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Abstract 

 

A range of models of motion processing has been proposed (e.g. motion 

energy, gradient, Bayesian, ratio) but there is currently no consensus as to how 

the human visual system computes the speed of a moving image and there is 

insufficient data to adequately characterise the effects of even a few image 

parameters such as contrast, luminance and eccentricity upon perceived speed. 

A series of experiments was conducted in order to inform models of speed 

encoding and provide insight into the mechanisms underlying spatio-temporal 

processing in the visual system. 

 

Measurements of the ramp after-effect suggest that the after-effect is 

determined by ramp amplitude rather than gradient and thus offer little support 

for the existence of gradient motion detectors. However, the findings of 

luminance-dependent ramp after-effects do provide support for the idea that the 

after-effect is mediated by ON- and OFF- pathways in the visual system. 

 

Measurements of biases in speed perception indicated that speed encoding in 

the periphery is essentially similar to central vision whilst the results of a further 

study of speed biases indicated that at lower luminance there is significantly 

less reduction in perceived speed and greater increase in perceived speed (at 

low and high speeds respectively) and a concomitant reduction in the speed at 

which the bias is reversed. This luminance-dependent pattern of results is 

consistent with ratio-type models of speed encoding but inconsistent with all 

extant Bayesian models. 
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Overall the results of these experiments offer little support for gradient or 

Bayesian models. Whilst the results do not rule out other speed-encoding 

models, only ratio-class models can currently account for the entire pattern of 

results reported in this series of experiments. 
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1 Introduction 

Most of the experiments reported herein employ periodic stimuli to investigate 

the human visual system. This is predicated upon several assumptions, one of 

them being that the visual system may be considered linear over at least a part 

of its operating range. This assumption confers a number of advantages for 

systematic study of the system’s properties. 

 

1.1 Linear systems theory 

For a system to be called linear it is required to have two properties: 

homogeneity and additivity. A system is said to be homogenous if an amplitude 

change, a, in the input signal, x, results in a proportional amplitude change in 

the output signal in the domain of the function, F, formally F(ax) = aF(x) (Figure 

1.1). A system complies with the principle of additivity if two signals can be 

added together and passed through the system without interacting. If the 

system’s response to some stimulus, x1, is x1’, and the response to some other 

stimulus, x2, is x2’, then the response to the input signal, x1 + x2, is x1’ + x2’, 

formally F(x1 + x2 + …) = F(x1) + F(x2) + … (Figure 1.2). Taken together, 

homogeneity and additivity are often referred to as the principle of 

superposition.  

 

Shift invariance, while not strictly a requirement for linearity, is a third property 

that is often found in linear systems. A system is said to be shift invariant when 

a shift in the input signal results in an identical shift in the output signal (Figure 

1.3). This set of simple properties allows us to make predictions about how a 

system will respond given prior knowledge of its response to a restricted range 

of input waveforms. Moreover, if a system is linear and we know its response to 
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Figure 1.1: Illustration of homogeneity in a system. The amplitude of the input signal in the right 
column is twice (a = 2) that of the input signal in the left column, in a system with homogeneity, 
the output signal of the right hand column will result in an output signal with twice the amplitude 
of the output signal in the left column. 
 

Figure 1.2: Illustration of additivity in a system. If the input, x1, into a system results in the 
output, x1’, and the result of another input, x2, is x2’, in a system with the property of additivity, 
the sum of the two inputs, x1 + x2, will yield the output, x1’ + x2’. 
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some basis function, the response of the system to any input can be predicted 

by decomposing it into its component bases. Typically, such decomposition of 

complex signals is achieved by Fourier analysis. Fourier analysis is used 

preferentially over analogous mathematical transforms (e.g. the Hadamard 

transform decomposes complex signals into square waves) because basis 

functions other than sine waves are not passed linearly through the optics of the 

eye (e.g. De Valois & De Valois, 1988).  

 

 

Figure 1.3: Illustration of shift invariance. In a system that is considered to be shift invariant, a 
shift (s) in the input (x) results in an identical shift in the output (x’ + s). 
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1.2 Fourier Analysis 

Fourier (1822) demonstrated that any function may be decomposed into a 

series of sinusoidal waveforms of different frequencies, amplitudes and phases.  

 

1.2.1 Frequency 

Frequency in the time domain is defined as cycles/second in Hertz (Hz). In the 

spatial domain, spatial frequency, or the rate at which luminance varies in 

cycles across a visual angle (degree), is defined as cycles/degree (c/deg), 

where the visual angle, V, of a stimulus of size, S, at a distance, D, from the eye 

is given by: 

 

 𝑉 = 2𝑎𝑟𝑐𝑡𝑎𝑛
𝑆
2𝐷  .………………………………...…………………. (1.1) 

 

Figure 1.4 illustrates the calculation of visual angle. Given 2 cycles in S = 2 cm 

and an observer at 57 cm (D) from the image, the stimulus would subtend 2o of 

visual angle (V). Thus, the spatial frequency of the sine wave would be 1 c/deg. 

Since: 

 

 𝑉 = 2𝑎𝑟𝑐𝑡𝑎𝑛
𝑆
2𝐷 = 2𝑎𝑟𝑐𝑡𝑎𝑛

2
2(57) = 2! ………………..…… (1.2) 

 

 𝑆𝑝𝑎𝑡𝑖𝑎𝑙 𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦 =  
𝑐𝑦𝑐𝑙𝑒𝑠
𝑑𝑒𝑔𝑟𝑒𝑒𝑠 =  

2
2 = 1 𝑐/𝑑𝑒𝑔 ………...… (1.3) 
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Figure 1.4: Illustration of a sine wave (right panel). In this example the sine wave oscillates 
about a mean luminance (L) with amplitude (A). The sine wave is depicted as an observer may 
see it on screen (central panel). The visual angle (V) in degrees is the angle the object of size 
(S) at a distance (D) subtends at the eye (left panel). 
 

1.2.2 Amplitude 

Amplitude refers to the maximum variation from mean that the waveform makes 

on some dimensional vector; in vision research this vector is usually luminance 

measured in candelas/m2 (cd m-2) (Figure 1.4, right panel). Luminance (or 

luminous intensity) is a photometric quantity, which represents the luminous 

intensity of a light source as perceived by the human eye. Formally, the candela 

is the luminous intensity, in a given direction, of a source that emits 

monochromatic radiation of frequency 540 x 1012 Hz and that has a radiant 

intensity in that direction of 1/683 watt per steradian (16th Conférence Générale 

des Poids et Mesures (CGPM), 1979).  

 

Thus the amplitude (Figure 1.5) of an image is its contrast. For the purpose of 

this work the contrast of periodic spatial patterns shall be defined as Michelson 

contrast (m): 

 

 𝑚 =  
𝐿!"# − 𝐿!"#
𝐿!"# + 𝐿!"#

 ……….............................................................… (1.4) 

 

where Lmax and Lmin are maximum and minimum luminance respectively. 
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Figure 1.5: Illustration of two sinusoidal gratings with different contrasts (nominally 1 and 0.5) 
and corresponding luminance profiles. 
 

1.2.3 Spatial and temporal phase 

Phase denotes the point in a cycle of a waveform, measured in degrees (Figure 

1.6). It is of particular importance when comparing several waveforms with each 

other. The phase angle of a waveform can be represented in space (spatial 

phase) and time (temporal phase). 

Figure 1.6: Illustration of two sine waves (solid line and dash-dot line) 90o out of phase with 
each other (i.e. in phase quadrature). 
 

Luminance

S
pa

ce

Lmin Lmax

Luminance

S
pa

ce

Contrast = 1 Contrast = 0.5
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1.2.4 The Fourier transform 

A Fourier transform is a method of expressing a complex waveform as a series 

of sinusoidal components. Formally, the Fourier transform of a waveform is 

given by:  

 

 𝐹 𝑘 = 𝑓(𝑥)𝑒!!!!"#
!

!!
𝑑𝑥 ………………..……………………….... (1.5) 

 

where: 

 k is the spatial or temporal frequency, 

x is the location in space or time, 

 i is −1. 

 

The inverse Fourier transform: 

 

 𝑓 𝑥 = 𝐹(𝑘)𝑒!!!"#
!

!!
𝑑𝑘 ………………..…………………..…........ (1.6) 

 

allows for Fourier synthesis, whereby spatial or temporal frequency may be 

transformed to space or time domains respectively. The Fourier inversion 

theorem states that a function in the space or time domain f(x) can be 

reconstructed from its Fourier transform F(k) (Bracewell, 1999). 

 

For example, for an image that sharply transitions from an area of high 

luminance to an area of low luminance and back to an area of high luminance 



 23 

e.g. a dark bar (Figure 1.7), the luminance profile would approximate a square 

wave.  

Figure 1.7: Illustration of a square wave (lower panel) with mean luminance (L) as a one-
dimensional trace across an image of a dark bar surrounded by high luminance (upper panel). 
 

A square wave is a periodic waveform that can be decomposed using Fourier 

analysis into odd harmonics of a fundamental sinusoidal component (the lowest 

frequency sinusoid in the sum) with varying amplitudes and phases.  

 

The Fourier transform of a square wave of frequency f and amplitude 1 is given 

by: 

 

 
4
𝜋 𝑠𝑖𝑛 𝑓 +

𝑠𝑖𝑛 (3𝑓)
3 +

𝑠𝑖𝑛 (5𝑓)
5 +⋯+

𝑠𝑖𝑛 (𝑛𝑓)
𝑛  ……................. (1.7) 

 

Thus, the amplitude of the fundamental sinusoidal component is 4/π or 1.273 

times larger than the amplitude of the square wave. The amplitude of the third 

harmonic is 1/3 that of the fundamental, and so on. Figure 1.8 (left panels) 
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illustrates the first approximation to a square wave obtained by adding the 

fundamental (f) and third harmonic (3f), in these proportions and with equal 

phase. A progressively better approximation to a square wave may be obtained 

by continuing to add higher odd harmonics. 

 

Similarly, a sawtooth wave of frequency f and amplitude 1 decomposes into 

both odd and even harmonics (Figure 1.8, right panels), and is given by: 

 

 
2
𝜋 𝑠𝑖𝑛 𝑓 +

𝑠𝑖𝑛 2𝑓
2 +

𝑠𝑖𝑛 3𝑓
3 +⋯+

𝑠𝑖𝑛 𝑛𝑓
𝑛  …….…..…......... (1.8) 

 

Figure 1.8: Synthesis of square (left panels) and sawtooth (right panels) waves. Left panels: 
The upper panel represents two component sine waves of frequencies f and 3f. The lower panel 
represents the first approximation to a square wave resulting from the sum of these 
components. Right panels: The upper panel represents three component sine waves of 
frequencies f, 2f and 3f. The lower panel represents an approximation to a sawtooth wave 
resulting from the sum of these components. 
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1.2.5 Linear systems analysis and the visual system 

Fourier analysis may be applied to any stimuli, including aperiodic stimuli. As 

such, any image can be completely described by sinusoidal components of 

varying frequency, amplitude and phase. If we know how a system responds to 

a small set of sinusoidal components then we can predict its response to any 

complex signal, assuming the system is linear. Thus the assumption of linearity 

in the visual system is important in characterising the system’s structure and to 

developing model systems.  

 

However, neural information processing is predominantly nonlinear since the 

synaptic transmissions that propagate neural information primarily produce 

nonlinear input-output functions (e.g. Markram, 2003). Yet, surprisingly the 

visual system appears to exhibit a high degree of linearity. A review of linear 

and nonlinear systems analysis of the visual system by Shapley (2009) 

attributes the linearity of the retina to specialised ribbon synapses, while cortical 

linearity is described as a result of the interactions between excitatory and 

inhibitory synapses. Thus there is a presumptive case for employing the 

assumption of linearity in predicting the response of the visual system to 

complex images from knowledge of its response to basis functions. 

 

1.3 Processing in the spatial domain 

In principle the combination of linear systems theory and Fourier analysis 

should allow for the prediction of responses by the visual system, assuming it is 

linear. A great number of workers have sought evidence, that the visual system 

may be characterised as at least quasi-linear in the spatial domain.  
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1.3.1 The visual system as a Fourier analyser 

Campbell and Robson (1968) addressed the question of whether the visual 

system could be considered a linear system that performs something akin to 

Fourier filtering by measuring threshold contrast (i.e., the contrast at which a 

stimulus becomes barely visible from a uniform grey background) for a range of 

periodic stimuli (e.g. sine-, square-, sawtooth- and rectangular-wave gratings), 

using a wide range of spatial frequencies (between 0.2 and 45 c/deg). Given 

that a square-wave comprises the sum of the odd harmonics of a fundamental 

sinusoid and that the amplitude of the fundamental component is 1.273 times 

greater than the amplitude of the square-wave (Figure 1.8), they postulated that 

contrast sensitivity (threshold contrast-1) for a square-wave grating should be 

1.273 times greater than that of a sine-wave grating of the fundamental 

frequency. Their measurements confirmed that the contrast sensitivity of a 

square-wave grating was approximately 1.273 times greater than that of a sine-

wave grating. They concluded that the threshold contrast of complex gratings 

was determined by the amplitude of the fundamental Fourier component and 

that this was consistent with the notion that the visual system comprised 

multiple, independent linear spatial filters.  

 

Further evidence consistent with this proposal was their finding that subjects 

were unable to discriminate between a sine wave and a square wave pattern 

until the contrast of the third harmonic of the square wave reached its own 

threshold. The third harmonic (3f) of a square wave grating has one-third the 

amplitude of the fundamental and three times the spatial frequency of the 

fundamental (Figure 1.8). Thus subjects appear to discriminate the stimuli upon 

the basis of the harmonic components of the square wave, leading Campbell 
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and Robson (1968) to suggest that the visual system uses linearly operating 

mechanisms that specifically respond to limited ranges of spatial frequencies. 

This multi-channel model assumes that the visual system performs an 

approximate Fourier analysis on the input stimulus, with separate channels 

analogous to spatial frequency filters with fixed ranges in the spatial frequency 

domain. The Contrast Sensitivity Function (CSF) of the system may thus be 

considered as the envelope of sensitivities of these independent spatial 

frequency channels (Figure 1.9) (The CSF indicates the relative contrast 

sensitivity (threshold contrast-1) to spatial frequency). 

 

 

Figure 1.9: Illustration of the contrast sensitivity function (solid line) and some of the underlying 
channels (broken lines). Each channel responds to a limited range of spatial frequencies, the 
combination of these channels is what forms the CSF. 
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Further evidence for the existence of spatial frequency channels include spatial 

frequency-specific adaptation effects found by workers such as Pantle and 

Sekuler (1968) and Blakemore and Campbell (1969). They found that after 

viewing a high contrast grating at a particular spatial frequency, more contrast 

was required to detect similar frequency gratings (threshold elevation), whereas 

the contrast sensitivity for dissimilar spatial frequencies (approximately 2 

octaves difference) was unaffected. 

 

Blakemore and Campbell (1969) and Movshon and Blakemore (1973) found 

that threshold elevation did not occur exclusively at the adapting spatial 

frequency but across a limited range spanning around one to two octaves 

centred on the adapting frequency, suggesting that the channels are band-pass. 

Blakemore, Muncey, and Ridley (1973) measured the perceived loss of contrast 

after adaptation at several spatial frequencies and contrasts, and found that the 

width of the channels were also around two octaves centred on the adapting 

frequency. Measurements of the channels’ widths seem to be consistent across 

studies that have employed different techniques (e.g. Blakemore & Campbell, 

1969; Blakemore et al., 1973; Graham, 1972; Pantle & Sekuler, 1968; 

Stromeyer & Julesz, 1972) and are consistent with a model incorporating 

multiple independent band-pass spatial filters (or channels). 

 

Some later work yielded evidence inconsistent with the assumption of 

independent channels (e.g. Barfield & Tolhurst, 1975; De Valois, 1977; 

Georgeson, 1975; Stecher, Sigel, & Lange, 1973; Tolhurst, 1972; Tolhurst & 

Barfield, 1978). For instance, Tolhurst and Barfield (1978) reported, that post-

adaptation threshold was reduced for frequencies that differed from the 
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adapting pattern by one to two octaves (i.e., outside the range of a individual 

spatial channel), indicating that there may be inhibitory interconnections 

between channels. They hypothesise that in a resting state there is a steady 

level of inhibition across all channels. If a channel is then adapted, this channel 

will have less of an inhibitory effect on neighbouring channels causing an 

increase in their sensitivity.  

 

While some inconsistency with Blakemore and Campbell's (1969) findings has 

been reported regarding the independence of channels (e.g. De Valois, 1977; 

Tolhurst, 1972; Tolhurst & Barfield, 1978) and channels selectively tuned to 

spatial frequency and not spatial phase (Jones & Tulunay-Keesey, 1975), 

evidence for their central finding of tuned spatial-frequency channels is 

abundant, and the multiple spatial-frequency channel model has subsequently 

become widely accepted (see reviews by: Braddick, Campbell, & Atkinson, 

1978; De Valois & De Valois, 1980).  

 

Figure 1.10 illustrates how these multiple spatial filters may approximate to a 

Fourier analyser of the visual scene.  

 

 

 

 

 



 30 

Figure 1.10: A 2-D Fourier transform of a natural image (top left) has been computed and its 
spectrum displayed (top right). The amplitude of each component is shown by the brightness of 
a pixel in the spectrum image. Low spatial frequencies are shown at the centre of the spectrum 
and high spatial frequencies are shown in the corners. Low, medium and high spatial frequency 
filters have been applied to the spectrum image and the spatial domain image has been 
recovered. Higher spatial frequencies contain information about feature details such as edges, 
while lower spatial frequencies contain information about the luminance variation over large 
scales. 
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1.3.2 Physiological implementation 

In addition to the psychophysical evidence there is also substantial 

physiological evidence for the existence of tuned spatial-frequency channels in 

the visual system. Typically, retinal ganglion cells have circular antagonistic 

receptive fields with a variety of spatial extents. Enroth-Cugell and Robson 

(1966) proposed a plausible model of receptive field sensitivity comprising two 

Gaussian functions, the overall sensitivity given by the difference between the 

two functions (Figure 1.11).  

Figure 1.11: Illustration of how the combination of two Gaussian functions can produce an ON-
centre receptive field (right panel). The trace in each panel illustrates the response to a point of 
light presented at various positions. 
 

A cell with a receptive field based on this model would yield a strong response 

to gratings with a half cycle comparable to the width of the excitatory region. 

Little response would be shown to gratings with half cycles smaller than the 

excitatory region, and also little response to gratings with such a low frequency 

that both the excitatory and inhibitory regions fall within one half cycle. Thus, a 

cell that operates in such a way is sensitive to a narrow range of spatial 

frequencies, akin to the properties of a spatial frequency channel. However, 

quantitative estimates indicate the retinal cells’ characteristics are not entirely 

consistent with behavioural evidence. 
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The spatial frequency bandwidths of retinal ganglion and Lateral Geniculate 

Nucleus (LGN) cells (Derrington & Lennie, 1984; Enroth-Cugell & Robson, 

1966) appear to be broader relative to cortical cells and human psychophysical 

estimates (Campbell, Cooper, & Enroth-Cugell, 1969; De Valois, Albrecht, & 

Thorell, 1977; Maffei & Fiorentini, 1973). Furthermore, the spatial frequency 

response functions of cortical cells appear to be band-pass in nature, compared 

to the effectively low-pass response functions of retinal and LGN cells. 

Movshon, Thompson, and Tolhurst (1978) found that in the cat cortex the most 

common spatial bandwidth was around 1.3 octaves. De Valois, Albrecht, and 

Thorell (1982) found similar spatial bandwidths in the macaque cortex, most of 

the cells had bandwidths between 1 and 1.5 octaves, with the median 

bandwidth around 1.4 octaves. Thus cortical cells appear to be more consistent 

with behavioural estimates (e.g. Blakemore & Campbell, 1969; Movshon & 

Blakemore, 1973) of bandwidth than either retinal ganglion or LGN cells (Figure 

1.12). 

 

Figure 1.12: Examples of responses of single cells is the retina, LGN and cortex of the cat to a 
sinusoidal grating as a function of spatial frequency (after Maffei and Fiorentini (1973)). Sub-
cortical cells appear to show low pass characteristics compared to the narrowly tuned band 
pass characteristics of cortical cells.  
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From this early work, a picture emerges whereby the visual system may be 

characterised, to a first approximation, as a quasi-linear system that processes 

spatial luminance signals in relatively independent, band-pass channels. The 

question therefore naturally arises as to whether its temporal processing is 

similarly structured. 

 

1.4 Processing in the temporal domain 

There is a relatively broad range of findings consistent with the notion that the 

human visual system analyses spatial patterns through multiple spatial filters 

(e.g. Braddick et al., 1978). The number of spatial channels has been estimated 

using a variety of techniques, e.g. spatial-frequency-specific adaptation 

(Blakemore & Campbell, 1969; Pantle & Sekuler, 1968), masking (Carter & 

Henning, 1971; Stromeyer & Julesz, 1972), subthreshold summation (Sachs, 

Nachmias, & Robson, 1971), and similarities between the spatial sensitivity 

profiles of these filters and single cells in the primary visual cortex have been 

noted (De Valois, De Valois, & Yund, 1979; Maffei, Morrone, Pirchio, & Sandini, 

1979). However, early visual processing also involves temporal filtering. The 

nature of these temporal filters is not as well understood.  

 

Early adaptation studies (Nilsson, Richmond, & Nelson, 1975; Pantle, 1971; 

Tolhurst, Sharpe, & Hart, 1973) suggested that whereas there are many 

narrowly tuned spatial frequency channels, there are few broadly tuned 

temporal frequency channels. Pantle (1971) used a staircase procedure to 

obtain flicker thresholds. Despite using a wide range of adapting frequencies 

Pantle's (1971) results showed little specificity of adaptation with similar profiles 

for the different flicker-sensitivity functions. However, subjects were adapted to 
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square wave flicker, whose harmonics may have resulted in the adaptation of 

temporal channels not sensitive to the fundamental frequency. Nilsson et al. 

(1975) used sinusoidally modulated adapting frequencies but reported that the 

maximum adaptation effect was not always the same as the adapting 

frequency. The findings of these early studies showed little specificity of 

adaptation and appear difficult to interpret.  

 

More recent findings (e.g. Moulden, Renshaw, & Mather, 1984; Watson & 

Robson, 1981) provide clearer evidence consistent with the proposal of a few 

broadly tuned temporal channels. Moulden et al. (1984) used an adaptation 

protocol similar to earlier studies (Nilsson et al., 1975; Pantle, 1971; Tolhurst et 

al., 1973). They employed six adapting frequencies within the range 3 Hz to 20 

Hz to investigate the threshold of five frequencies within the same range. Their 

results showed that, regardless of the adapting frequency, threshold elevation 

consistently peaked at one of two frequencies, 6 Hz and 14 Hz. They concluded 

that this suggests that there are only two temporal channels, one low-pass 

channel with an estimated peak sensitivity of 6 Hz, and one band-pass channel 

with an estimated peak sensitivity of 9 Hz.  

 

Moulden et al. (1984) based their conclusion that only two temporal channels 

exist on adapting frequencies within the range 3 Hz to 20 Hz. Their data does 

not exclude the possibility of additional higher frequency channels with 

sensitivity profiles such that adapting frequencies of 3 Hz to 20 Hz yield little or 

no threshold elevation. Furthermore, their stimuli comprised light-emitting 

diodes (LEDs) (0.34 deg diameter) and were therefore spatially broadband. 
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Thus it is possible that their results reflect the responses of a number of 

independent, spatially tuned filters. 

 

Watson and Robson (1981) addressed this issue by measuring temporal 

frequency discrimination performance using counterphase sinusoidal gratings 

near threshold at two spatial frequencies. The rationale for this methodology is 

that presenting frequencies near threshold will only lead to the activation of the 

channel most sensitive to that frequency. Whilst the sensitivity profiles of 

different channels may overlap, as reported in the spatial domain (Campbell & 

Robson, 1968), at threshold only the channel most sensitive will activate. 

