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Abstract 

A new algorithm and web server, mutation3D (http://mutation3d.org), proposes driver genes in 

cancer by identifying clusters of amino acid substitutions within tertiary protein structures. We 

demonstrate the feasibility of using a 3D clustering approach to implicate proteins in cancer 

based on explorations of single proteins using the mutation3D web interface. On a large scale, 

we show that clustering with mutation3D is able to separate functional from non-functional 

mutations by analyzing a combination of 8,869 known inherited disease mutations and 2,004 

SNPs overlaid together upon the same sets of crystal structures and homology models. Further, 

we present a systematic analysis of whole-genome and whole-exome cancer datasets to 

demonstrate that mutation3D identifies many known cancer genes as well as previously 

underexplored target genes. The mutation3D web interface allows users to analyze their own 

mutation data in a variety of popular formats and provides seamless access to explore mutation 

clusters derived from over 975,000 somatic mutations reported by 6,811 cancer sequencing 

studies. The mutation3D web interface is freely available with all major browsers supported. 
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Introduction 

A hallmark of the genomic era has been the application of whole-genome and whole-exome 

sequencing to the study of genetic disease, especially cancer. This effort has led to the 

development of new statistical methods (Hodis, et al., 2012; Lawrence, et al., 2013; Sjöblom, et 

al., 2006), which have identified many potential genomic targets of interest by combing the 

deluge of data produced by large cohort studies. While these methods have been largely 

successful in identifying genes with previously unknown roles in tumorigenesis, we have yet to 

fully realize the promised boon to development of therapies—although the list of potential 

disease-causing and driver mutations has grown, the list of approved therapeutics has remained 

static (Das, et al., 2014). 

Although the underlying causes of this time lag are complex, they can at least be partially 

attributed to the level of resolution of current methods, which typically identify potentially 

functional genes based on mutation frequencies at the level of whole genes (Cancer Genome 

Atlas, 2012; Lawrence, et al., 2014; Vucic, et al., 2012; Wood, et al., 2007). However, many 

genes carry out a diverse set of functions (pleiotropy), the derangement of any one of which may 

be sufficient to cause cancer. Further, disruption of different functions of the same gene often 

lead to clinically distinct types of cancer (Hanahan and Weinberg, 2011; Muller and Vousden, 

2013). Finally, even when a specific gene has been identified as being potentially involved in 

tumorigenesis, researchers may have little idea as to which of its functions has been disrupted. 
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All of these challenges facing current methodologies make it difficult to develop targeted 

therapeutic strategies. 

Here we present mutation3D, an algorithm and web server (http://mutation3d.org) designed 

to identify somatic cancer-causing genes by leveraging the structure-function relationships 

inherent in their protein products. In tumorigenesis, mutations are selected that confer a 

competitive advantage to pre-cancerous cells. Since many mechanisms of tumorigenesis involve 

alterations to protein function, and protein function is determined by protein structure, 

tumorigenically selected driver mutations may localize to positions that will affect protein 

structures. Therefore, mutations causing the same cancer type in a cohort of patients may form 

clusters (or hotspots) in regions of protein structures wherein alterations confer a competitive 

advantage to tumor cells by disrupting specific protein functions. For instance, mutations 

localized at interaction interfaces may disrupt protein complexes or transient interactions, and 

mutations localized in the hydrophobic core may destabilize the protein entirely (Kucukkal, et 

al., 2015; Nishi, et al., 2013; Petukh, et al., 2015).  

Recent studies have begun to leverage structure-function relationships in proteins to predict 

cancer gene targets by searching for nonrandom distributions of mutations in protein crystal 

structures (Kamburov, et al., 2015) and enrichment across protein domains (Miller, et al., 2015). 

We present the first tool to identify and visualize individual clusters within protein structures. 

