no matching, we
suggest that the server computes
a new value of TSi to find a
match until it reaches an up-
per limit, which can be set by
the system owner. If the upper
limit is reached, the server will
not authenticate Ti, and sends
a warning to the system owner
about the faulty tag.

• If the attacker blocks the
reader’s messages from reaching
the ith tag Ti, the server will
update TSG while Ti’s TSG

value will remain the same, thus
causing a desynchronisation
in the next session. However,
our protocol can prevent this
attack as the reader computes
an additional message (K) that
contains the current updated
value of TSG received from the
server, and can only be obtained
by the legitimate tag belonging
to the group (based on IDG).

4) Tag’s location tracking: The tags’
messages involve fresh random num-
bers, timestamps, and/or updated TSi

and TSG values, which means that
the responses are not static. Hence,
the attacker will not be able to track
the tag’s location. Moreover, even if
the ith tag does not update its values,
the tag’s messages will not be static

due to the existence of tag’s random
number (ri) and/or timestamp.

5) Protection against tag impersonation
attack: The adversary needs to be
in possession of secret values such
as IDi, IDG, TSi, and TSG, which
are not sent in clear, in order to
impersonate or clone Ti.

6) Protection against reader imperson-
ation attack: The attacker has to have
a valid digital signature private key
to impersonate a legitimate reader.
Moreover, the attacker cannot replay
the previous messages to the tags
and impersonate the reader as all the
messages contain fresh random num-
bers, and secret values only known to
the legitimate reader.

7) Authentication: The reader verifies
the existence of each tag in the
group based on Mn

G messages, and
the server verifies the legitimacy of
each tag in the group based on Mn

i

messages.
8) Matching: Our protocol ensures that

only the tags that belong to the
group participate in the proof via the
reader.

9) Concurrency: Reducing time delay
by allowing all the tags to compute
their messages without waiting for
the other tags’ responses; they send
their responses when they receive the
reader’s messages.

10) Reading order independent: The
reader generates the proof using an
XoR operator, so all the tags’ re-
sponses can be verified in random or-
der regardless of the order in which
the tags were scanned.

Inspired by [12], Table II demonstrates
a comparison between our protocol and the
other yoking/grouping-proof protocols in
terms of security. As shown in Table II, the
proposed protocol protects the system from
different attacks, and provides forward se-
crecy. Sundaresan et al. protocol [5] pro-
vides similar protection but it has major
issues in terms of performance as shown
in Table III. In Sundaresan et al. protocol

the number of rounds is proportional to the
number of tags, the tags need to compute
12 PRNG functions and the server needs
to perform O(n) computing operations to
identify the tags in the group, which im-
plies that their protocol is large in terms of
tag’s computing cost and server scalability
respectively, making their protocol heavy
to implement.

Inspired by [12] and [14], Table III illus-
trates the performance of the proposed pro-
tocols compared with the other grouping-
proof only. We took into account the per-
formance of the RFID tags not the reader.
Our protocol is efficient for the following
reasons: Firstly, it enhances performance
by engaging the tags in two rounds only as
in Moriyama et al. protocol [16]. However
Moriyama et al. protocol does not provide
forward secrecy; they assumed it is an open
problem. Also, any attacker can imperson-
ate the reader and causes the protocol to
fail as the reader does not provide any
proof of its identification to the tag and
the server. Secondly, our protocol provides
concurrency and reading order independent
features. Hence, reducing time delay and
failure rates respectively. Thirdly, the per-
formance of our protocol is appropriate
for RFID tags as it does not require mass
memory storage; it stores four values each
of which is 224-bit length, and requires
average computing time cost as shown in
Section VI . Fourthly, regarding the server
scalability, the server retrieves the tags’
data based on the value of group ID (IDG),
hence the computing cost for identifying a
tag in the server is O(1). In Chien et al.
protocol the server computing cost is also
O(1), but privacy is not a concern; identi-
fiers are sent in clear over the channel and
are included in the proof. This indicates
that the proposed protocol is scalable in
the server side unlike the other protocols.

