
A Smart Card Web Server in the Web of Things

Lazaros Kyrillidis∗, Sheila Cobourne†, Keith Mayes‡ Konstantinos Markantonakis§
Smart Card Centre, Information Security Group

Royal Holloway, University of London
Egham, Surrey, UK, TW20 0EX

Email: ∗lazaros.kyrillidis.2011@live.rhul.ac.uk, †sheila.cobourne.2008@live.rhul.ac.uk, ‡keith.mayes@rhul.ac.uk,
§k.markantonakis@rhul.ac.uk

Abstract—The establishment of the Internet of Things (IoT)
is gathering pace. The “things” will be counted in their billions,
however interoperability problems may compromise the intercon-
nectivity aspect. Isolated “things” are common and often make
use of proprietary communication and security protocols that
have not been subject to public scrutiny. By contrast the World
Wide Web has well established technology and protocols and so
there is interest in the so-called Web of Things (WoT) that would
allow the “things” to communicate using standard web protocols.
However, with so many readily accessible nodes we considered
that the WoT should be underpinned by attack/tamper-resistant
security modules that are compatible with the WoT protocols.
This paper considers the use of the Smart Card Web Server
(SCWS) capability to practically secure the WoT. Finally, the use
of a SCWS is extended to provide a means of secure, local Single
Sign-On (SSO).

Keywords—SCWS; Smart Card Web Server; IoT; WoT

I. INTRODUCTION

The World Wide Web (WWW) is an almost ubiquitous
technology. Since its introduction, it has changed the way we
communicate, shop or even socialize and is now considered a
vital part of everyday life. In recent years there has also been
work towards technology that aims to connect everything in
a communications network, the so-called “Internet of Things
(IoT)”. The IoT promises integration of all things in one large
network, whether they be smart phones, computers, sensors,
cars, meters, household appliances or tagged objects. The
goal is not just communication, but widespread interaction
to provide new and/or improved services. However, interoper-
ability problems are currently inhibiting progress towards the
IoT vision, resulting in isolated islands of connectivity using
proprietary protocols. One approach to this problem is to create
a “Web of Things (WoT)”, in which standardised web proto-
cols are used to achieve the widespread connectivity required
by IoT. Core to the WoT approach is the fact that TCP/IP
stacks can be accommodated in devices with relatively poor
computing power and memory. Tiny webservers inside WoT
devices can be accessed by standard browsers and associated
protocols.

However, the WoT approach comes with security concerns.
The emphasis to date has been primarily on functionality, with
security as an add-on. Using web protocols gives assurance
about protocol design, but does not address attacks on imple-
mentation security, which is extremely important with so many
accessible deployed nodes.

This paper proposes a way to deal with such problems,
by leveraging standardisation from mobile communications in

the form of the Smart Card Web Server (SCWS), originally
intended to provide a tamper-resistant (attack resistant) web-
server capability on Subscriber Identity Modules (SIM). For
WoT we propose a strongly tamper-resistant SCWS security
module based on a JavaCard v3.0 Connected Edition chip,
supporting a TCIP/IP protocol stack. Finally, the paper also
proposes a way for local WoT Single Sign-On using a smart-
phone with a SIM card hosting a standardised SCWS.

The rest of the paper is structured as follows: Section II
provides a background to relevant work in this area, while
Section III introduces our proposal. Section V outlines the
main characteristics of the proposed architecture, Section VI
provides calculations for the execution times of the protocol,
while Section VII considers how it would be used for local
WoT Single Sign-On. Section VIII gives a preliminary security
analysis of the proposal and also discusses its advantages
and disadvantages. Section IX concludes the paper and gives
directions for future work.

II. RELATED WORK

The are various definitions for the Internet of Things (IoT)
and perhaps the first time that a definition was heard in public
was during a presentation at Procter & Gamble [1]. However,
if we interpret IoT using our own words, we could say that the
IoT is the idea of everyday objects (fridges, ovens, cars, etc.)
having network connectivity so that they can communicate
with each other. These objects may have a range of functional
abilities and be “aware” of their own capabilities and in some
cases of their environment, and can act individually (e.g.
fridge) or as a group to provide a useful service (e.g. sensors
in a house). The objects can range from everyday items with
tags and/or sensors to major devices such as cars or houses.
Recent surveys estimate the number of these objects to reach
many billions by 2020 [2]. The emergence of the IoT is
motivating significant research. A useful survey describing the
technologies behind the IoT, the main applications that can be
derived from its use, as well as concerns and issues can be
found in [3].

