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Der Mensch findet sich mitten unter Wirkungen und
kann sich nicht enthalten, nach den Ursachen zu
fragen; als ein bequemes Wesen greift er nach den
nächsten als der besten und beruhigt sich dabei;
besonders ist dies die Art des allgemeinen
Menschenverstandes.

Man finds himself surrounded by effects and cannot
but inquire into the causes. For the sake of
convenience he seizes upon the nearest as the best,
and contents himself with that. This is especially
true of the common run of human understanding.

JOHANN WOLFGANG VON GOETHE, 1821
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Abstract

Discovering rich causal models computationally can be key to creating human-like ar-
tificial intelligence. Recent research has detached the notion of time from approaches
to causal inference and has thus obscured modelling of and inference over dynamic de-
pendencies in causal systems. This thesis investigates how prior knowledge of temporal
and dynamic dependencies, even if conceptually unrelated to causal inference, informs
both modelling and inference over causal relations. Three novel methods are introduced
incrementally and their contribution is positioned in the wider area of causal discovery.

The first method discovers causal relations within high-dimensional tensor data as
they are typically recorded in non-experimental databases. The method allows simulta-
neous inclusion of numerous dimensions within the data analysis such as samples, time
and domain variables construed as tensors. It relies on dynamically changing noise but
it does not model it explicitly.

This explicit handling of changing noise levels, also known as the phenomenon of
heteroskedasticity, is interpreted via a set of functional equations in the second method.
This method not only exploits changing noise levels, but also simplifies assumptions
made for causal discovery. However, as we expect heteroskedastic noise, it requires
latent structural relations and variables for noise which produce heteroskedasticity. But
learning such latent concepts begs for the discovery of more expressive models.

The third method addresses the discovery of more complex models by introducing
time as an observed entity in the system and builds on probabilistic programming.
gpmem is a probabilistic programming technique that uses Gaussian Processes and is
proposed here to provide a statistical alternative to memoization.

We test all three methods on synthetic and real world data. Real world data-sets
range over a variety of domains, for example healthcare, social sciences and biology.
For these data-sets we achieve higher accuracy for causal discovery and more expres-
siveness than the current state-of-the-art. We use adequate and recent benchmarks for
comparison.
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Mathematical Notation

x, x′ Scalars
X Random variable
x Column vector
X Matrix
X Tensor
D Data matrix
E Expectation
H Entropy
KL[P ||Q] Kullback-Leibler divergence of P and Q
N (Multivariate-) Gaussian
GP Gaussian Process
X → Y X has a causal effect on Y
U[0,1] Uniform distribution between 0 and 1
µ Mean
µ Mean vector
σ Standard deviation
Σ Covariance matrix
m(x) Mean function
k(x, x′) Kernel or covariance function
K = K(x,x) Kernel or covariance function on a data vector
SE Squared exponential covariance function on a data vector
LIN Linear covariance function on a data vector
PER Periodic covariance function on a data vector
RQ Rational quadratic covariance function on a data vector
C Constant covariance function on a data vector
WN White noise covariance function on a data vector
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6⊥⊥ Statistical dependence
⊥⊥ Statistical independence
×n nth tensor product
H† Moore-Penrose pseudo-inverse of matrix H

t true
f false
∧ Logical and
∨ Logical or
Ω Random Variable over an algebraic operator
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1 | Introduction

1.1 Observational Data is Everywhere

Daily, 2.5 exabytes (2.5 billion gigabytes) are collected and stored globally (McAfee
et al., 2012). The data come from a diverse set of sources and both observation and col-
lection can happen in various ways. This phenomenon was promoted by the increasing
popularity of Internet, mobile technology and advancements in sensor technology (At-
zori et al., 2010) as well as crowd-based activities (Doan et al., 2011). We are now able
to collect data at any time in the most diverse areas of life. Examples include large
software companies collecting data about our habits with regards to energy and heat-
ing management of our houses, the recording of consumer behaviour, bird enthusiasts
collecting data about bird migration and the collection of electronic health records in
large hospital owned databases.

Data itself is considered a commodity. Data-driven methodologies such as statistical
or Bayesian analysis seem to be a promising way to gain novel knowledge computation-
ally by processing this newly available commodity. Especially in the healthcare sector,
there is hope that new and previously unavailable data will improve the situation of
both the patients and the healthcare professionals. We can currently observe how data
management changes in the healthcare process as health records become electronic and
cloud-based. However, exploiting the newly available data proves to be a challenge.
The strict requirements and the complex standards that the medical domain imposes
on technical innovation are our main motivation for working with healthcare and med-
ical data.

We have experienced the complexity of data analysis and data mining in the medical
domain through our participation in the Commodity12 project (Kafalı et al., 2013). The
Commodity12 consortium is an international board of experts developing a personal
health system to assist in the provision of continuous and personalised health services
to diabetic patients. The system consists of wearable and portable devices that acquire,
monitor and communicate physiological data to a centralised database system. The
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task of deriving important insights about an individual person’s health status from
large existing data sets leads directly to some of the questions that this thesis seeks to
answer.

1.2 The Role of Causality

More generally, given a domain of applications, the question is how to produce novel,
meaningful insights with the newly available data. This question has been attract-
ing interest in the recent years, as the term Big Data (e.g. Lynch, 2008) has become
omnipresent in the tech industry. Big Data enthusiasts proclaim that by gathering
as much data as possible one can gain insights into problems otherwise impossible
to tackle through the traditional method of scientific knowledge gain. Yet, one of
the flagship technologies failed spectacularly. Google Flu Trends aimed to predict in-
fluenza epidemics with frequency of certain Google searches reporting very promising
results (Ginsberg et al., 2009). However, the algorithm failed twice in the recent years.
It significantly under-predicted influenza rates during the H1N1 pandemic in 2009 (Cook
et al., 2011) and it significantly over-predicted influenza rates in 2012. Numerous ex-
planations and mitigation strategies have been suggested (Huberty, 2014; Lazer et al.,
2014). Interestingly, no one pointed towards the crucial discrepancy between a mere
association-based analysis as it is performed with Google Flu Trends and a relationship
of cause and effect which is one of the fundamental axioms in scientific thinking (e.g
Pearl, 2000, epilogue). Were there other causes behind the observed search behaviour?
We cannot know.

An awareness of cause and effect relationships is needed, today more than ever
because we collect huge amounts of data that can directly affect our lives. Sensor
technology is now affordable and therefore accessible to the wider population, people
voluntarily track themselves and submit their vital information to centralised computing
facilities (Swan, 2013). E-health technologies that are based on distributed electronic
health records, summarising not only patient records but also medical sensor measure-
ments, are already in use to tackle the most widespread and most cost-intensive chronic
diseases in the world (Kafalı et al., 2013). The advent of such technologies, with the
amounts of data they collect in combination with state-of-the-art data analysis (i.e.
computational statistics, statistical machine learning, Big Data analysis, data mining),
causes technology enthusiasts to promise great progress in healthcare. The enthusiasts
promise the imminent emergence of an evidence-based as well as stratified medicine and
healthcare system that will provide vastly improved medical treatment for everyone.

This promising view of future medicine is based on a number of misconceptions
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about data and available technology. To motivate this work we are going to examine
these misconceptions in more detail so that we can later highlight the most important
areas where there is still work to be done, and where open problems pose interesting
questions and give research directions. We put these misconceptions into the context of
current scientific standards and methodologies as well as today’s technical possibilities:

Misconception One: Big Data is Valid Medical Evidence. Evidence-
based medicine advocates a review of the relevant literature to find systematic
studies that report robust results from experiments. These experiments must be
conducted with accepted scientific standards such as randomised trials to conclude
recommendations that allow to take into account a level of uncertainty (such
as confidence or weighting of evidence, e.g. Sackett et al., 1996). However, the
vast amount of observational data collected through sensors and electronic health
records certainly does not qualify as evidence in this context. The data does not
come from randomised trials. Noise levels are typically higher than in a clean
experimental setup for example when untrained individuals enter or modify data
recordings. This can be the case with wearable sensor technologies when the
patient changes position of the device or when untrained nurses enter complex
measurements into health records.

Misconception Two: Big Data Analysis can replace Medical Decision
Making. Evidence-based medicine requires a doctor to make a logically sound
diagnosis or treatment decision based not only on this evidence, but also on her
acquired knowledge. This is all the knowledge relevant for a certain case. Ar-
guably the most successful Big Data analysis techniques of the recent works are
ensemble methods such as Random Forest (Liaw and Wiener, 2002) and Deep
Learning (Bengio, 2009).

These models function as black boxes: the insights that can be gained are limited.
The data generating logic or functional mechanisms cannot be inspected and
evaluated against readily available knowledge and logical reasoning. Furthermore,
models cannot provide qualitative explanations for certain observations such as
symptoms that are interpretable by humans and at the same time predict whether
an observation will change, that is, a symptom ceases to occur given a change at
another part of the model. Such a capability is crucial for data-driven intervention,
for example treatment adaptation1.

1The research field of neural symbolic computation (Garcez et al., 2008) aims to form hybrids
between machine learning in the form of neural networks and symbolic, logical learning. One of its
goals is to extract knowledge from neural networks. This is achieved through integration of what
they call the statistical nature of learning and the logical nature of reasoning. This point of view
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Avoiding such black boxes and providing logical and interpretable insights into the
learned models is the main aim of Inductive Logic Programming (ILP) (e.g. Lavrac
and Dzeroski, 1994). ILP provides rules as statements in logic programming that
provide prediction of boolean or discrete data points. It has been successfully
applied in the biomedical domain (Santos et al., 2012). Yet, to the best of our
knowledge we do not know an ILP system that deals with continuous-valued
regression problems in a way other than via constraints and artificial discretisation
which comes with large numerical inaccuracies in the case of many observations.

Misconception Three: N = All. Collecting the data of the entire population
is often unrealistic and more data does not necessarily mean better data. We have
no guarantee that sampling bias disappears when setting the number of sampled
data as large as possible. In fact, the contrary may be the case since it may be
harder to separate and identify the data where the sample reflects the underlying
population with random influences only and without systematic bias. In some
situations we may have the background knowledge to differentiate biased samples
from those that are relevant in our quest to collect as much data as possible.

Furthermore, many researchers argue that “Big Data” often refers to a vast amount
of problems related to a large number of very small data sets (e.g. Ghahramani,
2015). This becomes a very important problem for stratified medicine: many if
not most hospitalised patients suffer from a combination of illnesses as opposed
to only one.

This leads to a problem of small data: few patients share the exact combinations
of conditions and administered drugs, with the interaction between those often
unknown. As a consequence, a scenario where N = All is highly unlikely in the
medical domain.

Misconception Four: Evidence is all positive. For some experts, for ex-
ample a doctor, having machine learning-based evidence available does not imply
a “take it or leave it situation.” Not taking into account evidence with machine
learning can have legal consequences. So does a bad result when taking this kind
of evidence into account. An informed decision has to be made whether or not
we accept evidence generated by machine learning. We therefore argue that only
sound logic and uncertainty computations in combination with transparent mod-
els can be deployed in many domains, above all the medical domain. This implies
a quantification on confidence about all predictions or diagnoses must exist, be

contradicts our view of learning and reasoning in the presence of uncertainty. We argue that both data
and knowledge driven inference is always logical.
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it in the traditional frequentist or in the Bayesian sense (see e.g. Murphy, 2012,
chapters 5 & 6).

1.3 Problem Characteristics

Causal inference is believed to play a significant role in both the way humans think (Körd-
ing et al., 2007) and in the process of scientific knowledge acquisition (e.g Pearl, 2000,
epilogue). But what is causal inference and what are cause and effect? Diverse kinds of
entities are described as causes or effects such as events, features, properties, changes
of properties, objects, persons, relationships or instances of relationships (Spirtes et al.,
2000, chapter 1). Spirtes and colleagues also state that the logical form can vary from
particular (for an instance) to general (at all times) to universal (for all instances at all
times).

