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ABSTRACT
Attribute-based access control (ABAC) has attracted con-
siderable interest in recent years, resulting in an exten-
sive literature on the subject, including the standardized
XML-based language XACML. ABAC policies written in
languages like XACML have a tree-like structure in which
leaf nodes are associated with authorization decisions and
non-leaf nodes are associated with decision-combining al-
gorithms. In this paper, we consider the expressive power
of the rule- and policy-combining algorithms defined by the
XACML standard. In particular, we identify unexpected de-
pendencies between the combining algorithms and demon-
strate that there exist useful combining algorithms that can-
not be expressed by any combination of XACML combining
algorithms. We briefly discuss the decision operators defined
in the PTaCL language, an abstract language for defining
ABAC policies, and the advantages of replacing the XACML
combining algorithms with the PTaCL operators. Follow-
ing this, we review results in the literature on multi-valued
logic and introduce the notion of canonically complete pol-
icy languages. We discuss important practical advantages of
canonically complete policy languages, primarily in simplify-
ing policy specification and providing efficiently enforceable
policies. Finally, we propose a new policy authorization lan-
guage PTaCL(E) which is canonically complete and show
it is capable of expressing any arbitrary policy in a normal
form and discuss the advantages of using PTaCL(E) over
existing policy languages such as XACML and PTaCL.

CCS Concepts
•Security and privacy → Access control; Authoriza-
tion; Security requirements; •Software and its engineer-
ing → Specialized application languages;
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1. INTRODUCTION
One of the fundamental security services in computer sys-

tems is access control, which is a mechanism for constraining
the interaction between (authenticated) users and protected
resources. Generally, access control is implemented by an
authorization service, which includes an authorization deci-
sion function for deciding whether a user request to access
a resource (an “access request”) should be permitted or not.
In its simplest form an authorization decision function either
returns an allow or deny decision.

A common method for specifying access control models
and systems is through the use of authorization policies,
where a user request for a resource is evaluated against a
policy that defines which requests are authorized. Due to
the increasing rise of collaboration between industry part-
ners, there have been many proposed languages for the spec-
ification of authorization policies for “open” systems. This
has prompted a move away from traditional means of us-
ing user identities for making authorization decisions. In-
stead, authorization decisions are made based on user and
resource attributes, allowing greater flexibility as relation-
ships between specific users and resources no longer need to
be specified. The most widely used language of this type
is XACML [10, 13]. However, XACML suffers from poorly
defined and counterintuitive semantics [8, 11], and is incon-
sistent in its articulation of policy evaluation. PTaCL is
a more formal language for specifying authorization poli-
cies [5], providing a concise syntax for policy targets and
precise semantics for policy evaluation.

Typically, an authorization policy is defined by a target,
a set of child policies and a decision-combining algorithm.
The focus of this paper is on the way in which decisions (and
hence authorization policies) are combined through the use
of these decision-combining algorithms. The XACML stan-
dard specifies twelve rule- and policy-combining algorithms
which are used to combine authorization decisions. In prin-
ciple, customized combining algorithms can be written and
deployed to supplement the twelve standardized algorithms.
In contrast, PTaCL specifies only three policy operators for
combining decisions, and all other policy operators can be
represented in terms of these three operators. This is a pow-
erful tool for policy authors as it allows them to design and
implement new operators on an ad hoc basis. However,
one drawback of PTaCL (and XACML and other similar
languages) is that policies are defined by combining sub-
policies. In other words, policy specification is performed in
a bottom-up manner.
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We believe there will be, perhaps many, situations where
the policy writer knows what decision should be returned for
each authorization request, but is unable to construct the
desired policy using the operators provided by the policy
language. As a simple example, suppose we have policies
defined by the tables in Figure 1. Here we are assuming
there are two sub-policies P1 and P2, whose targets partition
the set of all authorization requests. The rows represent
values that are returned by evaluating P1, while the columns
represent values that are returned by evaluating P2. The
values 0, 1 and ⊥ represent the decisions “deny”, “allow” and
“not-applicable”, respectively. Thus, if P1 and P2 evaluate
to 0 and 1, respectively, the final result should be 0 if the
policies are combined using ⊕1 and ⊥ if combined using ⊕2.

⊕1 0 1 ⊥
0 0 0 0
1 0 1 ⊥
⊥ 0 ⊥ ⊥

⊕2 0 1 ⊥
0 0 ⊥ 0
1 ⊥ 1 ⊥
⊥ 0 ⊥ ⊥

Figure 1: Two combining operators for policies

PTaCL is known to be functionally complete, which means
it is possible, in principle, to construct the policies P1⊕1 P2

and P1 ⊕2 P2 by combining copies of P1 and P2 using the
PTaCL operators. It is also possible in XACML to define
custom policy-combining algorithms to directly construct⊕1

and ⊕2. However, it would be useful, both in theory and in
terms of implementation, to develop an authorization lan-
guage which is functionally complete, like PTaCL, and which
enables a policy writer to write down any desired policy di-
rectly using the operators of the language. In propositional
logic, for example, one can use the truth table for an arbi-
trary formula to write down a logically equivalent formula in
disjunctive normal form. In short, in this paper we wish to
develop a policy authorization language that has a “normal
form” in which any desired policy can be expressed.

In order to do this, we apply concepts introduced by
Jobe [6] in the study of multi-valued logics to the devel-
opment of a policy language for attribute-based access con-
trol. We construct a new authorization language based on
the operators in Jobe’s 3-valued logic and show how arbi-
trary policies can easily be expressed in a normal form as
a combination of Jobe’s operators. In summary, the main
contributions of this paper are:

• the identification of redundant XACML combining al-
gorithms;

• a thorough investigation into how expressive the
XACML combining algorithms are;

• an overview of how PTaCL operators can be used to
construct arbitrary policy operators; and

• the specification of a new policy authorization lan-
guage, PTaCL(E), based on Jobe’s operators, which
provides the means to express an arbitrary policy in a
normal form.

The first part of this paper provides a comprehensive
justification for the development of a new set of policy
combining operators, while the second part introduces new
operators chosen to address the shortcomings of existing

sets of operators. More specifically, in the following sec-
tion we provide a brief introduction to tree-structured lan-
guages for attribute-based access control policies, including
XACML and PTaCL, and notions of completeness for au-
thorization languages. In Section 3, we show there is signif-
icant duplication and redundancy in the XACML rule- and
policy-combining algorithms, in particular, we show only
two XACML rule-combining algorithms are required to ex-
press all of the XACML rule-combining algorithms. We then
conduct a detailed investigation into the expressiveness of
these algorithms, demonstrating that XACML is not func-
tionally complete. We briefly discuss the advantages of re-
placing the XACML combining algorithms with the PTaCL
operators. Then, in Section 4, we review concepts of com-
pleteness and normal forms for 3-valued logics. In Section 5,
we apply Jobe’s results on multi-valued logics to develop a
new language PTaCL(E) for specifying attribute-based ac-
cess control policies. We introduce a new policy authoriza-
tion language and a normal form for expressing policies in
this language, and discuss some of the advantages of using
this language. We conclude the paper with a summary of
our contributions and suggest ideas for future work.