In more recent years the WoT, a subcategory of the IoT
has also drawn the attention from the research community.
In [11], [12] and [13] the authors describe how they can
integrate devices into the Web using the Representational State
Transfer (REST) architecture, giving an even more detailed
presentation in [14]. Another presentation on WoT issues
including technologies, security, privacy and implementation
can be found in [15]. Implementation discussions can also
be found in [16] where the authors describe a number of

prototypes they created. In [19] the authors describe the use
of a gateway in order to access sensor nodes that cannot use
web protocols. In [22] the idea of using web technologies
with home appliances for home automation is presented, while
in [23] the researchers describe a framework for the WoT,
illustrated by a prototype motion detector system.

The above solutions define the idea around the WoT,
however none of them addresses the issue of authentication
in the WoT realm and how to enable secure communications
between entities participating in the WoT. With our current
paper we aim to propose an answer to this problem through
a Single Sign On (SSO) solution and the use of established
protocols like TLS. We acknowledge that TLS is not suitable
for sensors and miniature tags, but the devices that we are
considering in this paper have significant power to support
protocols that require bigger amounts of power and our aim is
to research the feasibility of using such protocols in the realm
of the WoT.

For this proposal we will use the Smart Card Web Server
(SCWS). The SCWS is standardised to run inside the SIM
card and is able to serve content to clients running on a reader
that interacts with the SIM card (usually the browser on the
mobile phone). In this case the SCWS is said to run in “server
mode”, whereas when the SCWS is accessed by a remote
administration entity (most probably in the Mobile Network
Operator’s (MNO) premises) it is running in “client mode”
(for an explanation on SCWS see [27]) . As with any web
server, the SCWS’s main purpose is to serve static or dynamic
web content. The reader can find more information in [28] and
[29]. For this paper we are extending the idea of the SCWS
by integrating it with objects that participate in the WoT.

III. PROPOSAL OVERVIEW

Our proposal is built around the use of strongly tamper-
resistant “security modules” embedded in all communicating
objects that collectively provide the security foundation of the
entire WoT. Fundamental to this is the ability for entities
to securely authenticate each other prior to transactions. A
security evaluated smart card chip supporting JavaCard v3.0
Connected Edition functionality is used as our security module.
We chose this chip, as it can be integrated in an environment
where secure access and storage of information is needed,
but at the same time is easily accessible to external entities
(readers, phones) without the need for proprietary protocols.
Communication may take place over TCP/IP and, so standard
HTTP clients may be used, notably web browsers. Addition-
ally, Java is one of the most popular programming languages
and the required development would be very similar to ap-
plication development on conventional Java smart cards. To
briefly recap we are proposing an attack resistant chip, hosting
an SCWS that can serve (via the WoT context), trusted web
content via standardised web protocols and is relatively simple
to program and manage. For the rest of the paper, these tamper-
resistant SCWS chips will be called security modules. For the
communication channel we chose to examine Bluetooth Low
Energy and WiFi Direct, although other candidates included
Near Field Communication (NFC) and cellular. Bluetooth LE
is the main candidate as its requirements in power are minimal
compared to other technologies.

We have to note that our security modules are in general
much more powerful than traditional “things”. So, the overall
estimates and assumptions of this paper will not apply to an
environment where predominantly lightweight sensors/tags are
used. In our use case the smart card chips can be attached to an
electronic assembly and then be integrated to items of higher
value, thus allowing for better performance, safer storage and
execution times and easier access from readers. This electronic
assembly with the security module can then be attached to
items of relatively high value, e.g. a painting or a large box
full of items of smaller value, thus making our solution not
suitable for use with tags or minimal sensors.

IV. EXAMPLE USE CASES

An example use case could be a product logistics scenario
and in particular the interaction of an employee’s smartphone
with the security modules within a warehouse. The employee
can authenticate to his phone’s SIM card (this SCWS will
be called “local server” for the rest of the text) and then
be able to extend this authentication to other devices with
SCWS capability (offered by the security module) in order to
access data and functionality spread throughout the local area.
We have to note though that the use of a smartphone is not
mandatory and any other reader can be used instead - the only
requirement is that the reader should be able to communicate
over TCP/IP. Another use case could be a logistics warehouse,
containing a number of crates, where each of the crates has
attached one of these security modules. The modules host all
necessary information about the contents of the crates and
this information is accessible to only legitimate employees and
without the need for internet (or other) connection. A third use
case can be when these modules are attached to items of high
value, so for example if an item needs to be transferred from
one location to the other, the details of the recipient (address,
phone, etc.) can be accessible to the transport employee in a
secure way, without any further equipment and/or infrastruc-
ture needed (like internet connection).