Furthermore, we also provide an option to search for clusters in homology models, expanding 

our coverage of the human proteome more than three-fold (Supp. Note S1). Through an intuitive, 

freely available web interface, researchers can use mutation3D to inspect clusters of amino acid 

substitutions in an interactive molecular viewer to determine whether to follow up with the target 

based on its structural features. Furthermore, mutation3D can analyze data from whole-genome 
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sequencing (WGS; abbrev. also including whole-exome) studies to perform cluster analysis of 

variants at the level of the structural proteome. 
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Methods 

mutation3D clustering algorithm 

The algorithm underlying the mutation3D web interface is complete-linkage (CL) clustering 

(Sørensen, 1948), a hierarchical clustering method in which clusters first comprise single 

elements and are then merged with nearest neighboring clusters or unassigned elements until a 

single cluster comprises all elements. Notably, the clusters found by complete-linkage clustering, 

as opposed to single-linkage clustering (Sneath, 1957), are assured to have a diameter less than 

or equal to a specified linkage distance, which results in tight well-defined clusters. Because of 

this property, this method can also be referred to as furthest-neighbor clustering, since the 

dissimilarity of elements within a cluster is determined by the distance between the two elements 

furthest from each other in n-dimensional space. 

In our implementation of this classic machine learning algorithm, we cluster the three-

dimensional locations of the α-carbons of those amino acids whose codons contain missense 

mutations. The coordinates of all atoms within proteins were derived from both PDB structures 

and structural models (Pieper, et al., 2011) based on PDB entries covering proteins either in part 

or in full. For any given protein, many overlapping models may be available from either or both 

sources. mutation3D will invariably use entries from the PDB when they are available, as these 

experimentally determined crystal structures are considered to be a ‘gold standard’ in structural 

biology. To increase structural coverage of the proteome, the user may also select a subset of 

homology-based models to include, based upon several quality metrics available via the 

Advanced Query page (Supp. Note S2). Once a set of PDB structures and structural models has 

been established for a single protein, mutation3D attempts to cluster amino acid substitutions on 

all models separately, and reports any model or experimentally determined structure in which a 
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cluster has been found. In our analyses, we consider it sufficient to implicate a protein in cancer 

if any of its models are found to contain a cluster. 

Some whole proteins or regions of proteins may not have been crystallized or modeled to-

date. Owing to the lack of structural coordinates in these regions, we would be unable to identify 

clusters of mutations. There are some cases in which a single genomic mutation may give rise to 

defects to distinct proteins, in which case mutation3D will attempt to find clusters across all 

proteins and models for which this mutation has an effect on protein products. 

Users may elect to set the CL-distance, or the maximum allowable distance between α-

carbons in a cluster of substituted amino acids. We refer to this as the maximum cluster diameter 

as this is equivalent to the maximum allowable diameter in Angstroms of a sphere encapsulating 

all α-carbons in a cluster. With regard to the complete linkage clustering algorithm, the CL-

distance is the maximal dissimilarity between elements, after which no new merging of elements 

and groups of elements occurs. In mutation3D, we call this parameter the Maximum Clustering 

Diameter, which is measured in Angstroms, and represents the maximum distance between 

amino acid substitutions after which no further merging of single mutations with clusters occurs 

and clusters are assigned based on current hierarchical groupings of mutations. For more 

information on all algorithm parameters and their default values, see Supp. Notes S2 and S3. 

 

Statistical significance of clusters 

In order to calculate the statistical significance of clusters found by complete-linkage clustering, 

mutation3D performs an iterative bootstrapping method to calculate a background distribution of 

cluster sizes arising from a random placement of an equivalent number of substitutions in a given 

protein structure. By default, mutation3D will randomly rearrange all amino acid substitutions 
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15,000 times in a given structure and calculate the minimum CL-distance at which a cluster of 

size n (where n is all cluster sizes found in the original data) is observed in the randomized data. 

For each cluster in the original data, P-values are computed empirically as the percentile rank of 

its CL-distance among all CL-distances for randomized clusters containing the same number of 

amino acid substitutions. The clustering algorithm/statistical significance calculator is 

implemented in C++ and is available for download as a command-line tool. 

There is precedent, even within cancer gene detection, for the use of iterative bootstrapping 

methods when the background distributions are unclear or complicated (Hodis, et al., 2012; 

Lawrence, et al., 2014). Here we use bootstrapping to account for vastly different configurations 

of the protein backbone in different protein structures. 