Watson and Robson (1981) considered the possibility that detectors may be 

labelled, i.e., the output of a channel is associated with the frequency range 

over which the channel is sensitive, therefore an observer can distinguish 

between the response of any two channels. If the detection of frequencies 

presented near threshold is based upon the output of separate channels then 

those frequencies can be perfectly discriminated. Watson and Robson (1981) 

found that at both high (16 c/deg) and low (0.25 c/deg) spatial frequency, only 

relatively high and low temporal frequencies are discriminated perfectly. For 

example, at 0.25 c/deg, 8 Hz is perfectly discriminated from 0 Hz, but 2 Hz and 

4 Hz are not; 2 Hz is perfectly discriminated from 16 Hz, but 4 Hz is not. At 16 

c/deg, only 0 Hz and 8 Hz, and 0 Hz and 16 Hz are discriminated perfectly. 

Following the logic of perfect discrimination, Watson and Robson's (1981) 

results suggest that temporal frequency is encoded by two channels, at least at 

threshold. 
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Similar conclusions to Watson and Robson (1981) have been arrived at using 

different stimuli (Thompson, 1983) and different techniques (Anderson & Burr, 

1985). Thompson (1983) employed drifting gratings and reported that only 

gratings with relatively large differences in drift speed could be discriminated. 

For instance, at 1 c/deg, 1 deg/sec and 7 deg/sec, 2 deg/sec and 12 deg/sec, 

and 3 deg/sec and 17 deg/sec, could be discriminated, suggesting that at 

threshold only two temporal filters are required for discrimination. Anderson and 

Burr (1985) reported evidence for two temporal channels using a masking 

paradigm. Employing drifting sinusoidal gratings of 0.1, 1 and 10 c/deg, at a 

constant temporal frequency, they measured the reduction in sensitivity to a test 

grating overlaid by a mask grating of variable temporal frequency. They found 

that regardless of temporal frequency the masking functions tended to show a 

single peak within the range 7 Hz to 13 Hz, for all test frequencies above 1 Hz. 

The exact location of the peak within the range 7 Hz to 13 Hz was dependent 

upon the spatial frequency of the test grating. Unlike in the spatial domain, 

masking functions did not peak at the same temporal frequency as the test 

gratings, as would be expected in a multi-channel configuration. Anderson and 

Burr (1985) conclude that their results suggest the existence of two temporal 

frequency detectors, one band-pass with a peak around 10 Hz, and a low-pass 

filter. In the case of low temporal frequencies, they found that masking functions 

did not have a specific peak. 

 

Whilst there is strong evidence to support the notion of two temporal channels 

(e.g. Anderson & Burr, 1985; Foster, Gaska, Nagler, & Pollen, 1985; Moulden et 

al., 1984; Thompson, 1983; Watson & Robson, 1981) some psychophysical 

studies have suggested that there may be an additional third channel sensitive 
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only to high temporal frequencies. Hess and Plant (1985) replicated Watson 

and Robson's (1981) experiment and reported an improvement in discrimination 

performance at higher temporal frequencies. They found that at threshold and 

at very low spatial frequencies (0.2 c/deg) subjects were able to discriminate 0 

Hz from 4 Hz and 4 Hz from 32 Hz. Similar results were obtained using 

suprathreshold stimuli, at low spatial frequencies (0.2 c/deg), there was an 

improvement in higher temporal frequency discrimination performance, 

suggesting a third channel. However, when a higher spatial frequency (2 c/deg) 

was employed, for both threshold and suprathreshold stimuli, their results were 

similar to those of Watson and Robson (1981), indicating the presence of only 

two temporal frequency mechanisms. It is difficult to account for the 

discrepancies between the results of Hess and Plant (1985) and Watson and 

Robson (1981). One possibility is that small differences between the stimuli 

used in each experiment may account for the differences. Hess and Plant 

(1985) used a lower spatial frequency (0.2 c/deg) compared to Watson and 

Robson (1981) (0.25 c/deg) and a slightly larger Gaussian spread of 2 periods 

compared to 1.5 periods. 

 

Mandler and Makous (1984) motivated their experiment with the same labelled 

channels logic as Watson and Robson (1981), yet their results do not help to 

clarify this discrepancy between a two-channel or three-channel model of 

temporal processing. The data of one subject corresponded with a three-

channel model, where 1 Hz, 4 Hz and 45 Hz were discriminated from one 

another, whereas, the data of another subject were more inline with the 

existence of two channels, one channel that could detect frequencies below 6 

Hz and another channel that could detect frequencies above 6 Hz. Despite this 
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difference in subject performance, Mandler and Makous (1984) propose that a 

three-channel model adequately describes their results (Mandler, 1984). Finally, 

Hess and Snowden (1992) used a masking paradigm to investigate temporal 

processing in the visual system, and also suggested the existence of three 

temporal channels. 

 

One of the main pieces of evidence for the existence of a third temporal channel 

is the improvement in discrimination performance at higher temporal 

frequencies, yet this may be due to an artifact. It is well known that viewing a 

flickering region over a prolonged period of time reduces sensitivity to that 

flicker (Pantle, 1971). Furthermore, prolonged viewing of peripheral flickering 

regions result in the perceptual fading and eventual disappearance of those 

flickering regions (Schieting & Spillmann, 1987). Hammett and Smith (1992) 

proposed that subjects in earlier experiments supporting the existence of three 

temporal channels were able to improve their discrimination performance at 

higher temporal frequencies due to fading cues which are enhanced by the 

relatively long presentation times (1-3 sec) as used by Mandler and Makous 

(1984) and Hess and Plant (1985). Perceptual fading will affect both stimuli in a 

discrimination task, but not necessarily with equal measure. Schieting and 

Spillmann (1987) reported that perceptual fading time was reduced as the 

temporal frequency of stimuli increased. Therefore, in a discrimination task with 

two stimuli of different temporal frequencies, perceptual fading times would be 

different. This difference in perceptual fading time is made more salient with 

long presentation times (1-3 sec) and as the temporal frequencies of the stimuli 

in the discrimination tasks are increased.  
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In order to investigate whether perceptual fading improved discrimination 

performance at higher temporal frequencies Hammett and Smith (1992) used 

three different presentation durations 3000, 1500 and 300 msec. They report 

that at 1500 msec duration at 0.5 c/deg, discrimination performance was best 

bellow 20 Hz and then improves again above 30 Hz. At the same presentation 

duration but higher spatial frequency (4 c/deg) there was no improvement in 

performance above 30 Hz, similar to previous findings. In order to reduce the 

effect of perceptual fading, presentation duration was reduced to 300 msec at 

0.5 c/deg, the improvement in discrimination above 30 Hz disappeared. To 

demonstrate how much of an effect presentation duration had on discrimination 

performance, Hammett and Smith (1992) increased presentation duration to 

3000 msec, in order to make the fading cues more salient. They found that 

discrimination performance at higher temporal frequencies (35 Hz) could be 

improved even at high spatial frequencies (4 c/deg).  

 

Studies prior to Hammett and Smith (1992) that used an increase in 

discrimination performance at higher temporal frequencies to infer a third 

temporal channel used relatively long presentation durations. Furthermore, 

Hess and Plant (1985) suggested that an improvement in discrimination 

performance was confined to lower spatial frequencies yet, Hammett and Smith 

(1992) showed that this improvement was present at higher spatial frequencies 

but that longer presentation durations were required. Subsequently, 

Fredericksen and Hess (1998) developed a model to best fit their set of 

psychophysical data and found that only two-temporal filters were necessary to 

describe the performance of three subjects. While some researchers (e.g. Hess 

& Plant, 1985; Hess & Snowden, 1992; Mandler & Makous, 1984) have 
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suggested the existence of three temporal channels it is now generally believed 

that there are just two temporal channels: one tonic (low-pass) and one phasic 

(band-pass) (Anderson & Burr, 1985; Fredericksen & Hess, 1998; Hammett & 

Smith, 1992).  

 

1.4.1 Magnocellular and Parvocellular pathways 

Single-cell studies on the macaque have revealed cortical cells with low-pass 

and band-pass temporal tuning characteristics (Foster et al., 1985; Hawken, 

Shapley, & Grosof, 1996), similar to the temporal filters suggested by Anderson 

and Burr (1985). Foster et al. (1985) reported most neurons in V1 and V2 were 

broadly tuned for temporal frequency and exhibited either band-pass or low-

pass characteristics within the range of 0.5 Hz to 16 Hz. Hawken et al. (1996) 

suggested that the temporal frequency tuning in V1 appears to be a filtered 

version of the signals from the Lateral Geniculate Nucleus (LGN). Furthermore, 

early physiological research established the existence of two functionally 

distinct groups of retinal ganglion cells, parasol and midget cells, that 

correspond to the Magnocellular (M) and Parvocellular (P) layers in the LGN, 

respectively (e.g. Kaplan & Shapley, 1986; Lennie, Trevarthen, Van Essen, & 

Wässle, 1990; Merigan & Maunsell, 1993). One striking difference between 

cells in the M and P pathways is the temporal characteristics of their responses 

to visual stimuli (Gouras, 1968). When presented with a step change in 

luminance, P cells show a more tonic (or sustained) response, whereas, M cells 

show a more phasic (or transient) response (Purpura, Tranchina, Kaplan, & 

Shapley, 1990). Furthermore, P cells are most sensitive to low temporal 

frequencies and reduce their sensitivity as temporal frequency increases, 

whereas, M cells are less sensitive to low temporal frequencies and more 
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sensitive to high temporal frequencies (Merigan & Maunsell, 1993). While both 

M and P cells have centre-surround receptive fields that can be described by 

Gaussian functions (Derrington & Lennie, 1984), M cells’ receptive fields are 

typically 2-3 times larger than P cells’ (Lennie et al., 1990).  

 

Another physiological difference between M and P cells is their sensitivity to 

stimulus colour. P cells have a colour opponent structure (ether red/green or 

blue/yellow), making them sensitive to “chromatic” stimuli regardless of the 

relative luminance of the colours (Derrington & Lennie, 1984). M cells, on the 

other hand, are less sensitive to colour and more sensitive to achromatic 

“luminance” modulation (Callaway, 2005; Derrington, Krauskopf, & Lennie, 

1984; Michael, 1988; Wiesel & Hubel, 1966). The superior sensitivity to 

luminance modulation of M cells is particularly noticeable at higher temporal 

frequencies. Derrington and Lennie (1984) reported that macaque M cells are 

more sensitive to higher temporal and lower spatial frequencies than P cells. P 

cells were optimally sensitive to stimuli modulated at temporal frequencies 

around 10 Hz, M cells to stimuli modulated at around 20 Hz.  

 

Behavioural evidence from localised lesions to the M and P pathways also 

highlight the functional specialisation of the two pathways. Lesions to the M 

pathway cause a decrease in luminance contrast sensitivity to high temporal 

and low spatial frequency stimuli (Merigan, Byrne, & Maunsell, 1991). This 

reduction in sensitivity results in the reduced visibility of fast flickering or fast 

moving stimuli, consistent with physiological evidence. Lesions to the P 

pathway result in complementary effects, thus a decrease in luminance contrast 

sensitivity to low temporal and high spatial frequencies (Merigan, Byrne, et al., 
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1991; Merigan & Eskin, 1986; Merigan, Katz, & Maunsell, 1991). There appears 

to be an approximately four-fold decrease in visual acuity caused by P pathway 

lesions, which suggests that the P pathway plays a large role in detecting high 

spatial frequencies (Merigan, Katz, et al., 1991). Furthermore, M pathway 

lesions cause no change to colour contrast sensitivity, while P pathway lesions 

cause an almost complete loss of colour vision (Merigan, Katz, et al., 1991; 

Schiller, Logothetis, & Charles, 1990).  

 

There is considerable physiological and behavioural evidence showing 

functional specialisation between the M and P pathways. This has led many 

(e.g. Callaway, 2005; Lennie et al., 1990; Merigan & Maunsell, 1993) to 

associate the M and P pathways with motion and form perception, respectively. 

There is thus a speculative link that can be made between physiological and 

psychophysical findings. Psychophysical research suggests that there are 

probably only two temporal channels and the M and P pathways may possibly 

form their substrate. Regardless, of the substrate of these temporal filters they 

are tuned for flicker but not speed. But many cortical cells are tuned for speed 

(e.g. Maunsell & Van Essen, 1983; Rodman & Albright, 1987; Simoncelli & 

Heeger, 2001). A range of models has therefore been proposed to account for 

how early spatial and temporal information is transformed into a cortical 

representation of speed. 
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1.5 Motion models 

1.5.1 Reichardt detectors 

Exner (1894) was one of the earliest to consider how a motion signal could be 

generated from neural connections, suggesting that to detect the direction of 

motion it is necessary that an image be sampled at more than one point in 

space and that these samples be summed. Direction and speed of a moving 

object can be obtained in this type of system, by comparing the differences in 

time delay of signals reaching the point of summation from different locations in 

the retina. Reichardt (1961) proposed the first formal model of motion detection, 

known as the Reichardt detector or Hassenstein-Reichardt model (Hassenstein 

& Reichardt, 1956), based on the optomotor response of insects. A Reichardt 

detector has two input channels that sample the visual field at two spatially 

adjacent points. The luminance pattern from one of the input channels is 

delayed (by a low-pass temporal filter) and correlated with the luminance 

pattern from the non-delayed input channel at a multiplication unit. The 

multiplication unit is included in the model because if either a light increment 

(ON) or a light decrement (OFF) were presented to the two inputs, the resulting 

response would follow the sign rule of multiplication in all sequence 

combinations. Thus, a Reichardt detector would only respond when the 

luminance patterns at both inputs are the same (Figure 1.13). In this way the 

Reichardt detector operates as a spatio-temporal correlator allowing for motion 

detection. 
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Figure 1.13: Left panel: Schematic of a Richard detector. Input A is delayed by a temporal filter 
(t) before both input (A and B) signals are compared at the multiplication unit (X). Right panel: 
The response of a multiplication unit based on luminance patterns at inputs.  
 

An Elaborated Reichardt Detector (ERD) consists of two mirror-symmetrical 

Reichardt detectors (subunits) that are tuned to motion in opposite directions 

(e.g. left and right). The component subunits share two input channels that 

sample the visual field at two spatially adjacent points. The response of each 

subunit reflects how well the luminance pattern from each input correlates. 

Subtracting the response of the left subunit from the response of the right 

subunit yields the detector’s response. 

 

The Reichardt detector was developed based on the compound eyes of insects, 

composed of many ommatidia, for which point shaped receptive fields may 

have seemed appropriate, however mammalian eyes are structured differently. 

Physiological studies involving the visual pathways of higher mammals (e.g. 

cats and monkeys) have shown that cells in the retina and LGN are not 

directionally sensitive (e.g. Hubel & Wiesel, 1961; Shapley & Lennie, 1985). 

Although, neurons in V1 are found to be directionally sensitive, the receptive 

fields of these neurons are not sensitive to single points, but rather to large 
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areas of the visual field. Furthermore, for the Reichardt detector to signal motion 

accurately, the outputs of several detectors need to be combined; how this 

combination is achieved is undefined in the original model. Another limitation of 

the Reichardt detector is that it is susceptible to spatial aliasing. If the distance 

between the input channels (spatial sampling rate) were between one half and 

one spatial period of the input stimulus, the detector would signal the incorrect 

direction, as predicted by the Nyquist-Shannon sampling theorem (Nyquist, 

1928; Shannon, 1949).  

 

Van Santen and Sperling (1985) developed a version of the Elaborated 

Reichardt Detector in order to overcome some of the limitations of previous 

versions that attempt to model low-level motion detection in humans. To prevent 

spatial aliasing, the receptors of the ERD are linear spatial input filters out of 

phase by 90o, as opposed to point shaped receptive fields in the original 

detector. To prevent temporal aliasing, the temporal filters are modified in order 

to delay temporal frequencies compared at the multiplication unit by 90o. 

Consequently, the receptive fields of the input spatial filters and succeeding 

temporal filters are in quadrature phase (differ in phase by 90o). Combining 

these spatio-temporally separate spatio-temporal impulse responses, yield 

spatio-temporally inseparable responses tuned to motion in opposite directions. 

Moreover, Van Santen and Sperling (1985) specify an algorithm (voting rule) for 

how the responses from independent ERDs, sensitive to different spatial 

frequencies, are combined in order to produce the final response to motion by 

the visual system. A voting rule is necessary when applying the Reichardt 

detector model to human vision because the many detectors may present 

conflicting information at the decision stage.  
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1.5.2 Motion energy models 

Motion energy models (Adelson & Bergen, 1985) are formally equivalent to Van 

Santen and Sperling's (1985) version of an ERD. Motion energy models filter 

the input image through spatial and temporal filters out of phase by 90o in order 

to produce four spatio-temporally separable responses. These separable 

responses can be added or subtracted to produce spatio-temporally inseparable 

filters, which signal a preferred direction of motion. There are two rightward 

tuned linear filters and two leftward tuned filters, with each directional pair in 

quadrature phase. Adelson and Bergen (1985) note that while spatio-temporally 

inseparable filters are useful in analysing motion, they possess a few 

drawbacks. Firstly they are phase sensitive, for example, a moving sine wave 

pattern would elicit a response that also oscillated sinusoidally over time. At any 

point in time, the output of a spatio-temporally inseparable filter may be 

negative, zero or positive, so that at any given moment the output does not 

directly indicate motion. Adelson and Bergen (1985) suggest that an output with 

a constant value for constant motion would be more inline with the behaviour of 

many direction-selective complex cells. Secondly, the sign of a response from a 

spatio-temporally inseparable filter is dependent upon the sign of the stimulus 

contrast. For example, a white bar on a black background and a black bar on a 

white background moving in the same direction would give inverse responses.  

 

To overcome these drawbacks Adelson and Bergen (1985) introduce phase-

independence to their model by squaring and summing the responses of each 

directional pair of spatio-temporally inseparable filters and extracting a measure 

of local motion energy. The resulting motion energy responses for each 

direction are always positive and phase independent. The motion energy 
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responses would also be the same regardless of the sign, but not magnitude, of 

the stimulus contrast. The opponent motion energy (e.g. difference between the 

motion energy signals for rightward and leftward motion) gives a clear 

directional signal, but still confounds velocity and contrast.  

 

In order to extract a velocity estimate invariant from contrast Adelson and 

Bergen (1986) suggested that the opponent motion energy be scaled by some 

‘static energy’ signal. This in essence renders the modified motion energy 

models into a ratio model of speed encoding, comparing the outputs of ‘fast’ 

(opponent motion energy) and ‘slow’ (static energy) mechanisms. However, 

how the output of an array of spatiotemporally oriented motion detectors, each 

tuned to different velocities is combined to encode speed is not considered. 

Furthermore, the notion that speed is encoded in a ‘labelled lines’ manner as 

the output of an ensemble of narrowly tuned channels is not consistent with our 

current understanding of speed perception. Firstly, as previously mentioned 

(see section 1.4) there exist two (or may be three) broadly-tuned temporal 

frequency channels, one low-pass (or ‘slow’) and one (or two) band-pass (or 

‘fast’) channel. Secondly, adaptation to a moving stimulus changes the 

perceived speed of a subsequently viewed moving test stimulus (e.g. Carlson, 

1962; Smith & Edgar, 1994; Thompson, 1981). The effect of adaptation was not 

confined to test speeds within a narrow range about the adapting speed as 

would be expected from a ‘labelled lines’ approach. In fact, the perceived speed 

of all stimuli moving at speeds slower than the adapting speed appeared slower 

for stimuli moving in the same direction, when the adapting speed was slower 

than the test speed the perceived speed of the test stimuli appeared faster (e.g. 
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Hammett, Champion, Morland, & Thompson, 2005; Smith & Edgar, 1994; 

Thompson, 1981). 

 

Physiological studies (De Valois, Cottaris, Mahon, Elfar, & Wilson, 2000) have 

shown that the properties at each stage in the motion energy model are 

comparable to behaviour of cells across successive areas in the brain. In the 

cat visual cortex some simple cells have linear spatio-temporally separable 

responses, while other simple cells have spatio-temporally inseparable 

responses (McLean & Palmer, 1989; McLean, Raab, & Palmer, 1994; Pollen & 

Ronner, 1981). Direction selective complex cells haven been show to behave 

much like the non-linear transformation stage, producing phase-independent 

signals corresponding to motion energy (Emerson, Bergen, & Adelson, 1992). 

In the primate visual cortex Perrone and Thiele (2002) describe how V1 

neurones are tuned to certain spatial and temporal frequencies while neurones 

in the middle temporal (MT) area have spatio-temporally inseparable receptive 

fields oriented in the spatio-temporal frequency domain. They suggested that 

velocity tuning in MT occurs via a ratio of the low-pass and band-pass channels 

in V1. Furthermore, Perrone (2005) showed how a motion sensor with variable 

speed tuning could be produced from just two V1 neurons.  

 

1.5.3 Recovering direction of motion 

Neither Bayesian nor ratio approaches to speed encoding explicitly address the 

encoding of direction but a range of studies have addressed this key parameter. 

Both Reichardt and motion energy approaches have an explicit spatial 

component that encodes local velocity (speed and direction) but the recovery of 

motion direction in complex two-dimensional patterns requires further 
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computation. Adelson and Movshon (1982) suggested a two stage intersection 

of constraints (IOC) model to extract motion direction in multiple (e.g. sinusoidal 

plaid) component two-dimensional stimuli. Stage one of the model comprises 

the extraction of the (ambiguous) component velocities which are defined by a 

line of constraint parallel to the components' orientations. The second stage 

determines overall pattern (plaid in the case of two sinusoidal components) 

motion by identifying the intersection of the constraint lines (Figure 1.14). 

 

Figure 1.14: The IOC model: x and y represent the velocity vectors of the two components. 
Constraint lines are represented by the broken lines. The intersection of these lines determines 
velocity. 
 

The IOC model has proven successful in predicting perceived velocity for a 

range of two-dimensional patterns. However, the model fails to predict 

perceived direction when the two components differ in either contrast (Stone, 

Watson, & Mulligan, 1990) or spatial frequency (Smith & Edgar, 1991). Stone et 

al. (1990) reported that perceived direction is biased toward the direction of the 

higher contrast pattern component and Smith and Edgar (1991) found that 

perceived direction was biased toward the lower spatial frequency pattern 

component. Both groups suggested that the bias in perceived direction was due 

to an underlying bias in the perceived speed of the pattern's components. Thus 
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the IOC model can predict direction but only if the input to its second stage is 

that of the perceived rather than physical component speeds. Derrington and 

Suero (1991) provided further support for this modified form of the IOC model 

by showing that perceived direction was also biased after motion adaptation in a 

manner consistent with the IOC being computed by inputs of perceived speed. 

However, Champion, Hammett and Thompson (2007) demonstrated that biases 

in perceived speed induced by changing pattern component contrast does not 

lead to the perceived direction biases predicted by the modified IOC model. 

Moreover, Ferrera and Wilson (1990) demonstrated that the IOC model fails to 

predict direction for 'Type II' plaids. These plaids are two-dimensional patterns 

comprising components of very similar orientation but different speeds – the 

resultant pattern has an IOC that is not coincident with its vector sum. Wilson, 

Ferrera and Yo (1992) constructed a model that could predict the perceived 

direction of these Type II patterns by computing the vector sum of first-order 

and second-order components of the image. However, Champion et al. (2007) 

point out that Wilson et al.'s model cannot predict the perceived direction biases 

induced by unequal component contrast since the model incorporates an early 

gain control mechanism that makes it almost immune to contrast manipulations.  

Furthermore, Victor and Conte (1994) reported further evidence that the IOC 

approach may not reflect how the brain encodes motion direction. They found 

that a patient with posterior cortical atrophy had superior direction discrimination 

for moving plaids than for their component gratings – the opposite of that which 

would be predicted by the IOC model but, as Victor and Conte note, consistent 

with the model of Heeger (1987). 
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1.5.4 Heeger’s model of the extraction of image flow 

In constructing his model of velocity extraction, Heeger takes as his starting 

point the observation that band-pass spatio-temporal filters such as those 

implemented in motion energy models are not velocity selective mechanisms. 