The traditional method for causal knowledge acquisition from observations is the
randomised experiment. Even here, a number of questions arise (e.g. Hyttinen et al.,
2013):

• What is the optimal choice of manipulation?

• What is the optimal sequence of experiments to gain causal knowledge efficiently?

• How can one select an experiment that maximises insight given the researcher’s
background knowledge?

While these problems seem hard already we can characterise gaining scientific knowl-
edge without randomised trials available as even harder. A randomised experiment
provides the assumption that causal effects are either not conditioned on means of data
acquisition at all or conditioned only in a well-known way. This is not true for observa-
tional data. For the rest of this thesis, whenever we say observational data (as opposed
to experimental data), we mean data that is not acquired in a randomised trial. Other
problems for causal analysis of observational data are unknown systematic confounders2

and noise. While in an experimental setting one tries to render such influences purely
random, that is, they are not systematically affecting a result, we cannot make this
assumption for observational data since we do not have the necessary control over the
context of the observation. We furthermore cannot make as strong assumptions about

2A confounder is defined as: “[...] a third variable that can make it appear (sometimes incorrectly)
that an observed exposure is associated with an outcome. In other words, a confounder is an unob-
served exposure associated with the exposure of interest and is a potential cause of the outcome of
interest. Confounders lead to bias that distorts the magnitude of the relationship between two factors
of interest.”(Michigan Center for Public Health Preparedness, 2015)
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temporal dependencies and feedback loops as we could in an experimentally controlled
environment.

These problems render the finding of causal relations in observational data, and re-
lating them to systems of observed and unobserved components over time, a hard task.
Sometimes we expect causal influence to emerge between observed entities instanta-
neously, sometimes over time. In some cases, for example, in diagnosis, we try to find
latent and previously unknown concepts as causal influences. We can characterise this
problem as hard from a combinatorics perspective3 too, as there are many observations
in the real world that could be in a causal relationship (direct or indirect) to one an-
other hypothetically. As explained above, modern scientific empiricism aims to tackle
some of these challenges by designing randomised experiments, based on background
knowledge of the problem at hand. We will now give two examples that share such
problem characteristics but for which conducting such an experiment is not possible:

1. Adverse Drug Effects. We mentioned above that patients often suffer from
multiple conditions and are administered numerous kinds of medications as treat-
ment. How do these medications interact? Is it possible that they have a negative
effect on the well-being of a patient? This is a prime example of a problem where,
despite data being available, an experimental trial is impossible. We cannot con-
duct a trial for ethical reasons: it would be unethical and unlawful to enrol patients
in a study to give them a cocktail of drugs with the aim to observe and test neg-
ative, harmful effects on their well-being. We will also struggle to select patients
due to the combinatorics of the problem. Finding a sufficient number of patients
that all suffer from the same combination of diseases and can be prescribed the
same treatments, whilst ensuring that all influences resulting from sampling are
random, is unlikely. At the same time, hospitals collect the data of their patients
in electronic databases (e.g. Saeed et al., 2002). This means observational data is
available as opposed to experimental data.

2. Development Aid. Where should a wealthy government or charity organisation
invest its money to cause improvement in the third world? Does help developing
local businesses or investing in the health infrastructure actually have an effect on
the GDP of a poor country? A randomised experimental trial for this problem is
clearly impossible. We can gather observations, but causal effects may be delayed
in time. For example, an investment into the health infrastructure of a country
may not immediately increase the GDP, but it could be that families can focus
more on building their wealth instead of caring for the sick. In this case, an effect

3For non-sparse causal graphs, this has been characterised as NP-hard (e.g Claassen et al., 2013)

22



may show up in the data but it will not be an instantaneous one.

We see that there are pressing needs for methods that discover knowledge in domains
where there is observational data available. We believe that this does not only motivate
the development of automated causal discovery for time series, but it also shows that
we are collecting data sets suitable for causal analysis that will eventually show the
benefits of this methodology.

1.4 Research Aims

The main aim of this thesis is to introduce a collection of models and al-
gorithms for causal discovery using data generated by complex dynamical
systems and processes. Causal discovery seeks to develop algorithms that learn the
structure of causal relations from observation. Current work in causal discovery (see
Fig. 1.1) does not rely on a notion of time any more4. We can modularise the main
aim into the following:

• Bridge the gap between probabilistic time series and dynamical systems research
and causal discovery. In this context, we seek to introduce temporal dependence
in models used for the state-of-the-art in modern causal discovery. Traditionally,
the notion of time introduced confusion to the sciences researching causality. The
work on graphical models and functional methods for causal discovery has pro-
vided criteria to help differentiate cause from effect in settings where an effect
emerges instantaneously or where a timestamp is simply not available. The fact
that these methods are conceptually independent from time makes it unclear how
to deploy them in the context of dynamical systems. We aim to clarify this mat-
ter for situations where temporal dependencies are partially known and enter the
model explicitly.

• Use prior knowledge about temporal and dynamical dependencies, even if concep-
tually unrelated to causal inference, to inform both modelling of and inference over
causal relations. We aim to do this by providing representations of dynamically
changing noise;

• Provide solutions that cater for several kinds of data, generated in various complex
dynamic systems and processes. The data can hereby differ by various character-
istics namely its dimensionality and size, which aspects of it are observed, how
much we know about it as well as what kind of underlying mechanism generated
it.

4older methodologies depended explicitly on time as a dimension (for examples, see Granger, 1969)
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Figure 1.1: A diagram depicting causal discovery(Claassen, 2013).

• Develop computational models for hierarchical, flexible knowledge representation
and symbolic reasoning to support causal discovery in the context of complex
dynamical systems and processes.

To guarantee sound results, we provide a rigorous axiomatic and principled approach
to derive new algorithms, and, where required, provide mathematical proofs.

1.5 Objectives

In order to achieve the aims of the work our objectives are as follows.

• We will study the integration of recent results from modern causal discovery into
the state-of-the-art in probabilistic time-series analysis. The focus will be on
multi-linear analysis with multidimensional arrays, nonparametric methods with
dynamically changing measurement noise and automated symbolic analysis of
simple but unstructured time series data.

• We will integrate prior knowledge about temporal and dynamical dependencies
into criteria that we deploy to differentiate between cause and effect. We will
use this prior knowledge for restrictions and assumptions to derive observable
asymmetries between orthogonal causal directions.

• We will examine how data of various kinds, generated in dynamical systems,
can be used for causal discovery. Specifically, we will investigate three kinds of
observable data. Firstly, we will look at high-dimensional data, as it is recorded
in large real-world databases. Secondly, our focus will be on data where noise
is dynamically changing over the domain of the cause. Finally, we will study
unstructured time series data where latent symbolic causes explain the dynamics
of the data set.
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• We will test how Venture (Mansinghka et al., 2014) as a generative, probabilistic
programming language lives up to the requirements for inference and knowledge
representation needed for causal discovery in dynamical systems.

• We will study symbolic reasoning to support causal discovery in the context of
complex dynamical systems and processes.

The above objectives have in common that they create hard problems of probabilistic
inference. We will investigate inference techniques with a focus on performance and
complexity. As part of our studies we will research frequentist inference (Chapter 3). For
more complicated models involving intractable computation, we will resort to variational
inference (Chapter 4). Finally when our objective requires reasoning over symbolic
representations in hierarchical models we will resort to probabilistic programming and
Markov Chain Monte Carlo (MCMC) techniques (Chapter 5).

To measure the implications of the theoretical results and the performance of the
introduced methods, we will always test on both synthetic and real-world data, whilst
comparing our methods to relevant benchmarks and ensure a state-of-the-art perfor-
mance.

1.6 Contribution

In the following chapters, we describe our efforts to introduce current perspectives on
causal discovery using data generated in complex dynamical systems and processes.
However, before we do this, we would like to highlight the academic contribution of this
thesis which is fourfold:

1. We introduce Multidimensional Causal Discovery (MCD). We propose a notion
of cause and effect over time. This notion is aimed at large data sets as they
exist in real-world databases. Such a notion is novel to research as it allows to
generalise cause and effect over time for cases where we model our data with
tensor-theoretic approaches. We implement the notion into the MCD-algorithm
for causal discovery. It provides expressive and accurate causal discovery for large,
multidimensional data sets.

2. Our work relaxes common assumptions for causal discovery by generalising causal
discovery for scenarios with dynamically changing noise levels where the dynamics
depend on the input. Our generalisation is implemented into an efficient algorithm
called FlexCD. The algorithm offers a performance gain for the problem of causal
discovery in the case where only two variables are observed. The method further-
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more provides competitive performance for prediction in terms of regression due
to the use of a recent version of a Gaussian Process (GP).

3. We introduce the Gaussian Process memoizer (gpmem), a probabilistic program-
ming technique that uses a GP to provide a statistical alternative to memoiza-
tion, that is storing previously computed results and returning those instead of
recomputing at a certain input. Memoizing a target procedure results in a “self-
caching” wrapper that remembers previously computed values. GP memoization
additionally produces a statistical emulator based on a GP whose predictions
automatically improve whenever a new value of the target procedure becomes
available. We implement this technique into the Venture probabilistic program-
ming language and illustrate its performance for hierarchical models and Bayesian
Optimization.

4. We show how to apply gpmem for functional causal reasoning in the context of
probabilistic programming. In particular, we describe how a discovery method
that allows for symbolic causal reasoning over time can be constructed. We mea-
sure performance in terms of prediction and inspect posterior distributions over
symbolic representation.

We would like to stress that our contribution builds on and extends current research in
different fields which gained much attention in the recent years (see section 2.5).

1.7 Previous Publications

This thesis resulted in peer-reviewed publications and submissions to journals. The
papers are shorter versions of Chapters 3, 4 and 5. The submitted articles lack the
broader context of dynamical causal discovery.

Multi-dimensional Causal Discovery.
Schaechtle, U., Stathis, K., and Bromuri, S. (2013).
International Joint Conference on Artificial Intelligence (IJCAI). Pages 1649 –1655.
FlexCD: Flexible Causal Discovery.
Schaechtle, U., and Stathis, K. (2015 - under review).
Submitted.
Probabilistic Programming with Gaussian Process Memoization.
Schaechtle, U., Zinberg, B., Radul, A., Stathis, K. and Mansinghka, V. K.
(2015 - under review).
Submitted.
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1.8 Thesis Structure

Throughout this thesis, we assume that the reader has undergraduate background in a
quantitative discipline, such as computer science, mathematics, physics or engineering.
We further assume familiarity with fundamental linear algebra on a level one may find it
in an introductory course in engineering. We exemplify causal discovery for dynamical
systems in continuous-valued variable domains only, although most methods we use
have counterparts in the discrete-valued domain.

We will start by giving the reader the relevant background needed to understand
our contribution (Chapter 2). Basic probability theory and information theory will be
introduced (section 2.1). We will re-visit Bayes’ rules and talk about Bayesian machine
learning. A brief survey of probabilistic knowledge representation will be provided
(section 2.2). We will encounter computation that is not analytically tractable, which
leads us to inference techniques that can mitigate this by giving sound approximation
of such computation (section 2.3). We will finally provide the context of recent research
for computational discovery of cause and effect (section 2.4). The final part of the
background will put these methods into the context of the state-of-the-art and we will
highlight recent research that is involved with the different fields described.