2. BACKGROUND AND RELATED WORK
In the context of attribute-based access control (ABAC),

we assume there exists a set of attributes, each of which can
take a range of values. An authorization request is speci-
fied in terms of attribute name-value pairs. Given a set of
requests, an ABAC policy specifies whether each request is
authorized or not.

Much of the research on ABAC policies assumes that
policies are constructed from sub-policies. One sub-policy
might, for example, specify that some subset of requests is
allowed, while another sub-policy specifies that some subset
of requests is denied. Defining policies in this way inevitably
means that the sub-policies may “clash”, so research in this
area has focused on ways of resolving the conflicts that may
arise when combining policies.

There are two broad approaches, which we may label as
“policy algebras” [2, 14, 11, 12] and “tree-structured lan-
guages” [5, 13]. A policy algebra defines the semantics of a
policy in terms of the sets of requests it allows and denies.
Then sub-policies are combined by defining policy operators
that are defined in terms of set operations (such as inter-
section, union and set difference) on the sets of allowed and
denied requests. In contrast, a tree-structured language de-
fines what decision to return for each sub-policy and then
combines the decisions arising from the evaluation of sub-
policies using decision-combining algorithms.

Of course, there are strong parallels between the two ap-
proaches, and it is often possible to define exact correspon-
dences between policy operators and decision-combining al-
gorithms. Nevertheless, the popularity and widespread use
of XACML has led to more research on tree-structured lan-
guages in recent years (in comparison to policy algebras) [4,
5, 8, 13].



2.1 Tree-structured languages
Informally, we say a language is tree-structured if a policy

is specified by a decision-combining algorithm and a set of
child policies. A request is evaluated with respect to a pol-
icy by first computing a decision for each of the child poli-
cies and then combining those decisions using the decision-
combining algorithm.

More formally, we assume the existence of a set of re-
quests, defined in terms of attributes. Each policy specifies
a target defining, in terms of attribute values, the set of re-
quests to which a policy applies. A target t is evaluated with
respect to a request q. We write JtK(q) ∈ {0t, 1t} to indicate
the result of evaluating target t with respect to request q,
where

JtK(q) =

{
1t if the target is applicable,

0t otherwise.

We do not discuss here how target applicability is deter-
mined; the reader is referred to the literature for further
details [5, 13].

We define a set of (authorization) decisions
D = {0a, 1a,⊥a}, representing “allow”, “deny” and “not-
applicable”, respectively. Then an atomic policy has the
form (t, d), where t is a target and d is a decision. We define
the evaluation of an atomic policy (t, d) as

J(t, d)K(q) =

{
d if JtK(q) = 1t,

⊥a otherwise.

A policy may be represented as a triple (t, A, p), where t
is a target, A is a decision-combining algorithm and p =
〈p1, . . . , pk〉 is a tuple of policies. Then we define

J(t, A, p)K(q) =

{
A(Jp1K(q), . . . , JpkK(q)) if JtK(q) = 1t,

⊥a otherwise.

Henceforth, we will confine our attention to authorization
decisions, rather than target evaluation. Hence, we will sim-
plify the notation and use {0, 1,⊥} (that is, without the
subscript) to denote the set of authorization decisions.

In general, a decision-combining algorithm may take an
arbitrary number of inputs. It is convenient, in terms of
formal exposition, to assume that a decision-combining al-
gorithm is implemented using binary decision operators.
(Thus, we would apply a binary decision operator k − 1
times to evaluate a call to a decision-combining algorithm
with k inputs.)

Hence, we may visualize a policy as a binary tree, in which
the atomic policies are leaves and non-leaf nodes are target-
operator pairs. The policy P , for example(

t6, A2,
((
t5, A1, ((t1, d1), (t2, d2), (t3, d3))

)
, (t4, d4)

))
may be represented by the binary tree depicted in Figure 2.

Then policy evaluation, from an algorithmic perspective,
consists of assigning decisions to the leaf nodes, by deter-
mining whether the targets are applicable or not, and then
combining the decisions using the decision operators, until
a decision is obtained at the root node.

We say two policies p and p′ are equivalent, denoted by
p ≡ p′, if JpK(q) = Jp′K(q) for all requests q. To simplify the
notation, we will, henceforth, omit q when it is obvious from
context. We will also make use of the following terminology
[4] when describing decision operators.

(t1, d1) (t2, d2)

(t5, A1)
(t3, d3)

(t4, d4)
(t5, A1)

(t6, A2)

Figure 2: Policy tree

Definition 1. Let ⊕ : D×D → D be a decision operator.
Then

• ⊕ is commutative if d⊕ d′ = d′ ⊕ d for all d ∈ D;

• ⊕ is idempotent if d⊕ d = d for all d ∈ D, and quasi-
idempotent if d⊕ d = d for all d ∈ {0, 1};

• ⊕ is conclusive if d⊕ d′ ∈ {0, 1} for all d, d′ ∈ D, and
quasi-conclusive if d⊕ d′ ∈ {0, 1} for all d, d′ ∈ {0, 1};

• ⊕ is a ∪-operator if d⊕⊥ = d = ⊥⊕ d for all d ∈ D;

• ⊕ is a ∩-operator if d⊕⊥ = ⊥ = ⊥⊕ d for all d ∈ D;

• ⊕ is well-behaved if it is either a ∪- or an ∩-operator.

Any binary operator on the decision set {0, 1,⊥} can be
represented as a 3 × 3 array, as shown in Figure 3a. These
decision tables correspond to the XACML rule-combining
algorithms deny-overrides (do), permit-overrides (po), deny-
unless-permit (dup), permit-unless-deny (pud), and first-
applicable (fa) operators.

2.1.1 XACML
XACML [13] is the most commonly used authorization

language for implementing attribute-based access control in
the real world. An XACML rule corresponds to an atomic
policy (as defined in the previous section), where the “effect”
of the rule is the decision.1 Similarly, an XACML policy may
be represented as a triple (t, A, r), where t is a target, A is
a rule-combining algorithm and r = 〈r1, . . . , rk〉 is a tuple of
rules. Thus an XACML policy is a non-leaf node in which
all the child policies are leaf nodes (that is, rules). XACML
also defines policy sets, which are triples of the form (t, A, p),
where p = 〈p1, . . . , pk〉 is a tuple of policies, t is a target,
and A is a policy-combining algorithm. XACML policies
and policy sets are evaluated in exactly the same way: (re-
cursively) evaluate the “child” policies and then combine the
decisions.