B. Mechanical Formal Protocol Analysis

This section presents the mechanical
analysis of the proposed protocol using
Scyther tool [18]. The aim of this section is
to prove that the data exchanged between

TABLE II: Security comparison of yoking/grouping-proof protocols

Juels Saito Piramuthu Chien Bolotny Burmester Ma Sundaresan Lien Lopez2 Moriyama Sec.
IV

Forward secrecy × × × × × × × × × ×
Replay attack × × × × ×
Tag imper. × × × ×
Reader impers. × × × × ×
Tracking × ×

TABLE III: Performance comparison of grouping-proof protocols

Chien Bolotny Burmester Ma Sundaresan Lien Moriyama Sec.
IV

Rounds n n n n n n 2 2
Messages 5 5 11 5 4 8 4 3
Hashing - 2 2 - - 1 - 5*
PRNG 3 - - 12 12 1 3 1
stored data 2 3 4 4 9 2 3 4
Server tags’ identifi-
cation

O(1) O(n) O(n) O(n) O(n) O(n) O(n) O(1)

Reading order inde-
pendent

× × × × × ×

Concurrency × × × × × ×
*The ith tag might compute 6 hash functions in case it has been desynchronised

the tag and reader is secure, not to prove
the authenticity of the generated proof. We
omitted the message K from the script as
Scyther does not check for desynchronisa-
tion incidents.

1) Mechanical Formal Analysis Using
Scyther Tool: Scyther [18] is a mechanical
formal analysis tool that analyses protocols
under the assumption of perfect cryptog-
raphy. Perfect cryptography means using
cryptographic functions in the encryption
process, where the adversary learns noth-
ing from the encrypted messages unless
he/she knows the decryption key. Scyther
checks the secrecy and authenticity of the
transmitted data. Unlike other formal tools,
Scyther can verify protocols for an un-
bounded number of sessions, and all at-
tacks found are actual attacks on the model
[19]. Scyther has proved its capability in
finding vulnerabilities in many protocols,
such as in [20]–[22]

Scyther accepts the protocol description
as input and outputs a summary report and
displays a graph if there is an attack on
the protocol. Scyther can verify protocols
with an unbounded number of sessions. In
Scyther, the intruder is modeled via using
the channel (dy) [23]. The threat model

is defined as an intruder, who has full
control over the network, such that all mes-
sages sent by agents can be eavesdropped
by the intruder. Moreover, the intruder
may intercept, analyse, modify messages,
and/or send any message he/she composes
to other agents pretending to come from a
legitimate agent.

The script is shown in [24]. There are
three roles in the script including a server
(S), reader (R), and an ith tag (Ti). Each
role defines its variables of type timestamp,
nonce, data and ticket. Ticket is used to
substitute any unknown term for the entity.
There are two events namely, the send
event (send) and the receive event (recv)
followed by a sequence number; each send
event will have a corresponding recv event
in the other role. When specifying the
variables and the event, each role then
specifies the goals that the protocol at-
tempts to meet. These goals are within the
Claim section. In the protocol, there are
four Claim types:
• Secret: After a successful run of the

protocol, the values of the role should
be secret.

• Alive: If B runs a protocol with A and
it is successfully completed by a role

B, then role A has previously been
running the protocol.

• Niagree (non-injective agreement):
Means that A and B agreed that both
role are alive and agreed to the val-
ues of the variables. Moreover, non-
injective implies that several runs of
B may correspond to the same run of
A.

• Nisynch: Means the two events (send
and recv) must be executed in the
expected order as specified in the
specification.

After running the script, Scyther checks
the protocol based on the Claim require-
ments and did not find any feasible at-
tack(s) within bounds, which means no
attack was found within the bounded state
space.