A. Assumptions

For our proposal to work properly we have to consider the
following assumptions:

• The SIM cards cannot be directly controlled by any
other entity besides the MNO. Thus we assume that
the MNO is trusted and that it allows access to the
SIM card (for applets that will be used by the SCWS
to run inside the local server).

• We do not consider managerial issues in this paper, but
rather we anticipate that there is a secure procedure
for the development, deployment and revocation of
certificates and key pairs on the various phones.

• As mentioned above, we assume that the security
modules are installed on items that have a significant
value, e.g. a fridge, a painting, etc. or any other
expensive item and they are not used with tags or
other minimal sensors.

• We assume that the security module receives accurate
external time from an external timer found on the
electronic assembly.

V. ARCHITECTURE-PROTOCOL

Our tamper-resistant SCWS chips may be deployed to
provide authenticated access to sensitive information about
the products found inside a warehouse. We rely on the attack
resistance of these security modules to provide assurance that
the chip’s stored data, access control and functionality will
remain as intended. Furthermore any additional application
dependent functionality/data hosted on the security module
is expected to be simple enough to be rigorously security
evaluated e.g. against common criteria. Since the security
module is going to be serving sensitive information only to
trusted parties, there must be a way of authenticating entities
requesting to access this information - the solution should be
able to fulfill the requirements described below.

1) The local server should authenticate the user1.
2) The security module should authenticate the local

server and vice versa.

A high level diagram of our proposal can be seen in
Figure 1.

In principle a user could be authenticated directly to all
security modules via a unique password or a PIN that is stored
in each of these modules, although this would rapidly become
impractical as the number of modules and users grow. Our
proposal assumes that each user has a single PIN/password.
This PIN/password allows the user to authenticate to the SIM
card local server and the authentication result is later used
for authenticating with security modules located around the
area. A security module will accept the local authentication
result, since it trusts the tamper-resistant local server that
authenticated the user in the first place. Procedures would be
used to ensure that the user PIN/password was chosen, stored
and updated in accordance with security best practice. The
local server will create an authentication token that will pass
over to the security module for the latter to provide access for
a specific duration of time. The authentication token will have
the following attributes:

• An attribute specifying the level of access granted by
the authentication token (represented as L in Figures 2
and 3), e.g. administrative or standard access.

• An expiration date/time, represented as T.

• A value provided that will identify a unique SIM card,
so that the authentication token will not provide access
to other SIM cards. This value can be the Integrated
Circuit Card Identifier (ICCID) that uniquely identi-
fies a SIM card, represented as I.

Thus, an authentication token could be represented as the
concatenation of the above attributes (L||T ||I).

The above can be seen in Figures 2 and 3.

We can summarise the authentication process in the fol-
lowing steps (Figure 2 represents steps 1 to 6, while Figure 3
represents steps 7 to 12):

1For a more complicated solution there may be mutual authentication
between the local server and the user’s browser through the exchange of
certificates. We will not consider this option for this paper.

1) The user starts the web client (browser) on the reader
and starts negotiating a TLS connection to the local
server (this is the first TLS handshake) - for TLS see
[30].

2) The local server prompts the user for her password
(or PIN). This is the “PasswordRequest” HTML page.

3) The user provides the password/PIN to the local
server.

4) The local server calculates the hash of the user’s
password and compares it to a pre-stored value.

5) The user is notified about the result. This is the
“PasswordResult” HTML page.

6) If the password/PIN is correct, the local server creates
an authentication token, signs it and stores both inside
the SIM card. The signature is created by the private
key that is part of the key pair already present in the
SIM card where the local server is host and can be
later used to verify the integrity and authenticity of
the token.

7) The user initiates a wireless connection with the
security module using her reader. The two entities
negotiate a TLS connection.

8) After the second handshake is finished, the security
module asks for the authentication token, from the
local server. This is the “AuthTokenRequest”.

9) The authentication token and the accompanying sig-
nature are transferred to the security module over the
established wireless connection.

10) The security module checks the validity of the new
authentication token, i.e makes sure that the token
has not expired. It also verifies the signature of the
token using the public key of the local server that it
received during the TLS handshake.

11) If both are legitimate, then the security module grants
access to the user to the information stored on it. If
not, then the token and the signature are discarded
and the user is notified.

12) The requested information is sent to the browser over
the established connection.

We have to note, that the first part of the protocol can be
avoided in case the token is still valid i.e. the user does not need
to provide her PIN/password every time, but rather the process
can proceed to the second part directly. This check is taking
place inside the SIM card/local server - so the user needs to
resubmit the PIN/password only when the token stored inside
the SIM card has expired. The trust relationship between the
local server and the security module means that the latter will
accept the token’s validity.