Equipped with the background knowledge, we will introduce temporal dependence
in models used for causal discovery. First, we will show how we learn causal relations
within high-dimensional tensor data (Chapter 3). We will examine and explain how
our method allows the simultaneous inclusion of numerous dimensions within the data
analysis such as samples, time and domain variables construed as tensors. The method
will build on dynamic noise distributions but will not explicitly include those into the
model. We abstract away from theses dynamics and important information could be
lost. This is a weakness that we will try to mitigate in Chapter 4.

Here, we will explicitly define a set of functional equations providing an interpre-
tation of noise in a causal dynamical system. The functional, relational model will
include a latent structural noise function that dynamically changes the level of noise
(section 4.1). We will introduce the necessary background on the functional equations
we are using and on the specifics of functional causal discovery deployed (section 4.2).
Equipped with this knowledge, a new criterion and an efficient algorithm for causal
discovery will be described (section 4.3). We restrict the model to include a certain
latent structural noise function that dynamically changes the level of noise. If we want
to learn such a concept automatically we will need a more powerful method.

In Chapter 5 we will achieve this by introducing time in a causal system as an
observed entity and we will build on probabilistic programming. We will explain pro-
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gramming language constructs that are fairly new to machine learning research. We will
introduce Venture GPs and the Gaussian Process memoizer showing how we can dis-
cover latent causal components in time series data (section 5.1.3). To show the flexibility
of the technique, we will also explore Bayesian optimisation through GP memoization
in section 5.5.

Finally, in Chapter 6 we will summarise the work presented and draw conclusions.
We will discuss future work, first specific to the individual chapters, then in a more
general context.
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2 | Background

In this chapter we will work our way forward from simple probability calculus to so-
phisticated knowledge representation, using probabilistic frameworks to finally see how
we can derive notions of cause and effect. We begin by presenting the basic building
blocks required to derive the methods that will follow in later chapters.

2.1 Probability Theory

Machine intelligence research is traditionally focused on two aspects of the world (e.g.
Russell, 2015):

1. there are objects in the world; and

2. there is uncertainty about what happens in the world.

Traditional Artificial Intelligence (AI) research focuses on the objects in the world (e.g.
Russell and Norvig, 2010)1. Probability theory on the other hand is the framework
to handle uncertainty logically. It is an extension of symbolic logic in the presence
of uncertainty (Cox, 1946). Probabilistic modelling can assign uncertainty to noise,
parameters and higher order structures.

Classical statistics models probability distributions with probability mass functions
for discrete-valued variables. Two fundamental rules are defined for this context, the
first rule is the sum rule:

P (X = x) =
∑
y∈Y

P (X = x, Y = y) or in short: P (x) =
∑
y∈Y

P (x, y) (2.1)

where X and Y are random variables, x is a value that X can take and the quantity
P (x, y) is the joint probability, that is the probability of x and y. In the context of
random variables, we say that an event is a random variable taking a value, that is

1In this thesis, we cope with the existence of objects via probabilistic programming (see section
2.2.5) and its sampling semantics (Mansinghka et al., 2014).
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X = x. The second fundamental rule is the product rule:

P (x, y) = P (x)P (y | x). (2.2)

where we say that P (y | x) is the probability of y given x. The probability P (x) of x is
also known as the marginal probability of x. From the two rules above follows Bayes’
theorem:

P (y | x) =
P (x | y)P (y)

P (x)
=
P (x | y)P (y)∑
y∈Y

P (x, y)
(2.3)

For continuous variables we do not consider probability mass functions but instead
probability density functions. The above rules still hold but we need to replace the sum
in (2.1) with an integral:

P (x) =

∫
P (x, y)dy (2.4)

In the context of machine learning, this allows the following interpretation, replacing
x by D to denote the data, and y by θ, which denotes the unknown parameters. m

denotes the model of our choice. A typical task for machine learning is to estimate
(learn) the unknown parameters given the model and what we have observed. Thus,
we are interested in:

P (θ | D,m) =
P (D | θ,m)P (θ | m)

P (D | m)
(2.5)

where the left hand side is the posterior of the parameters given the data, P (D | θ,m)

is the likelihood term and P (θ | m) is a prior on the parameters. Posterior refers to the
posterior probability, that is after evidence has been taken into account. Prior refers to
the prior probability, before evidence has been taken into account.

The Gaussian Distribution
The Gaussian distribution will be used throughout this thesis to model causes and
causal mechanisms. It is defined as follows:

P (x) = N (x | µ, σ) =
1

σ
√

2π
e−(x−µ)

2/2σ2
(2.6)

where µ is the mean and σ2 is the variance. The multivariate extension of the above
distribution can be expressed as:

P (x) = N (x | µ,Σ) =
1

(2π)
d
2

1

|Σ| 12
e−

1
2
(x−µ)>Σ−1(x−µ). (2.7)

Accordingly, the parameters determining this distribution are the mean vector µ and
the covariance matrix Σ. d is the dimensionality of x. The Gaussian comes with
interesting properties, for example, if P (X,Y ) is Gaussian, both the conditional and
the marginal are Gaussian.
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2.1.1 Information Theory

In section 2.4 and Chapter 4 we will see how information theory can inform us about the
direction of causality. We will give a brief introduction to relevant quantities, starting
with entropy. We treat the notion of entropy as a notion of surprise in the following
chapters (Bishop, 2006; MacKay, 2003). The expected amount of information we gain
by observing a random variable x is defined as

H[x] = −
∑
x∈X

P (x) logP (x) (2.8)

for discrete variables and

H[x] = −
∫
P (x) logP (x)dx (2.9)

for continuous ones. More formally, Shannon explains that the entropy is a lower bound
on the number of bits needed to transmit the state of a discrete-valued random variable
when we decide the base of the logarithm to be 2 (1948; as in Bishop, 2006). Let P (x, y)

be the joint distribution for two variables. The average additional information needed
to specify y given x is the conditional entropy:

H[y | x] = −
∫∫

P (x, y) logP (y | x) dxdy. (2.10)

We can use (2.9) to define a measure of Gaussianity

J[x] = H[Y N = y]−H[X = x], (2.11)

where Y N is a Gaussian random variable with the same covariance matrix asX (Hyväri-
nen and Oja, 2000). This quantity is known as negentropy.

Kullback-Leibler divergence
Kullback-Leibler divergence (or KL divergence) is also known as relative entropy. Let
P (x) and Q(x) be two distributions, where P (x) is not known and Q(x) is an approxi-
mation of P (x).

KL[P ||Q] = −
∫
P (x) log

Q(x)

P (x)
dx (2.12)

The information theoretical interpretation of this quantity is the following: how
many additional bits do we need to specify x when we use Q instead of the true dis-
tribution (Bishop, 2006)? This makes KL divergence a suitable measure of distance
between two distributions, especially for machine learning where we often find ourselves
assessing the goodness of approximations of distributions that are used to predict values
of target variables.

31



DC

S

Figure 2.1: A simple Bayesian Network that describes our knowledge with regards to
a disease D, a co-morbidity C for this disease and their interaction and effect on a
symptom S. Vertices denote random variables. Edges denote dependencies.

2.2 Probabilistic Knowledge Representation

We can encode knowledge about the world and its uncertainties in different ways. One
way is to draw a graph. A graphical model is a simple way describe uncertain entities
and their relations. We can write down the dependency graph between entities of our
world that we treat as random variables. In this framework, a node in a diagram depicts
a random variable and an edge determines a probabilistic relation.

2.2.1 Bayesian Networks

We differentiate graphical models with directed relations known as Bayesian Networks
(Pearl, 1986, 1988) and represented as a Directed Acyclic Graph (DAG) from graphical
models with undirected relations represented as an undirected graph. We will focus on
acyclic and directed graphs in this work2.

The graphical representation of our world in form of a DAG determines how the joint
probability distribution factors for our world. To illustrate this, let us investigate the
relational model of a disease, a co-morbidity3 and a symptom (Fig. 2.1). When viewed
in the Bayesian context of (2.5) the resulting graph corresponds to the structure of the
model (m) and the parametrisation (θ) which is given by its Conditional Probability
Distributions (CPD), that is the probability of an event to be true when the values of
other random variables are known, for example Tables 2.1, 2.2 and 2.3, where t stands
for true and f for false.

The joint probability mass function factorises as:

P (S,C,D) = P (S | C,D)× P (C | D)× P (D) (2.13)

We can read these networks as causal in the sense that they communicate a clear
2Extensions for cyclic graphs are known.
3When two disorders or illnesses occur in the same person, simultaneously or sequentially, they

are described as comorbid. Comorbidity also implies interactions between the illnesses that affect the
course and prognosis of both (National Institute of Drug Abuse, 2015).
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Table 2.1: P (S | C,D)

C,D
t,t t,f f,t f,f

S
t 0.8 0.5 0.6 0.1
f 0.2 0.5 0.4 0.9

Table 2.2: P (C | D)

D
t f

C
t 0.8 0.01
f 0.2 0.99

Table 2.3: P (D)

D
t 0.1
f 0.9

separation of cause and effect. Learning the structure of these networks given the
vertices is hard, as the number of possible DAGs increases rapidly. The simplest way to
learn such a network would be to search the space of possible networks while computing
the likelihood of candidate structures (modelm in (2.5)) and produce a score. The score
is composed of the likelihood and a penalty term. This penalty decreases the score more
the more complex the model gets. We will see in section 2.4 that this is not sufficient
to find truly causal links between variables of interest.

We can extend the Bayesian Network formulation to represent temporal dependency.
Such a Bayesian Network is known as a Dynamic Bayesian Network (DBN) (Murphy,
2002). A simple example for a number of measurements over time is a Markov chain
(Fig. 2.2). Let each individual random variable in this chain be Gaussian white noise:

x ∼ N (0, σt). (2.14)

This phenomenon is known as heteroskedasticity: a dynamically changing noise vari-
ance. Stable noise variance, where ∀ t : σt = σ, is known as homoskedasticity. Let us
now measure Xt along this chain, that is for different values of t. If we now drop the
time dimension and model a probability density P (X) as our distribution of the sampled
measurements, this distribution will only be Gaussian in the homoskedastic case. Oth-
erwise, in the heteroskedastic case, P (X) will be non-Gaussian (e.g. Hyvärinen et al.,
2010). This phenomenon shall become crucial for this thesis.

Probabilistic inference follows the same principles for DBNs as applied above. Many
standard models in dynamical systems and time-series processing can be represented as
DBN, such as Kalman Filters and Hidden Markov Models (e.g. Murphy, 2002).

Xt=1 Xt=2 Xt=3 ... Xt=T

Figure 2.2: A Markov chain as a DBN. Random variable X is measured at different
points in time t.
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2.2.2 Bayesian Nonparametrics and Hierarchical Modelling

We have given a Bayesian interpretation of machine learning with (2.4). Here, we de-
noted the parameters of the model with θ. If our learning boils down to learning these
parameters, we face a severe restriction: we can only learn models of the same paramet-
ric family. With more parameters θ, one can normally express more data generating
functions. An intuitive example is the order n of a polynomial where θ1, · · · , θn are the
parameters, that is the coefficients of the polynomial. This insight is the foundation of
Bayesian statistics. Many Bayesian nonparametric methods can be derived by letting
θ →∞. To render this computable and to ensure an adequately complex model we let
the space of parameters grow with the amount of data that we observe. This comes
with useful properties:

1. more, and more diverse data can be accounted for by more parameters;

2. the learning never saturates: the more data we get the better we expect our model
to be; and

3. because we only apply the sum (2.1) and the product rule (2.2) instead of opti-
mising a certain objective such as the loss function there can be no over-fitting.

Bayesian nonparametrics assign a prior belief on the distributions on a target. The most
prominent examples of these are Dirichlet Process (DP) and the Gaussian Process (GP).
A DP models a distribution on distributions. A GP models a distribution on functions.