 

Compiling a protein structure and model set 

In order to build a repository of protein structures and models, we curated experimentally-

determined crystal structures from the PDB and homology models from ModBase by searching 

for canonical isoforms of Swiss-Prot structures or chains in both. Since many PDB structures 

provide too little coverage of their target proteins to be useful for clustering, we retained only 

those structures that cover at least 250 amino acids or 40% of their target protein. We only 

retained ModBase models that have an MPQS score ≥ 0.5, and maintain a default cutoff of 

MPQS ≥ 1.1 in the mutation3D interface and in our analyses. All structures and models were 

compared against each other to remove redundancies (i.e. a ModBase model that is of higher 

quality than, and whose range of amino acids is entirely contained within, a second ModBase 

model derived from the same PDB structure was considered not to add any novel structural 

information to our repository). Furthermore, the amino acid indices of all models and structures 
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were realigned using SIFTS (Velankar, et al., 2013) to match the amino acid indices of the 

Swiss-Prot protein they represent. 

 

mutation3D web interface 

To build the mutation3D web interface, we leveraged the power and flexibility of several well 

known JavaScript packages, such as JQuery and Bootstrap, in addition to a package designed to 

draw static two-dimensional figures (KineticJS). The cornerstone of our display system is an 

entirely JavaScript-based molecular viewer, GLmol, which allows users to view interactive 3D 

protein structures natively in modern web browsers supporting the new WebGL standard, 

without downloading any additional software. We have made modifications to these software 

packages to allow triggering of events by the user, such as highlighting mutations and mutation 

clusters simultaneously in the 3D and 2D representations of proteins. 

To speed up web accession for both single and batch queries, mutation3D runs on a multi-

core web server and the calculation of clusters is distributed among available computing cores 

using multithreaded CGI programs. 

 

Compiling mutations and variants affecting aromatase  

We compiled a list of all inherited missense mutations from the Human Gene Mutation Database 

(Stenson, et al., 2014) (HGMD) that (i) occurred within the exons of the CYP19A1 gene [MIM# 

107910] encoding the protein aromatase and (ii) have been shown in the primary literature to 

cause aromatase deficiency [MIM# 613546] (Supp. Table S1). We also compiled a set of all 

missense SNPs with total minor allele frequency (MAF) ≥ 1% (combined African and European 

ancestry) from the Exome Sequencing Project (Fu, et al., 2013) (ESP) that give rise to amino 
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acid substitutions in aromatase (Supp. Table S2). Please note that nucleotides are indexed in 

coding sequences, using the A of the ATG translation initiation start site as nucleotide 1. Visual 

inspection was performed by highlighting Cα positions in aromatase (PDB: 3S79) using PyMol 

(Schrodinger, 2010). 

 

Segregating disease mutations from SNPs  

For each Swiss-Prot protein from UniProt, a set of pathogenic inherited mutations from HGMD 

(Stenson, et al., 2014) was assembled for the catalogued disease with the greatest number of 

associated mutations in that protein. Proteins with fewer than three pathogenic mutations (two of 

which were required to occur at unique amino acid positions) associated with any one disease 

were not considered, as this is the minimum requirement for identifying a cluster with default 

mutation3D parameters (Supp. Notes S2 and S3). Separately, we assembled non-synonymous 

SNPs (nsSNPs) with MAF ≥ 1% from the ESP 6500 set, only retaining proteins if there were at 

least three SNPs in the protein, two of which caused amino acid substitutions at unique amino 

acid positions. We intersected these two sets and only retained proteins that occurred in both sets 

as meeting the individual criteria of three mutations from each set, two of which must have been 

at unique amino acid positions, for a total of 6 or more variants per protein. In total, we retained 

8,869 inherited disease-associated mutations from HGMD and 2,004 nsSNPs from ESP 6500 in 

336 proteins. 

We used mutation3D to identify clusters in the resulting proteins, employing a fairly strict 

definition of a cluster whereby a cluster was identified if three or more substitutions were found 

within the complete linkage clustering distance of 15 Å, with at least two substitutions occurring 

at unique amino acid locations. 3D model sets were derived from PDB structures and ModBase 
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models indicated to be of high quality by an MPQS ≥ 1.1 (full details on default parameters for 

mutation3D are available in Supp. Notes S2 and S3). We report the average per-protein 

clustering rates across all proteins for which models from the correct set were available. P-values 

were calculated using a U test. 

 

Measuring the overlap between mutation3D-implicated genes and the Cancer Gene Census 

To assess how efficiently mutation3D is able to capture validated cancer genes, we ran 

mutation3D with default parameters (Supp. Notes S2 and S3) on all WGS screens in COSMIC 

v75 (285 studies). We varied the maximum cluster diameter from 5 Å to 25 Å and identified the 

fraction of proteins implicated (as having one or more clusters of amino acid substitutions) that 

are known cancer genes. We define known cancer genes to be the union of genes included in the 

Cancer Gene Census (Futreal, et al., 2004) and MutSig drivers list (Lawrence, et al., 2014). 