VI. IMPLEMENTATION AND
PERFORMANCE MEASUREMENT

The aim of this section is to measure
the performance of the proposed protocol
on a resource restricted device such as an
RFID tag. The main measurements are:
(a) the tag’s memory space, (b) the tag’s
computing time cost and (c) the communi-
cation cost between the reader and the tag.
Communication cost refers to the time cost
for a tag to read/write data in its memory
and the time cost for a reader to read/write
data in the tag’s memory.

A. Lab Setup

Our proposed system consists of an EPC
Gen2-compliant RFID tag [25], an EPC
Gen2-compliant RFID reader [26], an AVR
ICE JTAG programmer and one laptop
(host computer) as shown in Fig. 2 (a).

For the tag side, we used a pro-
grammable, battery-powered RFID tag
called DemoTag developed by IAIK TU
Graz [25] shown in Fig. 2 (b). Demo-
Tag is used to emulate real RFID EPC
Gen2 passive tag and designed to add
some custom commands to the EPC Gen2
standard. The tag’s PCB board consists of
an UHF antenna, an analogue front end
and a programmable Atmel ATMega128
microcontroller.

The original DemoTag firmware pro-
vides an implementation of the EPC
Gen2 protocol, which is implemented as
a firmware library. The firmware running
on the DemoTag is written in C code via
the Crossworks for AVR IDE from Rowley
Associates [?]. The DemoTag has 128 KB
of flash memory, 4 KB of RAM, and 4
KB of non-volatile EEPROM memory. The
firmware is stored in the flash memory,
while the data such as tag’s ID and mes-
sages are stored in the EEPROM. The
tag stores one word (16 bits) per memory
bank.

We modified the original tag’s firmware
by adding more functions to conform with
our protocol. For example, adding func-
tions for calculating the hash on the tag’s
data, and updating the tag’s values. The up-
dated firmware is debugged then uploaded
to the flash memory of the microcontroller
in the form of .hex via the AVR ICE JTAG
programmer.

For the reader side, we used the Slate
(model R1260I) desktop reader developed
by CAEN [26]; it is an UHF RFID EPC
Gen2-compliant reader with integrated an-
tenna. Slate reader is embedded with an
EPC Gen2 reader firmware, which is con-
trolled by the host computer via a USB
link. For the generation of the reader’s
random number and messages, we used
Microsoft Visual Studio C#.

Finally, an RFID wireless link is es-
tablished between the DemoTag and the
reader.

B. Implementation process

Recall that we are implementing the
proposed protocol on the tag and reader
sides, the server side is not implemented as
it is not classified as a resource restricted
device.

The tag is provided with four 224-bit se-
cret values namely IDG, TSG, IDi and TSi,
which are stored in the tag’s EEPROM.

Before explaining the implementation
process, it is worth to discuss the commu-
nication overhead between the reader and
tag. The reader cannot write the messages

(a) The CAEN Slate Reader, the AVR JTAG
ICE Programmer and the RFID UHF Demo-
Tag

(b) The IAIK Graz UHF DemoTag

Fig. 2: System tools

in the tag’s memory in a single write
command as the tag’s is programmed to
write only one word (16 bits) of data in
a single write command. Therefore, in our
experiment, although each message is 224
bits long, we had to send the first 40 bits of
each message (rR, tn, MR

G and K), so the
reader generates 10 write commands only;
otherwise, the reader has to send 56 write
commands to write the whole messages in
the tag’s memory, and this will slow down
the communication performance dramati-
cally.

The reader starts by generating 224-bit
random number (rR) and 224-bit times-
tamp (t). Then, it computes two messages,
namely MR

G and K each of which is 224-bit
length (28-byte). Due to communication
overhead, the reader sends the first five
bytes of rR, t, MR

G and K to the tag in 10
WriteTagData commands to be written in
the tag’s memory. After the reader’s mes-
sages are written in the tag’s memory, the
tag generates a random number Ri (224-
bit), re-computes MR

G, if there is a match
with the received first five bytes, it com-
putes two messages namely Mi and Mi