XACML 3.0 defines 11 rule-combining algorithms [13, Ap-
pendix C]. XACML defines ordered and unordered versions
of most of the algorithms and also provides backward com-
patibility with previous versions of XACML. The decision
tables for the ordered, unordered and legacy versions of do,

1In this paper we do not consider XACML “conditions”,
mostly because this notion is inadequately constrained in
XACML 3.0. Indeed, a condition can be any boolean expres-
sion, including arbitrarily complex functions. In particular,
the notion of condition makes the notion of target redun-
dant, because any target can be expressed as a condition.



do 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

po 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

dup 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 0

pud 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 1

fa 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 ⊥

(a) Decision tables

Operator Idempotent ∪-operator Commutative Conclusive Quasi-conclusive

do, po Yes Yes Yes No Yes
dup, pud No No Yes Yes Yes
fa Yes Yes No No Yes

(b) Properties

Figure 3: XACML rule-combining algorithms do, po, dup, pud and fa

po, dup and pud are identical for the decision set {0, 1,⊥}.2
The one algorithm that is non-commutative (that is, the or-
der of rule evaluation matters) is first-applicable (fa). Hence-
forth, we will treat the XACML rule-combining algorithms
as decision-combining binary operators, as defined in Fig-
ure 3a. All five of the XACML decision operators in Fig-
ure 3a are ∪-operators (and thus well-behaved). Other prop-
erties of the XACML decision operators are summarized in
Figure 3b.

All of the XACML rule-combining algorithms have as-
sociated policy-combining algorithms which have identical
properties and produce the same decision tables3; the only
difference is that they take decisions returned by the eval-
uation of policies (as opposed to rules) as input. Thus, the
features and properties shown in Figure 3 also hold true for
the XACML policy-combining algorithms. There is one ad-
ditional policy-combining algorithm – only-one-applicable –
which does not have an associated rule-combining algorithm.
We do not consider this algorithm as it introduces a fourth,
indeterminate, decision, and does not appear to be very use-
ful.

2.1.2 PTaCL
PTaCL [5] is a tree-structured policy language intended

to provide a generic framework for specifying target-based
policy languages. Like XACML, it is defined (without inde-
terminacy) over a three-valued decision set, which makes it
useful for comparisons with and analysis of XACML.

PTaCL defines two unary operators and one binary op-
erator, whose decision tables are shown in Figure 4. The
unary operators ¬ and ∼ simply modify the ⊥ decision: the
former switches the values of 0 and 1, leaving ⊥ unchanged;
the latter transforms ⊥ to 0, leaving 0 and 1 unchanged.
These operators are used to implement policy negation and
deny-by-default policies, respectively. The binary operator
∧p corresponds to strong conjunction in the Kleene three-
valued logic [7]. It returns 0 if at least one of the operands
is 0, 1 if both operands are 1, and ⊥ otherwise.

2There are some minor differences in the way in which the
indeterminate value is handled. In this paper we do not con-
sider indeterminacy further. To do so would complicate the
exposition and we believe it is straightforward to extend our
work to include indeterminate values using techniques pro-
posed by Li et al. [8] (and since incorporated into XACML
3.0 [13]).
3For reference see Appendix C in the XACML standard [13].

∧p 0 1 ⊥
0 0 0 0
1 0 1 ⊥
⊥ 0 ⊥ ⊥

(a) ∧p

d ¬ d ∼ d
0 1 0
1 0 1
⊥ ⊥ 0

(b) ¬ and ∼

Figure 4: Decision operators in PTaCL

2.1.3 Policy representation
Tree-structured policies are evaluated in a bottom-up

fashion and they must also be written in this bottom-up
fashion: that is, by combining rules to form policies and
policies to form policy sets. However, this may not be the
most natural way of defining a policy. An administrator
might simply wish to specify a decision for each of the pos-
sible outcomes arising from the evaluation of sub-policies
P1, . . . , Pn. In particular, it would be natural to tabulate
the possible decisions that can arise from the evaluation of
P1, . . . , Pn, and for each row in the table, specify the value
that P should take, as shown in Table 1 below. We may
also view the decision tables in Figure 1 as two simple ex-
amples of a policy defined by the outcome of evaluating two
sub-policies.

P1 . . . Pn P
0 · · · 0 d1
0 · · · 1 d2
0 · · · ⊥ d2
... · · ·

...
...

Table 1: A policy decision table

It is not at all obvious how we would represent such a
policy by using P1, . . . , Pn as rules and the standard rule-
and/or policy-combining algorithms provided by XACML
or PTaCL’s decision operators. Moreover, as we will see
in Section 3, XACML is not functionally complete, so it is
possible to specify policies that cannot be represented in
XACML at all (unless bespoke algorithms are written to
cater for the policy).



2.2 Completeness properties
In an abstract sense, a policy may be thought of as some

function from the set of requests to the set of authorization
decisions. Table 1 is one possible representation of such a
function. The expressivity of a policy language is a mea-
sure of the language’s ability to represent an arbitrary func-
tion using the operators provided by the language. One of
the contributions of this paper is to show that XACML is
not functionally complete and to identify the limitations of
XACML as a policy specification language.

Some languages [5] and policy algebras [12] are known
to be functionally complete, in the sense that any arbitrary
function can be expressed as a policy in the language or
algebra. However, we believe that a practical policy spec-
ification language should also admit some kind of canoni-
cal representation of each policy, preferably a representa-
tion that is related to a policy’s decision table. (Here we
have in mind the correspondence between the truth table of
an arbitrary Boolean function and its expression in disjunc-
tive normal form.) Such a representation is likely to have
significant benefits in terms of policy specification and re-
quest evaluation. A second contribution of this paper is to
argue that PTaCL is unlikely to have a canonical representa-
tion for policies and to propose a set of decision-combining
operators for a tree-structured language that does have a
canonical representation.

3. XACML OPERATORS
In this section, we investigate what decision operators can

be constructed using do, po, dup, pud and fa. In doing so, we
characterize the expressive power of XACML policies. We
first make the following remark:

Remark 1. Any operator constructed using fa, po and do
will be an idempotent ∪-operator, since x⊕⊥ = ⊥⊕ x = x
for ⊕ ∈ {fa, po, do}. A corollary of this observation is that
the operators do, po and fa are indistinguishable when one
of the arguments is ⊥.

This seems somewhat counterintuitive, creates redun-
dancy, and also suggests that combinations of XACML op-
erators will tend to behave in similar ways. In the rest of
this section, we confirm these observations.

3.1 Dependencies
Interestingly, despite the fact that do and po are commu-

tative operators, it is possible to construct non-commutative
operators by combining these two operators. Specifically, we
have the following, somewhat unexpected, result, which as-
serts that the fa algorithm is redundant.

Proposition 1. For all rules r and r′,

r fa r′ ≡ r po (r do r′).

Proof. The proof follows by inspection of the decision
table in Figure 5.

Remark 2. The ability to construct fa from do and po
arises from the fact that do and po do not obey the iden-
tity x ⊕ (y ⊗ z) = (x ⊕ y) ⊗ (x ⊕ z), usually known as the
distributive law. Specifically,

0 po (1 do⊥) = 0 po 1 = 1,whereas

(0 po 1) do (0 po⊥) = 1 do 0 = 0;

d1 d2 d1 do d2 d1 po (d1 do d2) d1 fa d2
0 0 0 0 0
0 1 0 0 0
0 ⊥ 0 0 0
1 0 0 1 1
1 1 1 1 1
1 ⊥ 1 1 1
⊥ 0 0 0 0
⊥ 1 1 1 1
⊥ ⊥ ⊥ ⊥ ⊥

Figure 5: Encoding fa using do and po

and

1 do (0 po⊥) = 1 do 0 = 0,whereas

(1 do 0) po (1 do⊥) = 0 po 1 = 1.