These overlaps were computed as the number of gene overlaps with the known cancer genes 

divided by the total number of genes implicated by mutation3D in each tissue category and 

overall (this is also known as the precision or positive predictive value (PPV)):  

 

PPV = TP / ( TP + FP ) 

 

where TP is the number of true positives and FP is the number of false positives predicted by 

mutation3D. It should be noted that since the our set of known cancer genes is far from 

complete, this estimation is likely to represent the lower bound of the true precision of our 

method. Furthermore, we acknowledge that even genes in the set of known cancer genes may not 

be drivers in all cancer types. However, the overlap between our results and the known cancer 
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genes is likely to correlate with the underlying precision of our method and there is no reason to 

believe that the overlap will be biased in certain cancer types. Therefore, this measurement can 

be used to estimate the lower bound of the precision of our method in comparing its performance 

across different cancer types. Calculation of sensitivity and specificity is inappropriate in this 

instance because no method could re-capitulate all known cancer genes as no data set (single 

WGS study or a group of WGS) can be assumed to harbor all mechanisms underlying 

tumorigenesis. We also computed the overlap of all genes in these 285 COSMIC studies with 

known cancer genes for each tissue category and across all tissues, to show that performing 3D 

clustering at any maximum cluster diameter increases precision over random expectation for this 

data set. P-values were calculated using a Z test to compare each fraction of identified genes by 

clustering at different diameter thresholds to the fraction of identified genes without clustering. 

 

Assessing the likelihood of mutations clustered with mutation3D to be causal 

In addition to predicting driver genes based on those found to contain clusters, mutation3D has 

the ability to predict those mutations likely to drive cancer phenotypes by their inclusion in 

clusters. Here, we used two proxies for causal driver mutations: that they should be more likely 

to be damaging and they should be more frequently observed in WGS studies. 

We determined PolyPhen-2 scores (using the HumVar-trained model for assigning 

categories) of those mutations likely to be most deleterious biochemically based on a Grantham 

score (Grantham, 1974) in the top 25%. This shows how a combined biochemical and 

evolutionary genetics approach could lead to the discovery of new driver mutations. PolyPhen-2 

scores were accessed using the Ensembl Variant Effect Predictor, assembly GRCh38.p5 

(http://www.ensembl.org/Tools/VEP) (McLaren, et al., 2010). 
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We further determined the fraction of mutations from WGS studies found in clusters that are 

observed at high frequencies (in the top 2%) throughout COSMIC WGS studies. 

 

 

Results 

Single-protein spatial mutation case studies 

The specific relationship between 3D regions of protein structure and their functions can be 

illustrated by the proximity of amino acid substitutions arising from known disease-causing and 

cancer-associated mutations in tertiary protein structures. We searched the Human Gene 

Mutation Database (Stenson, et al., 2014) (HGMD), a large-scale disease database of gene 

mutations causing human inherited disease, and the Catalogue of Somatic Mutations in Cancer 

(Forbes, et al., 2011) (COSMIC), a somatic cancer mutation database, for examples of spatially 

specific disruptions that might explain disease phenotypes. This is intended as a proof-of-

principle, showing that there is a plausible connection between the spatial arrangement of 

mutations and disruptions of function, and that this relationship can be quickly captured through 

visual inspection. 

 

Disease mutations and nsSNPs segregate in aromatase 

According to HGMD, aromatase deficiency is known to be caused by at least 9 unique missense 

mutations in the cytochrome P450, family 19, subfamily A, polypeptide 1 (CYP19A1) gene 

leading to amino acid substitutions at 8 positions along the aromatase protein backbone (Supp. 

Table S1). The Exome Sequencing Project (ESP) 6500 data set (Fu, et al., 2013) contains two 

common non-synonymous SNPs (nsSNPs) with MAF ≥ 1% in this gene, which we consider 
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likely to be benign given their high frequency of occurrence (Supp. Table S2). Based on the 

primary sequence alone, no clear pattern or separation can be detected between the disease 

mutations and nsSNPs (Figure 1a). However, when we inspect the locations of these two classes 

of mutation on an experimentally-determined crystal structure of aromatase (PDB: 3S79 in 

Figure 1a), it is evident that the verified disease mutations and common nsSNPs are localized in 

quite different regions of the protein, suggesting somewhat different functional consequences 

depending upon the location of a mutation within the tertiary structure of the protein.  