By always submitting the authentication token during the
second part of the protocol, we ensure that the security module
always gets and checks the freshest available token. Between
a successful authentication attempt and a subsequent one,
the user may have re-authenticated to the local server (thus
expanding the validity of the authentication token) or her
authentication level may have changed, so that now she may
access less or more information. Furthermore in the case of a
lost or stolen reader, the authentication token could be erased
from the SIM card/local server, so that the non-authorized
entity that may try using it to access a security module, will
have to re-authenticate (in order for a new token to be created).
However, the malicious entity will not know the PIN/password,

Figure 1: High Level Diagram

thus adding another layer of defense for our solution. If the
token had to be stored in each of the security modules that
the user requested access to, then the tokens would have to be
erased from all these modules to block malicious users.

VI. PROCESS DURATION TIME ESTIMATION

For the purpose of calculating the overall time needed for
the whole process to finish and the user to start receiving infor-
mation/data in her browser, we wished to consider a modern
JavaCard v3.0 Connected Edition. Unfortunately at the time
of writing, these cards were not available for the study (thus
limiting the practical part of our research) and for our estimated
calculations we had to use figures based on JavaCards of the
previous generation (v2.2). Our aforementioned calculations
are based on results that we gathered during other experiments
(for example time needed for an encryption of X bytes to
occur), as well as on data that we received from a leading
smart card chip manufacturer. This manufacturer provided real
figures (for the most powerful of the smart cards that they
produce) for a number of actions like RSA signing/verifying,
SHA-256 hashing, etc. using a crypto co-processor. For the
communication between the browser and the local server, we
assumed the use of three different standardised communication
channels: conventional ISO 7816, USB1.x and USB2.0 [31].
For the (wireless) communication channel between the local
server and the security module we used Bluetooth Low Energy
and WiFi Direct.

We separated our calculations into two phases: the first
phase is between the browser and the local server (thus, the

SCWS inside the SIM card), while the second phase is taking
place between the reader/SIM card and the security module.
As can be seen in Figures 2 and 3, the messages are presented
with the handshake broken down to its basic parts. For each of
these messages we calculated the time for the message to be
transmitted and/or the time for the basic action to occur, such
as an encryption of certain amount of data or the verification of
a signature. We did not include the setup time for Bluetooth LE
or WiFi direct since setting up a bluetooth connection varies
among different technologies and products and even users (i.e.
how easy is for a person to setup a bluetooth connection).
The amounts of data are based on an average of data that we
collected using a network sniffing tool called Wireshark when
trying to establish an HTTPs connection with either remote
websites or a local website running on a laptop under our
control. For all our calculations we assumed the use of the
algorithms found in Table I. The figures for each algorithm are
based on information that we received from a leading smart
card manufacturer for an ARM core running at 30 MHz.

Table I: Algorithm Speeds

Action Algorithm Timings
Symmetric Encryp-
tion/Decryption

AES-128 0.2ms/block

Asymmetric Signing RSA-2048 150ms for 2048bits
Asymmetric
Verification

RSA-2048 9ms for 2048bits

Hashing SHA-256 0.5ms/block

The amount of data exchanged for the handshakes, the

Phone Browser Local Server Security Module

ClientHello

ServerHello

Certificate

ClientKeyExchange

[ChangeCipherSpec]Finished

[ChangeCipherSpec]Finished

(PasswordRequest)HTTPs

(Password)HTTPs

Hash(Password)
Check Hash(Password)

(PasswordResult)HTTPs

Create (L||T||I)
Store (L||T||I)
Create (L||T||I)sign

Store (L||T||I)sign

Figure 2: User Authentication and Token Generation

size of password, password hash and authentication token that
were processed at each step can be found in Table II - please
refer to Figures 2 and 3 for detailed information about the
contents of each of the protocol steps. For messages exchanged
over HTTPs we included a further overhead for the TLS
headers. The page size represents the HTML page that was
created by the local server and send to the phone’s browser.
The HTML page is represented as PasswordRequest which
is a page created by the local server for the user to input
her password and PasswordReturnResult, where the user is
informed about the password checking result.

Before running the calculations we anticipated that the
bottleneck for the whole procedure might be the wireless
interface between the reader and the security object and (if
used) the conventional ISO 7816 interface between the phone’s
browser and the SIM card. Thus, we concentrated our attention
to the comparison of the various available communication
channels that we could use, i.e. ISO 7816, USB1x and USB2.0
for the communication between the SIM card and the browser
(“wired” communication), and Bluetooth LE and WiFi Direct

for the “wireless” interface.