2.2.3 Gaussian Processes

We will now show how this prior belief is expressed in a GP. Let the data be pairs
of real-valued scalars {(xi, yi)}ni=1 (complete data will be denoted by column vectors
x, y). We will drop the index for readability and we work exclusively on two-variable
regression problems. In regression, one tries to estimate the functional relationship
between two random variables X,Y of the kind y = f(x).

The most important assumption we make when using a GP is that the space of
possible functions f that map our regression input to regression output is normally
distributed. Here, we make use of the aforementioned properties of the Gaussian: we
can apply Bayes rule to transform the Gaussian prior on functions to a posterior that
takes into account the observations.

Before we delve into the formulas, we would like to invite the reader to have a look
at graphical representation of a GP. We can express a GP with a Bayesian Network,
extending the Bayesian network formulation as outlined in previous sections (Fig. 2.3).
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The resulting graphical representation is loosely based on the notation of plate mod-
els (Buntine, 1994). The plate notation was originally developed to describe repeated
structure in probabilistic models. In this context it allows us to depict the nonparamet-
ric aspect of the model. In this version of a Bayesian Network, we represent functional
relationships explicitly with a black square in the middle of the arrow4.

Formally, a GP is an infinite-dimensional extension of the multivariate Gaussian
distribution. The aim of applying a GP is to find a posterior distribution on the
functions that regresses input x to output y. Our prior for this is Gaussian f |x ∼
N
(
m(x), k(x,x′)

)
. While the Gaussian distribution is parametrised by mean µ and

covariance Σ, a GP is determined by its mean functionm(x) and its covariance function
k(x,x′) (a.k.a. kernel) both of which depend on the input data for the regression. For
any finite set of inputs x, the marginal prior on f(x) is the multivariate Gaussian

f(x) ∼ GP(m(x), k(x,x)),

where m(x) = Ef [f(x)] and k(x,x′) = Covf (f(x), f(x′))5 In all examples below, our
prior mean functionm is identical to zero; this is the most common choice. The marginal
likelihood can be expressed as:

p (f(x) = y | x) =

∫
p (f(x) = y | f,x) p(f |x) df (2.15)

where p(f |x) = p(f) ∼ GP(m(x), k(x, x′)) omitting (x) for readability. We can absorb
m(x) into the covariance function, so without loss of generality we can set m(x) to 0.
We can sample a vector of unseen data y∗ = f(x∗) from the predictive posterior with

y∗ ∼ N (µ,Σ), (2.16)

a multivariate normal with mean vector

µ = k(x∗,x) k(x,x)−1 y (2.17)

and covariance matrix

Σ = k(x∗,x∗)− k(x∗,x)k(x,x)−1k(x,x∗). (2.18)

Often one assumes the values y are noisily measured, that is, one only sees the
values of ynoisy = y + η where η is Gaussian white noise with variance σ2noise. In that
case, the log-likelihood is

log p (ynoisy | x) = −1

2
y>(K + σ2noiseI)−1y − 1

2
log
∣∣K + σ2noiseI

∣∣− n

2
log 2π (2.19)

4This is a slight abuse of notation: the black square normally depicts a factor in a factor graph.
We do not consider any factor graphs in this work, the black square will here always indicate a certain
functional relationship.

5 Note that m(x) = (m(xi))
n
i=1 and k(x,x′) =

(
k(xi, x

′
i′)

)1≤i≤n
1≤i′≤n′ , where n′ is the number of entries

in x′.
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Figure 2.3: A GP depicted as a graphical model where x is the regression input or
independent variable and y is the dependent variable. For every instance of the pairing
x and y we describe a distribution of functions that map from x to y. Often we are
interested in timestamps or time series. In a simple case, xt = t meaning our only input
to the GP is a point in time. A vector of hyper-parameters θ parametrises the covariance
function which we have expressed as Kθ(x,x). The hyper-parameters determine along
with the observed data the covariance parameter of the multivariate Gaussian.

where n is the number of data points. For readability, we have written the entire
covariance matrix for all combinations of k(x,x′) as K. Without loss of generality, we
can absorb the independent noise σnoise into K, so (2.19) simplifies to:

log p (ynoisy | x) = −1

2
y>K−1y − 1

2
log |K| − n

2
log 2π. (2.20)

We will make use of both notions for independent noise in our work since they give rise
to interesting algorithms.

GPs present a nonparametric way to express prior knowledge about the space of
possible functions f . The prior knowledge enters the model in form of the covariance
function. The covariance function governs high-level properties of the observed data
such as linearity, periodicity and smoothness. The most widely used form of covariance
function is the squared exponential which enforces the smoothness assumption:

k(x, x′) = σ2 exp

(
−(x− x′)2

2`2

)
, (2.21)

where σ and ` are hyper-parameters: σ is a scaling factor and ` is the typical length-
scale. Once one has decided on the form for the covariance, we can optimise for any
unknown hyper-parameter:

∂ log p (ynoisy | x)

∂θi
= −1

2
y>K−1

∂K

∂θi
K−1y − 1

2
trace (K−1

∂K

∂θi
) (2.22)

The graphical representation (Fig. 2.3) reveals intricate functional relationships in
the Bayesian network sense, where we related scalars and distributions functionally and
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with statistical dependencies. It also shows a kind of hierarchy. This hierarchy exists
because we optimise hyper-parameters, that is parameters influencing the distribution
of the actual parameters that grow with the number of data points available. We
can imagine a more complex hierarchical model, with a more intricate causal system
determining the posterior distribution we are looking for. Such hierarchies can help
in cases where Big Data is available in the form of many “small data”, that is, where
we have a lot of instances of related problems. Here, we may have to couple models
logically by relating them and propagate uncertainties from instance to instance in a
sound manner.

Zoubin Ghahramani states an important example for this (2015): in personalised
medicine, we may have a large database with numerous patients but we may not have
enough data for an individual patient with a certain combination of diseases as the space
of possible combinations of diseases and prescribed drugs is extremely large. When
building a model for this patient, we do not have much data available, but can couple
this model with models of other patients who are similar in a hierarchy of models to
exchange information. For example, we can imagine two diabetic patients, both having
administered the same drugs and suffering from neuropathy. Both patients also suffer
from cardiovascular disease. One patient suffers from tachycardia the other has had a
stroke. Both complications belong to the class cardiovascular disease and are therefore
hierarchically related.

2.2.4 Model Selection

Hierarchies are closely related to model comparison or selection6. Discussing model
selection under a Bayesian viewpoint is particularly important for this thesis because
causal discovery is a model selection task. For example, we compare two models X → Y

and X ← Y and we want to condition this selection based on what we know and
what we have observed before. Selecting models and conditioning the selection process
on data requires a quantitative version of Occam’s razor to penalize overly complex
models (MacKay, 2003). Bayesian methods automatically embody Occam’s razor. As
David Mackay puts it:

“Bayes’ theorem rewards models in proportion to how much they predicted
the data that occurred. These predictions are quantified by a normalized
probability distribution on D. This probability of the data given model mi,
P (D | mi), is called the evidence for mi. A simple model m1 makes only a
limited range of predictions [...]; a more powerful model m2, that has, for

6Imagine the following hierarchy: probability of model→ probability of parameters→ observations
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example, more free parameters than m1, is able to predict a greater variety
of data sets.”(2003)

2.2.5 Probabilistic Programming

In the previous sections we have seen how graphical models serve as a principled way to
represent knowledge in an uncertain world. Standard Bayesian networks with all dis-
crete variables pose an easy inference problem. In contrast, if we have a more complex
model, for example the graphical representations involving plate notation and distribu-
tions on functions from the previous section (Fig. 2.3), or a model with multiple levels
of hierarchy, the matter is different and inference is not simple, anymore. Crafting
sound and efficient inference algorithms becomes very difficult as the necessary deriva-
tions often involve cumbersome algebra and non-trivial proofs of convergence. As a
result, new models are often communicated using a mix of natural language, pseudo-
code and mathematical formulae (Roy, 2015). Inference is special-purpose and often
not re-usable. Designing, implementing and testing inference algorithms is hard even
for experts. Small changes in requirements or assumptions can result in a change of the
model or affect the inference algorithm. This can cause a lot of work for an expert and
can keep non-experts outside of the domain of machine learning, completely, since they
may lack the necessary mathematical background.

Probabilistic programming seeks to overcome these shortcomings with two main
features:

1. an expressive language able to accommodate both declarative and procedural
semantics to represent probabilistic knowledge and dependencies in a sound way;
and

2. a generalised inference engine that mitigates the drawbacks of one-off inference
algorithm design.

Causal generative probabilistic programming languages (e.g. Goodman et al., 2008)
define a generator for data from the probabilistic model in form of a simulator. This
simulator calls a random number generator to produce stochastic samples from a distri-
bution which is specified by the program. This is more general than the graphical model
framework as it can accommodate procedural aspects such as recursion and control flow
statements (Ghahramani, 2015).

We can observe data and subsequently condition on these observations when infer-
ring latent variables. The process of conditioning involves trying to find inputs of a
program conditioned on its observed output and the probabilistic program. A common
approach is to implement the generalised inference engine using Markov Chain Monte
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Carlo (MCMC) which is suitable thanks to its sampling-semantics and its compositional
nature (see section 2.3.2).

For the work in this thesis, we choose Venture (Mansinghka et al., 2014). Venture
is more expressive than most competing languages. We elaborate on this with a few
examples, for an exhaustive comparison see the paper on Venture (Mansinghka et al.,
2014). STAN (e.g. Kruschke, 2014) has only limited support for discrete random vari-
ables which is too limiting for causal discovery. Infer.NET (Minka et al., 2010) deploys
an inference algorithm that prevents formulating a model with an unbounded num-
ber of random variables. Markov Logic Networks (MLN) (Richardson and Domingos,
2006) build on undirected graphical models. MLNs suffer from a semantic problem due
to their capability to accommodate scenarios with different and unknown numbers of
objects (see Russell, 2015) which renders them incompatible with Bayesian nonpara-
metrics.

Probabilistic logic programming languages such as PRISM (Sato and Kameya,
1997), ICL (Poole, 1997) and ProbLog (De Raedt et al., 2007) are based on the declar-
ative semantics of logic programming using Horn clauses (Horn, 1951). They provide
limited to no support or guarantees of correctness (in the case of ProbLog) continuous-
valued variables, which renders them problematic for machine learning for real-world
problems and causal discovery. Problog2 claims to be more similar to functional proba-
bilistic programming languages but also suffers from the inability to model unbounded
sets of random variables and continuous-valued variables (Renkens et al., 2012).

The BLOG (Bayesian Logic) language (Milch et al., 2007) is more general in terms of
its semantics compared to the probabilistic logic programming languages above. It pro-
vides first-order logic semantics in the presence of uncertainty. The authors of Venture
provide substantial critique to BLOG:

"BLOG is not higher-order - it does not support random variables that are
themselves probabilistic procedures - nor does it provide a programmable
inference mechanism. BLOG also does not support collapsed primitives that
exhibit exchangeable coupling between applications, primitives that lack cal-
culable probability densities, or primitives that can create and destroy latent
variables while providing their own external inference mechanism." (Mans-
inghka et al., 2014)

Venture is the successor of Church (Goodman et al., 2008). It improves its predeces-
sor in terms of expressiveness, as the language provides a built-in interface for stochastic
procedures, where likelihood is unknown or hard to compute. It provides a simple in-
terface for foreign stochastic procedures and is therefore easily extendible. The authors
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of Venture report drastic performance gains over Church for inference which is key for
causal discovery. A thorough comparison of probabilistic programming languages is out
of scope of this thesis. For an exhaustive comparison of Venture with its competitors
see the paper by Mansinghka and colleagues (2014).