 

Commonly observed cancer mutations form a tight cluster in GTPase KRas 

Cancer mutations may also aggregate within clusters in protein structures, and this aggregation is 

likely to have profound implications for our ability to differentiate functional driver mutations 

from neutral passenger mutations. Consider the canonical oncogenic protein GTPase KRas: the 

tight clustering of commonly mutated amino acid substitutions in codons 12, 13 and 61 suggests 

that these mutations cause similar structural perturbations that may lead to many types of cancer 

(Figure 1b). In fact, it has long been known that substitutions in these codons confer 

tumorigenesis, and several mechanisms have been proposed (Pylayeva-Gupta, et al., 2011) 

(Supp. Note S4, Supp. Table S3). Interestingly, another amino acid substitution E49K has only 

been reported once in a single patient (Guedes, et al., 2013) and is predicted to be benign by 

PolyPhen-2 (Adzhubei, et al., 2010). The clear spatial separation of the known driver mutations 

from the putatively benign mutation indicates a highly specific correlation between protein 

structure and function in cancer. Owing to its very high mutation frequency in many different 

types of cancer, KRAS [MIM# 190070] is readily identifiable as tumorigenic by many methods; 

however, mutation3D is uniquely positioned to be able to detect similar cases of spatially 
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specific disruption in proteins currently unknown for their roles in tumorigenesis by relating 

cancer sequencing data to aberrations in the structural proteome. 

 
 
Coordinating mutations and structural data into a tool for whole-genome inference 

mutation3D identifies mutations that group together to form statistically significant clusters on 

the folded protein backbone based on atomic coordinates derived from experimentally 

determined crystal structures and homology models. Cluster significance is measured by an 

iterative bootstrapping model, in which observed mutations are randomly rearranged on a protein 

structure, and the size of the observed cluster is ranked compared to all randomly derived 

clusters to compute an empirical P-value (see Methods for details). The accompanying web 

interface provides visualization of these clusters as well as the ability to rapidly switch views 

between all available structures. Figure 2 describes the curation of structural and mutation data, 

and user accession and download procedures. 

 

Structural data underlying mutation3D 

In assembling a set of protein structures and models for use with mutation3D, we relied on the 

huge advances made in structural proteomics over the past decade. Alongside the explosion of 

genomic sequencing data, the availability of structural proteomic data, including crystal 

structures and homology models, has increased dramatically. In 2003, there were 25,864 crystal 

structures in the Protein Data Bank (Berman, 2000) (PDB), covering 6.7% of the human 

proteome. Now, with the number of entries in the PDB exceeding 100,000, we can visualize 

nearly 90% (with reasonable accuracy and coverage—see Supp. Figure S1) of the human 

proteome through a combination of experimentally-determined crystal structures and structural 
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models based on shared structural elements among homologous proteins. mutation3D curates 

both crystal structures from the PDB and high-quality homology models from ModBase (Pieper, 

et al., 2011) to populate its repository of over 135,000 protein structures (Figure 2a). This 

significant underpinning of structural proteomic data ensures that mutation3D is useful for large-

scale sequencing projects, as nearly all DNA mutations of interest within coding regions will be 

mappable to 3D locations in protein structures. 

 

Seamless access to large-scale somatic cancer mutation sets 

Perhaps the richest large-scale source of missense mutation data derives from WGS studies of 

cancer patient cohorts. According to COSMIC, in the year 2003, 187 peer-reviewed articles were 

published reporting on average a single gene with protein-altering somatic mutations in tumor-

normal sequencing studies. In 2012, 572 studies reporting an average of 144 mutated genes were 

published. With the growing ease of sequencing, the scientific community has largely embraced 

the wholesale sequencing of tumor samples, and an accompanying class of statistical methods to 

identify genes characterized by elevated mutation rates across large patient cohorts (Cancer 

Genome Atlas, 2012; Hodis, et al., 2012; Lawrence, et al., 2014; Lawrence, et al., 2013; 

Sjöblom, et al., 2006; Wood, et al., 2007). These methods have been largely successful, and have 

led to the discovery of many genes previously not known to be involved in tumorigenesis. 