Instead, they are tuned to a range of spatio-temporal frequencies and, as such, 

cannot disambiguate variations in spatial and temporal frequency within that 

range nor changes in contrast. Heeger's (1987) model sets out to demonstrate 

how an unambiguous velocity code may nevertheless be computed by 

combining the outputs of a large array of such mechanisms whose tuning 

characteristics vary. 

 

Heeger's (1987) model employs quadrature pairs of band-pass, three-

dimensional spatio-temporal filters. The quadrature relationship of these filters 

indicates that the maximum response in one filter is coincident with the 

minimum responses in the other – in order to achieve this property Heeger uses 

sine and cosine functions multiplied by a Gaussian (Gabors). The result of this 

quadrature phase is that the summed (and first squared) outputs of these filters 

gives a motion energy signal that is phase invariant. While these filters respond 

to motion, Heeger points out that they do not provide an unambiguous code for 

velocity. However, by varying the width of the Gaussian independently for space 

and time the filters can be tuned for a variety of different orientations and 

frequencies. Heeger's (1987) model uses a 'family' of such filters, each of which 

produces an energy measure within a different Gaussian region of the Fourier 

frequency domain. Moreover, the model normalises its response by dividing 

each filter output by the average of all filters of a particular orientation, thus 

reducing the ambiguity of the output with respect to contrast. In order to extract 
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velocity the model estimates the least squares fit of the filters' responses to 

calculate the orientation of the plane through frequency space that accounts for 

the greatest measure of motion energy. Finally, Heeger shows that this final 

stage can be modelled by combining the outputs of the motion energy filters in a 

non-linear (squaring) manner to produce velocity-tuned units that have 

properties similar to the velocity tuned cells found in macaque MT. 

 

Heeger's (1987) model deals well with a variety of natural stimuli and 

psychophysical estimates such as plaid direction with unequal contrast 

components and plaid coherence as a function of component angular 

separation. It is also consistent with Victor and Conte's (1994) report of a patient 

with cortical atrophy whose direction discrimination was better for plaids than 

their components – the model would predict precisely this since the combination 

of the outputs of the family of spatio-temporal filters allows for the 

disambiguation of the filter outputs. In the case of single gratings this ability to 

disambiguate is diminished. The model also has a good deal of physiological 

plausibility which was further enhanced in the model described by Simoncelli 

and Heeger (1998). Their model was conceptually similar to that of Heeger's 

(1987) original scheme although differing in implementation.  

 

Simoncelli and Heeger's (1998) model comprises two stages that map onto 

cortical areas V1 and MT. The model V1 cells are characterised by linear 

receptive fields. A disadvantage of using such linear filters is that their 

responses can be negative whilst neural responses (spike rates) are positive. 

Simoncelli and Heeger deal with this by half wave rectifying and then squaring 

the weighted sum (over space and time) of the input contrast, thus ensuring that 
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the model's response is always positive. This response is then normalised by 

dividing the output by a value proportional to the summed activity of all 

neurones (regardless of orientation and spatio-temporal tuning) within the 

'cortical neighbourhood'. This divisive stage serves to normalise the model 

neurone's response with respect to contrast and thus limits the dynamic range. 

These V1 model neurones do not unambiguously signal velocity but respond 

only to the velocity component of a pattern that is orthogonal to the preferred 

spatial orientation. In the second stage of the model, Simoncelli and Heeger 

(1998) describe how an unambiguous velocity code can be derived in model MT 

cells by combining the outputs of V1 model neurones whose differing space-

time orientations are consistent with a specific velocity. The stages of 

computation in the model MT cells are essentially similar to those of the V1 

neurones but, due to the combination of inputs across a range of spatio-

temporal orientations, the resultant units provide a true velocity-tuned estimate 

that closely matches the characteristics of real MT cells. Thus this class of 

model can be demonstrated to possess widespread biological plausibility and a 

computationally efficient method for encoding image velocity. However, its 

reliance on the detection of Fourier energy does pose a serious challenge for it 

in relation to the processing of 'non-Fourier' or second-order motion, a class of 

stimuli that will be described below. 

 

1.5.5 Motion energy, second order stimuli and feature tracking 

Models that rely on the extraction of Fourier energy to encode velocity have 

shown impressive success in simulating a range of motion-related phenomena 

in a biologically plausible way. However, there is a range of stimuli that do not 

provide an unambiguous cue to such models but are yet clearly discernible to 
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the human observer. The possibility thus arises that there may be more than 

one mechanism that encodes velocity. 

 

Braddick (1974) was among the first to propose two sub-systems of motion 

perception, naming them ‘short-range’ and ‘long-range’ processes. He proposed 

that the detection of short-range motion was sub-served by motion detectors 

that are sensitive to local spatio-temporal changes in luminance whereas long-

range motion occurs after the shape of the relevant feature has been extracted. 

The short-range and long-range processes are defined by the characteristics of 

their spatio-temporal ranges (Anstis, 1980; Braddick, 1980). The short-range 

process operates over small spatial (≤ 15 arcmin) and temporal intervals (inter-

stimulus intervals ≤ 100 msec) while the long-range process operates over 

many degrees and longer durations (inter-stimulus intervals up to 500 msec) 

(Braddick, 1974; Cavanagh & Mather, 1989). Many early studies provided 

evidence distinguishing between the two sub-systems. The short-range process 

produces motion after-effects (Anstis & Cavanagh, 1981; Banks & Kane, 1972), 

does not respond to equiluminant stimuli defined by colour (Ramachandran & 

Gregory, 1978) and is not driven dichoptically (Braddick, 1974). The long-range 

process appears to have the inverse properties of the short-range process, no 

or weak motion after-effects are produced (Anstis, 1980; Anstis & Moulden, 

1970; Banks & Kane, 1972; Papert, 1964), apparent motion can be perceived 

with equiluminant stimuli defined by colour (Ramachandran & Gregory, 1978) 

and it can operate dichoptically (Shipley, Kenney, & King, 1945). The most 

important distinction between the two processes is the way in which they extract 

motion information from a retinal image. The short-range process is thought to 

correspond to low-level motion detectors which work in parallel across the 



 55 

visual field while the long-range process is thought to correspond to higher-level 

visual processing which can identify forms and infer motion from the changes in 

spatial position of object features over time. 

 

However, subsequent studies have suggested that the distinction between the 

two-subsystems may not be as clear as previously thought. Short-range motion 

can be perceived over long distances (Cavanagh, Boeglin, & Favreau, 1985; 

Chang & Julesz, 1983), for equiluminant stimuli defined by colour (Cavanagh et 

al., 1985; Sato, 1988) and can be driven dichoptically (Shadlen & Carney, 

1986). Furthermore, the long-range process can produce motion after-effects 

(Von Grünau, 1986).  

 

One possible resolution of these discrepancies was offered by Cavanagh and 

Mather (1989) who suggested that the different properties identified with the 

short-range and long-range processes are due to the differences in the stimuli 

used rather than an indication of the existence of two motion sub-systems. 

Instead, they proposed that all motion is sub-served by the same early motion 

detectors but is subsequently processed in different ways depending upon the 

stimulus characteristics. Early studies investigating the characteristics of 

apparent motion (e.g. Anstis, 1980; Anstis & Moulden, 1970; Banks & Kane, 

1972) used short-range motion stimuli, such as ‘random-dot kinematograms’ 

(RDKs) (Julesz, 1971) and long-range motion stimuli consisting of large isolated 

objects. Random-dot kinematograms consist of random dot images presented 

in quick succession. The dots in one (e.g. the central) region of these images 

are spatially shifted by the same distance in each image, while the dots in the 

surrounding areas remain stationary. Thus the dots in the central region of the 
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images are perceived as a coherent object moving smoothly. Braddick (1974) 

identified 15 arcmin as the maximum spatial shift (Dmax) at which discrete 

motion could be identified and thus the upper-limit of the short-range process. 

However, a number of subsequent studies have been able to obtain Dmax values 

greater that 15 arcmin (e.g. Baker & Braddick, 1985; Chang & Julesz, 1983; 

Nakayama & Silverman, 1984). Chang and Julesz (1983) and Nakayama and 

Silverman (1984) manipulated the spatial frequency of the random-dot 

kinematograms and found that the largest Dmax was obtained for random-dot 

kinematograms containing predominantly low spatial frequencies. Cavanagh et 

al. (1985) found that once the elements in a random-dot kinematogram were 

greater than 15 arcmin, Dmax scaled linearly with element size. Thus long-range 

motion stimuli consisting of predominantly low spatial frequencies would allow 

motion to be seen for larger spatial displacements.  

 

Physiological evidence suggests that directionally selective neurons with large 

receptive fields are stimulated by large stimuli or large spatial shifts of apparent 

motion stimuli than neurons with smaller receptive fields (e.g. Baker & Cynader, 

1988). Thus, the spatial frequency content of apparent motion stimuli may 

account for the differences in maximum spatial shift. Cavanagh and Mather 

(1989) suggest that a more useful dichotomy than the short-range and long-

range processes would be one based on stimulus attributes, distinguishing 

between first- and second-order stimuli. 

 

Cavanagh and Mather (1989) describe first-order motion as the movement of 

luminance or colour defined patterns, whereas second-order motion is 

described as the movement of image characteristics not defined by luminance 
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or colour such as contrast modulation and texture. Fourier motion models, such 

as the motion energy model (Adelson & Bergen, 1985) (see Section 1.5.2) and 

those of Heeger (1987) and Simoncelli and Heeger (1998) reviewed above 

have been successful at modelling first-order motion detection. However, 

Chubb and Sperling (1988) showed mathematically that low-level motion 

detectors which operate by detecting motion energy are insensitive to second-

order motion.  

 

Three possible explanations of how second-order motion is detected have been 

proposed. First, Chubb and Sperling (1988) suggested that first- and second-

order motion are initially processed in parallel by separate low-level 

mechanisms before conventional (Fourier) motion computation. In order for a 

second-order motion pathway to detect second-order motion the retinal image is 

first filtered linearly and then rectified or squared. Rectification is a mathematical 

process by which all negative signal values are made positive. There are two 

types of rectification possible, full wave rectification converts all negative values 

into positive values and retains them, and half wave rectification discards all 

negative values. This non-linear rectification stage renders the output signal 

visible to conventional motion-energy detectors. A second possibility is that first- 

and second-order motion are detected by a single common mechanism with 

non-linear properties (e.g. Benton & Johnston, 2001; Benton, Johnston, 

McOwan, & Victor, 2001; Johnston, McOwan, & Buxton, 1992). A third 

possibility is that second-order motion detection is mediated by a post-attentive 

feature-tracking mechanism, such as that proposed by Cavanagh (1992). The 

occurrence of motion may be inferred by tracking the same target feature (e.g. 

regions of high and low contrast) over successive positions and Ullman (1979) 
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proposed a model that makes such motion correspondence matches. In 

Ullman's (1979) minimal mapping theory a cost is associated with the perceived 

movement of any image element from one image (or frame of view) to the next. 

This cost is proportional to the distance between the positions of the element in 

the two frames of view. The smaller the distance is, the lower the cost of 

motion. This is because when motion in a three-dimensional scene is projected 

onto a two-dimensional surface (e.g. the retina), shorter movements are more 

probable than longer movements. Ullman’s model computes the most probable 

motion correspondence between image elements using this logic. 

 

To date the majority of empirical evidence suggests that first- and second-order 

motion are initially encoded by independent low level mechanisms (e.g. Baker, 

1999; Lu & Sperling, 1995; Smith, 1994). For example, Ledgeway and Smith 

(1994) employed multi-frame motion sequences in which the frames altered 

between sinusoidal variations in luminance (first-order) and similar variations in 

contrast (second-order) to investigate whether unambiguous motion could be 

detected. The motion sequences were designed in such a way that 

unambiguous motion would be produced only if observers were integrating both 

types of frame (first- and second-order). If observers were analysing each type 

of frame independently then they would perceive ambiguous motion. Ledgeway 

and Smith (1994) found that observers were unable to integrate the frames of 

the multi-frame motion sequences, suggesting that first- and second-order 

motion are initially detected by distinct mechanisms, each of which is only 

sensitive to one type of motion. Ledgeway and Smith (1997) provide further 

psychophysical evidence for second-order motion detectors. They employed 

luminance-modulated (first-order) and contrast-modulated (second-order) 
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adaptation stimuli to investigate whether adaptation to second-order motion 

could cause changes in perceived speed. They found a similar pattern of results 

for both types of motion. When adaptation speed was faster than the test 

speed, adaptation resulted a reduction in perceived speed. When adaptation 

speed was slower than the test speed, there was an increase in perceived 

speed. These results suggest that first- and second-order motion are encoded 

by similar computational procedures, but not necessarily the same mechanisms 

in the visual system. While Ledgeway and Smith (1997) found some crossover 

adaptation (influence of adaptation to one type of motion transferring to the 

other type of motion) other studies have found that crossover adaptation does 

not generally occur, supporting the idea of distinct first- and second-order 

motion processing mechanisms (Ledgeway & Smith, 1994; Nishida, Ledgeway, 

& Edwards, 1997; Pavan, Campana, Guerreschi, Manassi, & Casco, 2009). 

Seiffert and Cavanagh (1998) presented observers with a luminance-modulated 

(first-order) and contrast-modulated (second-order) gratings oscillating 

sinusoidally to investigate whether observers were relying on a velocity-

sensitive motion energy mechanism or a position-sensitive feature tracking 

mechanism to detect motion. If observers were relying on a feature tracking 

mechanism to detect motion, then only the amount of spatial change would 

determine near-threshold motion. Alternatively, if motion was detected by a 

motion energy mechanism both amplitude and frequency oscillation would 

determine thresholds. Seiffert and Cavanagh (1998) found that observers were 

relying on motion energy mechanisms to detect the motion of luminance-

modulated gratings, but relied on a feature tracking mechanism to detect the 

motion of second-order gratings, further supporting the idea that first- and 

second-order motion may be processed by distinct mechanisms. 
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Additional evidence consistent with discrete mechanisms is found in 

neurophysiological studies. A number of studies has described patients with 

cortical lesions who have selective impairment of first- and second-order motion 

discrimination, suggesting that the two regions may be regionally separate at an 

early stage of cortical processing (Plant, Laxer, Barbaro, Schiffman, & 

Nakayama, 1993; Plant & Nakayama, 1993; Vaina, Cowey, & Kennedy, 1999; 

Vaina, Makris, Kennedy, & Cowey, 1996, 1998; Vaina & Soloviev, 2004). 

Moreover, O’Keefe and Movshon (1998) measured individual neurons in 

monkey area MT and found selectivity for the direction of first-order motion but 

not for the direction of second-order motion. However, fMRI has shown that 

some neurons in human area MT are activated by second-order motion (Smith, 

Greenlee, Singh, Kraemer, & Hennig, 1998). Thus, neurophysiological evidence 

suggests that functionally distinct first- and second-order mechanisms may exist 

but their precise anatomical characterisation is not entirely clear. 

 

To date evidence suggests that early stage second-order motion detectors work 

with feature-tracking mechanisms. Smith (1994) employed an ambiguous 

motion stimulus and demonstrated that both a mechanism that involves non-

linear rectification followed by motion energy detection and a feature-tracking 

mechanism can detect second-order motion under certain conditions. He found 

that observers normally reported the direction associated with a rectification 

followed by motion energy mechanism scheme. However, when an inter-

stimulus interval was introduced between the updates in stimulus position 

observers reported the direction associated with feature motion. Further 

evidence for the stimulus-dependent nature of motion detection was reported by 
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Lu and Sperling (1995) who used a pedestal-plus-test display, in which a drifting 

and a stationary grating are superimposed in order to investigate whether 

motion detection is affected when features are masked by a stationary pattern. 

They found evidence for both first- and second- order motion mechanisms and 

a third feature-tracking mechanism. However, in essence their scheme can be 

reduced to two mechanisms since their second-order mechanism is simply 

applies motion energy processing upon a rectified signal. Both Smith, (1994) 

and Lu and Sperling (1995) found that feature-tracking mechanisms are slower 

(tuned for lower temporal frequencies) than motion-energy mechanisms. Other 

studies using the pedestal paradigm have shown that at low contrast second 

order motion is dependent upon feature-tracking mechanisms (Derrington & 

Ukkonen, 1999; Seiffert & Cavanagh, 1998). Seiffert and Cavanagh (1998, 

1999) showed that at low contrast and low speeds second-order motion 

detection is based upon a feature-tracking mechanism, while at high contrast 

and high speeds second-order motion detection is based upon a motion-energy 

system.  

 

Attention has also been shown to affect the detection of second-order motion. 

When observers were required to attend to one of two spatially-adjacent 

patterns containing either first-order (luminance-defined) or second-order 

(contrast-defined) motion they were better able to discriminate the direction of 

second-order motion in the attended pattern, as opposed to the unattended 

pattern. When the two patterns contained first-order motion there was no 

difference in the observers’ performance with the attended and unattended 

patterns (Lu, Liu, & Dosher, 2000). However, Allen and Derrington (2001) 

employed a distractor task to distract attention and found that there is little 
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difference due to the effect of attention in detecting motion of fist- and second-

order stimuli with or without a distractor. Allen and Ledgeway (2003) replicated 

the results of Lu et al. (2000) with attended and unattended patterns but found 

that the enhancement in direction discrimination of second-order motion 

patterns due to attention was dependant upon the speed and duration of the 

stimuli. These results suggest that while attention-driven feature-tracking 

mechanisms may contribute to the detection of second-order motion, the level 

of influence that these mechanisms have is, again, dependent upon stimulus 

parameters. 

 

Thus a picture has emerged which is broadly consistent with the notion that two 

mechanisms sub-serve motion processing – one that extracts motion signals 

using low-level local changes in luminance (with or without a non-linear stage to 

aid detection of second-order) and a feature tracking mechanism that effectively 

infers motion after the relevant segment of the image has been extracted. A 

range of models have proposed various algorithms for how these two processes 

are implemented. Whilst these models vary in detail, it is now apparent that it is 

the precise stimulus configuration that is critical to which process is activated. 

 

1.5.6 Gradient models 

While there is physiological evidence consistent with motion energy models 

alternative models that use gradient detectors have also been proposed to 

model motion perception (e.g. Fennema & Thompson, 1979; Heeger & 

Simoncelli, 1993; Horn & Schunck, 1981; Johnston, McOwan, & Buxton, 1992; 

Marr & Ullman, 1981). Gradient models compute velocity by dividing the 

temporal derivative of local luminance by its spatial derivative.  
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Spatio-temporal gradient models, unlike Reichardt models, produce a signal 

that is proportional to the local velocity at each point in the image, independent 

of pattern properties. Notably, as long as the velocity is constant no modulations 

are expected in the local signals and the global velocity signal does not change 

with the spatial wavelength of the pattern. However, velocity estimation using 

the gradient model varies widely. Under conditions in which the spatial gradient 

of intensity is reduced the unreliability of velocity estimation is increased. Where 

the spatial gradient of intensity equals 0, for example, a uniform space of equal 

luminance, no motion information can be computed. As such, the gradient 

model provides the best estimates of velocity at edges, where there is a peak in 

spatial gradient (Marr & Ullman, 1981).  

 

For the visual system to encode velocity in such a way as described by gradient 

models, at least two kinds of visual mechanisms are required that respond to 

local spatial and temporal differences in image intensity. There is some 

psychophysical support for the existence of such mechanisms. Anstis (1967) 

reported an effect in which the visual system adapts to the direction of change 

of illumination - the “ramp after-effect” (Arnold & Anstis, 1993). Anstis (1967) 

found that after adapting to a spatially uniform field of light that gradually 

brightened, a subsequently viewed uniform test field of constant luminance 

appeared to dim over time. Conversely, adaptation to a gradually dimming 

pattern yielded a percept of a gradual brightening in a constant test stimulus 

(Anstis, 1967; Anstis & Harris, 1987; Arnold & Anstis, 1993; Cavanagh & Anstis, 

1986). This after-effect suggests that there are visual mechanisms tuned to the 

direction of temporal luminance gradients. Moreover, following adaptation to a 
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luminance ramp, a static test field that contained a spatial luminance gradient 

appeared to move (Anstis, 1967). This perceived motion is consistent with a 

gradient model of motion perception, in which motion is a ratio of temporal and 

spatial gradient signals. The apparent temporal gradient due to luminance ramp 

adaptation is combined with the physical spatial gradient in the test field to 

signal motion.  

 

1.6 Speed perception 

The models discussed thus far deal well with predicting direction of motion but 

fail to provide a clear account of speed encoding. Gradient models fare badly 

where the spatial gradient of intensity is reduced and motion energy models are 

confounded by contrast. To date, there is little agreement as to how the human 

visual system encodes speed (see e.g. Hammett et al., 2005; Hammett, 

Champion, Thompson, & Morland, 2007). Previous psychophysical studies 

have shown that the human perception of speed can be influenced by many 

factors (e.g. Brown, 1931) including contrast, luminance and temporal 

frequency (e.g. Hammett et al., 2007). Much of the work that addresses the 

problem of how we perceive speed has looked to biases in our perception to 

inform both formal and informal models of speed encoding.  

 

1.6.1 Effect of contrast upon perceived speed 

One such perceptual bias first reported by Thompson (1982) is the effect of 

contrast upon perceived speed. Subjects were tasked with matching gratings of 

varying contrast to a standard grating of fixed contrast for speed at a range of 

temporal frequencies (1 - 16 Hz). Thompson's (1982) results showed that at 

slow (< 8 Hz) speeds, low contrast decreased perceived speed but at faster 
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speeds (> 8 Hz) low contrast increased perceived speed. Stone and Thompson 

(1992) re-examined the effect of contrast on the perceived speed of moving 

gratings over a wider range of contrasts and spatial frequencies. Their results 

and others’ (e.g. Thompson, Brooks, & Hammett, 2006; Thompson, Stone, & 

Swash, 1996; Thompson & Stone, 1997) confirmed Thompson's (1982) original 

findings. For convenience and following others (e.g. Brooks, 2001; Snowden, 

Stimpson, & Ruddle, 1998) I will refer to these biases in perceived speed as the 

Thompson Effect. Thompson (1982) suggested that speed is encoded as the 

ratio of two channels, one ‘slow’ and one ‘fast’. The ‘slow’ speed channel of this 

ratio model is assumed to be more sensitive to slow (< 8 Hz) speeds than the 

‘fast’ speed channel and at slow (< 8 Hz) speeds the ‘slow’ channel is also 

assumed to have higher sensitivity than the ‘fast’ channel (Thompson, 1982) 

(Figure 1.15). Thus, a reduction in the contrast of a slow moving stimulus would 

result in the ‘slow’ speed channel becoming relatively more sensitive to the 

stimulus than the fast speed channel producing a reduction in perceived speed. 

Similarly, a reduction in the contrast of a fast moving stimulus would result in 

the ‘fast’ speed channel becoming relatively more sensitive to the stimulus than 

the slow speed channel producing an increase in perceived speed.  
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Figure 1.15: The temporal frequency sensitivity profiles of low-pass (or ‘slow’ channel) and 
band-pass (or ‘fast’ channel) temporal filters (after Smith and Edgar (1994)). 
 

1.6.2 Effect of adaptation upon perceived speed 

The findings of adaptation experiments reported by Thompson (1981) are also 

consistent with a ratio model of speed encoding. For example, following 

adaptation to a moving stimulus the perceived speed of a subsequently viewed 

test stimulus and all slower speeds moving in the same direction appeared 

reduced. However, when adaptation speed was slow and test speed was fast 

perceived speed increased. Adaptation of the ‘fast’ speed channel with fast 

adaptation speeds would result in the ‘slow’ speed channel becoming relatively 

more sensitive thus biasing the output of the ratio to lower values. Similarly, 

adaptation of the ‘slow’ speed channel with slow adaptation speeds would result 

in the ‘fast’ speed channel becoming relatively more sensitive and biasing the 

ratio to higher values. Later, Hammett et al. (2005) also found that adaptation 

can result in both increases and decreases in perceived speed under certain 

conditions and outlined a formal ratio model to explain this effect. 
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1.6.3 Ratio models and physiology 

The ratio model proposed by Thompson (1981, 1982, 1983) and others (e.g. 