G,
each of which is 224-bit length (28-byte),
and places (Ri, Mi, Mi

G) in the EEPROM
on the microcontroller ready to be sent by
demand. Then the tag updates its EEPROM
with new values of TSi and TSG. Later, the
reader issues 3 ReadTagData commands
to the tag to read the whole bytes of Ri,
Mi, and Mi

G, which were stored in the

TABLE IV: Communication cost

Tag Reader
Read 0.07ms 327ms
Write 868.4ms 2.6 sec

EEPROM; giving 672 bits in total.
To generate a random number in the tag,

we used the existing PRNG function that is
included in the original firmware. For the
hash function, we used a SHA-2 (SHA-
256) included in Crypto-avr-lib [27]. This
library provides special implementations
of cryptographic functions in C, which
respect the extreme limited resources of
microcontroller applications.

Regarding the reader, we used C# to pro-
gram the reader’s application. The reader’s
library is imported for communicating with
the tag, reading the tag’s memory and
writing data into the tag’s memory. This
library does not provide methods for gener-
ating random numbers and calculating hash
functions. Therefore, to generate random
numbers, we use .NET Framework for this
purpose, and to calculate hash on the tag’s
data we imported the same Crypto-avr-lib
SHA-256 library for the calculation of MR

G,
K and Mi

G. For the generation of Proof, the
reader’s program uses RSA for digitally
signing the grouping-proof provided by
.NET Framework.

C. Performance Measurement

The performance measurements are as
follows:

TABLE V: Time cost of hashing operations
(milliseconds)

MR
G Mi Mi

G TSi TSG

SHA-256 13.8 13.7 13.7 13.7 13.7
Total 68.6

1) DemoTag memory cost: In the pro-
posed protocol, the memory cost is:
• 348 bytes used from 4 KB EEP-

ROM memory for storing tag’s
data, reader’s messages, tag’s
messages, random numbers and
timestamp.

• 94 KB used from 128 KB
Flash memory to store the tag’s
firmware.

2) Communication cost is shown in
Table IV: According to [28], the
time cost for the tag to read one
word (16 bits) from its memory
is 0.007 ms. Hence, for the tag to
compute messages, the time required
to read rR, t, MR

G and K that were
written in the tag’s memory and are
160 bits in total is:

10 * 0.007 = 0.07 ms (160 bits /16
bits = 10)

The time cost for the tag to write
one word (16 bits) in its memory is
16.7 ms. Hence, the time required to
write rR, t, MR

G, K, Ri, Mi and Mi
G

values, which are 832 bits in total is:

52 * 16.7 = 868.4 ms (832 bits / 16
bits = 52)

Regarding the reader, we found that
the reader needs 2.6 seconds to write
20 bytes (160 bits) into the tag’s
memory in 10 write commands, and
327 ms to read Ri, Mi, and Mi

G (672
bits) in 3 read commands, each of
which reads 224 bits.

3) DemoTag computing cost: In a suc-
cessful run of the proposed proto-
col, the tag computes five SHA-256
functions. Table V shows that the

time cost of running five SHA-256
functions on the DemoTag is around
68.6 ms.
To calculate the total time for the
tag’s response to the reader’s query,
we used the equation in VI.
Hence, the total cost for running the
whole protocol on the tag is around
938 ms, which means that the tag
can respond to the reader’s query in
less than a second, and this relatively
demonstrates the efficiency of the
proposed protocol.

According to [29], the current design
of the EPC-Gen2 standard on the CAEN
reader has negatively affected the commu-
nication performance as the reader has to
perform a fresh singulation protocol each
time a tag is accessed, even if the tag is al-
ready has been accessed before. Moreover,
the DemoTag firmware is designed to write
only 16-bit word for each write command
and this has slew down the communication
performance in our protocol, although we
send only the first 5 bytes of each value.