However, studying cancer at the level of whole genes ignores the fact that many genes and their 

protein products perform multiple cellular functions (pleiotropy). By incorporating available 

protein structures and models into cancer gene detection, we can harness the inherent structure-

function relationship in proteins to identify more specific tumorigenic etiologies based on 

specific spatial disruptions that could become therapeutic targets. 
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The mutation3D web interface allows users to rapidly analyze pre-processed missense 

mutation data from the most recent build of COSMIC through intuitive web forms on the 

Advanced query page (http://mutation3d.org/advanced_form.shtml, click the COSMIC tab under 

Data Source). Currently, we have catalogued over 975,000 missense mutations in 6,811 primary 

cancer sequencing studies that users can search for by author, journal, PMID and size of dataset 

(Figure 2b). Additionally, users may choose to tune the default clustering parameters (Supp. 

Note S3) and protein structural model set (Supp. Note S2) based on the types of evidence needed 

to support clusters for their specific application. A list of candidates, with links to 3D views of 

the mutations overlaid onto structural models (Figure 2c), are retrieved within seconds, even for 

the largest WGS studies in COSMIC. 

 

mutation3D identifies well-validated gene candidates and plausible new targets 

We ran mutation3D on large sets of known inherited disease and cancer mutations to 

demonstrate the power of clustering to reveal shared etiologies in the structural proteome. Here, 

and in all following large-scale analyses, mutations associated with each distinct disease 

phenotype are considered separately from mutations associated with unrelated phenotypes so that 

a correspondence can be made between clusters in functionally relevant parts of protein 

structures and potential defects in molecular function that may cause one specific disease or type 

of cancer. We demonstrate the ability of mutation3D to distinguish functional from non-

functional mutations in disease and to re-discover many known cancer-causing genes as well as 

discovering several new putative targets. Parameters for all tests performed are available in 

Methods and in Supp. Table S4. 
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mutation3D distinguishes disease mutations from common variants 

To illustrate the efficacy of mutation3D in distinguishing functional from non-functional 

variants, we considered all proteins harboring at least 3 mutations associated with a single 

disease (according to HGMD) and all missense population variants (SNPs) from the ESP 6500 

data set for this same set of proteins (see Methods for details). We were able to show that the 

resulting set of 8,869 disease-causing amino acid substitutions are more likely to be clustered by 

mutation3D than are 2,004 putatively benign substitutions arising from missense SNPs when 

considering only those mutations associated with a single disease at a time mixed together with 

SNPs in the same proteins (Figure 3a-b). This trend is apparent irrespective of whether the 

protein structure set is confined to known PDB structures, homology models from ModBase, or a 

combination of the two. 

This analysis illustrates mutation3D’s ability to distinguish functional from non-functional 

variants when all functional variants share an associated phenotypic consequence. Because it is 

often difficult to determine which cancer mutations are drivers and which are passengers, 

mutation3D’s ability to distinguish functional disease mutations from non-functional SNPs 

serves as a proxy measure of its ability to separate functional driver mutations from a 

background of largely non-functional passenger mutations. 

 

mutation3D identifies both new and well-known cancer genes 

To confirm that mutation3D identifies plausible driver gene candidates in cancer (as judged by 

the existence of one or more clusters of substitutions in structures of their protein products), we 

computed statistically significant clusters from mutations in all WGS studies cataloged by 

COSMIC. First, we calculated the proportion of the identified cancer candidates that have been 
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previously proposed as cancer drivers based on a combination of the Cancer Gene Census 

database (Futreal, et al., 2004) and the MutSig driver list (Lawrence, et al., 2014). This is likely 

to be correlated with the lower bound of precision, or positive predictive value, of our method 

(see Methods). Figure 3c illustrates the calculated proportion values for all publications analyzed 

and for specific tissues within these studies, plotted over several cluster sizes. The results concur 

with our expectation that tighter mutation clusters should exhibit high precision for known 

cancer genes since substitutions in close physical proximity will be more likely than distant 

substitutions to be contained within the same interface domain or within the hydrophobic protein 

core. As expected, we also observe lower precision in the identification of genes involved in 

cancers of the skin, which are characterized by very high mutation rates (Alexandrov, et al., 

2013). By contrast, cancers of the breast are known to harbor driver mutations in a relatively 

small number of genes and contain a relatively low proportion of passenger mutations (Kan, et 

al., 2010), thereby allowing mutation3D to precisely identify known cancer genes irrespective of 

cluster size. 