We now show that dup and pud are also redundant. We
first define the rules 1 and 0, where, for all requests q,

J1K(q) = 1 and J0K(q) = 0

Rule 1 may be realized in XACML by defining a rule such
that the rule is applicable to every request and its effect is
“permit”; rule 0 may be realized in an analogous way. We
can then define the unary operators deny-by-default (dbd)
and permit-by-default (pbd), where

dbd(r) ≡ (0 po r) and pbd(r) ≡ (1 do r).

Note that dbd and pbd may be viewed as unary operators
on the decision set {0, 1,⊥}, where dbd(x) = pbd(x) = x if
x ∈ {0, 1}; dbd(⊥) = 0; and pbd(⊥) = 1. We can use dbd
and pbd to construct pud and dup.

Proposition 2. For all rules r and r′,

r pud r′ ≡ pbd(r do r′) and r dup r′ ≡ dbd(r po r′).

Proof. The proof for pud follows by inspection of the
decision table in Figure 6. A similar decision table can be
constructed for dup.

d1 d2 d1 do d2 pbd(d1 do d2) d1 pud d2
0 0 0 0 0
0 1 1 0 0
0 ⊥ 1 0 0
1 0 0 0 0
1 1 1 1 1
1 ⊥ 1 1 1
⊥ 0 0 0 0
⊥ 1 1 1 1
⊥ ⊥ ⊥ 1 1

Figure 6: Encoding pud using do and pbd

We have shown there is a significant amount of duplication
and redundancy between the 11 XACML rule-combining al-
gorithms. In particular, we have shown it is sufficient, for
the purposes of constructing new decision operators, to con-
sider the decision operators do and po, together with the
constant rules 0 and 1, and the unary operators dbd and
pbd.



3.2 Incompleteness
Any XACML policy set is constructed by combining

XACML policies using policy-combining algorithms. The
decision obtained by evaluating an XACML policy set is de-
termined by the action of the policy-combining algorithm on
decisions. Given the way in which policy evaluation works
in XACML, this is equivalent to asking what functions we
can build using {0,1, dbd, pbd, do, po}. We have seen that
do and po essentially act as logical AND and OR on the set
{0, 1}; and we have seen that we can define two unary oper-
ators (dbd and pbd) for policies, which correspond to unary
operators on {0, 1,⊥}.

There are two types of operators, likely to be useful in
practice, that cannot be constructed using the XACML op-
erators.

• A ∩-operator ⊕ has the property that x⊕⊥ = ⊥⊕x =
⊥ for any x ∈ {0, 1,⊥}. In this context, we do not
make a conclusive decision if at least one of the inputs
is unknown. The operators do′ and po′ in Figure 7 are
examples of this type of operator.

• The second type of operator has the property that a
conclusive decision is returned whenever one is implied
by at least one of the arguments. In this context, ⊥ is
interpreted as a value that could be either 0 or 1 but
is not known at the time of evaluation. Thus 1 po⊥ =
⊥ po 1 = 1, since 1 po x = x po 1 = 1 for any x ∈
{0, 1}; similarly 0 do ⊥ = ⊥ do 0 = 0. The operators
do′′ and po′′ in Figure 7 are examples of this type
of operator. Note that do′′ is equivalent to ∧p (the
conjunction operator in PTaCL).

More formally, we have the following result.

Proposition 3. It is not possible to construct ∩-
operators using the XACML operators.

Proof. The proof follows from the following observa-
tions: (i) all the binary XACML operators are ∪-operators;
(ii) any combination of ∪-operators is itself a ∪-operator
(since x⊕⊥ = x for any x ∈ {0, 1,⊥} and any ∪-operator⊕);
(iii) the two unary operators remove ⊥; and (iv) x⊕⊥ 6= ⊥
and ⊥ ⊕ x 6= ⊥ for any x ∈ {0, 1} for any ∪-operator ⊕.
Thus it is impossible to construct an operator in which
x⊕⊥ = ⊥.

do′ 0 1 ⊥
0 0 0 ⊥
1 0 1 ⊥
⊥ ⊥ ⊥ ⊥

do′′ 0 1 ⊥
0 0 0 0
1 0 1 ⊥
⊥ 0 ⊥ ⊥

po′ 0 1 ⊥
0 0 1 ⊥
1 1 1 ⊥
⊥ ⊥ ⊥ ⊥

po′′ 0 1 ⊥
0 0 1 ⊥
1 1 1 1
⊥ ⊥ 1 ⊥

Figure 7: Commutative, idempotent operators that cannot
be constructed using XACML operators

We have shown there is a significant amount of duplication
and redundancy in the XACML rule-combining algorithms.

Specifically, only do and po are required to express all 11
combining algorithms. We have also shown that XACML is
not functionally complete, and there are operators of practi-
cal relevance that cannot be constructed using the XACML
operators.

In fact, there are only 22 binary quasi-idempotent oper-
ators that can be constructed from the XACML operators
(of the 192 that are possible). These operators fall into one
of four families: (i) six do operators; (ii) six po operators;
(iii) five fa operators; and (iv) five la operators. Further
details can be found in the appendix.

It is interesting to note that there is no way to negate
policy decisions in XACML. Quite apart from the general
incompleteness of XACML, the inability to negate decisions
seems to be significant practical drawback to XACML, as
negation is a useful unary policy operator in practice.

3.3 Using PTaCL operators
Crampton and Morisset showed that the three-valued

logic expressed over the set {0, 1,⊥} and defined by the
operators ∧p,¬ and ∼ (Figure 4) is functionally complete.
Essentially, they proved that the PTaCL operators could be
used to construct the operators of a logic that was known
to be functionally complete.

Given that PTaCL is functionally complete, there appears
to be a good case for using the PTaCL operators in a lan-
guage like XACML. The unary operator ∼ is already im-
plicitly defined in XACML (as dbd), thus we only need to
consider adding ∧p and ¬ to the minimal set of XACML
combining algorithms {do, po}. (Recall fa, pud and dup can
be defined in terms of do and po.) It is easy to see that
we cannot achieve functional completeness by adding just
¬ or just ∧p to the set of XACML operators. In the case
of ¬, we would still be unable to construct ∩-operators, as
there is still no operator that can change a conclusive deci-
sion into ⊥. On the other hand, if we include ∧p but not
¬, we are unable to reverse the 0 and 1 decisions. In short,
we must include both operators if we wish to make XACML
functionally complete.

Given that PTaCL is functionally complete anyway, it
seems pointless to provide po, as do (or any of the other
10 XACML operators). In particular, we can define the fol-
lowing operator

d ∨p d
′ def= ¬((¬d) ∧p (¬d′)).