VII. CONCLUSION

The challenges in designing a grouping-
proof protocol reside in the absence of
the server during the scanning process. To
this end, we designed a grouping-proof
protocol that tackles these challenges with
a low probability of delay in the responses
as the tags response in two rounds and
do not need to wait for the predecessor
tags messages, and with a low probability
of failure rate as the server verifies the
proof regardless the order in which tags
were scanned. Our solution also improves
existing related work by protecting the sys-
tem from different attacks and providing
forward secrecy, which is assumed to be an
open problem. To prove that the proposed
protocol achieves secrecy and authentic-
ity on the transmitted data, we formally
analysed our protocol using Scyther and
it did not identify any feasible attack(s).
Finally, we implemented the proposed pro-
tocol to measure the performance of the
tag’s memory, communication and com-

TABLE VI: Demotag response time

T response = T read +T R2,bitwise+ T hash + T write
T response = 0.07 + 0.96 + 68.6 + 868.4 = 938 ms

puting resources, and the results showed
that the protocol can be implemented with
relatively low memory space and low com-
puting time cost.

REFERENCES

[1] K. Finkenzeller, RFID Handbook: Fundamen-
tals and Applications in Contactless Smart
Cards and Identification, 2nd ed. New York,
NY, USA: John Wiley & Sons, Inc., 2003.

[2] EPCglobal, “EPC radio-frequency identity pro-
tocols class-1 generation-2 UHF RFID protocol
for communications at 860 MHz-960 MHz,”
2008.

[3] A. Juels, “Yoking-Proofs for RFID tags,” in Per-
vasive Computing and Communications Work-
shops, 2004. Proceedings of the Second IEEE
Annual Conference on. IEEE, 2004, pp. 138–
143.

[4] L. Bolotnyy and G. Robins, “Generalized
Yoking-Proofs for a group of RFID tags,” in
Mobile and Ubiquitous Systems: Networking
& Services, 2006 Third Annual International
Conference on. IEEE, 2006, pp. 1–4.

[5] S. Sundaresan, R. Doss, S. Piramuthu, and
W. Zhou, “A robust grouping proof protocol for
RFID EPC C1G2 tags,” Information Forensics
and Security, IEEE Transactions on, vol. 9,
no. 6, pp. 961–975, June 2014.

[6] D. Moriyama, “Provably secure two-round
RFID grouping proof protocols,” in RFID Tech-
nology and Applications Conference (RFID-
TA), 2014 IEEE. IEEE, 2014, pp. 272–276.

[7] P. Peris-Lopez, J. Hernandez-Castro, and T. Li,
Security and Trends in Wireless Identification
and Sensing Platform Tags: Advancements in
RFID. Hershey, PA 17033, USA: IGI Global,
2013, iSBN: 9781466619906.

[8] Y. Lien, X. Leng, K. Mayes, and J.-H. Chiu,
“Reading order independent grouping proof for
RFID tags,” in Intelligence and Security In-
formatics, 2008. ISI 2008. IEEE International
Conference on. IEEE, 2008, pp. 128–136.

[9] J. Saito and K. Sakurai, “Grouping proof for
RFID tags,” in Advanced Information Network-
ing and Applications, 2005. AINA 2005. 19th
International Conference on, vol. 2. IEEE,
2005, pp. 621–624.

[10] S. Piramuthu, “On existence proofs for mul-
tiple RFID tags,” in Pervasive Services, 2006
ACS/IEEE International Conference on. IEEE,
2006, pp. 317–320.

[11] H.-Y. Chien, C.-C. Yang, T.-C. Wu, and C.-
F. Lee, “Two RFID-based solutions to enhance
inpatient medication safety,” Journal of Medical
Systems, vol. 35, no. 3, pp. 369–375, 2011.

[12] P. Peris-Lopez, A. Orfila, J. C. Hernandez-
Castro, and J. C. Van der Lubbe, “Flaws on
RFID grouping-proofs. Guidelines for future
sound protocols,” Journal of Network and Com-
puter Applications, vol. 34, no. 3, pp. 833–845,
2011.