To confirm that our statistical model yields plausible measures of cluster significance, we 

computed the statistical significance of clusters found in COSMIC WGS data. We find that our 

iterative bootstrapping model (See Methods) produces P-values that are highly correlated with 

the likelihood of a gene to be a known cancer genes (Figure 3d). We repeated both this and the 

study in Figure 3c using the Cancer Gene Census and MutSig cancer gene list separately to 

define a list of known cancer genes. We find the relative observed trends remain the same, 

confirming the robustness of our analyses (Supp. Figure S2). 

We also find that the somatic mutations within these clusters are predicted to be more 

deleterious by PolyPhen-2 when found in smaller, more specific clusters (Figure 3e). 
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Furthermore, mutations within clusters are observed at much higher frequencies within WGS 

studies, suggesting they are likely to be driver mutations (Figure 3f). Overall, these analyses 

suggest a tendency for functionally important mutations to form clusters in cancer patient 

cohorts, whereas less important passenger mutations are more likely to fall outside these clusters. 

We next investigated whether mutation3D preferentially reports potential oncogenes or 

tumor suppressors. We find that of genes annotated in either class based on the Cancer Gene 

Census, there is not a significant difference in the likelihood mutation3D will find clusters within 

their protein products (Supp. Note S5, Supp. Figure S3). This suggests that mutation3D is 

equally robust in its ability to detect oncogenes and tumor suppressors. 

Finally, we produced a list of the genes whose protein products most commonly exhibit 

clusters of mutations within the same set of COSMIC WGS publications. We find that 

mutation3D implicates many well-known cancer genes (TP53, KRAS, EGFR, BRAF, etc.) as well 

as some genes that are missing from the Cancer Gene Census (Figure 4a). Visual inspection of 

the most significant clusters for each of these proposed genes demonstrates the power of 3D 

clustering (Figure 4b).  A list of all genes found in at least 4 studies across COSMIC is available 

in Supp. Table S5. 

 

Discussion 

Researchers have already begun to acknowledge the added benefit of linear clustering 

approaches to the detection of driver mutations in two recently proposed methods (Lawrence, et 

al., 2014; Tamborero, et al., 2013). However, these methods do not take into account the 3D 

positions of mutations within protein products, disregarding information available due to 

structure-function relationships in proteins. Two other recent methods (Ryslik, et al., 2012; 



21 
 

Ryslik, et al., 2014) perform 1D clustering of mutations after a projection of 3D structural 

coordinates into 1D, potentially resulting in loss of information (Supp. Note S6, Supp. Figure 

S4). Clustering methods have also been used to detect signatures of positive selection (Tusche, et 

al., 2012; Wagner, 2007; Zhou, et al., 2008); however, the goals and assumptions of these 

methods and mutation3D are quite different (Supp. Note S7, Supp. Figure S5). Another recent 

method detects non-random distributions of mutations in protein crystal structures (Kamburov, et 

al., 2015). Although this method has shown in principle that 3D structural information is 

valuable for identifying target genes, it does not distinguish individual clusters and its analysis is 

limited to PDB structures.  

Compared to the standard class of methods that do not search for clusters of amino acid 

substitutions, but instead employ measures of mutation frequency at the gene level to detect 

drivers of cancer, the added value of mutation3D lies in its orthogonal use of protein structures to 

make a more direct connection between alterations of structure and disruptions of function. We 

do not intend that mutation3D should replace these methods (Hodis, et al., 2012; Lawrence, et 

al., 2013; Sjöblom, et al., 2006). Instead, mutation3D gives scientists the ability to inspect their 

data through an additional lens—to visualize and form hypotheses about functional gene and 

protein candidates proposed by any method of cancer gene detection, and to find cases in which 

directly searching for structural disruptions may provide insights not available by other means. 