Table II: Amount of Data

Data Amount (in bytes)
First TLS handshake 5149

Second TLS handshake 9399
Password 9

Password hash 32

Authentication token 36
HTML page (incl. TLS headers) 70

Times for data transit of all messages between the entities
can be seen in Table III (calculations in milliseconds). This
table does not include the processing time for actions on the
data (can be found in Table IV), but the times depicted are
the summary transit times for both parts of the protocol (e.g.
transit over ISO7816 for the first part of the protocol and transit
over Bluetooth LE for the second part). Next to each of the
options the reader can find the assumed communication speed

Phone Browser Local Server Security Module

ClientHello

ServerHello

ServerCertificate

CertificateRequest

ClientKeyExchange

ClientCertificate

[ChangeCipherSpec]Finished

[ChangeCipherSpec]Finished

(AuthTokenRequest)HTTPs

((L||T||I)||(L||T||I)sign)HTTPs

Verify
(L||T||I)sign

Check
(L||T||I)

(Information)HTTPs

Figure 3: Object Authentication and Access

for each. ISO7816 has a broad range of communication speeds
depending on the hardware and the vendor, so we selected an
average figure. The same principle was applied to the rest.
It must be noted that the theoretical speed for each of the
interfaces is larger, but we chose to use a figure representing
an average used/found in practice.

Table III: Transit times per communication channel in ms

Wired
Wireless Bluetooth LE

(0.1 MBit/s)
WiFi Direct
(54 MBit/s)

ISO 7816 (0.1
MBit/s)

1967.04 1208.69

USB1.x (12 MBit/s) 769.82 11.47
USB2.0 (80 MBit/s) 761.27 2.92

Table IV depicts the time needed for the most important
calculations to finish. This processing includes the TLS hand-
shake with the verification of certificate signatures, hashing,
encryption/decryption of data to be transmitted over TLS
and authentication token signature creation (we assume that
both chips, in the SIM card and the security module, are of
equivalent power).

Table IV: Calculations times

Action Size of
data (in
bytes)

Time (in
ms)

Signature Verification 256 9.00
Data Hashing (per cer-
tificate)

1500 12

Auth.Token Signing 256 150
Data Encryption/De-
cryption (SIM card and
Security Module)

52 0.8

Password Hashing (for 9
bytes password)

32 0.5

Table V depicts the overall time for each of the phases, i.e.
it is the summary of all calculations to occur.

Table V: Total calculation times per phase

Phase Time (in
ms)

User Authentication and Token
Generation

216.40

Object Authentication and Access 143.60

Table VI gives the overall time needed for the whole
process to conclude. Our estimated calculations show that the
communication speed is dominating the duration of the process
(compared to the processing), especially when the combination
is for ISO 7816 along with Bluetooth LE (for the wireless
interface between the security module and the reader).

We can see in Table VI that the combination of Bluetooth
LE with ISO 7816 is almost 7 times slower than the equivalent
combination of WiFi direct and USB2.0.

Table VI: Total times in ms

Wired
Wireless Bluetooth LE WiFi Direct

ISO 7816 2327.04 1568.69
USB1.x 1129.82 371.47
USB2.0 1121.27 362.92

VII. LOCAL SINGLE SIGN-ON

At the beginning of the paper we discussed about how our
proposal provides an SSO solution that will allow users to
authenticate in a de-centralised fashion in their phones/readers
and then be able to access information found on security
modules. We now describe how this can be accomplished.

The idea of Single Sign-On (SSO) is not new: in fact
it is a well established technology and there are many, free
and commercial, SSO product solutions. While products have
different features, the basic idea behind SSO is that a user
authenticates to just a single central server, which then handles
the user’s authentication to other participating servers. One
of the most prominent of these solutions is OpenID [32]
that is being used by a large number of websites and most
recently, social media solutions like Facebook Connect allow
users to authenticate anywhere using their social media account
[33]. One of the most important protocols for SSO is the
Kerberos protocol developed by MIT [34]. Kerberos is used
with many solutions/platforms, the most prominent of which
are the Windows OSes developed by Microsoft [35]. In a
nutshell, Kerberos allows users and systems to obtain a “ticket”
from a Kerberos Key Distribution Center (KDC) and use this
ticket as their credentials when required to access other entities
within the network. These entities trust the Kerberos ticket
credentials and so allow access from the users/systems that
were previously authenticated by the KDC.