Venture provides the causal generative semantics we are looking for to provide causal
inference (see section 2.4) and supply valid evidence. In Listing 2.1, we depict a Venture
program of the causal Bayesian network shown in the beginning of this section (Fig.
2.1). We will later learn that structural form of the expression coincides with the
structural form needed for causal inference (section 2.4).

Venture also provides a general inference engine and is expressive, as it is Turing
complete. It also enables efficient and customisable inference, which is crucial if we
want to tackle the hard problem of causal inference.

Listing 2.1: Bayesian Network

1 /// SETTING UP THE MODEL

2 assume Disease = flip(0.1);

3 assume Co_morbidity = if(Disease) {flip(0.8)}

4 else {flip(0.01)};

5 assume Symptom = if(Disease ){

6 if(Co_morbidity ){

7 flip(0.8)

8 } else {

9 flip(0.6)

10 }

11 } else {

12 if(Co_morbidity) {

13 flip(0.5)

14 } else {

15 flip(0.1)

16 }

17 };

18 /// OBSERVATION

19 observe Symptom = true;

20 ///INFERENCE

21 infer default_markov_chain(10);
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2.3 Approximate Inference

Hierarchical and dynamical models often result in complex model structures that render
exact inference impossible. This could be because the dimensionality of the hypothesis
space we operate on is too high or, in the case of continuous variables, because a
closed form solution may be intractable (Bishop, 2006). We will see later that this
is an inherent problem of functional causal discovery where we are going to explicate
assumptions and prior distributions on what it means when we say: “one variable causes
another”. In this work, we resort to two forms of approximative inference: Variational
Inference and MCMC methods.

2.3.1 Variational Inference

Variational inference aims to approximate a target distribution by choosing a tractable
approximative distribution and then minimising the distance between this approxima-
tion and the unknown target distribution. A suitable measure of distance between
distributions is the KL divergence (2.12). Let P (X) be some intractable distribution
for which we are trying to find a good approximation. We assume a fully Bayesian
setting with prior distributions on all latent variables and unknown parameters.

There are different formulations of variational inference. Below, we will give a brief
introduction (2.23 -2.25) following Murphy (2012, chapter 21, e.q. 21.1 -21.7): LetQ(X)

be a suitable and tractable approximation to P (X). The direction of the divergence
(2.12) is inverted, since taking the expectation with respect to (wrt) P (X) is known to
be intractable, switching the sign, one gets:

KL[Q||P ] =

∫
Q(x) log

Q(x)

P (x)
dx (2.23)

The expectation wrt Q is now tractable. The expression (2.23), however, is not since it
requires evaluating the intractable normalisation constant. Murphy points out that in
contrast, the unnormalised distribution

P̃ (X) , P ∗(X,D) = P (X)× P (D) (2.24)
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is tractable to compute. This leads to the new objective function:

J(Q) =

∫
Q(x) log

Q(x)

P̃ (x)
dx

=

∫
Q(x) log

Q(x)

P (x)× P (D)
dx

=

∫
Q(x) log

Q(x)

P (x)
dx− logP (D)

= KL[Q||P ]− logP (D).

(2.25)

P (D) being a constant, minimising J(Q) implies that our approximation Q becomes
closer to P .

Later in this thesis, we will deploy the formulation of this approximation in terms
of information theory for causal discovery by taking advantage of the notion of surprise
that is associated with information entropy. Beside this very particular use case, the
main advantage of variational inference lies in its properties: it is a bounded approxima-
tion that often provides analytically tractable solutions to its inference. Its disadvantage
is that variational inference algorithms are often hard to design; and when the model
changes slightly, they may have to be re-designed from scratch.

2.3.2 Markov Chain Monte Carlo

MCMC follows a completely different idea compared to variational inference. The
intuition behind MCMC is drawing random samples and processing them to approxi-
mate probability distributions that are hard to represent otherwise. More formally, the
Monte-Carlo principle states that we draw samples from a target distribution defined on
a high-dimensional space which give an approximation of the posterior using (Andrieu
et al., 2003):

PN (X) ' 1

n

n∑
i=1

δxi(x) (2.26)

with δxi(x) denoting the delta-Dirac mass located at xi. MCMC is a strategy to gener-
ate this set. An MCMC algorithm requires a proposal mechanism, which is normally a
representation of a proposal distribution that we draw samples from. With this proposal
mechanism, we construct a Markov chain on a state space whose stationary distribu-
tion is the target distribution of interest. We can evaluate P (X) up to a normalising
constant, as opposed to sampling directly from it (Andrieu et al., 2003). We call the
mechanism that produces individual entries for one or more random variables in the
Markov chain a transition or MCMC-kernel.

In the following we will introduce the Metropolis-Hastings (MH) algorithm since it
is the default inference algorithm in Venture. This algorithm is the oldest and most
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popular MCMC algorithm:

Algorithm 1. Metropolis-Hastings

1: Initialise x0

2: Define proposal distribution Q
3: Supply a way to evaluate P
4: for i = 0 to n− 1 do
5: u ∼ U[0,1]
6: x∗ ∼ Q(x∗ | xi)
7: a = min{1, P (x∗)×Q(xi|x∗)

P (xi)×Q(x∗|xi) }
8: if u < a then
9: xi+1 = x∗

10: else
11: xi+1 = xi

12: end if
13: end for

end

We sample from the proposal distribution (line 4) and check whether we are accept-
ing a new sample (line 5 and 6) stochastically by calling a random number generator
(line 3). The algorithm will spend more time in regions that are characteristic for the
target distribution and less time in less characteristic ones. The samples are often auto-
correlated. If this is the case, it makes sense to run several changes in parallel and mix
them in the end to get the target. Furthermore, the algorithm often requires a so called
“burn-in” time, that is all the steps to be taken before the actual stationary distribution
is reached.

Many other MCMC algorithm can be expressed as special cases of MH, such as the
Hybrid (or Hamiltonian) Monte Carlo (HMC) algorithm (Duane et al., 1987) or the
Reversible Jump (RJ) MCMC algorithm (e.g., see Andrieu et al., 2001). HMC takes
into account gradient information to improve convergence to the target distribution. RJ
is an extension that deals with model selection problems and spaces where probabilities
of samples cannot be compared directly, for example by “jumping” from a lower to a
higher order polynomial as hypothesis.

MCMC algorithms are composite: we can chain inference on hierarchical structures
by chaining different MCMC kernels together (Fig. 2.4). This makes it possible to learn
both the structure and the parameter of a model within a single framework providing
a sound approximation. The compositional aspect is also the reason why MCMC is so
popular in probabilistic programming - it builds up program dependent inference by
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HMC

RJ

MH

Figure 2.4: A chain cycling over three different MCMC-kernels. MCMC algorithms
are composite: we can chain inference on hierarchical structures by chaining different
MCMC kernels together. We see a chain of Metropolis-Hastings (MH), Hybrid (or
Hamiltonian) Monte Carlo (HMC) and Reversible Jump (RJ) kernels.

chaining MCMC kernels accordingly.
The main advantage of MCMC is that one does not have to re-design the inference

algorithm every time the model changes. MCMC methods, however, do have a disad-
vantage with regards to their convergence properties: convergence time is unpredictable
for all but a few very well understood examples. Both auto-correlation of drawn samples
and the ideal “burn-in” time are often unknown to the practitioner. These uncertainties
can result in a lot of fine tuning needed for MCMC methods.

2.4 Functional Equations & Causality

We have mentioned in section 2.2.1 that a search-and-score approach to find causal
structures is not sufficient to discover truly causal relations as opposed to merely sta-
tistical associations. We shall cite Karl Popper’s definition of causal explanation (1959,
chapter 3). He states that causally explaining an event means to deduce a statement
which describes the event using deduction over background knowledge of the world7.
This is fairly general, and while the reader may expect this chapter to open with a sim-
ple definition of the concept of causality itself we try to avoid this in order to not digress
into the philosophical discourse of this matter. Spirtes and colleagues (2000, chapter 1)
point out that mathematicians from Euclid to Newton to Kolmogorov provide axioms
that use the notion of causality without defining it but investigate the consequences of
the assumptions they make for their work. The research presented in this thesis will
follow this approach as opposed to a philosophical one.

Why is statistically scoring structures not sufficient to discover relations of cause
and effect? Going back to our previous example of diseases and symptoms, we find
that we cannot express simple true statements in the language of pure statistics and
probability, such as “disease causes symptoms”. As Judea Pearl puts it:

7He further differentiates between singular conditions and universal laws - a distinction that we
shall not examine in detail at this point.
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“Scientists seeking to express causal relationships must therefore supplement
the language of probability with a vocabulary for causality, one in which the
symbolic representation for the relation ’symptom causes disease’ is distinct
from the symbolic representation of ’symptoms are associated with disease.’
Only after achieving such a distinction can we label the former sentence
’false’, and the latter ’true’.” (2001)

In his seminal work, Pearl introduces the notion of functional equations and graph-
ical criteria to reason over cause and effect (Pearl, 2000). The set of functional or
structural equations is defined as follows:

Definition Structural Equation Model (Pearl, 2000, 2012)
A structural equation model M is defined as follows:

• A set U of background or exogenous variables, representing factors outside the
model, which nevertheless affect relationships within the model.

• A set V = {V1, · · · , Vn} of observed endogenous variables, where each Vi is func-
tionally dependent on a subset PAi of U ∪ V \ {Vi}.

• A set F of functions {f1, · · · , fn} such that each fi determines the value of Vi ∈ V ,
vi = fi(pai, u).

• A joint probability distribution P (u) over U .

Pearl calls his notion structural equations, whereas we prefer the term functional equa-
tions since the latter maps directly to the way we represent the causal model in later
chapters (3 to 5).

We will now relate this notation to our running example, the Bayesian Network of
section 2.2.1 (Fig. 2.1):

d := ηd

c := fD(d)

s := fS(c, d)

(2.27)

where := denotes assignment as opposed to algebraic equality8. Pearl’s famous do-
calculus (Pearl, 1995) reasons over post-intervention distributions. Such an interven-
tion allows us to reason causally about the probability of an event X = x if a certain
condition were to be enforced uniformly over the population. This manifests in chang-
ing assignments in the functional equations (2.27) or in deletion of certain functional

8This has caused much confusion in the statistics community (see Pearl, 2000).
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equations and deletion of certain edges in the causal DAG. For example, would we
assert that a patient does not suffer from a co-morbidity, (2.27) would become:

d := ηd

c := False

s := fS(c, d).

(2.28)

The semantics of the structural equations and the do(X = x) are surprisingly par-
allel to what we know from computer programming. It is known for example that
probabilistic logic programs are a representation for causal functional equations as in
the notion above (Poole, 2008). We argue that the same is true for the Venture pro-
grams introduced in section 2.2.5. One can easily emulate the do(X = x) intervention
with the observe X=x directive which constraints the value of the random variable X
to x.

In the following, we will adopt the notion of perfect intervention introduced recently
by Mooij and colleagues (2014). This notion allows us to define our working definition
of causal discovery without relying too heavily on Pearl’s algebraic framework (1995;
2012).

Definition (Mooij et al., 2014)
We say that X causes Y (X → Y ) if P (Y = y | do(X = x)) 6= P (Y = y | do(X = x′))

for some x, x′, where do(X = x) forces random variable X to have value x, but leaves
the rest of the data generating mechanism untouched.

The questions that arises is the following: what if the actual intervention is not avail-
able and we have only data from the observational distribution P (X,Y )? Causal discov-
ery seeks to find causal relations in such a situation. We differentiate between two ap-
proaches that aim to overcome this shortcoming, the constraint-based causal discovery
initiated by Pearl himself (1991) and functional or assumption-based causal discovery,
initiated in 2005 by work on linear models with non Gaussian additive noise (Shimizu
et al., 2005, 2006).