It is then possible to show that

d po d′ ≡ (d ∨p (∼d′)) ∧p ((∼d) ∨p d
′), and

d do d′ ≡ ¬((¬d) po (¬d′)).

In other words, there appears to be a good case, at least
from the perspective of functional completeness, for defining
only three policy operators in an ABAC language such as
XACML: negation, deny-by-default, and a form of deny-
overrides that only returns 1 when both arguments are 1.

It would be easy to write three custom XACML combining
algorithms to implement the PTaCL operators. (The front-
end of an XACML-based system could continue to expose
specific algorithms (such as the usual deny-overrides and
permit-overrides), if required by the application, but these
can be compiled down into the three basic operators.) More
complex policy-combining algorithms can be constructed, as
required, from the three basic operators. However, it is still



far from obvious how one would express an arbitrary policy
decision table as a policy defined using the PTaCL operators.

4. CANONICAL COMPLETENESS IN
MULTI-VALUED LOGICS

In this section, we introduce the theoretical foundations,
based on results of Jobe [6], for developing an authorization
language that is functionally complete and admits a simple
normal form for policies, enabling the author of a policy
to simply write down any desired policy from its decision
table. We will use these foundations to propose a new set of
policy operators for an ABAC language whose policies are
evaluated in the same way as PTaCL and XACML.

4.1 Canonical suitability
Let L be a logic associated with a set V of m ordered

values, {v1, . . . , vm}, such that v1 < v2 < · · · < vm. Then L
is canonically suitable if and only if there exist in L two for-
mulas φmax and φmin of arity 2 such that φmax(x, y) returns
max {x, y} and φmin(x, y) returns min {x, y}.

Example 1. The 2-valued logic with values 0 and 1, and
operators ∨ and ¬, representing disjunction and negation,
respectively, is canonically suitable: φmax(x, y) is simply
x ∨ y, while φmin(x, y) is ¬(¬x ∨ ¬y) (that is, conjunction).

If a logic is canonically suitable, we will write φmin(x, y)
and φmax(x, y) using infix binary operators: xfy and xgy.
For a 3-valued canonically suitable logic, with values 1, 2, 3,
the truth tables for x f y and x g y are shown in Figure 8.

x y x f y x g y
3 3 3 3
3 2 2 3
3 1 1 3
2 3 2 3
2 2 2 2
2 1 1 2
1 3 1 3
1 2 1 2
1 1 1 1

Figure 8: Truth tables for f and g in a 3-valued canonically
suitable logic

4.2 Selection operators and functional
completeness

A formula containing n variables in an m-valued logic, is
completely specified by a truth table containing n columns
and mn rows. However, not every truth table may be rep-
resented by a formula in a given logic. A logic is said to
be functionally complete if for every positive integer n and
every truth table containing n columns, there is a formula
in the logic containing n variables whose evaluation corre-
sponds to the truth table. We have seen that XACML is
not functionally complete, while PTaCL is.

A selection operator Sj
i (x1, . . . , xn) is an n-ary operator

whose truth table has value vj (1 6 j 6 m) in row i (1 6 i 6
mn), and v1 in all other rows.4 (Note that S1

i (x1, . . . , xn) is
4Jobe called these J-operators; we prefer the more descrip-
tive term “selection operator”.

the same for all i.) Illustrative selection operators are shown
in Figure 9 for a 3-valued logic with values 1, 2, 3.

S2
2(x) S2

3(x)
1 1
2 1
1 2

S3
2(x, y) S2

6(x, y)
1 1
3 1
1 1
1 1
1 1
1 2
1 1
1 1
1 1

Figure 9: Selection operators S2
2(x), S2

3(x), S3
2(x, y), and

S2
6(x, y)

Given the truth table of function f : V n → V , we can
write down an equivalent function in terms of selection op-
erators. Specifically, let

I = {(i, j) : row i in f ’s truth table contains value vj > v1} ;

then f(x1, . . . , xn) is equivalent to
j

(i,j)∈I

Sj
i (x1, . . . , xn),

because, informally, the effect of this function is to take the
maximum value in each row of a table comprising selection
operators chosen specifically to produce the correct value in
the ith row. Jobe established a number of results connect-
ing the functional completeness of a logic with the unary
selection operators. These results are summarized in the
following theorem.

Theorem 1 (Jobe [6, Theorems 1, 2; Lemma 1]).
A logic L is functionally complete if and only if each unary
selection operator is equivalent to some formula in L.

The proofs of Jobe’s results are by induction and con-
structive. Informally, if each unary selection operator is
equivalent to some formula in L, then we can construct a
formula (in L) for any selection operator; and if we can con-
struct a formula for any selection operator, then we can con-
struct a formula for an arbitrary truth table. More formally,
we write φj

i (x1, . . . , xn) to denote the formula (in L) whose

truth table is that of the selection operator Sj
i (x1, . . . , xn).

(Note that such a formula may not exist for a given logic.)
Given φj

i (x) and φj
i (x1, . . . , xn) for all i, j, we can construct

φj
i (x1, . . . , xn+1). Specifically,

φk
(i−1)m+j(x1, . . . , xn+1) ≡ φk

i (x1, . . . , xn) f φk
j (xn+1), (1)

with 1 6 k 6 m, 1 6 i 6 mn, and 1 6 j 6 m. (Note
that (i− 1)m+ j takes values from 1 to mn+1 inclusive, as
required.)

To see the intuition behind this construction, consider the
effect of calculating Sk

i (x1) f Sk
j (x2). We may construct an

m×m table, with the rows indexed by the values in the truth
table for Sk

i (x1) and the columns indexed by the values in
the truth table for Sk

j (x2). The entry in the rth row and
cth column (by definition of f) is k if r = i and c = j and
1 otherwise. Writing out this two-dimensional table as a



truth table with a single column, we obtain the truth table
for Sk

3(i−1)+j . Using S2
2(x) and S3

2(y) from Figure 9, for

example, and computing S2
2 f S3

2 , we obtain the following
table:

f 1 1 2
1 1 1 1
2 1 1 2
1 1 1 1

which may be written out as a truth table with a sin-
gle column, corresponding to S2

6(x, y), as expected (com-
pare last column in Figure 9). More generally, in (1),
Sk
i (x1, . . . , xn) f Sk

j (xn+1) represents the construction of a
table with mn rows and m columns, with truth values in-
dexed by the values in the truth table for Sk

i (x1, . . . , xn) and
columns indexed by the truth table for Sk

j (xn+1).

4.3 Normal form
The normal form of formula φ in a canonically suitable

logic is a formula φ′ that has the same truth table as φ and
has the following properties:

• the only binary operators it contains are g and f;

• it may contain arbitrary unary operators (defined in
terms of the unary operators of the logic);

• no binary operator is included in the scope of a unary
operator;

• no instance of g occurs in the scope of the f operator.