Adelson & Bergen, 1986; Fredericksen & Hess, 1998; Hammett, Thompson, & 

Bedingham, 2000; Harris, 1980; Perrone & Thiele, 2002; Smith & Edgar, 1994) 

computes speed as the ratio of a low-pass (or ‘slow’ channel) and a band-pass 

(or ‘fast’ channel) temporal filter. Hammett et al. (2005) proposed a formal 

model that employed Perrone's (2005) temporal filters. The bases of these 

temporal filters are two types of V1 complex neurons: transient and sustained, 

which have band-pass and low-pass temporal frequency tuning respectively. As 

previously mentioned (see Section 1.4.1) physiological studies have shown that 

the M and P cells in the primate LGN have transient and sustained responses 

respectively (e.g. Livingstone & Hubel, 1987, 1988; Maunsell, 1987; Maunsell & 

Schiller, 1984; Schiller & Malpeli, 1978) and behavioural evidence shows that 

the contrast sensitivity of M and P cells appear complementary, P cells are 

more sensitive to low temporal frequencies while M cells are more sensitive to 

high temporal frequencies (Merigan, Byrne, et al., 1991; Merigan & Eskin, 1986; 

Merigan, Katz, et al., 1991). While the physiological substrates of the low-pass 

and band-pass filters described in the ratio model are unknown previous 

workers have highlighted the similarity between these filters and the M and P 

pathways (e.g. Hammett et al., 2005; Thompson et al., 2006). 

 

1.6.4 Effect of luminance upon perceived speed 

The ratio model has also been invoked to explain the perceptual bias of 

luminance upon speed perception (Hammett et al., 2007). A reduction in the 

luminance of fast moving (> 4 Hz) stimuli increased the perceived speed of 

those stimuli (Hammett et al., 2007; Vaziri-Pashkam & Cavanagh, 2008). 
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Similar to the explanation of how contrast may bias speed perception, Hammett 

et al. (2007) assume that at low luminance the sensitivity of the ‘slow’ speed 

filter is reduced relative to the sensitively of the ‘high’ speed filter, thus 

perceived speed is increased. This assumption has some physiological support, 

as Purpura, Kaplan, and Shapley (1988) reported that at low luminance levels 

the response of P cells is reduced proportionately more than that of M cells. 

 

1.6.5 Bayesian models 

Recently, Bayesian operators have been used to model perceptual biases such 

as the Thompson Effect (e.g. Ascher & Grzywacz, 2000; Hürlimann, Kiper, & 

Carandini, 2002; Stocker & Simoncelli, 2006; Weiss & Adelson, 1998; Weiss, 

Simoncelli, & Adelson, 2002). In general, Bayesian models assume that speed 

is encoded as the output of the combination of a likelihood estimate and a ‘slow’ 

prior function. The likelihood function represents the noisy sensory signal. The 

prior function represents the probability of encountering a particular speed. 

Proponents of the Bayesian model make the assumption that most speeds we 

encounter are slow, thus a ‘slow’ speed prior is used, although this is not readily 

supported by data – as Weiss et al. (2002) point out “we have no direct 

evidence (either from first principles or from empirical measurements) that this 

assumption is correct.” (p. 599). 

 

The Bayesian model relies on the logic that as the sensory signal becomes less 

precise (i.e. as the Signal-to-Noise Ratio decreases) the greater the influence of 

the ‘slow’ speed prior becomes. For example, as the contrast of a target 

stimulus is reduced its’ speed signal becomes increasingly difficult to estimate 
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and the influence of the ‘slow’ speed prior increases resulting in a reduction of 

perceived target stimulus speed. 

 

However, while the Bayesian model is able to account for the reduction of 

perceived speed at low contrast it is unable to predict the increase in perceived 

speed as contrast is reduced at temporal frequencies above 8 Hz, since a 

reduction in contrast always increases the influence of the ‘slow’ speed prior 

(Weiss et al., 2002). 

 

However, it is not only Bayesian models that struggle to account for empirical 

findings. Krekelberg, van Wezel, and Albright (2006) have shown that no 

current models of perceived speed can adequately account for the response 

properties of speed-tuned cells in the monkey cortex. The Bayesian model is 

successful in explaining reductions in perceived speed (e.g. for low contrast 

slow moving stimuli and for peripherally moving stimuli) but is not as successful 

at dealing with increases in perceived speed. There is currently no full model of 

speed encoding in humans and insufficient data to adequately characterise the 

effects of contrast, luminance or eccentricity upon perceived speed. There is 

therefore a clear need for further studies of how image attributes modulate 

perceived speed.  
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1.7 Chapter summaries 

A series of experiments was conducted in order to inform models of speed 

encoding and provide insight into the mechanisms underlying spatio-temporal 

processing in the visual system. 

  

Chapter 2 documents some preliminary methodological issues. In Chapter 3 the 

work of Anstis (1967) and Arnold and Anstis (1993) was extended to investigate 

which parameter/s of the visual scene determine/d the ramp after-effect – often 

considered key evidence for gradient models of motion detection. Chapter 4 

described an experiment that measured the biases in speed perception 

attributable to contrast. Chapter 5 documents an investigation of whether 

perceived slowing of stimuli in the periphery may be accounted for in terms of a 

perceived reduction in contrast. In Chapter 6 the effects of contrast and 

luminance on speed perception are reported. Chapter 7 comprises a discussion 

of these results and consideration of potential future research. 
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2 Some Methodological Considerations 

2.1 Acquiring data 

Psychophysical studies have commonly used binary decision tasks in order to 

investigate the point at which a difference between a perceived property of two 

stimuli is matched. For example, in contrast matching, the subject is presented 

with both stimuli and indicates which stimulus pattern has greater contrast. On 

each trial (or set of trials) the independent variable, for example, contrast of one 

of the stimuli (test stimulus) is changed, while the contrast of the other (standard 

stimulus) is kept constant. After several trials the point of subjective equality 

(PSE) is reached, the point at which the subject perceives the stimulus level as 

equal across stimuli. 

 

There are two common ways in which the contrast of the test stimulus may be 

determined. Classical research used fixed procedures where all the values of 

the test stimulus levels are predetermined for a sequence of trials. Adaptive 

procedures sequentially change the test stimulus level from trial to trial based 

on previous trial responses. Adaptive procedures are theoretically more efficient 

than fixed procedures because measurements converge toward the PSE. Since 

the emergence of adaptive procedures in the 1940s (Anderson, McCarthy, & 

Tukey, 1946; Dixon & Mood, 1948; von Békésy, 1947) they have become 

widely used in psychophysics (Cornsweet, 1962; Levitt, 1971; Taylor & 

Creelman, 1967).  

 

2.2 Adaptive procedures 

Adaptive procedures differ in the systems they use to efficiently place stimulus 

levels in a sequence of trials (or adaptive track) and to provide the final estimate 
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of threshold. Simple staircase procedures use the previous one or more trial 

responses to select the next stimulus level. A one up – one down staircase 

decreases the stimulus level when the subject’s response is ‘correct’ on the 

previous trial and increases the stimulus level when the subject’s response is 

‘incorrect’. A change in the direction of the stimulus level along the adaptive 

track is called a reversal point. In general, the threshold estimate is derived by 

averaging the values at the reversal points along an adaptive track. A one up – 

one down staircase tends towards the 50% performance level on a 

psychometric function, the adaptive track targets the stimulus level for which the 

probability of a ‘correct’ or ‘incorrect’ response is 50%. 

 

A psychometric function describes the relationship between a stimulus level and 

a subject’s response, generally represented as the probability of ‘success’ over 

a number of trials at that stimulus level. ‘Success’ in this case is dependent 

upon the subject’s task and predefined rules (e.g. in Experiment 3a the 

subject’s task was to indicate which pattern (standard or test) appeared to have 

greater contrast). 

 

The Parameter Estimation by Sequential Testing (PEST) algorithm developed 

by Taylor and Creelman (1967) provided more efficiency in estimating threshold 

by changing step size (the change in independent variable level when a 

directional change is made) as the adaptive track progressed. The PEST 

routine requires some initial parameters such as a starting stimulus level, step 

size, target performance level (e.g. 50% correct detections) and stopping 

criterion (final step size). Several trials are presented at a stimulus level and 

statistical analysis is used to specify whether the subject’s performance at that 
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level is better or worse than the targeted performance level. Based on the 

outcome of the statistical analysis a new stimulus level and step size may be 

defined and a series of trials presented again followed by statistical analysis. 

The PEST routine terminates at the criterion step size and typically the stimulus 

level on the final trial is taken as the final threshold estimate.  

 

Taylor and Creelman (1967) coined the term ‘sweat factor’ in order to evaluate 

the efficiency of psychophysical measurements. The sweat factor is the product 

of the number of trials and the variance of independent variable measures 

across all trials in a sequence. To generate the ideal sweat factor Taylor and 

Creelman (1967) simulated an experimenter with complete understating of the 

probabilities at each stimulus level, who always selects the stimulus level that 

will produce a performance level equal to the target performance level. They 

also simulated the PEST routine under various conditions to determine its sweat 

factor and conclude that the PEST procedure is 40%-50% efficient.  

 

In order to make the PEST routine more efficient in estimating threshold others 

have proposed a hybrid PEST routine that used PEST rules and a ‘maximum-

likelihood’ method to vary the stimulus level (e.g. Hall, 1981, 1983; Pentland, 

1980). After each trial the responses from all preceding trials are used to make 

a maximum-likelihood estimate of the parameters of a psychometric function, 

from which the next stimulus level and final threshold value are obtained.  

 

Similar to the hybrid PEST routine, the QUEST routine (Watson & Pelli, 1983) 

also uses all of the response information from previous trials to set the next 

stimulus level, with the addition of prior knowledge (e.g. previous research and 



 75 

literature). Crucially, Watson and Pelli (1983) make a distinction between the 

use of prior knowledge to set stimulus levels during a sequence of trials and 

deriving the final threshold estimate, which only uses the response information 

from a sequence of trials. While the original PEST routine was 40%-50% 

efficient, Watson and Pelli (1983) reported that a QUEST routine was 84% 

efficient.  

 

The use of prior assumptions in the QUEST routine may appear to introduce 

inherent biases in an experiment. However, Leek (2001) reviewed several 

adaptive procedures and concluded that most biases could be compensated by 

a careful consideration of experimental parameters and techniques. As such, 

where adaptive procedures have been used herein, a QUEST routine was 

employed to set stimulus levels on each trial. However, the termination for the 

QUEST routine at a criterion step size would result in unequal numbers of trials 

(n) across trial sequences. The changing of n may change the variance of the 

psychometric function underlying subject performance, the time taken to 

complete a sequence of trials, and confound the final threshold estimate with 

adaptation and fatigue effects. Thus estimates of PSE were not derived from 

parameters of the last n steps, or only the last trial. Rather, to ensure every 

estimate was derived from the same n observations QUEST was terminated 

after 50 trials. The data were subsequently fit to a cumulative Gaussian function 

and the 50% point of the function was taken as PSE.  

 

2.3 Fitting the Psychometric Function 

In order to estimate PSE a psychometric function must be fit to the data. This is 

generally done by assuming that the underlying function can be described by a 
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particular psychometric model (e.g. a cumulative Gaussian, Weibull, reverse 

Weibull or Logistic ogive). However, psychometric functions are monotonic (i.e. 

the function’s first derivative does not change sign). It follows that as the signal 

strength of a stimulus increases a subject’s task performance also increases. 

However, psychophysical data (including some herein) are frequently non-

monotonic (Figure 2.1). Most of the data reported herein were analysed by 

fitting a cumulative Gaussian to the data and determining the 50% point which 

was taken as an estimate of PSE. In order to ensure that these estimates of 

PSE were not biased by breaches of the assumption of monotonicity I 

compared these estimates with those derived by a recently described 

assumption-free fit (Żychaluk & Foster, 2009) (Figure 2.1 and Figure 2.2). The 

assumption-free model makes no assumptions about the underlying 

psychometric function of a data set. Rather, the assumption-free model uses 

local linear fitting to estimate the function locally point-by-point.  

 

A comparison was made between the PSE estimates derived from fitting a 

cumulative Gaussian function with the PSE estimates derived from an 

assumption-free fit to the data of Experiment 3a. Experiment 3a investigated the 

perceptual bias of contrast perception attributed to speed. Two patterns were 

presented simultaneously for 500 msec on each trial. Standard patterns 

constantly drifted at 1 deg/sec throughout, test patterns drifted at one of four 

speeds (1, 2, 4, or 8 deg/sec). The Michelson contrast of the standard pattern 

was constant throughout at 0.1. Five blocks were run at each speed. The 

subject’s task was to indicate which pattern appeared to have the greater 

contrast (see Chapter 4 for full details of Experiment 3a). The Michelson 

contrast of the test pattern was altered by a QUEST routine (Watson & Pelli, 
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1983) depending on the subject’s responses. For each block the QUEST 

procedure was terminated after 50 trials, for the purpose of this chapter the data 

were fit to both a cumulative Gaussian function using the method of least 

squares fit and to an assumption-free function, and the 50% point of each 

function was taken as the PSE.  

Figure 2.1: The data yielded by one QUEST procedure for one subject from Experiment 3a 
(open circles / dotted line) fit to a cumulative Gaussian function (broken line) and assumption-
free (solid line).  
 

Figure 2.1 plots typical non-monotonic data from Experiment 3a fit to both a 

cumulative Gaussian function and an assumption-free function. A subject’s 

responses for each QUEST procedure (or sequence of 50 trials) were binned by 

contrast level and fit to a cumulative Gaussian function using the method of 

least squares fit. The assumption-free model provides a very similar estimate of 

PSE. All subject data sets from Experiment 3a were fit to both cumulative 

Gaussian functions and assumption-free models in order to investigate whether 

breaches of the assumption of monotonicity for a cumulative Gaussian function 

biased the estimate of PSE (Figure 2.2). 
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Figure 2.2: The ratio of matched contrast at 1 deg/sec to matched contrasts at higher speeds is 
plotted as a function of grating speed (deg/sec) for all subjects from Experiment 3a. The mean 
of five PSE estimates derived from a cumulative Gaussian function (circles) and mean of five 
PSE estimates derived from an assumption-free fit (crosses) are plotted. Error bars represent 
±1 SEM. 
 

For all subjects in Experiment 3a, two-way ANOVAs revealed no significant 

main effect of fitting method, a significant main effect of speed, and no 

significant interaction between fitting method and speed (Table 2.1).  
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Table 2.1: Two-way analysis of variance (ANOVA) for fitting method and speed on matched 
contrast for each subject in Experiment 3a. * The effect is significant at the .001 level. 
 

Subject      

EM Source df Mean square F p 

 Fitting method 1 0.000 0.00 0.945 

 Speed 3 2.724 16.03 0.000* 

 Interaction Fitting method X Speed 3 0.000 0.00 0.999 

 Error 32 0.169   

ER Source df Mean square F p 

 Fitting method 1 0.000 0.00 0.960 

 Speed 3 37.822 144.25 0.000* 

 Interaction Fitting method X Speed 3 0.008 0.03 0.992 

 Error 32 0.262   

HF Source df Mean square F p 

 Fitting method 1 0.036 0.05 0.826 

 Speed 3 20.454 27.38 0.000* 

 Interaction Fitting method X Speed 3 0.024 0.03 0.991 

 Error 32 0.747   

LV Source df Mean square F p 

 Fitting method 1 0.007 0.03 0.873 

 Speed 3 76.925 270.45 0.000* 

 Interaction Fitting method X Speed 3 0.002 0.01 0.999 

 Error 32 0.284   

OH Source df Mean square F p 

 Fitting method 1 0.000 0.00 0.953 

 Speed 3 64.656 391.81 0.000* 

 Interaction Fitting method X Speed 3 0.000 0.00 0.999 

 Error 32 0.165   
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In order to estimate PSE the experiments reported herein have therefore 

employed a standard least-squares fit of a cumulative Gaussian to the data. 

This choice was motivated by (a) the good agreement with the assumption-free 

method and (b) computational efficiency.  

 

Whilst traditionally psychophysical studies assume that low level processing is 

essentially the same across human subjects it has recently become popular to 

include analysis of variance in results. Whilst I adhere to the assumption that 

low-level processing is similar across subjects, ANOVAs are reported here to 

evaluate differences between conditions rather than subjects. 
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3 Ramp after-effects: the effect of luminance and ramp profile 

3.1 Introduction 

It is well known that the visual system adjusts its sensitivity to the prevailing 

level of illumination. Adaptation does not occur instantly, moving from a dark 

environment to a light one or vice versa requires a short period of time before 

the visual system adjusts to seeing at the new level of illumination. These 

processes are known as light and dark adaptation respectively. However, Anstis 

(1967) reported a new effect in which the visual system adapts not to the 

intensity of illumination, but to the direction of change of illumination. 

 

Anstis (1967) measured the effect of adapting to stimuli whose luminance 

increased or decreased over time as a sawtooth function (Figure 3.1). He found 

that after adapting to a spatially uniform field of light that gradually brightened, a 

subsequently viewed uniform test field of constant luminance appeared to dim 

over time. Conversely, adaptation to a gradually dimming pattern yielded a 

percept of a gradual brightening in a constant test stimulus. This phenomenon 

is termed the ramp after-effect. Anstis (1967) reported that the temporal 

frequency and amplitude of luminance modulation were not critical to the effect 

but that a temporal frequency of 1 Hz and amplitude of 40 dB was near 

optimum for eliciting the longest duration of the perceived motion. This was the 

only combination of frequency and amplitude reported by Anstis (1967). 
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Figure 3.1: Linear (upper panel), logarithmic (middle panel) and exponential (lower panel) 
luminance ramps. The linear and logarithmic luminance ramps as used in Anstis (1967) and 
Arnold and Anstis (1993), respectively. 
 

Anstis (1967) also reported that, following adaptation to a luminance ramp, a 

static test field that contained a spatial luminance gradient appeared to move. 

Viewing a spatially uniform adapting field, whose luminance was modulated by 

an ascending sawtooth ramp, followed by a test field consisting of a spatial 

luminance gradient darkest on the left, rightward motion is perceived along with 

apparent dimming. Subsequently viewing a test field consisting of a spatial 

luminance gradient darkest on the right, there is apparent dimming and leftward 

motion. However, without a spatial luminance gradient present in the test field, 

no motion is perceived, only dimming. Anstis (1967) concluded that this motion 

after-effect was an artefact due to the presence of a post-adaptation spatial 
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luminance gradient. The ascending luminance ramp is adapting the visual 

system to a continually brightening scene. As such, the parts of the visual 

system that code for increasing luminance may be reducing their baseline 

activity, tilting the balance in favour of descending luminance signals. Thus, a 

post-adaptation spatially uniform test field appears to be dimming. With a spatial 

luminance gradient present post-adaptation, the dimming after-effect causes the 

perceived luminance across the spatial luminance gradient to decrease. This 

decrease in perceived luminance creates the illusion of the darker shades of the 

spatial luminance gradient encroaching upon the lighter shades. 

 

The ramp after-effect does not transfer interocularly (Anstis & Harris, 1987; 

Anstis, 1967) which implies a sub-cortical locus of the underlying mechanism as 

it is commonly believed that there are few cells that receive monocular input in 

any visual cortical areas other than V1 (Hubel & Wiesel, 1972; Hubel, Wiesel, & 

Stryker, 1977; Lund & Boothe, 1975). 

 

Arnold and Anstis (1993) further investigated the ramp after-effect using a 

nulling method rather than using Anstis's (1967) measure of the duration of the 

perceived motion. Adapting stimuli comprised a spatially uniform field whose 

luminance was modulated by a sawtooth waveform presented for 5 sec, 

followed by a spatially uniform test field of 1 sec. Subjects indicated whether the 

test field appeared to be brightening or dimming. After adaptation, luminance 

ramps of the same polarity to the adapting pattern were presented for 1 sec. 

The amplitude of these nulling ramps was varied until test fields appeared to be 

neither dimming nor brightening. The slope of this nulling ramp was used to 

indicate the strength of the ramp after-effect. Using this method they found that 
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the after-effect was proportional to the amplitude of the adapting waveform and 

not its gradient. Since the gradient of a logarithmic luminance ramp (Figure 3.1) 

as used by Arnold and Anstis (1993) is constantly changing it is possible that a 

number of gradient detectors are being adapted. Thus no one gradient detector 

is being adapted for a prolonged period of time. A consequence of this may be 

that amplitude would appear to drive the after-effect rather than gradient. 

Moreover, Anstis (1967) employed a linear adapting luminance ramp for which 

gradient was constant. However, only one adapting gradient was reported. In 

order to fully evaluate the role of gradient in determining the ramp after-effect I 

therefore measured its duration for a range of amplitudes and gradients 

(Experiment 1) and for linear, logarithmic and exponential ramps (Experiment 

2). 

 

3.2 Experiment 1: The effect of adaptation frequency, amplitude and 

luminance upon the ramp after-effect 

An understanding of which parameters of the adapting stimulus determine the 

ramp after-effect may provide important clues to the underlying physiological 

substrate of the phenomenon which, in turn, may yield insight into a 

fundamental aspect of the visual system’s ability to adapt to prevailing dynamic 

conditions. For instance, Anstis (1967) speculates that the effect may be 

mediated by ‘ON’ and ‘OFF’ retinal cells. Arnold and Anstis (1993) suggest that 

ascending luminance ramps selectively adapt the ON-channels, whereas, 

descending ramps selectively adapt the OFF-channels. This proposition is 

simply tested by comparing the duration of the perceived motion to ascending 

and descending luminance ramps at high and low luminance since OFF cell 

responses are known to be reduced at low luminance (Dolan & Schiller, 1989, 
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1994; Ramoa, Freeman, & Macy, 1985). I therefore measured the duration of 

the after-effect at both high and low luminance. 

 

3.3 Methods 

3.3.1 Subjects 

Five (two male and three female) subjects aged between 20 and 27 participated 

in this experiment. One of the subjects (OH) was an author; the other four were 

naïve to the purpose of the experiment. All subjects had normal or corrected-to-

normal acuity. 

 

3.3.2 Apparatus and stimuli 

Stimuli were generated using the Psychophysics Toolbox extensions (Brainard, 

1997; Kleiner, Brainard, & Pelli, 2007; Pelli, 1997) for MATLAB 7.11 

(MathWorks, Cambridge, UK) and displayed on an EIZO 6600-M (Hakusan, 

Ishikawa, Japan) monochrome monitor at a frame rate of 60 Hz. The monitor 

was gamma corrected using the CRS Optical photometric system (Cambridge 

Research Systems, Rochester, UK). The display subtended 47o × 34o at a 

viewing distance of 40 cm. Mean luminance was 24.75 cd m-2 for the high 

luminance conditions and 2.475 cd m-2 in the low luminance conditions. In the 

low luminance conditions 1 log unit neutral density filters (NDF) (Thorlabs Inc., 

Newton, New Jersey, USA) were inserted into drop-cell trial frames (Skeoch, 

Sussex, UK) that were worn by subjects in all conditions. 
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Adapting stimuli (Figure 3.2) comprised spatially uniform fields subtending 47o × 

34o (horizontal × vertical). Luminance was modulated using ascending and 

descending sawtooth waveforms at 2, 4 or 8 Hz. The amplitude of luminance 

modulation ranged across 1.25, 2.5, 5, 10, and 20 decibels (dB) where: 

 

 𝑑𝐵 = 20𝑙𝑜𝑔!"
𝐿!"#
𝐿!"#

 ……….……………..……………………….... (3.1) 

 

where Lmax and Lmin are maximum and minimum luminance respectively. All test 

stimuli consisted of a 0.023 cycle/deg horizontally orientated half-cosine edge, 

subtending 25 o × 22 o (horizontal x vertical) with a nominal Michelson contrast 

(m) of 1 (actual 0.99), where: 

 

 𝑚 =  
𝐿!"# − 𝐿!"#
𝐿!"# + 𝐿!"#

 ……….............................................................… (3.2) 

 

The same test stimulus was used throughout for the purpose of comparison 

with Anstis (1967). 