2.4.1 Constraint-based Causal Discovery

These notions give rise to a simple constraint-based causal discovery algorithm (Pearl
et al., 1991; Pearl, 2000; Spirtes et al., 2000). Constraint-based causal discovery usually
relies on a two-step process to produce a causal DAG.

1. We start with a fully connected undirected graph where each node represents
a variable that can potentially have an effect on another variable. We delete
an edge for every observed statistical independence. This includes independence
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conditioned on other nodes/random variables in the graph; with all unneeded
edges removed.

2. We subsequently apply a set of rules to orient the remaining edges to determine
the direction of cause and effect.

For the original versions of these rules, see the work cited above. These rules,
however, have been changed for efficiency since then (Spirtes, 2001). Claassen and
Heskes showed how these rules can be simplified to three rules formulated in symbolic
logic (2011). Subsequently, they showed how their logic can be used to devise a more
Bayesian treatment of constraint-based causal discovery by combining their approach
with a search-and-score mechanism (Claassen and Heskes, 2012).

For some cases, purely constraint-based methods cannot output a unique solution.
This holds true for the simplest non-trivial causal graph, viz., a graph with two nodes
representing two variables. Here, we need to resort to functional or assumption-based
causal discovery.

2.4.2 Assumptions and Functional Causal Discovery

What if we have only two variables? Can we formulate our problem in a way so that
we can still perform causal discovery? A certain research direction claims that this
is possible by making specific restrictions on our prior belief of the data-generating
systems. Given such restrictions we resort to measures and methodology from sections
2.1 and 2.2 and see what the data implies for the underlying causal direction.

The intuition behind those restrictions is that, if X → Y then P (Y | X) depends on
X in a less complicated fashion than P (X | Y ) on Y . Note that the notion of complexity
is not well defined in this context since all we have to work with are observations of
the joint distribution. Therefore, one has to become creative to encode a notion of this
complexity in the restrictive assumptions we made to provide criteria to differentiate
between cause and effect. Two schools of thought have prevailed in this context:

D

S

Figure 2.5: A simple Bayesian Network that describes our knowledge with regards to a
disease D and its effect on a symptom S.

47



−5 0 5

D

−2

−1

0

1

2
S

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

D

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

S

Figure 2.6: On the left, we see the joint probability distribution. On the right, we see a
sample that needs to suffice to derive the direction of cause and effect. It is this sample,
that we apply a criterion to that will serve as oracle for the causal direction.

Additive Noise Model (ANM) formulations that explicitly exploit a restriction of noise
to be additive (Shimizu et al., 2005; Hoyer et al., 2008a; Zhang and Hyvärinen, 2009;
Mooij et al., 2010; Peters and Bühlmann, 2014; Peters et al., 2014) and methods that
make assumptions on measures from information theory (Daniušis et al., 2010; Janzing
et al., 2012; Chen et al., 2014).

We shall illustrate both schools of thought using a two variable version of our pre-
vious example9. We imagine a continuous valued measurement D = d which indicates
a disease and a continuous-valued measurement S = s that measures a symptom (Fig.
2.5).

We can formulate this as a system of functional equations:

d := ηd with: ηd ∼ N (0, 1)

s := tanh(d) + ηs with: ηs ∼ N (0, 0.25)
(2.29)

where η indicates uncertainty in form of noise, a.k.a error. For illustration purposes,
we assume that we know the function that served as the data generating mechanism.
We then take measurements, that is, we draw samples from the joint distribution (Fig.
2.6). Those samples will need to suffice to decide on the direction of cause and effect.
The standard ANM approach builds on an independence test for the residuals (Hoyer
et al., 2008a), where the residuals indicate the noise distribution. We assume that the
error at all data points ηs is statistically independent from all measurements of the
disease:

ηs ⊥⊥ d. (2.30)
The vector notations for d and ηs denote all the measurements we have available for
D = d and all errors. We can illustrate this easily by modelling the conditional P (Y | X)

9This example is inspired by Figure 2 in Mooij et al. 2014.

48



−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

D

−2.0
−1.5
−1.0
−0.5
0.0

0.5

1.0

1.5

2.0

S
P (S | D)

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0

D

−2.0
−1.5
−1.0
−0.5
0.0

0.5

1.0

1.5

2.0

S

P (D | S)

Figure 2.7: Samples from the conditional probability distributions in the causal direction
(left) and vice versa (right), we see how the noise depends on the input in a more
complicated fashion on the right hand side.

and draw samples from it (Fig. 2.7, left hand side). We see that the residuals to the
mean stay stable over the input domain D. Let’s say we model Y → X with functional
equations analogous to (2.31), with some hypothetical regression function f?:

s := ηs

d := f?(s) + ηd
(2.31)

Using such a system of functional equations to model the conditional P (X | Y ) yields:

ηd 6⊥⊥ s (2.32)

since the noise distribution now changes over the input domain (we can clearly see
this in Fig, 2.7, right). The different manifestation of uncertainty in terms of the
noise/error variables ηs, ηd provides the restriction that we want, that is, if X → Y

then the dependence of P (Y | X) on X is less complicated than the dependence of
P (X | Y ) on Y . The complexity arises from the dependent and independent noise. We
can estimate the functional equations with any regression method we would like, where
η becomes the regression residuals. To compute the functional estimation, previous
research mainly relied on GP. We can test (2.30) and (2.32) with standard statistical
dependence tests.

A different way to derive asymmetry between cause and effect is by deploying mea-
sures from information theory (Daniušis et al., 2010; Janzing et al., 2012; Chen et al.,
2014). The intuition behind this approach is that if X → Y then P (X) encodes no
information about P (Y | X) and P (Y | X) encodes no information about P (X). We
can measure this in terms of entropy and correlation with the slope a function. Instead
of deriving the mathematical formulation, we shall illustrate this using our example
(Fig. 2.8). We can explore the information relation between between (S | D) & P (D)

and (D | S) & P (S) by exploring the data generating function f = tanh. Remember,

49



the ground truth is D → S. So we expect no information between (S | D) & P (D) (i.e.
in the causal direction) but we do for (D | S) & P (S). We can find and illustrate this
by “feeding” a uniform distribution into the function instead of the true distribution of
D. We find two ways in which there is information here. First, we realise that there
is strong correlation between the P (S) and the entropy of the conditional H(D | S).
Intuitively, in areas with high H(D | S), many values of a small range of s map to a
large range of d. Second, we find that the slope of f is correlated with P (S). Both are
not the case in the causal direction.

This insight leads to a variety of criteria of causal discovery (Janzing et al., 2012;
Chen et al., 2014).

2.5 Recent Views

Next, we highlight the most recent views in the areas that are fundamental for this
thesis.

The different assumptions one can make to differentiate between cause and effect are
still not completely understood and are under ongoing investigation. A notable effort
was conducted by Mooij and colleagues who try to establish a common benchmark that
researchers can use to compare their methods (2014). Integration and generalisation
of different assumptions is in progress, leading to more granular research and a better
understanding of the conditions under which cause and effect are discoverable. Criteria
from information theory have been simplified and extended from the bivariate to the
multivariate case (Chen et al., 2014). For approaches based on the ANM-assumption,
it was only recently discovered that in a linear setting with Gaussian noise the direc-
tion of cause and effect can be discovered when the noise variance is the same for all
variables (Peters and Bühlmann, 2014).

Research on linear models with non-Gaussian noise is progressing, too (Hyvärinen
and Smith, 2013; Shimizu, 2014). An example is a new way to treat latent confounders
in this context (Tashiro et al., 2014). In chapter 3, we will show a multi-linear gener-
alisation of this framework, which is based on tensor formulation. Representing data
in terms of tensors for machine learning is a heavily researched field. For example re-
cently, a multi-linear extension based on tensor formulation has been introduced for the
Kalman Filter (Rogers et al., 2013). Kalman Filters can be viewed as a latent variable
model for dynamical systems. They can also be expressed as a DBN. In general, it
has been shown that for parameter estimation for a wide class of latent variable models
in tensor formulation one can deploy a generalisation of the singular value decomposi-
tion (Anandkumar et al., 2014).
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Figure 2.8: We see the density of the marginal P (S) with a uniform input when d ∼ U .
With red, we mark areas where P (S) is high coinciding with low |f ′| and high H(D | S).
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Consistency, as opposed to soundness, of ANMs is under discussion as well (Kpotufe
et al., 2014). Multivariate extensions for ANMs have been added recently(e.g. Peters
et al., 2014). Many implementations of ANMs build on GPs where normally the GP is
used for standard regression. A novel interpretation however deploys a GP in the context
of dimensionality reduction for causal discovery (Sgouritsa et al., 2015). The state of
the art in GPs now involves symbolic computation whilst outperforming competing ap-
proaches in terms of prediction (Duvenaud et al., 2013; Lloyd et al., 2014). This has been
demonstrated as part of the Automatic Statistician project10. A recent review on artifi-
cial intelligence and machine learning in the prestigious Nature journal named GP and
probabilistic programming (as a form of symbolic computation) as amongst the most
promising directions for future research (Ghahramani, 2015). Unifying symbolic com-
putation in form of logic and programming languages with probabilistic techniques has
been proclaimed to hold “enormous promise for artificial intelligence” (Russell, 2015).

2.6 Summary

We have provided the necessary background in “Bayesianism”, information theory, prob-
abilistic programming and causal discovery that is needed to understand the contribu-
tion of this thesis. We now know that:

• probability calculus is how we can logically deal with an uncertain world;

• Bayesian non-parametrics let the data speak for itself;

• probabilistic programming is a powerful way towards hierarchical causal models;

• we can perform inference, even if no closed form solution exists to our problem
and the problem space is huge; and

• causal discovery is hard - but can be tackled by making prior assumptions and
restrictions.

We have learned how we need Bayes rule and information theory to infer causes and
effects. Bayesian methods are particularly important for Chapter 4 and 5. We deploy
variational inference in Chapter 4 and MCMC in Chapter 5. Gaussianity is subject of
discussion in Chapter 3 and in Chapter 4. We use probabilistic programming, approxi-
mate inference and Bayesian model selection in Chapter 5.

In the following we will show three ways of processing time in the context of the
state-of-the-art in causal discovery. We will begin with a naive setting - assuming linear

10http://www.automaticstatistician.com/
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relationships in tensor data without any missing data (Chapter 3). Insights gained in
this Chapter about heteroskedasticity motivate Chapter 4, where we generalise causal
discovery to non-linear context and allowing these (non-)-linearities to change over the
space of input as it could be expected through time. The latent influences assumed in
this Chapter lead to the following question: which latent causal influences can really
be inferred for time series? In Chapter 5 we will investigate this and we will show how
we can find latent causal relations in form of symbolic statements.
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3 | Multidimensional Causal Discov-
ery

We start with this chapter, because it implicitly exploits dynamic noise distributions,
without explicating them in the model. This presents the simplest way to approach
the problem of integrating dynamics into functional causal discovery which will be fine-
grained in later chapters. In the following, we will motivate a generalisation of causal
discovery over time in large multidimensional databases. We will explain linear non-
Gaussian models and how they can be used for the learning of causal DAGs. We will
introduce a tensor formulation of the data we are interested in. We will integrate known
approaches of causal discovery with K-dimensional tensors to discover cause and effect
in multidimensional settings. Finally, we will evaluate and analyse the work presented
in this chapter. Code for the approach presented is available1.

3.1 Generalisation of Causality over Time

Causal discovery seeks to develop algorithms that learn the structure of causal relations
from observation. Such algorithms are gaining increasing importance since, as argued
in (Tenenbaum et al., 2011), producing rich causal models computationally can be
key to creating human-like artificial intelligence. Diverse problems in domains such
as aeronautical engineering, social sciences and biomedical databases (Spirtes et al.,
2010) have acted as motivating applications for causal discovery. These applications
have created new insights by applying suitable algorithms to large amounts of non-
experimental data, typically collected via the internet and/or recorded in databases.