In other words, given a canonically suitable logic L contain-
ing unary operators ]1, . . . , ]`, a formula in normal form has
the form

rj

i=1

sk

j=1

]i,jxi,j

where ]i,j is a unary operator defined by composing the
unary operators in ]1, . . . , ]`. In the usual 2-valued propo-
sitional logic with a single unary operator (negation) this
corresponds to disjunctive normal form.

A canonically suitable logic is canonically complete if ev-
ery unary selection operator can be expressed in normal
form. It is known that there are canonically suitable 3-
valued logics that are: (i) not functionally complete [6, 9];
and (ii) functionally complete but not canonically com-
plete [6, Theorem 4].

Consider now the 3-valued logic E, whose operators ∧e,
E1 and E2 are defined in Figure 10a. It is easy to establish
that

x f y ≡ x ∧e y and x g y ≡ E2(E2(x) ∧e E2(y)).

Thus E is canonically suitable [6, Theorem 6]. Henceforth,
we will write x ∨e y to denote E2(E2(x) ∧e E2(y)). The
normal-form formulas for the unary selection operators are
shown in Figure 10b. (Note that S1

i is the same for all i.)
Thus E is functionally and canonically complete [6, Theorem
7].

5. A CANONICALLY COMPLETE
LANGUAGE FOR ABAC POLICIES

We can immediately see that XACML is not canonically
suitable, essentially because f must be a ∩-operator and

x E1(x) E2(x)
3 3 1
2 1 2
1 2 3

∧e 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

(a) Operators

S1
i (x) x ∧e E1(x) ∧e E2(x)

S2
1(x) E1E2(x) ∧e E1E2E1(x)

S2
2(x) x ∧e E2(x)

S2
3(x) E2E1(x) ∧e E1(x)

S3
1(x) x ∧e E1(x)

S3
2(x) E2E1(x) ∧e E1E2E1(x)

S3
3(x) E1E2(x) ∧e E2(x)

(b) Normal forms for the unary selection operators

Figure 10: Jobe’s logic E

such operators cannot be constructed using XACML com-
bining algorithms (Proposition 3). (We have already seen
that XACML is not functionally complete.)

While there is clearly an argument, based on functional
completeness, for using PTaCL operators as the basis for a
language to express ABAC policies, we still face the issue of
actually expressing the desired policies in that language. It
is all very well providing a set of functionally complete oper-
ators, but many policy authors may not be able to translate
the desired policy into one using these operators.

The functional completeness of PTaCL implies that ev-
ery unary selection operator has an equivalent formula in
PTaCL. However, it is not clear that every unary selection
operator has an equivalent formula in PTaCL that is in nor-
mal form.5 Faced with this issue, we can adopt one of two
approaches:

• We could try to determine whether each selection op-
erator does indeed have an equivalent PTaCL formula
that is in normal form, thus establishing that PTaCL
is canonically complete.

• Alternatively, we can ask whether the PTaCL opera-
tors could be replaced with the operators from a logic
that is known to be functionally and canonically com-
plete.

We will adopt the latter approach, arguing that Jobe’s logic
E provides a suitable basis for a canonically complete lan-
guage for ABAC policies. As well as obtaining functional
and canonical completeness, we argue that the operators E1

and E2 have a natural interpretation in the context of access
control.

5The fine-grained integration algebra (FIA) [12] is a
functionally-complete policy algebra. The algebra defines
two constants (one of which can be derived from the other),
one unary operator and two binary operators. However, the
emphasis on this work is very much on “integration” of mul-
tiple policies, rather than top-down specification of policies.
Moreover, it is not clear how easily FIA can be integrated
with standard XACML or whether it supports a normal form
for policies.



The PTaCL(E) language, then, defines atomic policies and
policies in exactly the same way as PTaCL. That is, an
atomic policy has the form (t, d), where t is a target and
d ∈ {0, 1,⊥}. We assume 0 < ⊥ < 1, which corresponds
with an intuitive understanding of the respective authoriza-
tion decisions. Then a PTaCL(E) policy may be viewed
as a formula in a propositional 3-valued logic, in which the
variables correspond to atomic policies. A valuation on the
variables is induced by the evaluation of a request, with
atomic policy variable (t, d) evaluating to either d ∈ {0, 1}
or ⊥, depending on whether the target is applicable or not
(exactly as described in Section 2.1). In short, an atomic
policy in PTaCL(E) is analogous to an XACML rule or an
atomic PTaCL policy.

In the context of PTaCL(E), the values 1, 2, 3 in Jobe’s
logic are translated into 0,⊥, 1. The ∧e operator is a form
of deny-overrides and E2 negates the two conclusive deci-
sions. Specifically, the PTaCL(E) operators ∧e and E2 are
equivalent to the PTaCL operators ∧p and ¬, respectively.
Note also that

E1(x) ≡ (x ∨p ⊥) ∧p (∼(x ∨p ¬x)). (2)

It is this equivalence, in fact, that Crampton and Morisset
used to establish that PTaCL is functionally complete.6

The unary operator E1 has the effect of flipping the values
corresponding to 0 and ⊥. Thus, we have

JE1(t, 1)K(q) =

{
1 if JtK(q) = 1t,

0 otherwise.

In other words, E1 acts as a deny-by-default operator. Sim-
ilarly

JE2E1E2(t, 0)K(q) =

{
0 if JtK(q) = 1t,

1 otherwise.

and E2E1E2 acts as an allow-by-default (unary) operator.
The above observations suggest that Jobe’s operators

make an intuitively reasonable set of operators on which
to base a 3-valued authorization language. Thus PTaCL(E)
is functionally complete, its operators have intuitively rea-
sonable interpretations, and it is canonically complete. We
now illustrate why having a normal form may make it sim-
pler to construct ABAC policies. Specifically, we represent
the operator ⊕2 from Figure 1 in normal form using Jobe’s
operators. To reiterate, it is impossible to represent ⊕2 as
any combination of XACML operators and it is difficult to
see how to express ⊕2 using the PTaCL operators (although
it is theoretically possible to do so). We first represent the

6It is easy to establish that the PTaCL formula ∼x is equiv-
alent to the PTaCL(E) formula x ∧e E1(x). In other words,
it is far more straightforward to represent the PTaCL oper-
ators using the operators in Jobe’s logic, rather than repre-
senting the operators in Jobe’s logic using the PTaCL oper-
ators (compare equation (2)).

operator as a truth table:

x y x⊕2 y
0 0 0
0 ⊥ 0
0 1 ⊥
⊥ 0 0
⊥ ⊥ ⊥
⊥ 1 ⊥
1 0 ⊥
1 ⊥ ⊥
1 1 1

By first representing ⊕2 as a truth table, it is easy to estab-
lish that it is equivalent to

S⊥3 (x, y)∨eS⊥5 (x, y)∨eS⊥6 (x, y)∨eS⊥7 (x, y)∨eS⊥8 (x, y)∨eS1
9(x, y).