 

3.3.3 Procedure 

Before beginning the experiment subjects were dark adapted for at least 5 min. 

A trial consisted of an adaptation interval of 16 sec followed by a test interval. 

All stimuli were presented at high and low luminance for ascending and 

descending linear luminance ramps. Each trial block consisted of a single 

temporal frequency and luminance. Within each block the amplitude of 

luminance modulation was randomised from trial to trial. The frequency and 

luminance tested was randomised from block to block. Subjects were required 
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to fixate on the centre of the screen during the adaptation interval and to 

indicate when the perception of motion had ceased during the test interval by 

pressing a mouse button. The test edge was alternated between 0o and 180o 

(darkest at the top or darkest at the bottom) on each trial. A blank screen of 

mean luminance was presented for at least 30 sec between each trial. The 

mean of 5 estimates was taken as the duration of the after-effect for each 

condition. Ten practice trials were presented at the beginning of each trial block. 

The experiments were conducted binocularly in a semi-darkened room using a 

chin and headrest. 
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3.4 Results 
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Figure 3.4: The average duration of the after-effect is plotted as a function of adaptation 
luminance amplitude for high (open circles) and low luminance (closed circles) conditions for 2, 
4 and 8 Hz. Luminance amplitudes greater than zero represent ascending ramps, negative 
values represent descending ramps. Error bars represent ±1 SEM. 
  

For ascending luminance ramps, the results indicate that as the amplitude of 

the adapting ramp increases the duration of the after-effect also increases for all 

temporal frequencies tested (Figure 3.3 and Figure 3.4). A two-way repeated 

measures ANOVA revealed no significant main effect of luminance, F(1, 4) = 

0.01, p = 0.931; no significant main effect of frequency, F(2, 8) = 0.66, p = 

0.542; and no significant interaction between luminance and frequency, F(2, 8) 

= 0.26, p = 0.776, on the duration of the after-effect. At high luminance, the 

duration of the after-effect also increases monotonically with amplitude in the 
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descending luminance ramp condition. However, at low luminance, the duration 

of the after-effect is consistently shorter than at high luminance. A two-way 

repeated measures ANOVA revealed a significant main effect of luminance, 

F(1, 4) = 41.74, p < 0.005; but no significant main effect of frequency, F(2, 8) = 

0.72, p = 0.516; and no significant interaction between luminance and 

frequency, F(2, 8) = 0.58, p = 0.583, on the duration of the after-effect. 

 

For all temporal frequencies at high luminance, two-way repeated measures 

ANOVAs revealed no significant main effect of adapting luminance ramp 

direction (ascending or descending), a significant main effect of ramp amplitude, 

and no significant interaction between ramp direction and ramp amplitude, on 

the duration of the after-effect (Table 3.1). 
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Table 3.1: Two-way repeated measures ANOVA for adapting luminance ramp direction and 
ramp amplitude on the duration of the after-effect at each temporal frequency at high luminance. 
* The effect is significant at the 0.01 level. ** The effect is significant at the 0.001 level. 
 

Temporal 

Frequency  

     

2 Hz Source df Mean square F p 

 Luminance ramp direction 1 4.209 1.41 0.300 

 Luminance ramp amplitude 2 19.460 22.89 0.000** 

 Interaction Luminance ramp direction 

X Luminance ramp amplitude 

2 0.953 0.89 0.444 

 Error 8 0.850   

4 Hz Source df Mean square F p 

 Luminance ramp direction 1 1.951 0.36 0.580 

 Luminance ramp amplitude 3 24.815 5.82 0.010* 

 Interaction Luminance ramp direction 

X Luminance ramp amplitude 

3 0.373 0.67 0.585 

 Error 12 0.556   

8 Hz Source df Mean square F p 

 Luminance ramp direction 1 0.962 0.25 0.642 

 Luminance ramp amplitude 4 21.055 21.60 0.000** 

 Interaction Luminance ramp direction 

X Luminance ramp amplitude 

4 0.521 2.56 0.078 

 Error 16 0.202   
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Figure 3.5: Three-dimensional plot of the results from the high luminance condition in 
Experiment 1. The duration of the after-effect is plotted as a function of adaptation luminance 
amplitude and temporal frequency. Luminance amplitudes greater than zero represent 
ascending ramps, negative values represent descending ramps. Symbols represent the mean 
of five subjects. 
 

For each adapting amplitude across all frequencies the duration of the after-

effect is comparatively constant (Figure 3.5). The ramp after-effect appears to 

be closely related to adapting amplitude and relatively independent of adapting 

temporal frequency. The maximum duration of the after-effect was consistently 

found at peak amplitude, irrespective of frequency, suggesting that the after-

effect is determined by ramp amplitude rather than gradient. 

 

In order to evaluate the relative contribution of gradient and amplitude 

quantitatively, two regression analyses were run to examine the relationships 
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between duration of the after-effect and (a) ramp amplitude, and (b) ramp 

gradient. For the amplitude model R2 = 0.481, F(1, 118) = 109.22, p < 0.001. 

For the gradient model R2 = 0.332, F(1, 118) = 58.53, p < 0.001. Thus both 

models could explain a significant proportion of the variance in duration of the 

after-effect. The correlation between the two models was significant (r = 0.732, 

p < 0.001). The predictive utility of the two models was therefore compared 

using Hotelling's t-test for non-independent correlations. The results indicate 

that the amplitude model accounted for significantly more variance than the 

gradient model, t(117) = 2.40, p < 0.050. 
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3.5 Experiment 2: The effect of linear, logarithmic and exponential 

luminance ramps upon the ramp after-effect 

While Arnold and Anstis (1993) suggest that the after-effect was strongly driven 

by amplitude, they employed logarithmic adapting ramps for which gradient 

constantly changed whereas Anstis (1967) used linear ramps (Figure 3.1). As 

the gradient of the temporal ramp changes, so does the preferred temporal 

frequency of temporally tuned mechanisms that detect it optimally. Thus it is 

possible that differing ramp profiles recruit different populations of temporally 

tuned units. Furthermore a relatively limited range of parameters has been 

previously measured. For instance, Arnold and Anstis (1993) measured the 

effect between 0.5 and 4 Hz for amplitudes ranging from 5 to 20 dB using 

logarithmic ramps whereas Anstis (1967) used a linear ramp of 1 Hz and 40 dB 

(Figure 3.1). In order to evaluate the effect of ramp characteristics on the 

duration of the after-effect I have measured the effect of luminance ramp 

adaptation for a wider range of frequencies (2 – 8 Hz) and luminance 

amplitudes (1.25 – 20 dB) for both ascending and descending, linear, 

logarithmic and exponential luminance ramp profiles. 

 

3.6 Methods 

The experimental details were identical to those described for Experiment 1 

except that only the high luminance condition was included and the profile of 

adaptation luminance was modulated using ascending and descending 

logarithmic and exponential waveforms as opposed to linear waveforms (Figure 

3.6). Each trial block consisted of a single luminance ramp profile. 
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3.7 Results 
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For both ascending and descending linear, logarithmic and exponential 

luminance ramp adaptation, the results indicate that as amplitude increases the 

duration of perceived motion increases for all temporal frequencies tested 

(Figure 3.7 and Figure 3.8).  

Figure 3.8: The duration of the after-effect is plotted as a function of adaptation luminance 
amplitude for linear (circles/solid line) (from Experiment 1), logarithmic (squares/broken line) 
and exponential (triangles/dotted line) luminance ramps for 2, 4 and 8 Hz. Luminance 
amplitudes greater than zero represent ascending ramps, negative values represent 
descending ramps. Symbols represent the mean of five subjects, error bars represent ±1 SEM. 
 

There was no significant difference between the durations of the after-effect 

after adaption to linear, logarithmic or exponential ramps (Figure 3.8). Two-way 

repeated measures ANOVAs revealed no significant main effects of luminance 

ramp profile for ascending, F(2, 8) = 0.25, p = 0.786, and descending, F(2, 8) = 
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2.42, p = 0.150 stimuli. No significant main effects of frequency (ascending: F(2, 

8) = 2.21, p = 0.172) (descending: F(2, 8) = 1.92, p = 0.208), and no significant 

interactions between luminance ramp profile and frequency (ascending: F(4, 16) 

= 0.99, p = 0.443), (descending: F(4, 16) = 0.22, p = 0.925), were found. 

 

3.8 Discussion 

The results from Experiment 1 indicate that, at high luminance, the duration of 

the after-effect is well characterised by the amplitude of the adapting linear 

ramp. Had the ramp after-effect been driven by gradient the subjective duration 

of perceived motion would peak at different adapting amplitudes for different 

adapting temporal frequencies. This was not the case in Experiment 1; rather, 

regardless of adaptation frequency the maximum duration of the after-effect 

was found at the maximum amplitude. These findings are consistent with Arnold 

and Anstis's (1993) observation that the ramp after-effect is driven by 

amplitude, particularly large sweeps in amplitude of at least 20 dB. Although, in 

Experiment 1 I used linear luminance ramps whereas Arnold and Anstis (1993) 

adapted subjects to logarithmic luminance ramps (Figure 3.1) the results are 

consistent. However, in order to better assess whether differences in ramp 

profile could influence the ramp after-effect, in Experiment 2 I adapted subjects 

to exponential, and logarithmic luminance ramps as used by Arnold and Anstis 

(1993) and replicated their finding that the effect is monotonically related to 

amplitude. The ramp profile had no effect on the duration of the after-effect. The 

same test stimulus was used throughout and perhaps other test stimuli would 

reveal other properties but for the purposes of comparison with Anstis (1967) it 

was necessary to use that stimulus. I cannot rule out that different test 
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amplitudes and different test stimulus profiles might have revealed other 

patterns. 

 

Anstis (1997) concluded that since ramp after-effects can be interpreted as 

motion after-effects, “motion detectors include a filter to detect gradual change 

of luminance, dI/dT” (p. 65) and several other researchers (e.g. Ashida & Scott-

Samuel, 2014; Scarfe & Johnston, 2010) have suggested that the ramp after-

effect is consistent with a gradient model of motion encoding (e.g. Marr & 

Ullman, 1981). This proposal is predicated upon the assumption that the neural 

mechanism which ordinarily detects motion also mediates the ramp after-effect. 

However this may not be the case, instead the percept may be mediated simply 

upon the basis of changes in the response of spatial mechanisms. More 

critically, the results of Experiment 1 show that it is amplitude rather than 

gradient that determines the illusory perception of motion and the results of 

Experiment 2 reveal that the gradient profile does not influence the after-effect. 

Gradient motion detectors would however, by definition, be tuned for gradient 

rather than amplitude. Although amplitude was the best predictor of 

performance across both experiments, nonetheless gradient had a weaker, 

albeit significant, effect under some conditions (even if it did not predict the 

peak aftereffect). 

 

The effect of luminance 

A similar pattern of results to that of adaptation at high luminance is found at 

low luminance, for ascending luminance ramp adaptation. However, the 

duration of the after-effect was significantly attenuated at low luminance when 

the adapting pattern comprised descending luminance ramps. How could this 
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difference be explained? One possibility is that the after-effect is mediated by 

adapting the ON- and OFF- pathways in the visual system that are selectively 

tuned for increments and decrements in luminance. ON retinal ganglion cells 

are stimulated by local increments in illumination whereas OFF ganglion cells 

respond to local decrements in illumination (Schiller, 1982, 1984, 1992; Schiller, 

Sandell, & Maunsell, 1986). Thus, the ramp after-effect might be due to 

selective adaptation of the ON or OFF cells by ascending or descending 

luminance ramps. Moreover, the response properties of feline cortical ON and 

OFF cells are significantly altered by absolute luminance level. At low 

luminance, OFF cell responses are reduced or absent, while ON responses are 

unaffected (Dolan & Schiller, 1989, 1994; Ramoa et al., 1985). I find a 

significant reduction in the ramp after-effect under precisely these conditions – 

at low luminance and exclusively for descending (OFF) luminance ramps. Thus 

the significant reduction in the duration of the after-effect found is entirely 

consistent with adaptation of cortical ON and OFF pathways. I conclude that my 

results demonstrate that the visual system processes brightness within a metric 

that explicitly represents the amplitude of luminance over time and is optimally 

sensitive to large amplitudes. The local gradient of these changes does not 

appear critical to the system’s response. The most likely neural substrate of this 

representation of brightness is amplitude-tuned ON and OFF pathways. The 

results offer no support for gradient models of motion processing. 
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4 The effect of speed-induced perceived contrast changes upon speed 

matching 

4.1 Introduction 

Thompson (1982) first reported that perceived speed depends on stimulus 

contrast. When two parallel gratings moved at the same low speed (below 8 Hz) 

a reduction in the contrast of one of the gratings, resulted in the perceived 

speed of that grating being under-estimated (Brooks, 2001; Stone & Thompson, 

1992; Thompson, 1982). However, at higher speeds (above 8 Hz) a reduction in 

contrast resulted in perceived speed being over-estimated (Blakemore & 

Snowden, 1999; Thompson, 1982; Thompson et al., 2006). The under-

estimation of perceived speed due to reduced contrast, has been shown to 

occur over a wide range of contrasts (2.5 – 50%) (Stone & Thompson, 1992). It 

is possible that the over-estimation of perceived speed at low contrast (at 

speeds above 8 Hz) may reflect differences in the perceived contrast of patterns 

at different temporal frequencies rather than being an effect of speed 

processing per se. 

 

Just as perceived speed is affected by changes in contrast, perceived contrast 

also changes as temporal frequency changes (Georgeson, 1987). Georgeson 

(1987) found that contrast appears lower at higher temporal frequencies than at 

lower temporal frequencies. Thompson (1982) proposed that the increase in 

perceived speed at lower contrast and higher speeds was due to the relatively 

larger attenuation of the slow mechanism's contribution to the computation of 

speed due to its relative insensitivity at higher speeds. However, if perceived 

speed depends upon perceived (rather than physical) contrast, it may be that 

these increases in perceived speed reported by Thompson and others (e.g. 
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Hammett et al., 2005) are due to the lower perceived contrast of fast speeds 

and that, at equal perceived contrast this increase in perceived speed may be 

reversed or attenuated. Thus the increase in perceived speed at high temporal 

frequencies could reflect these changes in perceived contrast rather than a 

change in the speed code per se. No previous studies have tested this 

possibility since they (Blakemore & Snowden, 1999; Brooks, 2001; Stone & 

Thompson, 1992; Thompson et al., 2006) used physically constant contrast 

values across the speed ranges measured. In order to examine the possibility 

that changes in the perceived contrast of the low contrast pattern in these 

speed-matching tasks might explain the over-estimation of speed at high 

frequencies I measured the perceived speed of low contrast patterns (relative to 

a standard pattern of 0.7 contrast) for a range of speeds at both constant 

physical and matched contrast. 

 

4.2 Experiment 3a: The effect of speed upon perceived contrast 

4.3 Methods 

4.3.1 Subjects 

Five (three male and two female) subjects aged between 23 and 32 participated 

in this experiment. One of the subjects (OH) was an author; the other four were 

naïve to the purpose of the experiment. All subjects had normal or corrected-to-

normal acuity. 

 

4.3.2 Apparatus and stimuli 

All stimuli were horizontally orientated sinusoidal gratings of 2 c/deg generated 

using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997) for MATLAB 7.11 (MathWorks, Cambridge, UK) and 
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displayed on an EIZO 6600-M (Hakusan, Ishikawa, Japan) monochrome 

monitor at a frame rate of 100 Hz. The monitor was gamma corrected using the 

CRS Optical photometric system (Cambridge Research Systems, Rochester, 

UK). The display subtended 68o × 47o at a viewing distance of 28.5 cm. Mean 

luminance was 25 cd m-2. Stimuli were presented through two 6 degrees 

diameter circular windows with hard edges. Each window was located 

equidistant from the horizontal centre of the screen and separated by 2o. A 

small bright fixation spot was situated at the centre of the display. 

 

4.3.3 Procedure 

Before beginning the experiment subjects were dark adapted for at least 5 min. 

Two patterns were presented simultaneously for 500 msec on each trial. 

Standard patterns (always presented on the left) constantly drifted at 1 deg/sec 

throughout, test patters drifted at one of four speeds (1, 2, 4, or 8 deg/sec). The 

spatial phase of both the standard and test gratings was randomised on each 

trial. The standard and tests patterns always drifted in a downward direction. 

The Michelson contrast of the standard pattern was constant throughout at 0.1. 

The Michelson contrast of the test pattern was altered by a QUEST routine 

(Watson & Pelli, 1983) depending on the subject’s responses. For each block 

the QUEST procedure was terminated after 50 trials, the data were fit to a 

cumulative Gaussian function using the method of least squares and the 50% 

point of the function was estimated. The mean of five such estimates was taken 

as the PSE. A blank screen of mean luminance was presented between each 

test pair and subjects pressed a mouse button in order for each test pair to be 

presented. The subject’s task was to indicate which pattern appeared to have 

the greater contrast, by pressing a mouse button. The experiments were 
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conducted binocularly in a semi-darkened room using a chin and headrest.  

 

4.4 Results 

Figure 4.1: The ratio of perceived contrast at 1 deg/sec to perceived contrasts at higher speeds 
is plotted as a function of grating speed for all subjects. Subjects’ initials are indicated in the top 
right of each panel. Values greater than 1 indicate an increase in perceived contrast, values 
less than 1 indicate a reduction in perceived contrast. Error bars represent ±1 SEM. 
 

Figure 4.1 and Figure 4.2 plot the results. There were hemi-field differences in 

perceived contrast for some of the subjects, consistent with previous reports 

(Beaton & Blakemore, 1981; Edgar & Smith, 1990; Rao, Rourke, & Whitman, 

1981; Rovamo & Virsu, 1979). Due to these hemi-field differences each contrast 

match was normalised with respect to each subject’s perceived contrast at 1 
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deg/sec. All subjects over-estimated contrast at speeds below 4 deg/sec, 

conversely, subjects under-estimated contrast at the higher speed of 8 deg/sec 

i.e. perceived contrast at 2 and 4 deg/sec was greater than that at 1 deg/sec.  

Figure 4.2: The average ratio of perceived contrast at 1 deg/sec to perceived contrasts for 
higher speeds is plotted as a function of grating speed. Values greater than 1 indicate an 
increase in perceived contrast, values less than 1 indicate a reduction in perceived contrast. 
Error bars represent ±1 SEM. 
 

One sample t-tests revealed significant differences from a match ratio of 1 

(veridical), at 2, 4 and 8 deg/sec (t(4) = 2.88, p < 0.050, t(4) = 2.97, p < 0.050, 

t(4) = -3.99, p < 0.050), respectively. 
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4.5 Experiment 3b: The effect of perceived contrast upon biases in 

perceived speed  

4.6 Methods 

The experimental details were identical to those described for Experiment 3a 

except that the subject’s task was to indicate which pattern appeared faster, the 

speed of the test pattern was altered by a QUEST routine depending upon the 

subject's response. Perceived speed was measured for stimuli of unequal 

contrast. In the control condition, the contrast of the standard patterns was fixed 

at 0.7 and the test at 0.1. In the other condition, the standard pattern was fixed 

at 0.7 and the test contrast was set to that of the subject’s contrast match value 

estimate in Experiment 3a. Five estimates were taken at each speed and 

contrast. The order of each condition was randomised. 
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4.7 Results 

Figure 4.3: The ratio of physical test speed to matched speed for all subjects is plotted as a 
function of speed for constant physical contrasts (closed symbols) and matched contrast (open 
symbols). Subjects’ initials are indicated in the top right of each panel. Values greater than 1 
indicates an over-estimation of speed, values less than 1 indicate an under-estimation of speed. 
Error bars represent ±1 SEM. 
 

Figure 4.3 and Figure 4.5 plot the results of the speed matching experiment for 

both constant physical and matched contrast. All subjects apart from LV, 

showed an under-estimation of speed below 4 deg/sec, and an over-estimation 

of speed at 8 deg/sec, for both physical and matched contrasts. It is not 

possible to entirely account for this discrepancy between subjects. However, 
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LV’s data take the same shape as those of her contrast matching and thus it 

may be that the subject misunderstood the task (Figure 4.4). 

Figure 4.4: LV’s results for contrast matching (triangles), speed matching with constant physical 
contrasts (closed circles) and matched contrast (open circles) are re-plotted for comparison. 
Error bars represent ±1 SEM. 
 

Given the likelihood that LV misunderstood the task her data have been 

excluded from subsequent analysis. The results for all other subjects indicate 

that, across all speeds tested, there is no difference between speed matching 

with physical or matched contrasts.  



 112 

Figure 4.5: The average ratio between the physical test speed and matched speed as a function 
of grating speed for constant physical contrasts (closed symbols) and matched contrast (open 
symbols). Values greater than 1 indicates an over-estimation of speed, values less than 1 
indicate an under-estimation speed. Error bars represent ±1 SEM. 
 

At speeds below 4 deg/sec, with both constant physical and matched contrast, 

lower contrast yielded an under-estimation in perceived speed. At speeds 

above 4 deg/sec, with both constant physical and matched contrast, lower 

contrast yielded an over-estimation in perceived speed. A paired sample t-test 

revealed no significant difference (t(3) = -1.09, p = 0.355, two-tailed) between 

the ratio of perceived speed with constant physical contrasts and with matched 

contrast. With LV’s data included another paired sample t-test also showed no 

significant difference (t(3) = -1.17, p = 0.324, two-tailed). 
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4.8 Discussion 

Georgeson (1987) reported that as temporal frequency increased perceived 

contrast increases up to 4 Hz and reduces between 8 and 16 Hz. Consistent 

with this, the results showed that subjects required lower contrasts at 4 (2 

deg/sec) and 8 Hz (4 deg/sec) in order to match 10% contrast at 2 Hz (1 

deg/sec), whereas, at 16 Hz (8 deg/sec) a higher contrast was required to make 

the same match. However, for all temporal frequencies tested there was no 

significant difference between speed matching with constant physical contrasts 

and speed matching with matched contrast. 

 

I was able to reproduce Thompson's (1982) findings that at low contrast and 

speeds below 8 Hz (4 deg/sec) there is an under-estimation in perceived speed. 

This result has been consistent within the literature (Stone & Thompson, 1992; 

Thompson, 1982; Thompson et al., 2006; Thompson & Stone, 1997) despite 

differences in stimulus parameters such as stimulus size, number of cycles, and 

mean luminance. The effect of low contrast increasing perceived speed at high 

temporal frequencies has not been consistently found in previous studies (e.g. 

Hammett & Larsson, 2012) but the current results show that, for both constant 

physical and matched contrast, perceived speed was over-estimated above 4 

deg/sec (8 Hz), consistent with previous reports using physically constant 

contrast comparisons (e.g. Thompson et al., 2006).  

 

I conclude that the estimation of perceived speed at low contrasts is unlikely to 

reflect changes in the perceived contrast of the comparison stimuli as a function 

of temporal frequency or speed. Rather, it seems reasonable to assume that 

this shift is a genuine reflection of underlying speed-processing mechanisms. All 
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in all, the results indicate that the effect of contrast on perceived speed is 

reliable and is not an artefact of contrast encoding. 
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5 Perceived speed in peripheral vision 

5.1 Introduction 

It is well-known that visual stimuli presented in peripheral vision generally have 

higher detection and discrimination thresholds than those presented to central 

vision and that contours in the periphery fade with steady fixation, the well-

known Troxler effect (Troxler, 1804). This Troxler fading is particularly 

pronounced at low stimulus contrast (Livingstone & Hubel, 1987) and has been 

attributed to the adaptation of edge detectors (Krauskopf, 1963; Ramachandran 

& Gregory, 1991). 

 

Similarly, MacKay (1982) reported that moving stimuli in near-peripheral vision 

(<10 degrees from the fixation point) appear to slow and stop but their spatial 

structure can still be resolved. Moving into the far periphery (30-70 degrees), 

Hunzelmann and Spillmann (1984) confirmed the slow-down in the perceived 

speed of moving stimuli in peripheral vision and also observed that the apparent 

contrast of these stimuli was reduced. If it is the case that peripherally viewed 

moving stimuli appear reduced in contrast then their slowed speed might be 

expected, as it has been well-established that moving patterns generally appear 

to move more slowly at low contrast (Stone & Thompson, 1992; Thompson, 

1976, 1982).  