Even beyond its potential to improve candidate gene identification, mutation3D is valuable 

simply in terms of its ability to display mutations on all available high-quality structures and 

models, a task that requires significant effort on any scale without mutation3D, and can be 

accomplished on massive scales with mutation3D.  
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Throughout this study, we have evaluated the ability of mutation3D to identify whether or 

not a gene is involved in cancer because this is a standard for the cancer gene detection methods 

of today. However, such a metric may underrate the true ability of mutation3D, which can 

propose specific tumorigenic etiologies based on the structural localization of mutations. Even in 

cases where mutation3D identifies the same gene as another method, analyzing and viewing the 

mutations using mutation3D may present a specific hypothesis supported by both statistical and 

structural evidence, which may be more likely to inspire follow-up studies. 

In addition to providing structural evidence for single proteins, the mutation3D web interface 

(http://mutation3d.org) allows users to rapidly search for clusters of mutations in the proteome 

(by inputting their data in a variety of popular genomic and proteomic formats), view and 

download clustering reports. Through the Advanced Query interface, users may adjust the 

clustering parameters and build structure and model sets for custom analysis of their own data or 

to seamlessly access pre-analysis of over 975,000 missense mutations in 6,811 primary cancer 

studies catalogued by COSMIC. Owing to the amount of data already available via the 

mutation3D web interface and the continual accumulation of cancer sequencing and protein 

structural data, mutation3D is likely to produce future insights based on structural localization of 

mutations in the human proteome. 
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Figure Legends 

 

Figure 1. Missense mutations in both Mendelian disorders and cancer form clusters in tertiary 

protein structures. Linear protein models are given below each structure to illustrate the 

importance of studying 3D crystal structures. (a) Protein substitutions arising from mutations 

known to cause aromatase deficiency (in red) are shown overlaid upon an experimentally 

determined crystal structure of aromatase. Protein substitutions arising from common missense 

SNPs with MAF ≥ 1% (in blue) are shown to aggregate within regions of the protein structure 

that are distinct and spatially separated from those harboring the pathogenic substitutions, 

suggesting a strong relationship between the position of a substitution in the protein and its 

functional consequence(s). (b) Mutations causing amino acid substitutions in codons 12, 13 and 

61 account for over 99% of the mutations in GTPase KRas reported by COSMIC. The three most 

common amino acid substitutions at these positions (shown in red) form a tight cluster in a 

crystal structure of GTPase KRas, whereas a substitution (E49K) only observed once in 

COSMIC (shown in blue), is likely to be a passenger mutation and falls outside the 3D mutation 

cluster even though it appears to be in close proximity in the linear model.  

 

Figure 2. An overview of the mutation3D clustering and web accession procedures. (a) Sources 

of 3D protein structures and models and missense mutations in cancer. Pre-computation of 

clusters of amino acid substitutions for large data sets occurs with each COSMIC update. (b) 

There are three options for users to determine clustering: by inputting their own data as 

substitutions in single proteins (or nucleotide mutations in genes), by uploading a file of 

mutations, or by analyzing missense mutations from one of the 6,811 publications curated by 
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COSMIC. (c) The mutation3D web interface shows clusters on both linear models and 

interactive 3D models. Users may select among available models and structures. Individual 

queries will lead directly to this page, while batch queries will first lead to a table of proteins and 

clusters (shown below). 

 

Figure 3. (a-b) Known inherited disease-associated missense mutations from HGMD and 

missense SNPs from ESP 6500 with MAF ≥ 1% were clustered using mutation3D, with the 

percentage of variants within proteins containing clusters reported. (a) The combined set of 

resulting amino acid substitutions was plotted onto 3D protein models derived from the PDB 

alone, ModBase alone, and a combination of the two. (b) Fractions of clustered mutations were 

recalculated only for those mutations that reside within protein regions for which a 3D structure 

or model exists. (c-e) mutation3D was run on 285 WGS somatic tissue screens in COSMIC. (c) 

A higher fraction of protein candidates identified are known cancer genes at smaller values of 

cluster size (maximum cluster diameter). (d) A higher fraction of protein candidates identified 

are known cancer genes at smaller clustering P-values. (e) Mutations in tighter clusters are 

predicted by PolyPhen-2 to be more damaging than those in sparser clusters and in all WGS 

studies. (f) Mutations in tighter clusters are more likely to be observed at high frequency across 

COSMIC WGS studies. For all panels, * indicates P < 0.01. 

 

Figure 4. (a) The top 20 genes implicated in WGS studies by mutation3D ranked by the number 

of publications in which clusters were observed for each. (b) The most significant cluster for 

each of the 20 implicated genes are shown in 3D. 