Moreover:

S⊥3 (x, y) ≡ S⊥1 (x) ∧e S⊥3 (y) S⊥5 (x, y) ≡ S⊥2 (x) ∧e S⊥2 (y)

S⊥6 (x, y) ≡ S⊥2 (x) ∧e S⊥3 (y) S⊥7 (x, y) ≡ S⊥3 (x) ∧e S⊥1 (y)

S⊥8 (x, y) ≡ S⊥3 (x) ∧e S⊥2 (y) S1
9(x, y) ≡ S1

3(x) ∧e S1
3(y)

S⊥1 (x) ≡ E1E2(x) ∧e E1E2E1(x) S⊥2 (x) ≡ x ∧e E2(x)

S⊥3 (x) ≡ E2E1(x) ∧e E1(x) S1
3(x) ≡ E1E2(x) ∧e E2(x)

Hence, we can derive a formula in normal form for ⊕2.
Of course, one would not usually construct the normal

form by hand, as we have done above. Indeed, it is easy to
develop an algorithm that would construct the normal form
of a policy from its decision table. Thus, we have identified
the formal foundations for a policy authorization language
in which we can automate the construction of a policy in
normal form, given the decision table for that policy.

Moreover, since our language is a tree-structured lan-
guage, having exactly the same operational semantics as
XACML and PTaCL, we can implement Jobe’s operators
as (custom) XACML combining algorithms and then spec-
ify XACML policies using these operators. Thus we can
readily obtain a functionally and canonically complete pol-
icy language, whose policies can be embedded in the rich
framework for ABAC provided by XACML (in terms of its
languages for representing targets and requests) and its en-
forcement architecture (in terms of the policy enforcement,
policy decision and policy administration points).7

Using the structure and evaluation strategy for PTaCL
policies and the operators ∧e, E1 and E2 makes it possible
to define arbitrary policies and to represent them in normal
form. We believe that this provides a number of advan-
tages, in addition to those mentioned above, which we now
briefly discuss. First, it is known that policy misconfigu-
rations can be costly, both in terms of data leakage (when
actions that should not be possible are authorized by the
policy) and in terms of administration (when actions that
should be possible are not authorized and the policy needs
to be updated) [1]. We believe that the use of a canonically
complete policy language is likely to make policy specifi-
cation easier to understand for policy authors, thereby re-
ducing the number of errors and policy misconfigurations.
Future work will investigate whether this conjecture holds.

7This is contrast to proposals in the literature, which require
the use of non-standard components, such as multi-terminal
binary decision diagrams [12] or non-deterministic finite au-
tomata [8].



Second, policies in normal form may be more efficient to
evaluate. Given a formula in a 3-valued logic expressed in
normal form, any literal that evaluates to 0 causes the entire
clause to evaluate to 0, while any clause evaluating to 1
means the entire formula evaluates to 1. We may also be
able to apply some of the equivalences described by Jobe
to minimize the size of a formula in normal form, thereby
further reducing the effort required to evaluate it. We hope
to investigate this idea further in future work.

6. CONCLUDING REMARKS
The use of attribute-based access control languages such

as XACML continues to rise as the demand for collabora-
tion between industry partners becomes increasingly impor-
tant. Furthermore, the widespread distribution of users and
resources prompts a move away from traditional identity
based authorization languages. This paper focuses on the
way in which decisions (and hence authorization policies)
are combined in ABAC authorization languages.

We analyzed the XACML rule- and policy-combining al-
gorithms and identified various shortcomings of these algo-
rithms. First, there is significant duplication and redun-
dancy in the combining algorithms, with only two of the
specified algorithms (do and po) required to express all of
the XACML combining algorithms. Second, the XACML
operators are not functionally complete; indeed, there are
many useful unary and binary operators that cannot be
represented using the XACML operators. We noted that
PTaCL is functionally complete and, in particular, allows
us to construct the XACML operators.

However, we argued that the way in which PTaCL (and
XACML) policies must be written because of the underly-
ing structure of the language is not particularly helpful to
policy authors. Accordingly, we introduced the PTaCL(E)
language that is both functionally and canonically complete.
We believe that PTaCL(E) has considerable advantages over
languages like PTaCL and XACML, and policy algebras. In
particular, it is possible to simply read off a policy from a de-
cision table and thus automate the specification of a policy
from a description that will be intuitive and easy for the pol-
icy author to construct. We believe that this should help re-
duce the number of errors and policy misconfigurations, and
hope to confirm this conjecture in future work. Moreover,
unlike other approaches to enhancing the expressive power
XACML [8, 11, 12], our proposed policy language requires
no modification to XACML or additional processing. All
that is required is the implementation (as custom XACML
rule- and policy-combining algorithms) of the three policy
operators we defined in Section 5. Again, this is something
we plan to do in future work.

In addition, Jobe identifies a number of equivalences (be-
tween formulas in the logic E) that may be applied to reduce
the size of a normal-form formula in E. We plan to inves-
tigate the relevance of these equivalences to authorization
policies in future work. Another natural extension for fu-
ture work is to analyze methods for handling errors in policy
evaluation [4] and see how these methods can be extended
to our canonically complete language.
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APPENDIX
A. CONSTRUCTIBLE XACML BINARY

OPERATORS
We now consider which binary operators can be con-

structed using the XACML operators. We will write +
and − to denote pbd and dbd, respectively, in order to sim-
plify the notation. There are four possible idempotent, ∪-
operators that can be constructed using the XACML opera-
tors: for all x ∈ D, x⊕x, x⊕⊥ and ⊥⊕x are pre-determined;
only 0⊕ 1 and 1⊕ 0 may vary. These operators are do, po,
fa and what we might call “last-applicable” (la).8 We have
r1 lar2 ≡ r2 far1, so we can construct each of these operators
using the XACML operators. The commutative, idempotent
∪-operators are do and po.

We now consider operators having the general form
�1((�2d1) ⊕ (�3d2)) where �1, �2, �3 ∈ {−,+, “”} (“” is used
to denote that the unary operator is omitted) and ⊕ ∈
{do, po, fa, la}. If either �2 or �3 are − or +, the applica-
tion of �1 has no effect as the operator (�2d1) ⊕ (�3d2) will
be conclusive (since �d ∈ {0, 1} and x⊕⊥ = ⊥⊕ x = x for
any ⊕ ∈ {do, po, fa, la} and any x ∈ {0, 1}). This has the
effect of limiting the number of possible operators of this
form. The possible choices for �1, �2, �3 and ⊕ are tabulated
in Table 2, which results in 44 quasi-idempotent operators.

�1 �2 �3 ⊕ Possible Ops
“” + 3 4 12
“” − 3 4 12
“” “” 2 4 8
3 “” “” 4 12

Table 2: Choices for �1, �2, �3 and ⊕

However, not all of these operators are unique, given the
following equivalences between operators.

Proposition 4. For any x, y ∈ {0, 1,⊥},

(−x) po y = x po (−y) = −(x po y) = (−x) po (−y);

(+x) po y = (+x) po (−y);

x po (+y) = (−x) po (+y);

(+x) do y = x do (+y) = +(x do y) = (+x) do (+y);

(−x) do y = (−x) do (+y);

x do (−y) = (+x) do (−y).