 

In Experiment 4 I tested the hypothesis that the perceived slowing of stimuli in 

peripheral vision can be accounted for entirely in terms of a perceived reduction 

in contrast. In Experiment 5 I investigated how luminance affects perceived 

speed in order to further investigate the mechanisms underlying this perceptual 

bias. 
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5.2 Experiment 4a: The effect of speed upon perceived contrast in the 

periphery 

5.3 Methods 

5.3.1 Subjects 

Four (two male and two female) subjects aged between 22 and 27 participated 

in this experiment. One of the subjects (OH) was an author; the other three 

were naïve to the purpose of the experiment. All subjects had normal or 

corrected-to-normal acuity. 

 

5.3.2 Apparatus and stimuli 

All stimuli were horizontally oriented sinusoidal gratings of 2 c/deg generated 

using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997) for MATLAB 7.11 (MathWorks, Cambridge, UK) and 

displayed on an EIZO 6600-M (Hakusan, Ishikawa, Japan) monochrome 

monitor at a frame rate of 100 Hz. The monitor was gamma corrected using the 

CRS Optical photometric system (Cambridge Research Systems, Rochester, 

UK). The display subtended 68o × 47o at a viewing distance of 28.5 cm. Mean 

luminance was 25 cd m-2. On each trial stimuli were presented simultaneously 

for 500 msec in elliptical windows with sharp edges that subtended 2 degrees 

horizontally by 4 degrees vertically. A small bright fixation spot was situated at 

the centre of the display. The standard pattern was situated at the centre of the 

display and the test pattern was situated to the right of the standard pattern 

centred at one of five eccentricities (0 o, 6o, 12o, 24o and 32o). The stimuli drifted 

downward at one of four speeds (1, 2, 4 and 6 deg/sec). The Michelson contrast 

of the standard pattern was 0.1 and the contrast of the test pattern was altered 

by a QUEST routine (Watson & Pelli, 1983) depending on the subject’s 
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responses.  

 

5.3.3 Procedure 

Subjects adapted to a blank screen of mean luminance for at least 5 minutes at 

the beginning of each session. The subject’s task was to indicate which pattern 

(standard or test) appeared to have greater contrast by pressing a mouse 

button. For each block the QUEST procedure was terminated after 50 trials, the 

data were fit to a cumulative Gaussian function using the method of least 

squares and the 50% point of the function was estimated. The mean of five 

such estimates was taken as the PSE. A blank screen of mean luminance was 

presented between each trial, and subjects pressed a mouse button to initiate 

each trial. At 0o, stimuli were presented sequentially at the centre of the display 

for 500 msec with an inter-stimulus interval of 500 msec and the mean of three 

estimates was taken as the PSE. The experiments were conducted binocularly 

in a semi-darkened room using a chin and headrest. 
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5.4 Results 

Figure 5.1: The ratio of physical to perceived contrasts as a function of speed at five 
eccentricities: 0o the control condition (crosses), 6o (closed circles), 12o (open circles), 24o 
(closed triangles), and 32o (open triangles). Subjects’ initials are indicated in the bottom right of 
each panel, the average across subjects is indicated in the lowermost left panel. A value of 1 
(broken line) represents a veridical estimate. Values less than 1 indicate an under-estimation of 
contrast. Error bars represent ±1 SEM. 
 

Figure 5.1 plots the average contrast match as a function of speed for each 

eccentricity. The results indicate that subjects accurately matched the contrast 

of patterns in foveal vision but under-estimated the contrast of patterns in the 

periphery. The further into the periphery the test stimuli were, the greater the 

under-estimation of contrast. Furthermore, at all eccentricities the slower the 

speed of the stimuli, the more their contrast is under-estimated. 
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5.5 Experiment 4b: The effect of perceived contrast upon biases in 

perceived speed in the periphery 

5.6 Methods 

The experimental details were identical to those described for Experiment 4a 

except that the subject’s task was to indicate which pattern appeared faster, the 

speed of the test pattern was altered by a QUEST routine depending upon the 

subject's response. Perceived speed was measured for stimuli of both equal 

physical and equal perceived contrast. In the equal physical contrast condition, 

the contrast of both patterns was fixed at 0.1. In the equal perceived contrast 

condition, the contrast of the standard pattern was set at 0.1 and the contrast of 

the test pattern was set to that of the subject's contrast match value estimated 

in Experiment 4a. Five (three in the control condition) estimates were taken at 

each speed and eccentricity. The order of each condition was randomised. 

 

5.7 Results 

 Figure 5.2 plots the perceived speed matches for equal physical and equal 

perceived contrast as a function of speed for each eccentricity. The results 

indicate that subjects progressively under-estimated the speed of patterns as 

eccentricity increased. Equalising the perceived contrast of the patterns 

reduced this effect at slower speeds so that all speeds suffered a similar 

reduction in perceived speed at any particular eccentricity.  
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This pattern of results suggests that there are two components contributing to 

the reductions in perceived speed observed. Firstly there appears to be a 

component which is independent of speed and contrast but increases with 

eccentricity. Secondly there is a component that can be ascribed to the 

reduction in perceived contrast in the periphery. This effect is greatest at the 

slowest speeds and greatest eccentricity. 

 

A three-way repeated measures ANOVA revealed no significant main effect of 

speed, F(3, 9) = 2.43, p = 0.132; a significant main effect of contrast, F(1, 3) = 

16.77, p < 0.05; a significant main effect of eccentricity, F(3, 9) = 57.92, p < 

0.001; a significant interaction between speed and contrast, F(3, 9) = 12.76, p < 

0.010; no significant interaction between speed and eccentricity, F(9, 27) = 

1.70, p = 0.137; no significant interaction between contrast and eccentricity, 

F(3, 9) = 2.58, p = 0.118; and no significant interaction between speed, contrast 

and eccentricity, F(9, 27) = 1.25, p = 0.306. 
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5.8 Experiment 5: The effect of luminance upon peripheral speed                 

perception 

5.9 Introduction 

The results of Experiment 4 indicate that the reduction in perceived contrast that 

accompanies increasing eccentricity does contribute to the perceptual slowing 

down of moving patterns in the periphery. However, when one accounts for this 

contrast-induced reduction in perceived speed by equalising the perceived 

contrast of peripherally presented patterns the results indicate that eccentric 

patterns are still perceived as slower – around 10% slower at 6 degrees and 

20% slower at 32 degrees. How might one account for this residual effect of 

eccentricity upon perceived speed? One possibility is that the known changes in 

the ratio of M and P cells with eccentricity (Dacey, 1994) contribute to this 

effect. It is known that the contrast gain of P cells is more greatly reduced than 

that of M cells as luminance is reduced (Purpura et al., 1988). I therefore reason 

that should the effect of eccentricity on perceived speed be in part mediated by 

the changing ratio of M and P cells with eccentricity, this should result in an 

increase rather than decrease in perceived speed under conditions where the 

response of M cells prevails – at low luminance, low contrast and large 

eccentricities. In order to investigate this notion further I estimated perceived 

speed as a function of eccentricity at both high and low luminance and contrast. 

 

5.10 Methods 

All the experimental details were the same as those of Experiment 4b except 

that stimuli had a spatial frequency of 1 c/deg. Perceived speed was estimated 

for two contrasts (0.1 and 0.7) at two luminance levels (2.5 cd m-2 and 25 cd m-

2) and three eccentricities (6, 12 and 24 degrees). During the low luminance 
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conditions 1 log unit neutral density filters (NDF) (Thorlabs Inc., Newton, New 

Jersey, USA) were inserted into drop-cell trial frames (Skeoch, Sussex, UK) that 

were worn by the subjects in all conditions.  

 

5.11 Results 

Figure 5.3 and Figure 5.4 plot the speed matches as a function of speed for 

high and low luminance and contrast at three eccentricities. At high luminance 

(open symbols), as the test stimuli moved further into the periphery there was 

an increase in the under-estimation of perceived speed for all speeds tested, 

confirming the results of Experiment 4b. At low luminance (closed symbols), in 

the near-periphery (6o eccentricity) the data showed a similar under-estimation 

of perceived speed as at high luminance. Further into the periphery (12o and 

24o) an under-estimation of perceived speed occurred only for slow moving 

stimuli (< 6 deg/sec), for faster moving stimuli (12 deg/sec) perceived speed 

was over-estimated.  

 

At high luminance a reduction in contrast of both the standard and test gratings 

from 0.7 (open triangles) to 0.1 (open circles) showed an increase in the under-

estimation of perceived speed, across all eccentricities and for all speeds 

tested. At low luminance the reduction in stimulus contrast did not appear to 

affect the perceived speed.  
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Figure 5.4: Average speed matching at high (open symbols) and low (closed symbols) 
luminance for 0.1 (circles) and 0.7 (triangles) contrast stimuli as a function of speed. Test 
grating eccentricity is indicated above panels. The broken horizontal line represents a veridical 
speed estimate. Speed match values greater than 1 indicate an over-estimation of matched 
speed, values less than 1 indicate an under-estimation of matched speed. Error bars represent 
±1 SEM. 
 

A four-way repeated measures ANOVA revealed a significant main effect of 

eccentricity, F(2, 6) = 104.34, p < 0.001; a significant main effect of contrast, 

F(1, 3) = 336.49, p < 0.001; a significant main effect of luminance, F(1, 3) = 

24.70, p < 0.05; a significant main effect of speed, F(4, 12) = 206.73, p < 0.001; 

no significant interaction between eccentricity and contrast, F(2, 6) = 0.44, p = 

0.663; a significant interaction between eccentricity and luminance, F(2, 6) = 

121.37, p < 0.001; a significant interaction between eccentricity and speed, F(8, 

24) = 16.09, p < 0.001; a significant interaction between contrast and 

luminance, F(1, 3) = 169.15, p < 0.010; no significant interaction between 

contrast and speed, F(4, 12) = 2.83, p = 0.072; a significant interaction between 

luminance and speed, F(4, 12) = 62.14, p < 0.001; no significant interaction 

between eccentricity, contrast and luminance, F(2, 6) = 4.67, p = 0.059; no 

significant interaction between eccentricity, contrast and speed, F(8, 24) = 1.70, 

p = 0.150; a significant interaction between eccentricity, luminance and speed, 
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F(8, 24) = 9.21, p < 0.001; no significant interaction between contrast, 

luminance and speed, F(4, 12) = 1.41, p = 0.288; and no significant interaction 

between eccentricity, contrast, luminance and speed, F(8, 24) = 0.92, p = 0.516. 

 

5.12 Experiment 6: The effect of luminance upon time-to-collision                

estimates 

Generally, studies of speed perception require the observer to make a 

judgement as to which of two stimuli is moving faster (e.g. Thompson et al., 

2006; Thompson & Hammett, 2004; Thompson, 1982). This experimental 

paradigm provides us with an accurate measure of relative perceived speed. 

However, we usually observe moving stimuli as a unitary perceptual 

experience. I sought to investigate whether the biases in perceived speed 

measured in Experiment 5 occur in more typical perceptual conditions by 

measuring subjects’ estimates of time-to-collision (TTC). 

 

5.13 Methods 

5.13.1 Subjects 

Four (two male and two female) subjects aged between 23 and 27 participated 

in this experiment. One of the subjects (OH) was an author; the other three 

were naïve to the purpose of the experiment. All subjects had normal or 

corrected-to-normal acuity. 

 

5.13.2 Apparatus and stimuli 

All stimuli were elliptical (2o wide × 4o high) patches of 1 c/deg horizontally 

orientated sinusoidal gratings whose contrast was modulated by a 2D Gaussian 

(σ = 16.45 horizontally, σ = 24.67 vertically) generated using the Psychophysics 
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Toolbox extensions (Brainard, 1997; Kleiner et al., 2007; Pelli, 1997) for 

MATLAB 7.11 (MathWorks, Cambridge, UK) and displayed on an EIZO 6600-M 

(Hakusan, Ishikawa, Japan) monochrome monitor at a frame rate of 100 Hz. 

The monitor was gamma corrected using the CRS Optical photometric system 

(Cambridge Research Systems, Rochester, UK). The Michelson contrast of the 

stationary and moving patches was equal (either 0.1 or 0.7). The phases of the 

sinusoidal gratings in the patches were randomised from trial-to-trial. The 

display subtended 68o × 47o at a viewing distance of 28.5 cm. Mean luminance 

was 25 cd m-2 for the high luminance conditions. During the low luminance 

conditions 1 log unit neutral density filters (NDF) (Thorlabs Inc., Newton, New 

Jersey, USA) were inserted into optometrist drop-cell trial frames (Skeoch, 

Sussex, UK) worn by the subjects, reducing the mean luminance to 2.5 cd m-2. 

A stationary patch was located at the centre of the screen, while the moving 

patch was displaced horizontally to the centre of the screen. A small dark 

fixation spot was situated at the centre of the display. 

 

5.13.3 Procedure 

Before beginning the experiment subjects were dark adapted for at least 5 min. 

Two stimulus patches were presented simultaneously, a stationary patch at the 

centre of the screen and a drifting patch whose initial location was 32o ± 10% to 

the right. The drifting patched moved toward the central patch at one of two 

speeds (6 and 12 deg/sec) and disappeared at 24o ± 10% (Figure 5.5). The 

initial and disappearing positions of the drifting patch were randomised (within ± 

10% of 32o and 24o, respectively) from trial-to-trial. Both speeds were presented 

50 times randomly within a block of 100 trials. A small dark fixation spot 

surrounded by mean luminance was presented between each trial, and subjects 
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pressed a mouse button to initiate each trial. The subject’s task was to estimate 

the TTC between the stationary patch and drifting patch while assuming that the 

drifting patch maintained the same trajectory and speed prior to disappearing by 

pressing a mouse button. The experiments were conducted binocularly in a 

semi-darkened room using a chin and headrest.  

Figure 5.5: In each trial, while fixated on a central dot subjects viewed a stationary patch and 
drifting patch moving towards the centre of the screen. The drifting patch subsequently 
disappeared. Subjects estimated the TTC between the stationary patch and drifting patch. 
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5.14 Results 

Figure 5.6: The error in TTC estimates between two patches at equal contrasts of 0.1 (open and 
closed circles) and 0.7 (open and closed triangles) as a function of drift speed (6 and 12 
deg/sec) at high (open symbols) and low (closed symbols) luminance. Subjects’ initials are 
indicated in the top left of each panel, the average across subjects is indicated in the lowermost 
left panel. The broken horizontal line at 1 represents a veridical time estimate. TTC values 
greater than 1 indicate an over-estimation of TTC, values less than 1 indicate an under-
estimation of TTC. Error bars represent ±1 SEM. 
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Figure 5.6 plots the ratio of TTC estimate to veridical TTC for patches of equal 

contrast at high and low luminance. As speed increases from 6 to 12 deg/sec at 

high luminance for both 0.1 and 0.7 contrast stimuli the perceived TTC is over-

estimated. However, at low luminance the perceived TTC is under-estimated. At 

high luminance high speed stimuli moving towards the fovea from the periphery 

are perceived as moving slower, at low luminance the same stimuli are 

perceived as moving faster.  

 

A three-way repeated measures ANOVA revealed no significant main effect of 

contrast, F(1, 3) = 1.87, p = 0.264; a significant main effect of luminance, F(1, 3) 

= 28.43, p < 0.05; no significant main effect of speed, F(1, 3) = 0.00, p = 0.950; 

no significant interaction between contrast and luminance, F(1, 3) = 7.70, p = 

0.069; no significant interaction between contrast and speed, F(1, 3) = 0.89, p = 

0.413; a significant interaction between luminance and speed, F(1, 3) = 27.19, p 

< 0.05; and no significant interaction between contrast, luminance and speed, 

F(1, 3) = 0.13, p = 0.739. 

 

5.15 Discussion 

Moving stimuli in peripheral vision appear to move slower and have reduced 

contrast compared with foveally presented stimuli. The results of Experiment 4b 

indicate that when perceived contrast is equalised across eccentricities 

perceived speed is still slower in peripheral vision, showing that the perceived 

slowing is not just an artefact of reduced perceived contrast. This reduction in 

perceived speed is roughly equal at all speeds and increases with eccentricity. 

A number of researchers (e.g., De Valois et al., 2000; Hammett et al., 2000; 

Smith & Edgar, 1994; Tolhurst et al., 1973) have previously speculated that the 
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code for speed may be related to the relative activity of Magno- and Parvo-

cellular populations. Since these are driven by retinal parasol and midget cells 

respectively (Kaplan & Shapley, 1986) changes in the ratio of these populations 

should yield at least a qualitative prediction of how perceived speed changes 

with eccentricity. However, inspection of the relative densities of midget and 

parasol cells as a function of eccentricity poses a serious problem for such ratio 

models. The proportion of midget cells decreases from around 90% near the 

fovea to around 50% in the far periphery (ca 52 degrees), whereas the density 

of parasol cells increases from around 6% in the fovea to around 25% in the far 

periphery (Dacey, 1994, see also Watson (2014) for corroborative estimates of 

midget cell densities). Thus traditional ratio models would predict that perceived 

speed in the periphery should increase given the increased proportion of 

parasol cells. However, I find clear evidence that perceived speed is reduced in 

the periphery. Moreover, once the effect of perceived contrast is accounted for, 

I find that whilst perceived speed decreases with eccentricity, it is not speed-

dependent. Thus the reduction in perceived speed may not be closely linked 

with the neural processing of speed per se. 

 

How may this general reduction in perceived speed come about? One 

possibility is that absolute levels of neural activity may bias speed encoding 

such that speed is under-estimated if fewer units are active. Whilst the 

proportion of parasol cells increases with eccentricity, total ganglion cell density 

falls from around 27860 cells/mm2 in the fovea to 1080 cells/mm2 at 24 degrees 

eccentricity (estimated from Dacey, 1994, Figure 3A). If this, or some other 

phenomenon, simply serves to modulate the speed code with eccentricity, then 
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speed-dependent biases in perceived speed in the periphery should be 

observable under conditions where Parvocellular activity is reduced. 

 

In order to test whether such a scheme could account for the changes in 

perceived speed found in Experiment 4 I therefore measured perceived speed 

in the periphery at both high and low contrast and luminance in Experiment 5. 

Since reducing luminance reduces the contrast gain of the Parvocellular system 

far more than that of the Magnocellular system (Purpura et al., 1988), I 

predicted that reducing luminance should lead to an increase in perceived 

speed in the periphery in much the same way as has been documented for 

central vision (Hammett et al., 2007). 

 

The results of Experiment 5 indicate that at high luminance perceived speed 

was reduced as eccentricity increased, consistent with previous research 

(Campbell & Maffei, 1979, 1981; Cohen, 1965; Hunzelmann & Spillmann, 1984; 

Lichtenstein, 1963; MacKay, 1982; Tynan & Sekuler, 1982). At lower luminance, 

the speed of slower moving stimuli (< 6 deg/sec) was similarly under-estimated 

with increasing eccentricity. However, the speed of faster moving stimuli was 

over-estimated (> 6 deg/sec) as eccentricity increased. This pattern of results is 

consistent with the increases in perceived speed found in central vision at low 

luminance which are adequately accounted for by a simple ratio model of speed 

encoding (Hammett et al., 2007). 
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5.15.1 Estimates of TTC 

The results of Experiment 6 show that at high luminance high speed stimuli 

moving towards the fovea from the periphery are perceived to collide later while 

at low luminance the same stimuli are perceived to collide sooner. There are a 

number of factors that could influence TTC judgements, including the method 

used to estimate TTC, spatial-acuity, speed, time and distance distortions in the 

periphery. 

 

Three main explanations for how visual information is used to obtain an 

estimate of TTC have been proposed. First, TTC could be based on object 

speed and distance from the observer, according to the following equation: 

 

 𝑇𝑇𝐶 =  
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
𝑠𝑝𝑒𝑒𝑑  …………...………………..……………………….... (5.1) 

 

For this method to work both distance and speed must be estimated in order to 

provide the observer with enough information. 

 

A second method for obtaining TTC in line with the approach of ecological 

optics (e.g. Gibson, 1966, 1979; Lee, 1976), relies upon TTC information being 

directly available at the eye of the observer through the changes in optic-flow 

information. Lee (1976, 2009) hypothesised that object distance and velocity 

information do not need to be estimated in order to calculate TTC. As long as 

the object is moving towards the observer (or the observer is moving towards 

the object) at a constant velocity then TTC may be estimated by the optic 

variable tau, which is the size of the object’s retinal image divided by its rate of 
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expansion. Based upon this model McLeod and Ross (1983) proposed the 

following equation: 

 

 𝑇𝑇𝐶 =  
𝜃!

(𝜃! − 𝜃!) (𝑡! − 𝑡!)
 ………………..……………………….... (5.2) 

 

where θ1 and θ2 are the angular separations between any two target image 

points at times t1 and t2 respectively. 

 

A third method for obtaining TTC is based upon distance change information 

and can be expressed as: 

 

 𝑇𝑇𝐶 =  
𝑑!

(𝑑! − 𝑑!) (𝑡! − 𝑡!)
 .....…………..……………………….... (5.3) 

 

where d1 and d2 are the distance between the observer and the object at times 

t1 and t2 respectively (Cavallo & Laurent, 1988). 

 

Since Experiment 6 employed a stimulus moving in the picture plane rather than 

motion-in-depth there was no change in the size of the stimulus’s retinal image. 

Thus a tau strategy of estimating TTC (Lee, 1976) could not have been used by 

subjects. However, subjects may have been judging TTC using alternative 

methods such as a ratio of distance and speed or relying on distance-change 

information. Early psychophysical studies show that subjects are able to 

estimate both distance (Ross, 1967; Teghtsoonian & Teghtsoonian, 1969) and 

speed (Evans, 1970) in visual environments where TTC judgements may be 

critical, providing some support for the idea that TTC may be estimated using 



 136 

these computational methods. However, it is well known that visual acuity 

decreases in the peripheral visual field (Millodot, 1966). A number of studies 

have investigated sensitivity to spatial position in the periphery and found that 

relative position-acuity (i.e. observers were asked to localise the position of one 

peripheral stimulus relative to another peripheral stimulus) decreases as 

eccentricity increases (e.g. Levi, Klein, & Aitsebaomo, 1985; Westheimer, 1982; 

Whitaker, Rovamo, Macveigh, & Makela, 1992; Yap, Levi, & Klein, 1989). Other 

studies that investigated absolute position-acuity (i.e. observers were asked to 

localise the position of one peripheral stimulus relative to the fovea) also found 

that position-acuity is dependent upon eccentricity and independent of contrast 

(Waugh & Levi, 1993). Thus there is greater uncertainty as to the initial spatial 

location of the stimulus in Experiment 6 than its final point of disappearance. It 

is not clear as to how such uncertainty might affect TTC judgements and how 

this might interact with luminance but there is a clear prima facie case that, had 

subjects been using a method to estimate TTC that required distance 

information, the non-veridical matching reported may have been due, at least in 

part, to inaccurate distance judgements made in the periphery. 

 

Johnston and Wright (1986) reported that the reduction in perceived speed 

found in the periphery, at least within the range of speeds tested, can be 

accounted for by the reduction in spatial grain in peripheral vision. Indeed, they 

report that the spatial scaling factor required to account for the reduction in 

perceived speed is proportional to the change in mean cortical receptive field 

area of the macaque (Dow, Snyder, Vautin, & Bauer, 1981) as a function of 

eccentricity. Thus they conclude that the reduction in perceived speed in the 

periphery is determined by changes in spatial scale. Indeed, a range of findings 
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are consistent with the notion that biases in motion can be accounted for by M-

scaling, for instance nulling of the motion aftereffect (Johnston & Wright, 1983) 

and velocity discrimination thresholds (McKee & Nakayama, 1984) are found to 

be consistent across eccentricity once M-scaling is accounted for. The stimuli in 

Experiment 6 were not M-scaled thus if subjects were using a method to 

estimate TTC that required an accurate measure of speed then the over-

estimation in TTC at high luminance for fast moving stimuli may be due to the 

reduction in perceived speed with eccentricity. 