We are motivated by a class of causal discovery problems, characterised by the need
to analyse large and non-experimental data sets, where the observed data of interest
are recorded as continuous-valued variables. For instance, consider the application of
causal discovery algorithms to large biomedical databases recording data of diabetic

1http://schaechtle.com/Software.html
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patients. In such databases we may wish to find causal relations between variables
such as the administration of medications like insulin dosage and the effects it has
on diabetes management, for example, the patients’ glucose level (Kafalı et al., 2013).
We are particularly concerned with data sets that are multidimensional, for example,
consider insulin dosage and glucose level measurements for different patients over time.
Insulin dosage and glucose level are continuous-valued variables. Patients, variables for
a patient, and time are dimensions.

We have already seen in the previous chapter that a convenient way to represent
cause-and-effect relations between variables is as directed edges between nodes in a
graph. Such a graph, understood as a Bayesian Network (Pearl, 1988), allows us to
factorise probability distributions of variables by defining one conditional distribution
for each node given its causes. A more expressive representation of cause-and-effect
relations is based on generative models that associate functions to variables, with the
concomitant advantages of testability of results, checking equivalence classes between
models and identifiability of causal effects (Pearl, 2000; Spirtes et al., 2000).

We are taking a generative modelling approach to discover cause-and-effect relations
for multidimensional data. Our starting point is the generative model LiNGAM (Shimizu
et al., 2006) as it relies on Independent Component Analysis (ICA) (Hyvärinen and Oja,
2000), which in turn is known to be easily extensible to data with multiple-dimensions.
Multidimensional extensions for time series data using LiNGAM exist (Hyvärinen et al.,
2008, 2010; Kawahara et al., 2011). However, for data sets such as the one for diabetic
patients mentioned before, it is unclear how to answer even simple questions like Does
insulin dosage have an effect on glucose values? There is at least one main problem that
we see, namely, how to directly include more than one patient into the model learning
process, as these approaches fit one model to a time series at a time. What we need
here is an algorithm that abstracts away from selected dimensions of the data while
preserving the causal information that we seek to discover.

In this chapter we present Multidimensional Causal Discovery (MCD) which we
will introduce in the next sections. It discovers simple acyclic graphs of cause-and-
effect relations between variables independently of the dimensions of the data. MCD
integrates LiNGAM with tensor analytic techniques (Kolda and Bader, 2009) to support
causal discovery in multidimensional data that was not possible before. MCD relies on
a statistical decomposition that flattens higher dimensional data tensors into matrices
and preserves the causal information. MCD is therefore suitable for structure learning of
causal graphical models, where a causal relation can be generalised beyond dimension,
for example, over all points in time. However, we can include not only time as a
dimension, but also space or viewpoints, still resulting in plain knowledge representation
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of cause-and-effect. This is crucial for an intuitive understanding of time series in
the context of causal graphs. As part of our contribution we also prove that we can
determine simple causal relations independently of the dimensionality of the data. We
specify an algorithm for MCD and we evaluate the algorithm’s performance.

We will structure this chapter as follows. The background on LiNGAM and the
(multi) linear transformations relevant to understand the work will be reported in sec-
tion 3.2. Then in section 3.4 we will introduce MCD for causal discovery in multi-linear
data. The algorithm will be extensively evaluated on synthetic data as well as on real-
world data in section 3.5. Apart from synthetic data, here, we will show the benefits of
our method for time series data analysis within application domains such as medicine,
meteorology and climate studies. Related work will be discussed in section 3.6, where
we will put our approach into the scientific context of the multidimensional causal
discovery. We will summarise the advantages of MCD in section 3.7.

3.2 Non-Gaussian Models

LiNGAM is a method for finding the instantaneous causal structure of non-experimental
matrix data (Shimizu et al., 2006). By instantaneous we mean that causality is not
time-dependent and is modelled in terms of functional equations (Pearl, 2000). The
underlying functional equation for LiNGAM is formulated as in the work by Shimizu
and colleagues (2005):

xi =
∑

k(j)<k(i)

bijxj + ei + ci (3.1)

with
x = Bx + e, (3.2)

put together as
x = Ae (3.3)

where
A = (I−B)−1. (3.4)

The observed variables are arranged in a causal order denoted by k(j) < k(i). The
value assigned to each variable xi is a linear function of the values already assigned
to the earlier variables xj , plus a noise term ei, and an optional constant term ci that
we will omit from now on. x is a column vector of length m. e is an error vector.
Non-Gaussian error distributions are assumed. This has an empirical advantage since a
change in variance of some Gaussian noise distribution (e.g.: over time) will induce non-
Gaussian noise (Hyvärinen et al., 2010). The non-Gaussianity assumption yields also
a practical advantage resulting in one unambiguous graph instead of a set of possible
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graphs.
We know that a directed acyclic graph (DAG) can be expressed as a strictly lower

triangular matrix (Bollen, 1989). Shimizu and colleagues define strictly lower triangular
as lower triangular with all zeros at the diagonal (2006). Here, LiNGAM exploits the
fact that we can permute an unknown matrix into a strictly lower triangular matrix,
given enough entries in this matrix are zero. The matrix which is permuted in LiNGAM
is the result of an ICA with additional processing.

Linear transformations in data, such as ICA, can reduce a problem into simpler,
underlying components suitable for analysis. Regarding assumptions such as linearity
and noise we can have the full spectrum of possible models. For our purposes, we are
looking into methods that can be suitably integrated in causal discovery algorithms.
The basis of each of these methods is a latent variable model. Here, we assume the
n-dimensional data to be “generated” by l ≤ m latent (or hidden) variables. We can
compute the data matrix by linearly mixing these components (Bishop, 2006; Hyvärinen
and Oja, 2000):

xj = aj1y1 + ...+ ajmym (3.5)
for all j with j ∈ [1,m]. Similar for the complete sample:

x = Ay. (3.6)

The above equation corresponds to (3.3), where e = y. We can extend this idea to the
entire data set X as:

X = AY. (3.7)
X is an m×n data matrix where m is the number of variables n is the number of cases
or samples .

ICA builds on the sole assumption that the data is generated by a set of statistically
independent components. Assuming such independence, we can transform the axis
system determined by them variables so that we can detectm independent components.
We can use this in LiNGAM because the order of the independent components in ICA
cannot be determined. As explained in (Hyvärinen and Oja, 2000), the reason for this
indeterministic nature is that, since both y and A are unknown, one can freely change
the order of the terms in the sum (3.5) and call any of the independent components the
first one. Formally, a permutation matrix P and its inverse can be substituted in the
model to give:

x = BP−1Py. (3.8)
The elements of Py are the original independent variables y, but in another order. The
matrix BP−1 is just a new unknown mixing matrix, to be solved by the ICA algorithm.
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We now describe the LiNGAM algorithm (LiNGAM discovery algorithm, Shimizu
et al., 2005, page 3):

1. Given an m×n data matrix X (m < n), where each column contains one sample
vector x, first subtract the mean from each row of x, then apply an ICA algorithm
to obtain a decomposition X = AS where S has the same size as X and contains
in its rows the independent components. From now on we will work with (3.9):

W = A−1. (3.9)

2. Find the permutation of rows of W which yields a matrix W̃ without any zeros on
the main diagonal. In practice, small estimation errors will cause all elements of
W to be non-zero, and hence the permutation is sought which minimises (3.10):∑

i

1

|W̃ii|
. (3.10)

3. Divide each row of W̃ by its corresponding diagonal element, to yield a new
matrix W̃′ with all ones on the diagonal.

4. Compute an estimate B̂ of B using

B̂ = I− W̃′. (3.11)

5. To find a causal order, find the permutation matrix P (applied equally to both
rows and columns) of B̂ yielding

B̃ = PB̂P
T
, (3.12)

which is as close as possible to strictly lower triangular. This can be measured
for instance using

∑
i≤j B̃

2
ij .

Next, we will describe the background of how to represent multidimensional data.

3.3 Causal Discovery in Tensor Data

A tensor is a multi-way array or multidimensional array.

Definition (Cichocki et al., 2009) Let I1, I2, . . . , IK ∈ K denote upper bounds. A
tensor Y ∈ RI1×I2,...,IK of order K is a K-dimensional array where elements yi1,i2,...,ik
are indexed by ik ∈ {1, 2, . . . , Ik} for k with 1 ≤ k ≤ K.

Tensor analysis is applied in data sets with a high number of dimensions, other than
the conventional matrix data (see Figure 3.1). An example where tensor analysis can
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be applicable is time series in medical data. Here, we have a number of patients n, a
number of treatment variables m such as medication and symptoms of a disease, and
t discrete points in time at which the treatment data for different patients have been
collected. This makes one n×m data matrix for each point in time t or a tensor of the
dimension n×m× t.

Subjects

Time

Variables

d2,1,4

DTime=1

ta) b)

Figure 3.1: a) A three-dimensional tensor: with subjects (dimension 1), time (dimension 2),
and variables (dimension 3) yielding a cube (instead of a matrix). b) We can frontally slice the
data - each slice represents a snapshot of the variables for a fixed point in time.

Definition (Kolda and Bader, 2009) The order of a tensor is the number of its dimen-
sions, also known as ways or modes.

We also need to define the n-dimensional tensor product.

Definition (Cichocki et al., 2009) The mode-n tensor matrix product X = G ×n A of
a tensor G ∈ RJ1×J2×...×JN and a matrix A ∈ RIn×Jn is a tensor
Y ∈ RJ1×J2×...×Jn−1×In×Jn×...×JN , with elements

xj1,j2,...,ji−1,in,jn,...,jN =

Jn∑
jn=1

Gj1,j2,...,jNainjn . (3.13)

Tensor decomposition can be described as a multi-linear extension of Principal Com-
ponent Analysis (PCA), for a K-dimensional tensor:

X = G ×1 U1 ×2 U1 ×3 ...×k Uk. (3.14)

G is the core-tensor, that is the multidimensional extension of the latent variables Y,
with U1, · · · ,Uk being orthonormal.

Unlike for matrix decomposition, there is no trivial solution for computing the ten-
sor decomposition. We use Alternating Least Square (ALS)-methods (e.g.: Tucker-
ALS (Kolda and Bader, 2009)), since efficient implementations are available (Bader
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et al., 2012). The decomposition can be optimised in terms of the components of a
factorisation for every dimension iteratively (De Lathauwer et al., 2000).

In practical applications, it is useful to work with a projection of the actual decom-
position. By projection, we mean a mapping of the information of an arbitrary tensor
onto a second order tensor (a matrix). Such a mapping can be achieved using a linear
operator represented as a matrix, which from now on we will refer to as projection
matrix. ALS optimisation works on a projected decomposition as well. However, the
resulting projection allows us to apply well-known methods for matrix data on very
complex data sets.

K-dimensional Independent Component Analysis. We can determine an ex-
tension of ICA which is K-dimensional (Vasilescu and Terzopoulos, 2005). We can
decompose a tensor X as the k-dimensional product of k matrices Ak and a core tensor
G:

X = G ×1 A1 ×2 A2 ×3 ...×k Ak. (3.15)
To extend ICA for higher-dimensional problem domains, we first need to relate ICA

with PCA.

X = UΣVT

= (UH−1)(HΣVT)

= AY.

(3.16)

H is a square matrix. Here we compute PCA with SVD (Singular Value Decomposition,
a useful way to factorise a matrix; see e.g. Wall et al., 2003) as UΣVT. For the K-
dimensional ICA, we can make use of (3.16) and define the following sub-problem:

X(k) = UkΣkVT
k

= (UkH−1
k )(HkΣkVT

k )

= AkYk.