[13] M. Burmester, B. De Medeiros, and R. Motta,
“Provably secure grouping-proofs for RFID
tags,” in Smart Card Research and Advanced
Applications. Springer, 2008, pp. 176–190.

[14] C. Ma, J. Lin, Y. Wang, and M. Shang, “Offline
RFID grouping proofs with trusted timestamps,”
in Trust, Security and Privacy in Computing and
Communications (TrustCom), 2012 IEEE 11th
International Conference on. IEEE, 2012, pp.
674–681.

[15] S. Sundaresan, R. Doss, and W. Zhou, “Zero
knowledge grouping proof protocol for RFID
EPC C1G2 tags,” Computers, IEEE Transac-
tions on, vol. 64, no. 10, pp. 2994–3008, 2015.

[16] D. Moriyama, “A provably secure offline
RFID yoking-proof protocol with anonymity,”
in Lightweight Cryptography for Security and
Privacy. Springer, 2015, pp. 155–167.

[17] N. Bagheri and M. Safkhani, “Secret disclosure
attack on Kazahaya, a yoking-proof for low-cost
RFID tags,” IACR Cryptology ePrint Archive,
vol. 2013, p. 453, 2013.

[18] C. J. Cremers, “The Scyther tool: Verification,
falsification, and analysis of security protocols,”
in Computer Aided Verification. Springer,
2008, pp. 414–418.

[19] C. Cremers, Scyther: Unbounded Verification
of Security Protocols. ETH, Department of
Computer Science, 2007.

[20] A. M. Taha, A. T. Abdel-Hamid, and S. Tahar,
“Formal verification of IEEE 802.16 security
sublayer using Scyther tool,” in Network and
Service Security, 2009. N2S’09. International
Conference on. IEEE, 2009, pp. 1–5.

[21] A. Mathuria, G. Sriram et al., “New attacks on
ISO key establishment protocols,” IACR Cryp-
tology ePrint Archive, vol. 2008, p. 336, 2008.

[22] A. K. Ranjan, V. Kumar, and M. Hussain, “Se-
curity analysis of TLS authentication,” in Con-
temporary Computing and Informatics (IC3I),
2014 International Conference on. IEEE, 2014,
pp. 1356–1360.

[23] D. Dolev and A. C. Yao, “On the security
of public key protocols,” Information Theory,
IEEE Transactions on, vol. 29, no. 2, pp. 198–
208, 1983.

[24] S. Abughazalah, Scyther Script,
https://www.dropbox.com/s/z0t183z7cqq7f5h/
group4.spdl?dl=0.

[25] M. Aigner, T. Plos, and S. Coluccini, “Secure
semi-passive RFID tags-prototype and analy-
sis,” Bridge Project, Tech. Rep., 2008.

[26] CAEN, R1260I - Slate, http://www.caenrfid.it/
en/CaenProd.jsp?idmod=753&parent=73.

https://www.dropbox.com/s/z0t183z7cqq7f5h/group4.spdl?dl=0
https://www.dropbox.com/s/z0t183z7cqq7f5h/group4.spdl?dl=0
http://www.caenrfid.it/en/CaenProd.jsp?idmod=753&parent=73
http://www.caenrfid.it/en/CaenProd.jsp?idmod=753&parent=73

[27] AVR-Crypto-Lib, https://www.das-labor.org/
wiki/AVR-Crypto-Lib/en.

[28] K. Chiew, Y. Li, T. Li, R. H. Deng, and
M. Aigner, “Time cost evaluation for executing
RFID authentication protocols,” in Internet of
Things (IOT), 2010. IEEE, 2010, pp. 1–8.

[29] A. Arbit, Y. Oren, and A. Wool, “Toward
practical public key anti-counterfeiting for low-
cost EPC tags,” in RFID (RFID), 2011 IEEE
International Conference on. IEEE, 2011, pp.
184–191.

https://www.das-labor.org/wiki/AVR-Crypto-Lib/en
https://www.das-labor.org/wiki/AVR-Crypto-Lib/en