Our proposal uses ticket credentials, but is otherwise a
different approach. The user is now the “owner” of the
authentication server, within the SCWS/local server of the SIM
card. The credentials of the user are stored inside the SIM card
(which is a tamper resistant device). The user authenticates
to the local server, and the SCWS then creates a token that
the user can use anytime to access a security module. An
advantage of this approach is that there is no centralised
equivalent to the KDC, so no single point of failure or attack
target for Denial of service (DoS). Of course, there should
be a general trust relationship between all the entities used in
the system and this can be achieved by a conventional X.509
certificate approach. Once the local server and the security
module mutually authenticate, the security module retrieves
the token stored in the SIM card and the user is authenticated
if the token is valid and fresh.

VIII. SECURITY ANALYSIS

A. Advantages

We based our security module on a smart card chip because
such chips can be strongly tamper/attack resistant. Modern
high-quality chips will have effective defenses against physical
probing/modification, side-channel and fault attacks and can
be independently evaluated against common criteria. In short,
providing weak devices are avoided, we expect the module to
protect the integrity and access of sensitive stored data and
to function as per design/expectation, even when subjected to
aggressive attack.

In any case no sensitive data is available without authen-
tication and no sensitive transmissions are in clear. The same
levels of protection are offered by the local server.

One of the biggest advantages in favour of our proposal
is achieving interoperability, without compromising on the
tamper-resistant security of the solution. All involved enti-
ties communicate over TCP/IP channels, thus making them
accessible from any platform that supports this protocol suite
i.e. practically everything in the modern Internet. An attack
resistant web server stored inside a security module (chip)
implementing a TCP/IP stack means that is easily accessible
using standardised protocols and can be incorporated within
an WoT architecture that requires all the involved entities
to be accessible over “web” standards. The lack of need
for special protocols and proprietary communication methods
allows for easier integration in any environment, and applica-
tion development is straightforward for anyone familiar with
Java and/or smart card programming. The attack resistance
of the security module and the equivalent attributes of the
SIM card (where the initial authentication is taking place),
protects the data and functional implementation (contained
within the chip). Logical attacks (against the design) cannot
be avoided, but the small attack surface of the web servers and
the applets involved, provide a certain assurance level that the
programmers can develop robust and security verified code.
Another important factor is that all communication is taking
place over secure channels and more specifically using HTTPs.
Attacks against HTTPs exist [36], however the vast majority of
web servers throughout the Internet rely on HTTPs to secure
communication to and from them. Until proven otherwise,
HTTPs is still the most secure way to browse the Internet
and as such should be acceptable for WoT.

Another potentially important factor (which we consider
a strong privacy advantage of our proposal) is that the user’s
password/PIN stays within the local device and is checked
by the local server (within the trusted SIM card). The PIN
is exposed to the browser (when it is submitted by the
user), however even if malware captures the password/PIN,
a malicious user also has to be in possession of the exact
SIM card in order for her to use it (because the password/PIN
can be used with one SIM card only as it is stored in it and
checked by it). So, even if an attacker steals the password/PIN,
she will need not be able to use it effectively, unless she is
in possession of the SIM card as well. Also, if the attacker
steals the authentication token, she will not be able to use it,
since the authentication token can be used by one SIM card
only (identified by the ICCID). Furthermore, the attacker needs
to be in possession of a X.509 certificate installed within the

“malicious” SIM card; this certificate must belong to the CA
authority that governs the entire system.

The security modules contain all the necessary information
about the product(s) that the user wants to access. Thus, a prod-
uct can provide this information when tapped by an authentic
user/phone, and without the need for on-line communication.
This stand-alone ability of the chip is very important when
an Internet connection is not present. Finally, a web enabled
security module has enough processing power to run applets
and process data that it stores/receives. Other WoT entities
like sensors possess limited (if any) processing power and
in most cases they are just simple conduits pushing forward
information to more capable entities.

In summary we can say that the main advantages of this
proposal are:

1) Interoperability using standardised/proven open pro-
tocols.

2) Attack resistance using proven attack-resistant de-
vices.

3) Communication exclusively over secure channels via
HTTPs.

4) Web protocols that allow the entities in this proposal
to seamlessly form part of the WoT.

5) Stand-alone entities that may provide information
without the need for a back end server/database nor
a connection to the Internet.

6) De-centralised Single Sign On, thus avoiding single
points of failure.

7) PIN/passwords and authentication tokens are useless
without the SIM storing them. Thus the attacker
has to be in possession of the PIN/password or
authentication token plus the SIM card in question,
in order for her to get access to a security module.