 

Since subjects are making responses to predicted motion in the absence of 

visual information, cognitive operations may be been implicated (Tresilian, 

1995). Two possible classes of cognitive operations for how prediction motion 

tasks are accomplished have been proposed, cognitive clocking and cognitive 

tracking (DeLucia & Liddell, 1998). Observers using cognitive clocking would 

obtain a TTC estimate at the onset of occlusion and mentally count down this 

duration before responding (e.g. Lyon & Waag, 1995; Tresilian, 1995). 

Alternatively, observers using cognitive tracking would continue to track the 

occluded object with eye movements or a spotlight of spatial attention (if 

required to fixate) and respond once their gaze or attention reaches the point of 

collision (e.g. Cooper, 1989; Finke & Shyi, 1988; Jagacinski, Johnson, & Miller, 

1983; Rosenbaum, 1975). It may be the case that the non-veridical TTC 

judgements reported are associated with errors in these cognitive mechanisms 

or biases that may affect such strategies.  

 

Studies have shown that time estimation is influenced by a number of factors 

such as length of duration to be estimated (Eisler, 1976), attentional demands 
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of a task (Zakay & Block, 1995, 1996, 1997) sex (Block, Hancock, & Zakay, 

2000) and age (Block, Zakay, & Hancock, 1998). As Zakay and Block (1997) 

noted in their review there appear to be many contradictory findings in time 

estimation literature. Thus it is difficult to identify whether a particular factor 

would elicit an under-estimation or over-estimation of TTC. However, a range of 

psychophysical studies have shown that perceived duration increases when 

subjects view stimuli moving at fast speeds (e.g. Beckmann & Young, 2009; 

Brown, 1995; Johnston, Arnold, & Nishida, 2006; Kaneko & Murakami, 2009; 

Leiser, Stern, & Meyer, 1991). For example, Kaneko and Murakami (2009) 

measured the perceived duration of moving stimuli by asking subjects to 

compare the duration of two consecutively presented stimuli (moving at different 

speeds) and indicate which seemed to last longer. They found that the over-

estimation in perceived duration reported by subjects increased proportionally 

with log speed. Any such speed-induced temporal dilation would serve to delay 

TTC judgements for fast stimuli in our experiment but, unfortunately, to date, the 

effect of luminance on this effect is unknown. 

 

Humans are also known to make position extrapolation errors. Freyd and Finke 

(1984) investigated the changes in mental representation of a visually 

presented pattern induced by a prior sequence of displays. They presented 

subjects with three presentations of a rectangle which implied rotation, the 

duration of each presentation was 250 msec with an inter-stimulus interval of 

250 msec. A test stimulus was then presented in an identical position to the 

third position, or in a position that is backward or forward relative to the third 

position of the rectangle. Subjects were asked whether the test stimulus had the 

same orientation as the third position and often reported the forward position as 
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the same as the third position. Freyd and Finke (1984) termed this memory 

distortion representational momentum, in which observers remembered the final 

position of a moving object as being more forward in its motion trajectory. 

Furthermore, Finke, Freyd, and Shyi (1986) found that location memory 

distortions are not only sensitive to the direction of implied motion but the 

forward memory shift associated with representational momentum increases as 

velocity and acceleration increase. Thus if an observer were using cognitive 

tracking, any under-estimation of TTC for fast stimuli may be explained by 

representational momentum. 

 

In conclusion, the results of Experiment 6 appear consistent with those of 

Experiment 5 but there are a number of factors that may affect TTC judgements 

which were not controlled for in Experiment 6 and may have contributed to the 

subjects' judgements. Amongst these are temporal dilation, heterogeneity in 

positional certainty and spatial grain across the retina and cognitive strategies 

that may well have been influenced by all or some of these low-level biases. 

Thus, the results of Experiment 6 are consistent with those of Experiment 5 but 

no direct link can be assumed.  

 

I conclude that, once the reduction in perceived contrast in the periphery is 

accounted for, speed encoding in the periphery is essentially similar to central 

vision. The source of the speed-independent reduction in perceived speed is 

uncertain but may possibly be related to the reduction in absolute cell density in 

the peripheral retina. The results of my initial TTC study are tentatively 

consistent with such a scheme. 
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6 The effect of luminance upon biases in perceived speed 

6.1 Introduction 

There is still no consensus on the nature of the processes that underlie the 

encoding of speed in the human visual system. Much of the work that 

addresses this problem has looked to biases in our perception of speed to 

inform models of speed encoding. Human speed perception has been shown to 

be readily influenced by the contrast of the scene viewed (e.g. Hammett et al., 

2007; Thompson, 1982; Thompson et al., 2006) and it is now well established, 

at slow speeds, low contrast stimuli appear to move more slowly than their 

higher contrast analogues but, conversely, they can appear to move more 

quickly at higher speeds (> 8 Hz) 1 (e.g. Thompson, 1982; Thompson et al., 

2006). This observation and others has led Thompson (1982) and many others 

(e.g. Adelson & Bergen, 1986; Hammett et al., 2000; Harris, 1980; Smith & 

Edgar, 1994; Tolhurst et al., 1973) to the suggestion that speed may be 

encoded as the ratio of two mechanisms tuned to low and high temporal 

frequencies (or ‘slow’ and ‘fast’ mechanisms) (Figure 6.1, left hand panel). The 

ratio model can adequately account for the Thompson Effect and other 

perceptual biases in speed such as those induced by changes in luminance and 

adaptive state (Hammett et al., 2005, 2007; Thompson, 1981). 

 

However, subsequent to the popularisation of modelling brain processes as 

Bayesian operations (e.g. Jaynes, 1988) a number of workers (e.g. Ascher & 

Grzywacz, 2000; Hürlimann et al., 2002; Stocker & Simoncelli, 2006; Weiss & 

                                            

1  Not all studies (e.g. Hawken et al., 1994; Stone & Thompson, 1992) find evidence of a 

reversal (i.e. an over-estimation) at high speed, most likely due to disparate stimulus 

parameters (see Hammett & Larsson, 2012).  
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Adelson, 1998; Weiss et al., 2002) have proposed an alternative account of how 

the brain encodes speed. Whilst the details of the models vary, this class of 

model shares the assumption that speed is encoded as the product of a 

likelihood (the sensory signal including noise) and a Bayesian prior that favours 

slow speeds. Given these two assumptions it follows that reducing the sensory 

signal (for instance by reducing contrast) must result in a phenomenal slow-

down. The well-established Thompson Effect is thus broadly consistent with 

both the ratio and Bayesian class of models of speed encoding and both 

approaches have had some degree of success in modelling it (e.g. Ascher & 

Grzywacz, 2000; Hammett et al., 2000; Stocker & Simoncelli, 2006; Thompson 

et al., 2006). 

Figure 6.1: The ratio of the responses of low-pass and band-pass temporal filters (left panel, 
after Smith and Edgar (1994)) provides a monotonic code for speed that is consistent with 
under- and over-estimation of speed at low contrast. Perceived speed of a low contrast pattern 
encoded by a ratio model at high and low luminance is plotted in the right hand panel: values 
below 1 indicate an under-estimation of perceived speed at low contrast and values above 1 
indicate an over-estimation of perceived speed. The ratio model shows a reduction in the under-
estimation of slow speeds and an over-estimation of higher speeds at reduced luminance. 
Details of the simulation may be found in Appendix 2. 
 

Vintch and Gardner (2014) have reported that the fMRI BOLD population 

response in V1 effectively mirrors the contrast-induced perceptual biases in 

speed experienced by their subjects and suggest that these biases constitute 
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evidence for the encoding of perceptual priors for slow speed. However, they 

also note that their results could be interpreted as evidence for a scheme where 

speed was encoded by two mechanisms whose gains varied differentially as a 

function of speed.  

 

Thus there are currently two competing accounts of how speed is encoded in 

the human visual system that are broadly consistent with much behavioural 

data. One of the problems in resolving which (if either) approach provides a 

more consonant framework for understanding speed encoding is that both class 

of models tend to make similar predictions and, where they diverge, can be 

readily modified to accommodate empirical evidence. For instance, whilst 

Stocker and Simoncelli's (2006) model does not predict the reversal in 

perceptual bias frequently found in the Thompson Effect at higher speed, they 

note that their model “would be able to fit these behaviours with a prior that 

increases at high speeds” (p. 583). 

 

There is therefore a need to identify cases where the Bayesian and ratio 

approaches yield unequivocally different predictions. In order to do so, I used 

the logic and model invoked by Hammett et al. (2007) to derive divergent 

predictions for Bayesian and ratio class models of speed encoding. Hammett et 

al. (2007) (see also Vaziri-Pashkam & Cavanagh, 2008) found that low 

luminance (mesopic) patterns appeared faster than higher luminance (photopic) 

patterns at fast (> 4 Hz) speeds. They demonstrated that a simple ratio model 

comprising two temporally tuned mechanisms could account for this perceptual 

bias if the gain of the lower frequency channel is reduced proportionately more 

than that of the higher frequency channel at low luminance – an assumption 
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that is consistent with the known properties of retinal ganglion cells that project 

to the M and P layers of the primate LGN (Purpura et al., 1988). In such a 

scheme the response of the lower frequency tuned mechanism is reduced at 

low luminance (relative to its response to the same contrast at high luminance) 

and thus the ratio model yields an increase in perceived speed relative to 

photopic levels. Thus this class of model predicts that at low luminance the 

reduction in perceived speed at low contrast will be attenuated since a 

proportionately larger input to the ratio will be derived from the higher 

frequency-tuned mechanism. Figure 6.1 shows the qualitative effect of reducing 

luminance (and concomitantly the gain of the ‘slow’ mechanism) predicted by 

ratio models: the Thompson Effect is reduced at slow speeds, increases at 

faster speeds and the speed at which the perceptual bias reverses is reduced. 

The Bayesian approach posits that the precision of the speed signal is reduced 

at low luminance. Since reducing luminance effectively reduces the contribution 

of the signal input equally for high and low contrast patterns, Bayesian models 

predict that reducing luminance will have no effect upon the contrast-induced 

perceptual bias but will increase discrimination thresholds as the precision of 

the signal is reduced. In other words, since the precision of the speed signal is 

reduced at low luminance, Bayesian models would predict that speed 

discrimination performance will deteriorate (since the certainty associated with 

speed is diminished). However, since the relative contrast ratio is constant, 

Bayesian models would predict that there should be no change in the effect of 

contrast on speed biases across luminance condition since the relative change 

in certainty with contrast is the same in both conditions. In order to test these 

predictions I therefore measured perceived speed and estimated discrimination 
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thresholds of low contrast patterns over a range of speeds and at high and low 

luminance. 

 

6.2 Methods 

6.2.1 Subjects 

Five (two male and three female) subjects aged between 20 and 29 participated 

in this experiment. One of the subjects (OH) was an author; the other four were 

naïve to the purpose of the experiment. All subjects had normal or corrected-to-

normal acuity. 

 

6.2.2 Apparatus and stimuli 

All stimuli were horizontally orientated sinusoidal gratings of 2 c/deg generated 

using the Psychophysics Toolbox extensions (Brainard, 1997; Kleiner et al., 

2007; Pelli, 1997) for MATLAB 7.11 (MathWorks, Cambridge, UK) and 

displayed on an EIZO 6600-M (Hakusan, Ishikawa, Japan) monochrome 

monitor at a frame rate of 100 Hz. The monitor was gamma corrected using the 

CRS Optical photometric system (Cambridge Research Systems, Rochester, 

UK). The Michelson contrast of the standard (fixed speed) grating was 0.7, and 

the contrast of the test (variable speed) grating was 0.1. During the control 

conditions both the standard and test gratings were of equal contrast (either 0.1 

or 0.7). The spatial and temporal phase of the standard and test gratings was 

randomised. The display subtended 68o × 47o at a viewing distance of 28.5 cm. 

Mean luminance was 25 cd m-2 for the high luminance conditions and 2.5 cd m-2 

in the low luminance conditions. In the low luminance conditions 1 log unit 

neutral density filters (NDF) (Thorlabs Inc., Newton, New Jersey, USA) were 

inserted into drop-cell trial frames (Skeoch, Sussex, UK) worn by subjects. 
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Stimuli were presented through two 6o diameter circular windows with hard 

edges. Each window was located equidistant from the horizontal centre of the 

screen and separated by 2°. A small bright fixation spot was situated at the 

centre of the display. 

 

6.2.3 Procedure 

Before beginning the experiment subjects were dark adapted for at least 5 min. 

Two patterns were presented simultaneously for 500 msec to the right and left 

of a central fixation point. The standard patterns (always presented on the left) 

were drifting in a downward direction at one of four speeds (1, 2, 4, and 8 

deg/sec). The speed of the test pattern was altered by a QUEST routine 

(Watson & Pelli, 1983) depending on the subject’s responses. For each block 

the QUEST procedure was terminated after 50 trials, the data were fit to a 

cumulative Gaussian function using the method of least squares fit, and the 

50% point of the function was derived. The mean of five (three in the control 

condition) such estimates was taken as the point of subjective equality (PSE). 

Both patterns were presented at equal luminance, in both the high or low 

luminance conditions. A blank screen of mean luminance was presented 

between each test pair and subjects had to press a mouse button in order for 

each test pair to be presented. The subject’s task was to indicate which pattern 

appeared faster, by pressing a mouse button. The experiments were conducted 

binocularly in a semi-darkened room using a chin and headrest. 

 

6.3 Results 

At all speeds tested in the control condition speed matching was near veridical 

at both high and low luminance. For 0.1 contrast patterns, a two-way repeated 
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measures ANOVA revealed no significant main effect of speed, F(3, 12) = 0.77, 

p = 0.532; no significant main effect of luminance, F(1, 4) = 2.21, p = 0.211; and 

no significant interaction between speed and luminance, F(3, 12) = 1.92, p = 

0.180. Similarly, for patterns at 0.7 contrast, a two-way repeated measures 

ANOVA revealed no significant main effect of speed, F(3, 12) = 2.19, p = 0.142; 

no significant main effect of luminance, F(1, 4) = 0.26, p = 0.639; and no 

significant interaction between speed and luminance, F(3, 12) = 0.28, p = 0.840, 

on the speed match ratio. 

 

Figure 6.2 plots the ratio of the match speed for the low contrast stimuli to the 

standard speed. A value greater than one represents an over-estimate of the 

perceived speed of low contrast with respect to high contrast patterns and a 

value less than one represents an under-estimate of the perceived speed of low 

contrast with respect to high contrast patterns. The results clearly indicate that 

low contrast patterns appear slower for most speeds tested. In line with many 

other studies, the results also indicate that the perceptual bias in speed 

reverses at faster speeds such that low contrast patterns appear faster at fast 

speeds. A two-way repeated measures ANOVA revealed a significant main 

effect of speed, F(3, 12) = 247.96, p < 0.001; a significant main effect of 

luminance, F(1, 4) = 727.83, p < 0.001; and a significant interaction between 

speed and luminance, F(3, 12) = 14.55, p < 0.001, on the speed match ratio. 

The results clearly indicate that the speed at which this reversal in perceptual 

bias occurs varies with luminance. At high luminance, the perceived speed of 

low contrast patterns is under-estimated for speeds up to 4 deg/sec (temporal 

frequencies up to 8 Hz) but over-estimated at 8 deg/sec (16 Hz). At low 

luminance a similar reversal in the bias occurs but at a lower speed - only 
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speeds less than 4 deg/sec (8 Hz) were under-estimated. One-sample t tests at 

4 deg/sec (8 Hz) revealed that there was no significant difference between 

perceived and veridical speed at low luminance (t = 0.89, df = 4, p = 0.422), but 

at high luminance, perceived speed was significantly lower than veridical (t = -

16.15, df = 4, p < 0.001). 

Figure 6.2: The ratio between perceived speed and physical speed of the low contrast (0.1) 
pattern is plotted as a function of speed at high (open symbols) and low luminance (closed 
symbols). Subjects’ initials are indicated in the top left of each panel, the average across 
subjects is indicated in the lowermost right panel. The broken horizontal line represents a 
veridical match. Speed match values greater than 1 indicate an over-estimation of matched 
speed, values less than 1 indicate an under-estimation of matched speed. Error bars represent 
±1 SEM. 
 

Following Freeman, Champion, and Warren (2010) I calculated the average 

standard deviations of the underlying cumulative Gaussian psychometric 
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functions for the control conditions in order to estimate speed discrimination 

thresholds at high and low luminance. Figure 6.3 plots these thresholds as 

fractions of the standard speed for test and standard patterns of 0.1 contrast. A 

two-way repeated measures ANOVA revealed no significant main effect of 

speed, F(3, 12) = 1.48, p = 0.269; no significant main effect of luminance, F(1, 

4) = 1.43, p = 0.297; and no significant interaction between speed and 

luminance, F(3, 12) = 0.53, p = 0.668. 

Figure 6.3: Estimated discrimination thresholds are reported as fractions of the standard speed 
for test and standard patterns of equal contrast (left panel, 0.1, right panel, 0.7), at high (open 
symbols) and low (closed symbols) luminance. Data points represent the mean of five subjects. 
Error bars represent ±1 SEM. 
 

Similarly, for test and standard patterns with a contrast of 0.7, a two-way 

repeated measures ANOVA revealed no significant main effect of speed, F(3, 

12) = 0.56, p = 0.649; no significant main effect of luminance, F(1, 4) = 0.20, p = 

0.677; and no significant interaction between speed and luminance, F(3, 12) = 

0.22, p = 0.883, on estimated discrimination thresholds.  

 

At both high and low luminance the estimated discrimination thresholds as 

fractions of the standard speed were not affected by changes in contrast. At low 

luminance, a two-way repeated measures ANOVA revealed no significant main 

effect of speed, F(3, 12) = 2.13, p = 0.150; no significant main effect of contrast, 
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F(1, 4) = 1.81, p = 0.249; and no significant interaction between speed and 

contrast, F(3, 12) = 0.59, p = 0.635. At high luminance, a two-way repeated 

measures ANOVA revealed no significant main effect of speed, F(3, 12) = 0.07, 

p = 0.976; no significant main effect of contrast, F(1, 4) = 0.03, p = 0.862; and 

no significant interaction between speed and contrast, F(3, 12) = 1.19, p = 

0.354. 

 

6.4 Discussion 

There is currently no consensus on how speed is encoded in the human visual 

system. Both Bayesian and ratio class models have been proposed and 

previous investigations have found perceptual biases consistent with both class 

of model. Recently, Sotiropoulos, Seitz, and Seriès (2014) reported that a 

model that combined Stocker and Simoncelli's (2006) Bayesian model with 

Thompson et al.'s (2006) ratio model accounted for their measurements of the 

Thompson Effect better than a Bayesian model alone. However, the model 

required 10 free parameters and the resultant best fitting parameters render the 

temporal filters underlying the ratio stage to be both effectively low-pass with 

the peak and cut-off of the ‘m’ filter at around 2 Hz and 20 Hz respectively. Thus 

whilst the large number of parameters does allow for a good fit to the data, the 

underlying filters lose the physiological plausibility of the original fixed 

parameter model proposed by Perrone (2005). 

 

Vintch and Gardner's (2014) finding that the population response in V1 mirrors 

the contrast-induced perceptual biases in speed and flicker gave further weight 

to a Bayesian approach. However, Vintch and Gardner’s measurements were 

restricted to speeds no faster than 4 deg/sec (well below the speeds at which a 
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reversal in perceptual bias may be expected) and, whilst pointing to the 

consistency of their results with a Bayesian prior, they also note that their 

results are consistent with a two-channel model of speed where the prior can be 

considered as a frequency-dependent difference in the gain of the mechanisms. 

I therefore set out to provide a direct test of the predictions of ratio and 

Bayesian class models of speed encoding by assessing the effect of luminance 

upon the Thompson Effect: An early slow prior should be readily differentiated 

from a ratio mechanism upon the basis of the effect of luminance on speed 

biases. A ratio model of speed encoding that incorporates known luminance-

induced changes in gain (Purpura et al., 1988) predicts that the perceptual bias 

will be greater at slow speeds at high luminance and greater at fast speeds at 

lower luminance.  

 

In order to evaluate the effect of the luminance reduction upon Bayesian models 

I followed the logic of Freeman et al. (2010). They observed that a reduction of 

the slope of the underlying psychometric function (and thus discrimination 

threshold) should yield less certainty and therefore a slower perceived speed. I 

estimated the slopes of the underlying psychometric functions of the control 

conditions at 0.1 and 0.7 contrast (Figure 6.3). There is no significant difference 

between low and high luminance discrimination thresholds, nor is there any 

significant difference in discrimination thresholds at high and low contrasts. 

Thus, the Bayesian class of model predicts that luminance should have no 

effect on the contrast-induced bias in these measurements since the 

discriminability of the patterns is equally affected by the luminance reduction. 

Moreover, given the lack of any significant difference in discrimination 
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thresholds between high and low contrast, Bayesian models would also not 

predict perceptual biases as a function of contrast. 

 

The results clearly indicate that the perceived speed of low contrast patterns is 

under-estimated at slow speeds and over-estimated at faster speeds as has 

previously been reported. I also find that this shift in perceptual bias is 

influenced by the average luminance of the image such that at lower luminance 

there is significantly less reduction in perceived speed and greater increase in 

perceived speed and a concomitant reduction in the speed at which the bias is 

reversed. This increase in perceived speed and the associated reduction in the 

speed at which the perceptual bias reversed at low luminance is predicted by 

the ratio class of model (e.g. Hammett et al., 2007) that incorporates the 

biologically plausible (Purpura et al., 1988) assumption that the gain of the 

lower temporal frequency tuned mechanism reduces proportionately more at 

low luminance.  

 

Others (e.g. Thompson et al., 2006) have pointed out that Bayesian approaches 

do not predict the reversal in perceptual bias found here and elsewhere and 

Hammett et al. (2007) noted that the finding that stimuli appear faster at 

mesopic than photopic levels was also inconsistent with Bayesian models. The 

present finding that the perceived slowing of low contrast patterns is greater at 

high luminance provides a strong challenge to the plausibility of Bayesian 

accounts of speed encoding since they predict that lower contrast patterns 

should have the same relative perceived speed at either luminance and cannot 

explain the shift in frequency at which the bias reverses. Conversely, the 

perceptual biases induced by luminance and contrast (Hammett et al., 2007; 
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Thompson, 1982; Thompson et al., 2006; Vaziri-Pashkam & Cavanagh, 2008) 

and the effect of luminance I find here are all consistent with a simple, 

biologically plausible two-mechanism ratio model.  

 

6.5 Conclusions 

Bayesian approaches to characterising brain function have become very 

popular in recent years and have been used to model a range of processes 

such as perceived speed under smooth pursuit, sensorimotor learning and 

tactile perception (Freeman et al., 2010; Goldreich & Tong, 2013; Körding & 

Wolpert, 2004). Indeed, the impressive range of studies proposing a Bayesian 

characterisation of sensory processes (Geisler & Kersten, 2002; Langer & 

Bülthoff, 2001) led Körding and Wolpert (2006) to suggest that “the Bayesian 

process may be a fundamental element of sensory processing” (p. 321). 

Amongst the evidence cited by Körding and Wolpert to support this suggestion 

was Stocker and Simoncelli's (2006) Bayesian model of speed encoding. 

However, their model (like all pure Bayesian models) fails to predict the reversal 

in perceptual bias found at higher speeds in the Thompson Effect and is 

inconsistent with both previous work that has manipulated luminance (e.g. 

Hammett et al., 2007; Vaziri-Pashkam & Cavanagh, 2008) and the results 

presented here.  

 

It is important to stress that these data may be consistent with a range of 

models of speed encoding (e.g. Heeger, 1987; Simoncelli & Heeger, 1998) 

other than ratio models and it is not my intention to make any strong claim in 

support of ratio models upon the basis of my results. Indeed, it is appropriate to 

acknowledge that the basis of proposed ratio models is itself ad hoc in nature 
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and rests upon assumptions regarding gain changes with luminance that rely 

upon relatively sparse evidence. However, the evidence I report here, and 

previous reports of perceptual biases in speed perception, are not readily 

reconciled with Bayesian accounts of speed encoding in the human brain. 
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7 General Discussion 

 

Despite remarkable advances in our understanding of visual processing there is 

surprisingly little consensus on the question of how object speed is encoded. 