These results follow by inspection of the relevant decision
tables. The intuition behind the first three results is that
0 po x = ⊥ po x for all x ∈ {0, 1}; an analogous observation
holds for the second three.

Then we can construct the following operators using do
and different combinations of the unary operators − and +:

x do0 y
def
= x do y x do1 y

def
= (−x) do (−y)

x do2 y
def
= (−x) do y x do3 y

def
= x do (−y)

x do4 y
def
= −(x do y) x do5 y

def
= +(x do y)

8Although fa (and hence la) is a redundant operator, we
continue their use as a compact way of expressing opera-
tors (and later families of operators) instead of the lengthy
expressions using do and po.

These operators comprise what we call the deny-overrides
family of operators. These operators are all distinct and
operate on {0, 1} in exactly the same way as do. Moreover,

0 doi ⊥ = ⊥ doi 0 = 0

for all i. They differ in their effect on elements in {1,⊥}, as
shown in Figure 11. Notice that do5 is equivalent to three
other operators (by Remark 4). Note that do2 and do3 are
not commutative.

do0 1 ⊥
1 1 1
⊥ 1 ⊥

do1 1 ⊥
1 1 0
⊥ 0 0

do2 1 ⊥
1 1 1
⊥ 0 0

do3 1 ⊥
1 1 0
⊥ 1 0

do4 1 ⊥
1 1 1
⊥ 1 0

do5 1 ⊥
1 1 1
⊥ 1 1

Figure 11: The family of deny-overrides operators

Analogously, we can define a family of six permit-overrides
operators which act on {1,⊥} in exactly the same way as the
deny-overrides operators in Figure 11. Therefore, in total,
we can construct six quasi-idempotent deny-overrides oper-
ators and six quasi-idempotent permit-overrides operators,
of which one is idempotent and four are commutative.

In a similar manner we can identify the first-applicable
and last-applicable families, consisting of operators obtained
using fa and la respectively. We observe the following equiv-
alences between operators.

Proposition 5. For any x, y ∈ {0, 1,⊥}, � ∈ {−,+},

(�x) fa y = (�x) fa (−y) = (�x) fa (+y);

− (x fa y) = x fa (−y);

+ (x fa y) = x fa (+y);

x la (�y) = (−x) la (�y) = (+x) la (�y);

− (x la y) = (−x) la y;

+ (x la y) = (+x) fa y.

These results follow by inspection of the relevant decision
tables. Unlike the deny-overrides and permit-overrides fam-
ilies, we obtain only five distinct operators for the first/last-
applicable families. This is clear from the restrictions placed
on the decision tables, and follows immediately from the
equivalences in Remark 4. Thus, in total, the 44 possible
operators actually represent 22 distinct binary operators.
The 44 operators and their duplicate forms are tabulated in
Table 3.

Thus far, we only considered operators having the form

�1((�2d1)⊕ (�3d2)).

It is not obvious that these are the only forms that yield new,
distinct binary operators. These forms only contain single
instances of each decision variable d1 and d2, which raises
the question of whether new operators can be constructed
from forms which contain multiple instances of d1 and d2.
Recall the definition of fa (x fa y ≡ x po (x do y)), which
is constructed using more than one instance of x. We now
investigate whether the inclusion of multiple instances of d1
and d2 yields any further operators.



Op Construction Alternative forms

do0 x do y
do1 (−x) do (−y)
do2 (−x) do y (−x) do (+y)
do3 x do (−y) (+x) do (−y)
do4 −(x do y)
do5 +(x do y) (+x) do (+y), (+x) do y, x do (+y)

po0 x po y
po1 (+x) po (+y)
po2 (+x) po y (+x) po (−y)
po3 x po (+y) (−x) po (+y)
po4 −(x po y)
po5 +(x po y) (−x) po (−y), (−x) do y, x do (−y)

fa0 x fa y
fa1 (−x) fa y (−x) fa (−y), (−x) fa (+y)
fa2 (+x) fa y (+x) fa (−y), (+x) fa (+y)
fa3 −(x fa y) x fa (−y)
fa4 +(x fa y) x fa (+y)

la0 x la y
la1 x la (−y) (−x) la (−y), (+x) la (−y)
la2 x la (+y) (−x) la (+y), (+x) la (+y)
la3 −(x la y) (−x) la y
la4 +(x la y) (+x) la y

Table 3: Operator constructions and alternative forms

To answer this question, we developed program with the
aim of enumerating all constructible binary operators by
brute force. The program works by generating all operators
that can be created by combining other operators. The pro-
gram generates all binary operators which have the general
form �x⊕My where �,M∈ {−,+, “”} and ⊕ ∈ {do, po}. Note
we omit fa and la from the set of binary operators, as these
operators (being expressible in terms of do and po) will be
generated automatically as we recursively create operators.
We initialize the array variables x = [0, 0, 0, 1, 1, 1,⊥,⊥,⊥]
and y = [0, 1,⊥, 0, 1,⊥, 0, 1,⊥]. We store the decision table
of a binary operator in a similar array variable. We gener-
ate the 3 × 2 × 3 = 18 decision tables for operators of the
form �x ⊕ My, of which 8 are duplicates. We remove the
duplicates, storing the decision tables for the remaining 12
operators in an array. The process is repeated with each
item in the array being reused as an input for x and y in
the general form of a binary operator. This second iteration
generates 122×18 = 2592 operators, of which 22 are distinct
operators. We once again reuse these operators as inputs for
x and y, yielding the the same 22 distinct operators. As no
new operators are generated, the program terminates. The
22 operators discovered via exhaustive search correspond ex-
actly to the operators we constructed above. The decision
tables for these operators are listed in Figure 12.

do0 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 ⊥

do1 0 1 ⊥
0 0 0 0
1 0 1 0
⊥ 0 0 0

do2 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 0 0

do3 0 1 ⊥
0 0 0 0
1 0 1 0
⊥ 0 1 0

do4 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 0

do5 0 1 ⊥
0 0 0 0
1 0 1 1
⊥ 0 1 1

(a) Deny-overrides family

po0 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 ⊥

po1 0 1 ⊥
0 0 1 1
1 1 1 1
⊥ 1 1 1

po2 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 1 1 1

po3 0 1 ⊥
0 0 1 1
1 1 1 1
⊥ 0 1 1

po4 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 0

po5 0 1 ⊥
0 0 1 0
1 1 1 1
⊥ 0 1 1

(b) Permit-overrides family

fa0 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 ⊥

fa1 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 0 0

fa2 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 1 1 1

fa3 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 0

fa4 0 1 ⊥
0 0 0 0
1 1 1 1
⊥ 0 1 1

(c) First-applicable family

la0 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 ⊥

la1 0 1 ⊥
0 0 1 0
1 0 1 0
⊥ 0 1 0

la2 0 1 ⊥
0 0 1 1
1 0 1 1
⊥ 0 1 1

la3 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 0

la4 0 1 ⊥
0 0 1 0
1 0 1 1
⊥ 0 1 1

(d) Last-applicable family

Figure 12: Constructible Binary Operators in XACML