B. Disadvantages

The importance of mutual authentication cannot be under-
estimated, however installing and maintaining a number of
certificates with all the accompanying tasks (updating, revok-
ing) could prove cumbersome. We anticipate that a process
of updating the certificates will be down to policies mandated
by the individual case/scenario with the attack resistance of
the chips permitting a longer period of certificate validity,
depending on the value of the information stored on the chips.

Another fact is the cost of the security modules. An assem-
bly with an advanced smart card chip may be too expensive for
use with “cheap” tags/things. So, for our scenario we assumed
the use of these objects with items of generally higher value.
For example, an assembly with a security module can be
attached on a painting, on a fridge or on a palette containing a
large number of items. It can then store and protect information
about these items (information for the painting or the contents
of a box/palette) in a tamper-resistant way protecting it from
malicious entities.

IX. CONCLUSION-FUTURE WORK

The proposal described in this paper uses a Smart Card
Web Server both in an attack-resistant SIM card (for which

it was initially standardised), but also in a similarly pro-
tected smart card chip (security module) embedded within
an electronic assembly. The two entities communicate over a
wireless communication channel mutually authenticating each
other. This way the web server running inside the security
module accepts the authentication results for the user that was
previously authenticated from the SIM card local server. This
SSO solution has the advantage of avoiding a single centralised
SSO server as it distributes the authentication process over a
number of trusted local servers found inside SIM cards.

The entire solution works even when there is no network
connectivity available, as everything is happening offline. The
user still needs to remember a password/PIN, although capture
of this credential is of little use without the corresponding SIM
card.

This project is on-going and future work will involve a
formal analysis of the protocol and the development of a
first working prototype to assess the comparative performance
of protocol implementation options. Future work can also
include an analysis of managerial concerns (mentioned in the
assumptions) of this proposal and investigate the feasibility
of direct access and authentication of the user to the security
modules, without the need to previously authenticate the user
to the local server/SCWS. Finally a future paper could analyse
in much bigger detail one of the use cases presented previously,
to further assess the feasibility of our solution.

REFERENCES

[1] K. Ashton. (2009, June) That ’internet of things’ thing. [Online].
Available: http://www.rfidjournal.com/articles/view?4986

[2] Gartner. The internet of things enables digital business. [Online]. Avail-
able: http://www.gartner.com/technology/research/internet-of-things/

[3] L. Atzori, A. Iera, and G. Morabito, “The internet of things: A survey,”
Computer networks, vol. 54, no. 15, pp. 2787–2805, 2010.

[4] M. Kranz, P. Holleis, and A. Schmidt, “Embedded interaction: Inter-
acting with the internet of things,” Internet Computing, IEEE, vol. 14,
no. 2, pp. 46–53, 2010.

[5] S. Haller, S. Karnouskos, and C. Schroth, The internet of things in an
enterprise context. Springer, 2009.

[6] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, “Internet of
things: Vision, applications and research challenges,” Ad Hoc Networks,
vol. 10, no. 7, pp. 1497–1516, 2012.

[7] F. Mattern and C. Floerkemeier, “From the internet of computers to
the internet of things,” in From active data management to event-based
systems and more. Springer, 2010, pp. 242–259.

[8] C. M. Medaglia and A. Serbanati, “An overview of privacy and security
issues in the internet of things,” in The Internet of Things. Springer,
2010, pp. 389–395.

[9] R. Roman, P. Najera, and J. Lopez, “Securing the internet of things,”
Computer, vol. 44, no. 9, pp. 51–58, 2011.

[10] R. H. Weber, “Internet of things–new security and privacy challenges,”
Computer Law & Security Review, vol. 26, no. 1, pp. 23–30, 2010.

[11] S. Duquennoy, G. Grimaud, and J.-J. Vandewalle, “The web of things:
interconnecting devices with high usability and performance,” in Em-
bedded Software and Systems, 2009. ICESS’09. International Confer-
ence on. IEEE, 2009, pp. 323–330.

[12] D. Guinard and V. Trifa, “Towards the web of things: Web mashups
for embedded devices,” in Workshop on Mashups, Enterprise Mashups
and Lightweight Composition on the Web (MEM 2009), in proceedings
of WWW (International World Wide Web Conferences), Madrid, Spain,
2009, p. 15.

[13] D. Guinard, V. Trifa, and E. Wilde, “A resource oriented architecture
for the web of things,” in Internet of Things (IOT), 2010. IEEE, 2010,
pp. 1–8.

[14] D. Uckelmann, M. Harrison, and F. Michahelles, Architecting the
internet of things. Springer Science & Business Media, 2011, ch. 5,
pp. 97–129.

[15] D. Zeng, S. Guo, and Z. Cheng, “The web of things: A survey,” Journal
of Communications, vol. 6, no. 6, pp. 424–438, 2011.