The various computational approaches may be characterised as Bayesian, 

gradient and ratio based. The experiments reported in the previous chapters 

were designed to cast light upon how our biases in speed perception may 

inform the viability of these various classes of model. 

 

Chapter 3 described two experiments that investigated which adaptation 

parameters determined the ramp after-effect. The ramp after-effect has 

previously been invoked to support gradient-based models of motion perception 

(e.g. Anstis, 1997; Ashida & Scott-Samuel, 2014; Scarfe & Johnston, 2010). If 

gradient motion detectors mediate the ramp after-effect it would be reasonable 

to assume that gradient would determine the strength of the ramp after-effect. 

The results of Experiments 1 and 2 indicate that this is not the case. Several 

ramp profiles were tested and the results showed that ramp profile (gradient 

shape) had no effect on the duration of the after-effect. Rather, the duration of 

the after-effect is well characterised by the amplitude of the luminance ramps, 

consistent with the findings of Arnold and Anstis (1993). These experiments 

also sought to test the proposition that the ramp after-effect is mediated by ON- 

and OFF- channels (Anstis, 1967; Arnold & Anstis, 1993). Subjects were 

adapted to ascending and descending luminance ramps at high and low 

luminance. The results indicated that the duration of after-effect was attenuated 

only for descending ramps at low luminance. Since OFF cell responses are 

known to be reduced at low luminance (Dolan & Schiller, 1989, 1994; Ramoa et 



 157 

al., 1985) this finding is entirely consistent with the proposition that the ramp 

after-effect is mediated by ON- and OFF-channels. 

 

Chapter 4 described an experiment that measured the biases in speed 

perception attributable to contrast. Thompson (1982) showed that at low 

contrast slow moving stimuli appeared to move slower while fast moving stimuli 

appeared to move faster. However, temporal frequency also changes the 

perception of contrast (Georgeson, 1987). Thus Experiment 3 attempted to 

answer the question of whether the shift in perceived speed is a true reflection 

of speed processing mechanisms or simply an artefact of changes in perceived 

contrast with temporal frequency. The results showed that speed matching with 

matched contrasts produced the same biases in speed perception as speed 

matching with constant physical contrasts. The biases in perceived speed at low 

contrasts do not appear to be due to changes in perceived contrast due to 

temporal frequency but a genuine effect of underlying speed-processing 

mechanisms. 

 

Chapter 5 documents an investigation of whether perceived slowing of stimuli in 

the periphery may be accounted for in terms of a perceived reduction in 

contrast. The results of Experiment 4 indicate that the reduction in perceived 

contrast as eccentricity is increased does contribute to the perceptual slowing 

down of moving patterns in the periphery. However, when contrast is matched 

for peripherally presented patterns they are still perceived as slower. Traditional 

ratio models would predict that perceived speed in the periphery should 

increase given the increased proportion of parasol cells. Currently, it is not clear 

why perceived speed is reduced in the periphery but one possibility is that the 
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reduction in absolute density of cells as a function of eccentricity leads to the 

effect upon the basis of a relative reduction in gross neural activity.  

 

In Experiment 5 I investigated how luminance and eccentricity affect perceived 

speed in order to further investigate the mechanisms underlying this perceptual 

bias. The results of Experiment 5 indicate that at high luminance perceived 

speed was reduced as eccentricity increased, consistent with previous research 

(Campbell & Maffei, 1979, 1981; Cohen, 1965; Hunzelmann & Spillmann, 1984; 

Lichtenstein, 1963; MacKay, 1982; Tynan & Sekuler, 1982). At lower luminance, 

the speed of slower moving stimuli was similarly under-estimated with 

increasing eccentricity. However, the speed of faster moving stimuli was over-

estimated as eccentricity increased. This pattern of results is consistent with the 

increases in perceived speed found in central vision at low luminance which are 

adequately accounted for by a simple ratio model of speed encoding (e.g. 

Hammett et al., 2007; Thompson et al., 2006; Vaziri-Pashkam & Cavanagh, 

2008). Once the reduction in perceived contrast in the periphery is accounted 

for, speed encoding in the periphery is essentially similar to central vision. The 

source of the speed-independent reduction in perceived speed is uncertain but 

may possibly be related to the reduction in absolute cell density in the 

peripheral retina. 

 

The experiments reported thus far have used relative judgements of speed. 

This protocol leaves open the possibility that the perceptual biases they reveal 

are due to the relativity of the task and do not pertain to more realistic scene 

processing. In order to evaluate the extent to which these findings based upon 

relative speed judgements can be applied to unitary perceptual experience, 
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Experiment 6 inferred biases in speed perception as a function of eccentricity by 

measuring subjects' estimates of TTC. The results indicate that luminance and 

speed had a significant effect upon TTC estimation and that these effects are 

consistent with the results of Experiment 5 which deployed a relative judgement 

of speed. At high luminance, high speed stimuli moving towards the fovea from 

the periphery are perceived as moving slower, at low luminance, the same 

stimuli are perceived as moving faster. It is possible that changes in perceived 

duration may have influenced TTC estimates (e.g. Ayhan et al., 2009; Bruno et 

al., 2011) but this seems an unlikely explanation given the consistency of the 

results with those of Experiment 5 where such an explanation could not be 

invoked to explain the perceptual biases observed. 

 

Chapter 6 described an experiment that investigated the effects of contrast and 

luminance upon speed perception. While there are several models of speed 

perception and no consensus on how speed is encoded in the human visual 

system both Bayesian and ratio class of models are consistent with much 

behavioural data and tend to make similar predictions. In order to differentiate 

between the two class of models I investigated speed perception at low 

luminance for which the two class of models produce different predictions. 

Bayesian models predict that lower contrast patterns would have the same 

relative perceived speed at both high and low luminance. The ratio model I 

deployed predicts that at low luminance the under-estimation in perceived 

speed at low contrast and slow speeds will be attenuated while the over-

estimation at higher speeds would increase. The results of Experiment 7 

showed that at low luminance the Thompson Effect is still present, but across all 

speeds tested low luminance patterns appeared faster than high luminance 
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patterns. The shift in changes in speed perception at low luminance can be 

accounted for by a ratio model. The results of Experiment 7 are inconsistent 

with Bayesian models since a slow prior simply cannot account for the changes 

in the Thompson Effect found at low luminance.  

 

Overall, the results of these studies are entirely consistent with ratio-type 

approaches to modelling speed encoding in the human visual system. 

Experiments 1 and 2 are not consistent with gradient models and Experiments 4 

- 7 are inconsistent with Bayesian approaches. However, whilst the present 

findings are consistent with the ratio class of model they do not offer any clear 

evidence for such an implementation within the visual system and in a number 

of the studies reported here conclusions have been based upon speed 

judgements using only one spatial frequency of sinusoidal grating. Thus the 

possibility remains in these experiments that the subjects made their 

judgements upon the basis of the temporal frequency of the gratings rather than 

their speed. Clearly a parametric study that repeated these measurements for a 

range of spatial and temporal frequencies would be of benefit in disambiguating 

the interpretation of my results in this respect. Moreover this problem of 

disambiguating speed and temporal frequency also resides within imaging 

studies. For instance, Hammett, Smith, Wall and Larsson (2013) showed that 

whilst there was no unambiguous response in the fMRI Bold signal to varying 

speed in visual cortex, a multivariate classifier could predict speed in all cortical 

areas measured. Thus it may be that the encoding of speed is distributed in the 

multivariate neuronal population response of visual cortex. However, Hammett 

et al.'s use of a single spatial frequency sinusoidal grating leaves open the 

possibility that the multivariate BOLD response encodes temporal frequency 
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rather than speed per se, thus a parametric study that employed stimuli with a 

range of spatial and temporal frequencies would be of great value in this 

respect. Similarly, direct electrophysiological measurements of the inputs to 

early speed-sensitive neurones in V1 could prove invaluable in furthering our 

understanding of the origins of a code for speed. It has been known for some 

time that two sub-populations of non-directional macaque V1 cells are in 

temporal quadrature phase and have differing spatial phases of their receptive 

fields (De Valois et al., 2000). De Valois et al. demonstrated that the receptive 

fields of directionally tuned V1 cells can be constructed by linear combination of 

the spatio-temporal characteristics of the two sub-populations of non-directional 

cells in approximate quadrature phase (see also Peterson, Li and Freeman 

(2004) for similar evidence in the cat). However, there is still no direct 

anatomical or physiological evidence to support De Valois et al.'s suggestion 

that the two V1 sub-populations receive discrete inputs from magno- and parvo-

cellular pathways. Clearly, further studies in both these areas will cast a strong 

light upon the origins of the earliest speed signals in the visual cortex which, in 

turn, will serve to inform our understanding of the more robust velocity 

estimates which are likely extracted from these early V1 cells in higher cortical 

areas. 
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MATLAB code 

The script used in Experiment 3a to run a contrast matching task: 

% Contrast Matching 
 
% Omar Hassan 12/09/12 
 
function ContrastMatch 
 
 
%% Subject ID and trial parameters 
 
subject = input('Subject ID:', 's'); 
 
C_P = str2double(input('Standard Contrast (e.g. 0.1 or 0.7): ',... 
    's')); 
 
% S_S = str2double(input('Standard Speed (e.g. 1 (deg/sec)): ',... 
% 's')); 
 
T_S =str2double(input('Test Speed (e.g. 1, 2, 4, 8 (deg/sec)):'... 
    , 's')); 
 
 
%% Screen 
 
%Remove 'Welcome to psychtoolbox' screen 
Screen('Preference', 'VisualDebuglevel', 1); 
 
%ResolutionTest; 
%screenres=Screen('Resolution', 1) 
%1152x864 100Hz 
 
 
%% Gamma correction and open window 
 
%Gamma correction 
PsychImaging('PrepareConfiguration'); 
PsychImaging('AddTask', 'FinalFormatting',... 
    'DisplayColorCorrection','SimpleGamma'); 
 
%Open window 
[wPtr,rect]=PsychImaging('OpenWindow',1); 
 
%Gamma correction 
PsychColorCorrection('SetEncodingGamma', wPtr, 0.4562002); 
 
Screen('BlendFunction', wPtr, GL_SRC_ALPHA,... 
    GL_ONE_MINUS_SRC_ALPHA); 
 
 
%% Mean luminance 
 
lummean=128; 
 
 
%% Initial screen of mean luminance 
 
Screen('FillRect',wPtr,lummean); 
Screen('Flip', wPtr); 
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%% Experimenter defined parameters 
 
params.stimulusDuration=0.5; % (sec) 
 
params.stimulusSize=100; % Window size (pixels) = 3 deg 
 
params.stimulusLeftANGLE=270; % Angle of standard grating 
params.stimulusRightANGLE=270; % Angle of test grating 
 
params.stimulusLeftSF=0.12; % Standard SF (cycles/pixel)= 2 c/deg 
params.stimulusRightSF=0.12; % Test SF (cycles/pixel)= 2 c/deg 
 
params.stimulusLeftSPEED=1*2; % Standard TF (cycles/sec)  
params.stimulusRightSPEED=T_S*2; % Test TF (cycles/sec)  
 
params.screenNum = 1;  
params.wPtr=wPtr; 
params.rect=rect; 
 
params.ITI = 1; % (sec)  
params.ISI=0.5; % (sec) 
 
params.totalTrials=50; % Number of trials 
 
wrongRight = {'wrong','right'}; % Response displayed 
 
% Standard contast used to create stimulus   
params.stimulusLeftCONTRAST=C_P; 
 
        
%% QuestCreate 
 
% Create prior threshold estimate. 
contrastGuess = C_P+(0+0.1*rand(1,1));  
 
% Contast used in QUEST is log10 contrast 
tGuess = log10(contrastGuess); 
 
% Range of possible values of threshold 
tGuessSd = 2.5; 
 
% Threshold criterion expressed as probability of response==1. 
pThreshold=0.82; 
 
beta=3.5; delta=0.01; gamma=0.5; grain=0.01; range=4; 
 
q=QuestCreate(tGuess,tGuessSd,pThreshold,beta,delta,gamma,... 
    grain,range,[]); 
 
q.normalizePdf=1; 
 
 
%% Mean luminance screen 
 
Screen('FillRect',wPtr,lummean); 
Screen('Flip', wPtr); 
WaitSecs(5); 
 
 
%% Create array for save file 
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trialcomplete=ones(4,params.totalTrials); 
 
 
%% Trials 
 
for k=1:params.totalTrials 
     
 % Get recommended level.   
 tTest=QuestQuantile(q); 
  
    % Restrict to range of log contrasts. 
    tTest=min(0,max(-2,tTest)); 
     
     
    %% Present Stimuli 
     
    % Test contrast 
    RightCONTRAST=10^tTest 
 
    texsize =params.stimulusSize / 2; 
 
    % Find the color values which correspond to white and black:  
    white=WhiteIndex(params.screenNum); 
    black=BlackIndex(params.screenNum); 
     
    % Round gray to integral number: 
    gray=round((white+black)/2); %128 
     
    % Contrast 'inc'rement range for given white and gray values: 
    inc=white-gray; 
 
 
    % Calculate parameters of the gratings: 
     
    % Compute pixels/cycle: 
    p=ceil(1/params.stimulusLeftSF); % Standard 
    pRight=ceil(1/params.stimulusRightSF); % Test 
     
    % Frequency in radians: 
    fr=params.stimulusLeftSF*2*pi; % Standard 
    frRight=params.stimulusRightSF*2*pi; % Test 
     
    % Visible size of the grating: 
    visiblesize=2* texsize +1; 
 
    % Create single static grating images: 
     
    x = meshgrid(-texsize:texsize + p*10, 1); % Standard 
     
    xRight = meshgrid(-texsize:texsize + pRight*10, 1); % Test 
     
    % Compute cosine gratings: 
    grating=gray + inc*cos(fr*x); % Standard 
    %Random spatial phase 
    gratingchangeL=grating(1:25); 
    phlL=randi([1 20]); 
    gratingchL=gratingchangeL(phlL:end); 
    gratingcutL = grating(1:end-numel(gratingchL)); 
    grating = horzcat(gratingchL, gratingcutL); 
     
    gratingRight=gray + inc*cos(frRight*xRight); % Test 
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    %Random spatial phase 
    gratingchangeR=gratingRight(1:25); 
    phlR=randi([1 20]); 
    gratingchR=gratingchangeR(phlR:end); 
    gratingcutR = gratingRight(1:end-numel(gratingchR)); 
    gratingRight = horzcat(gratingchR, gratingcutR); 
     
    % Store 1-D single row grating in texture: 
    gratingtexLeft=Screen('MakeTexture', params.wPtr,... 
        grating); % Standard 
    gratingtexRight=Screen('MakeTexture', params.wPtr,... 
        gratingRight); % Test 
     
    % Create a mask: 
     
    % Create a single hard edged mask 
    % and store it to a texture: 
     
    mask=ones(2*texsize+1, 2*texsize+1, 2) * gray; 
    [x,y]=meshgrid(-texsize:texsize,-texsize:texsize); 
    mask(:, :, 2)=white * (1-(x.^2 + y.^2 <= texsize^2)); 
    masktex=Screen('MakeTexture', params.wPtr, mask); 
     
    % OR 
     
    % Create a single gaussian transparency mask 
    % and store it to a texture: 
     
%     [x,y]=meshgrid(-texsize:texsize, -texsize:texsize); 
%     maskblob=uint8(ones(2*texsize+1, 2*texsize+1, 2) * gray); 
%     size(maskblob); 
%      
%     % Layer 2 (Transparency aka Alpha) is filled with 
%     % gaussian transparency mask. 
%      
%     xsd=texsize/2.0; 
%     ysd=texsize/2.0; 
%     maskblob(:,:,2)=uint8(round... 
%         (255 - exp(-((x/xsd).^2)-((y/ysd).^2))*255)); 
%      
%     masktex=Screen('MakeTexture', params.wPtr, maskblob); 
     
    % Definition of the drawn rectangle on the screen: 
    dstRect=[0 0 visiblesize visiblesize]; 
    dstRectd=[0 0 2 2]; 
    dstRectdot=CenterRectOnPoint(dstRectd, params.rect(3)*0.5,... 
        params.rect(4)*0.5); % Fixation 
    dstRectLeft=CenterRectOnPoint(dstRect, params.rect(3)*0.44,... 
        params.rect(4)*0.5); % Standard 
    dstRectRight=CenterRectOnPoint(dstRect,... 
        params.rect(3)*0.56,params.rect(4)*0.5); % Test 
     
    % Query duration of one monitor refresh interval: 
    ifi=Screen('GetFlipInterval', params.wPtr); 
     
    waitframes = 1; 
     
    % Translate frames into seconds for screen update interval: 
    waitduration = waitframes * ifi; 
     
    % Recompute p, without the ceil() operation. 
    p=1/params.stimulusLeftSF;  % Standard (pixels/cycle) 
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    pRight=1/params.stimulusRightSF; % Test (pixels/cycle) 
     
    % Translate requested speed of the grating (in cycles/sec)  
    % into a shift value in "pixels per frame", for  
    % given waitduration: 
    % Standard: 
    shiftperframe= params.stimulusLeftSPEED * p * waitduration;  
    % Test: 
    shiftperframeRight= params.stimulusRightSPEED *... 
        pRight * waitduration; 
     
    % Perform initial Flip to sync us to the VBL and for 
    % getting an initial VBL-Timestamp as timing baseline 
    % for our redraw loop: 
    vbl=Screen('Flip', params.wPtr); 
     
    % Run 'params.stimulusDuration' seconds 
    vblendtime = vbl + params.stimulusDuration; 
    i=0; 
     
    % Animationloop: 
    while(vbl < vblendtime) 
         
        xoffset = mod(i*shiftperframe,p); % Standard 
        xoffsetRight = mod(i*shiftperframeRight,pRight); % Test 
        i=i+1; 
         
        % Define shifted srcRect that cuts out the properly  
        % shifted rectangular area from the texture: 
        % Standard: 
        srcRect=[xoffset 0 xoffset + visiblesize visiblesize]; 
        % Test: 
        srcRectRight=[xoffsetRight 0 xoffsetRight + visiblesize... 
            visiblesize]; 
         
        % Draw grating textures: 
        % Standard: 
        Screen('DrawTexture', params.wPtr, gratingtexLeft,... 
            srcRect,dstRectLeft, params.stimulusLeftANGLE,... 
            [],params.stimulusLeftCONTRAST, [], [], [], []); 
        % Test: 
        Screen('DrawTexture', params.wPtr, gratingtexRight,... 
            srcRectRight,dstRectRight,... 
            params.stimulusRightANGLE,[],RightCONTRAST,... 
            [], [], [], []); 
         
        % Draw gaussian mask over grating: 
        % Standard 
        Screen('DrawTexture', params.wPtr, masktex,... 
            [0 0 visiblesize visiblesize], dstRectLeft,... 
            params.stimulusLeftANGLE,[], [], [], [], [], []); 
        % Test 
        Screen('DrawTexture', params.wPtr, masktex,... 
            [0 0 visiblesize visiblesize], dstRectRight,... 
            params.stimulusRightANGLE,[], [], [], [], [], []); 
         
        % Draw fixation dot 
        Screen('FillOval', params.wPtr, uint8(white), dstRectdot); 
         
        % Flip 'waitframes' monitor refresh intervals  
        % after last redraw. 
        vbl = Screen('Flip', params.wPtr, vbl +... 
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            (waitframes - 0.5) * ifi); 
            
    end; 
     
    %dstRectd=[0 0 2 2]; 
    %dstRectdot=CenterRectOnPoint(dstRectd, params.rect(3)*0.5,... 
    %params.rect(4)*0.5); 
    Screen('FillOval', params.wPtr, uint8(white), dstRectdot); 
    Screen('Flip', params.wPtr); 
    Screen('FillOval', params.wPtr, uint8(white), dstRectdot); 
     
     
    %% Response 
     
    [x,y,buttons] = GetMouse(1); 
     
    while ~any(buttons) 
         
        [x,y,buttons] = GetMouse(1); 
         
    end 
     
    % a=buttons 
    if buttons(1)==0; 
         
        response=1;% Right mouse button pressed so subjects think  
                   % right grating has higher contrast. 
    else       
         
        response=0;% Sbjts think left grating has higher contrast. 
     
    end 
     
     
    %% Display trial data to experimenter 
     
    % Trial data for save file: 
    trialcomplete(1,k)=k; 
    trialcomplete(2,k)=response; 
    trialcomplete(3,k)=RightCONTRAST; 
     
    if response==1 && (params.stimulusLeftCONTRAST... 
            <= RightCONTRAST) 
         
        wrongR=2; % Correct 
         
    elseif response==0 && (params.stimulusLeftCONTRAST... 
            < RightCONTRAST) 
         
        wrongR=1; % Incorrect 
         
    elseif response==1 && (params.stimulusLeftCONTRAST... 
            > RightCONTRAST) 
         
        wrongR=1; % Incorrect 
         
    elseif response==0 && (params.stimulusLeftCONTRAST... 
            >= RightCONTRAST) 
         
        wrongR=2; % Correct 
         
    end 
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    trialcomplete(4,k)=wrongR; 
    
    fprintf('Trial %3d at %5.2f cont %5.5f is %s\n',k,tTest,... 
        RightCONTRAST,char(wrongRight(wrongR))); 
     
     
    %% Screen of mean luminance 
    Screen('Flip', params.wPtr); 
     
    % Intertrial interval 
    WaitSecs (params.ITI); 
     
     
    %% Update the pdf 
    q=QuestUpdate(q,tTest,response); 
     
     
end 
 
 
%% Ask Quest for the final estimate of threshold. 
 
% Log10 contrast: 
t=QuestMean(q); 
 
sd=QuestSd(q); 
 
% Actual contrast: 
realt=10^t; 
 
% Display final threshold to experimenter 
fprintf('Final threshold estimate (mean sd) is %.4f  %.2f\n',... 
    realt,sd); 
 
 
%% Save data 
 
C_Pname=C_P*10; % Remove decimal point 
 
file_name=sprintf('%s_%sC_%sS_%s', subject, num2str(C_Pname),... 
    num2str(T_S), datestr(now,30)); 
save(file_name,'q', 'params','t','sd','realt','trialcomplete'); 
 
 
Screen('CloseAll'); 
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The simulation in Figure 6.1 used the temporal filters originally proposed by 

Smith and Edgar (1994) for their close fit to behavioural data. They take the 

form 𝑚 = 300𝑒!!.!(!!!")! (!"!!)  and 𝑝 = 15000𝑒!!.!(!!!")! (!")  where m and p 

define the sensitivity of the ‘fast’ and ‘slow’ mechanisms. The simulation 

assumes that their responses (M and P) are determined by a modified Naka-

Rushton relation such that sensitivity at any given temporal frequency, 𝑤, and 

contrast, c, is given by 𝑃(𝜔, 𝑐) = !.!(!)
! .!(!)!!!

 and 𝑀(𝜔, 𝑐) = !.!(!)
! .!(!)!!! !

 where 𝛼! 

and 𝛼! are the semi-saturation constants.  In the high luminance simulation 

these values were set to 0.13 and 1.79 which is consistent with the known 

properties of M and P cells (Blakemore & Vital-Durand, 1986; Derrington & 

Lennie, 1984; Hicks, Lee, & Vidyasagar, 1983; Kaplan, Lee, & Shapley, 1990; 

Schiller & Colby, 1983).  The value of 𝛼!varied inversely as a function of 

frequency such that the contrast response became more compressive at higher 

frequencies consistent with physiological reports (Kaplan & Shapley, 1986).  In 

the low luminance condition the values were set to 0.15 and 8.95 in order to 

simulate a large reduction in gain of the P mechanism (Purpura et al., 1988). 

Speed, S, at each contrast, c, was calculated as the ratio of the two 

mechanisms’ responses such that 𝑆(𝜔, 𝑐) = !(!,!)
!(!,!)

. 

 

 

 

 

 

 

 