[16] D. Guinard, V. M. Trifa, and E. Wilde, Architecting a mashable open
world wide web of things. ETH, Department of Computer Science,
2010.

[17] S. S. Mathew, Y. Atif, Q. Z. Sheng, and Z. Maamar, “Web of
things: Description, discovery and integration,” in Internet of Things
(iThings/CPSCom), 2011 International Conference on and 4th Interna-
tional Conference on Cyber, Physical and Social Computing. IEEE,
2011, pp. 9–15.

[18] T. S. Dillon, H. Zhuge, C. Wu, J. Singh, and E. Chang, “Web-of-things
framework for cyber–physical systems,” Concurrency and Computation:
Practice and Experience, vol. 23, no. 9, pp. 905–923, 2011.

[19] V. Trifa, S. Wieland, D. Guinard, and T. M. Bohnert, “Design and
implementation of a gateway for web-based interaction and management
of embedded devices,” Submitted to DCOSS, 2009.

[20] B. Christophe, V. Verdot, and V. Toubiana, “Searching the’web of
things’,” in Semantic Computing (ICSC), 2011 Fifth IEEE International
Conference on. IEEE, 2011, pp. 308–315.

[21] D. Guinard, M. Fischer, and V. Trifa, “Sharing using social networks in
a composable web of things,” in Pervasive Computing and Communica-
tions Workshops (PERCOM Workshops), 2010 8th IEEE International
Conference on. IEEE, 2010, pp. 702–707.

[22] M. Kovatsch, M. Weiss, and D. Guinard, “Embedding internet tech-
nology for home automation,” in Emerging Technologies and Factory
Automation (ETFA), 2010 IEEE Conference on. IEEE, 2010, pp. 1–8.

[23] B. Ostermaier, F. Schlup, and K. Romer, “Webplug: A framework for
the web of things,” in Pervasive Computing and Communications Work-
shops (PERCOM Workshops), 2010 8th IEEE International Conference
on. IEEE, 2010, pp. 690–695.

[24] B. Traversat, M. Abdelaziz, D. Doolin, M. Duigou, J.-C. Hugly, and
E. Pouyoul, “Project jxta-c: enabling a web of things,” in System
Sciences, 2003. Proceedings of the 36th Annual Hawaii International
Conference on. IEEE, 2003, pp. 9–pp.

[25] D. Pfisterer, K. Romer, D. Bimschas, O. Kleine, R. Mietz, C. Truong,
H. Hasemann, A. Kroller, M. Pagel, M. Hauswirth et al., “Spitfire:
toward a semantic web of things,” Communications Magazine, IEEE,
vol. 49, no. 11, pp. 40–48, 2011.

[26] N. Zhong, J. H. Ma, R. H. Huang, J. M. Liu, Y. Y. Yao, Y. X. Zhang,
and J. H. Chen, “Research challenges and perspectives on wisdom web
of things (w2t),” The Journal of Supercomputing, vol. 64, no. 3, pp.
862–882, 2013.

[27] L. Kyrillidis, K. Mayes, B. Chazalet, and K. Markantonakis, “Card-
present transactions on the internet using the smart card web server,”
in Trust, Security and Privacy in Computing and Communications
(TrustCom), 2013 12th IEEE International Conference on. IEEE, 2013,
pp. 611–619.

[28] OMA, Smartcard-Web-Server Approved Version 1.2.1 OMA-TS-
Smartcard Web Server-V1 2 1-20130913-A, Open Mobile Alliance
Std., 13 Sep 2013.

[29] ETSI TS 102 588 V9.1.0 (2011-01) Smart Cards; Application invocation
Application Programming Interface (API) by a UICC webserver for
Java Card platform; (Release 9), Std.

[30] T. Dierks, “The transport layer security (tls) protocol version 1.2,” 2008.
[31] ETSI TS 102 600 V7.2.0 (2008-06) Smart Cards; UICC-Terminal

interface; Characteristics of the USB interface (Release 7), Std.
[32] OpenID. [Online]. Available: http://openid.net/
[33] Facebook. (2008, May) Announcing facebook connect. [On-

line]. Available: https://developers.facebook.com/blog/post/2008/05/09/
announcing-facebook-connect/

[34] Kerberos: The network authentication protocol. [Online]. Available:
http://web.mit.edu/kerberos/

[35] Microsoft. Microsoft kerberos. [Online]. Available:
https://msdn.microsoft.com/en-us/library/windows/desktop/aa378747%
28v=vs.85%29.aspx

[36] Tracking the freak attack. [Online]. Available: https://freakattack.com/