(3.17)

This sub-problem is due to (Vasilescu and Terzopoulos, 2005), who argue that the core
tensor G enables us to compute the coefficient vectors via a tensor decomposition using
a K-dimensional SVD algorithm.

3.4 From LiNGAM to MCD

The main idea of our work is to integrate LiNGAM with K-dimensional tensors in
order to efficiently discover causal dependencies in multidimensional settings, such as
time series data. The intuition behind MCD is that we want to flatten the data, that
is decompose the data and project the decomposition on a matrix (see Fig. 3.2).
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a)

b)

c)

Figure 3.2: Causal analysis of time series data in tensor form. As before, the dimensions are
subjects (dimension 1), time (dimension 2), and variables (dimension 3). (a) LiNGAM does not
take into account temporal dynamics; it only inspects a snapshot, ignoring temporal correla-
tions. (b) LiNGAM extensions investigate several points in time for one case. (c) MCD flattens
the data whilst preserving the causal information and then applies linear causal discovery.
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Definition Meta-dimensionality reduction is the process of reducing the order of a
tensor via optimising the equation X = YTucker ×1 U1 ×2 ... ×k Uk so that we can
compute X = YTucker ×1 U1 ×2 ...×k−1 Uk−1.

After a meta-dimensionality reduction step, we can apply LiNGAM directly and, as
a result, reduce the temporal complexity of causal inferences (compare Figures 3.3(a)
and 3.3(b)). We interpret the output graph of the algorithm as an indicator of cause-
and-effect that is significant according to the tensor analysis for a sufficient subset of
all the tensor slices. However, before applying LiNGAM, we need to ensure that the
information on causal dependencies is preserved when meta-dimensionality reduction
has been applied.

Theorem 3.4.1. Let X = G ×1 S1 ×2 S2... ×k Sk be any decomposition of a data
tensor X that can be computed using SVD. Let X be the projection (mapping) of X
where we remove one or more tensor dimensions for meta-dimensionality reduction.
The independent components of tensor data subspaces which are to be permuted are
independent of previous projections in the meta-dimensionality reduction process.

Proof. The decomposition is computed independently for all dimensions (see (3.17))
using SVD. Furthermore, we know that the tensor matrix product is associative:

D = (E ×1 A×2 B)×3 C = E ×1 (A×2 B×3 C). (3.18)

Therefore, as long as it is computed with SVD we can establish a relation between
Tucker-Decomposition and Multi-Linear ICA. Vasilescu and Terzopoulos define this
relation in the following way (2005)):

X = YTucker ×1 U1 ×2 ...×k Uk

= YTucker ×1 U1H−1
1 H1 ×2 ...×k UkH−1

k Hk

= (YTucker ×1 H1...×k Hk)×1 A1 ×2 ...×k Ak

= Y ×1 A1 ×2 ...×k Ak

(3.19)

where
Y = YTucker ×1 H1...×k Hk. (3.20)

Now, when we look at an arbitrary projection of a data tensor X to a data matrix X,
we first need to generalise (3.19) for projections. This can be done by simply replacing
the inverse with the Moore-Penrose pseudo-inverse (denoted with †), which is defined
as:

H† = (HTH)−1HT (3.21)
where

HH†H = H (3.22)
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Figure 3.3: a) The causal graph determined by MCD b) A causal graph determined by exten-
sions of LiNGAM for time series.

We can then rewrite (3.19) to the following:

X = YTucker ×1 U1 ×2 ...×k Uk

= YTucker ×1 U1H†1H1 ×2 ...×k UkH†kHk

= (YTucker ×1 H1...×k Hk)×1 A1 ×2 ...×k Ak

= Y ×1 A1 ×2 ...×k Ak

(3.23)

Finally, we look at the projection that we compute using Tucker-Decomposition. Here
we project our tensor into a matrix by reducing the order of a K-dimension tensor. If
one thinks of Hk in terms of a projection matrix, this can be expressed as:

X = (YTucker ×k Hk)×1 U1 ×2 ...×k−1 Uk−1 ×k UkHk
†. (3.24)

We see that compared to (3.23) we find projections that allow the meta-dimensionality
reduction in two places: at (YTucker ×k Hk) and at UkHk

†. Accordingly, we define the
projection of the decomposition to the matrix data X as:

X = (YTucker ×k Hk)×1 U1 ×2 ...×k−1 Uk−1 (3.25)

Here, we see that U1...Uk−1 are not affected by the projection. Therefore, by comput-
ing the H1...HK−1 we can still find the best result for ICA on our flattened tensor data,
if we apply it on the projection. This means that if we want to apply multi-linear ICA
with the aim on having statistically independent components in meta-dimensionality
reduced space, we can resort to Tucker-Decomposition for reducing the order of the
tensor - until we finally compute the interesting part that is used by ICA for LiNGAM.
Thus, the theorem is proven.

On these grounds, we can see that LiNGAM works, without making additional
assumptions on the temporal relations between variables, if it is combined with any
decomposition that can be expressed in terms of SVD. The algorithm is summarised in
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Algorithm 2, the variable-mode contains the causes and effects that we try to find.

Algorithm 2. Multidimensional Causal Discovery

1: procedure MCD( X , sample-mode, variable-mode)
2: ksm ← sample-mode
3: kvm ← variable-mode
4: Yprojection,Uksm ,Ukvm ← Tucker-ALS(X )
5: X← Yprojection ×ksm Uksm ×kvm Ukvm

6: B← LiNGAM(X)
7: end procedure

end

It is worth noting how MCD exploits Gaussianity: unlike plain LiNGAM, we do not
forbid Gaussian noise totally. In the tensor-analytically reduced dimensions, we can
have Gaussian noise, which does not influence MCD, as long as we have non-Gaussian
noise in the non-reduced dimensions to identify the direction of cause-and-effect. Having
Gaussian noise in one dimension and non-Gaussian noise in the other is an empirical
necessity if time is involved (Hyvärinen et al., 2010).

3.5 Evaluation

3.5.1 Experiments with Synthetic Data

We have simulated a 3-dimensional tensor with dimensions cases, variables and time.
5000 cases with 5 variables and 50 points in time have been produced. For each case,
we have created the time series with a special case of a structural autoregressive model:

Xt = c +
P∑

p=0

φpXt−p + εt (3.26)

with
φp = B (3.27)

and
εt ∼ N , c ∼ SN (3.28)

where SN is a sub or super-Gaussian distribution. In contrast to the classical autore-
gressive model we start indexing at p = 0. This allows us to include instantaneous
and time-lagged effects. Furthermore, we allowed each of the nodes (variables) to have
either one or two incoming edges at random. In that manner we created three different
kinds of data sets, one with time-lag p = 1, one with time-lag p = 2 and one with
time-lag p = 3 to test the MCD algorithm with. Each kind we created 500 times, so
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that we could test the algorithm on a number of different data sets. We found the out-
put of the algorithm to be correct in 73.00 % of all the data sets with time-lag p = 1,
69.20 % with p = 2 and 68.20 % with time-lag p = 3. The decrease in accuracy can
be explained by the increasing complexity of the time series function that comes with
increasing p. The algorithm’s output was determined to be incorrect if there was any
type of structural error in the graph, that is false positive or false negative findings.
Due to this very conservative measure, we could achieve very high precision (ca. 99
%) and recall (ca. 96 %) when investigating the total number of correct classifications,
that is whether there is a cause-effect-relation between one variable and another (i.e.
a → b true or false). For pruning the edges in the LiNGAM part of the algorithm, we
used a simple re-sampling method (described in Shimizu et al. 2006).

3.5.2 Application to Real-world Data

To show how MCD works on real-world problems, we applied it to three different real-
world data sets. Where possible, we also applied an implementation of multi-trial
version of Granger Causality (MTGC) (Seth, 2010) to compare MCD’s results to some-
thing known to the community. Also, from all related methods, Granger Causality is
the only method where there is an extension available for multiple realisations of the
same process (Ding et al., 2006). However, the multiple realisations are interpreted in
terms of repetitive trials with a single subject or case. This suggests dependence due
to repetition instead of the desired independence of cases. For example, if we look at
a number of subjects and their medical treatment over time, we expect the subjects to
be independent from each other.

First of all, we applied MCD and MTGC to a data set on Diabetes (Frank and
Asuncion, 2010). Here, the known ground truth was Insulin→ Glucose. Glucose curves
and insulin dose were analysed for 69 patients - the number of points in time differed
from patient to patient, thus we had to cut them all to similar size. MCD successfully
found the causal ground truth, MTGC did not and resulted in a cyclic graph.

Secondly, we investigated a data set with two variables, 72 points in time, 16 different
places. The two variables were ozone and radiation with the assumed ground truth that
radiation has an causal effect on ozone.2 Again, MCD found the causal ground truth
and MTGC did not and resulted in a cyclic graph.

Finally, we tested the algorithm on meteorological data1. 10,226 samples have been
taken for how the weather conditions of one day cause the weather conditions of the
second day. The variables that were measured were mean daily air temperature, mean

2The causal ground truth was given, data taken from https://webdav.tuebingen.mpg.de/
cause-effect/

65

https://webdav.tuebingen.mpg.de/cause-effect/
https://webdav.tuebingen.mpg.de/cause-effect/


daily pressure at surface, mean daily sea level pressure and mean daily relative humidity.
The ground truth was that the conditions on day t affect the conditions on day t + 1

which was found by MCD. We did not apply MTGC here because of its conceptual
dependency to the time-dimension.

3.6 Related Work

The most well-known example of causality for time series is Granger Causality (Granger,
1969). Granger affiliates his definition of causality with the time-dimension. Statistical
tests regarding predictive power, when including a variable, detect an effect of this
variable. Granger Causality cannot incorporate instantaneous effects, which is often
cited as a drawback (Peters et al., 2012). MCD complements Granger Causality in
this. Likewise, this is the case for transfer entropy (TE) (Schreiber, 2000): proven
equivalent to Granger Causality for the case of Gaussian noise (Barnett et al., 2009),
TE is bound to the notion of time. TE cannot detect instantaneous effects because
potential asymmetries in the underlying information theory models are only due to
different individual entropies and not due to information flow or causality.

Entner and Hoyer make use of similarities between causal relations over time to
extend the Fast Causal Inference (FCI) algorithm (Spirtes, 2001) for time series (2010)).
In contrast to MCD, FCI supports the modelling of latent confounding variables and it
does not exploit the non-Gaussian noise assumptions.

The closest approaches to MCD are the approaches connecting LiNGAM to models
of the Autoregressive-moving-average model (ARMA) class. For example, a link was
established between LiNGAM and structural vector autoregression (Hyvärinen et al.,
2008, 2010) in the context of non-Gaussian noise. The authors focus on an ICA inter-
pretation of the autoregressive residuals. This was generalised for the entire ARMA
class (Kawahara et al., 2011). These methods can be seen as a LiNGAM-based gen-
eralisation of Granger Causality, since they can take into account time-lagged and in-
stantaneous effects. Similarly, the Time Series Models with Independent Noise, which
can be used in a multi-variate, linear, non-linear setting, with or without instantaneous
interactions (Peters et al., 2012). Instantaneous interactions can be observed either in
situations with resolution of observations not high enough to perceive a time lag be-
tween cause and effect or in systems where an effect appears at the same point in time
and without any time lag when the cause is changing (this is common for example in
quantum physics).

The main difference between our approach and these LiNGAM extensions (and the
other related work discussed earlier in this section) is the possibility to directly include
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a number of dimensions in the analysis using the MCD algorithm. Previous research
takes into account single time series, but does not allow abstracting away modes to
produce simple and clear cause-and-effect relations. Here, it is unclear how to analyse
multiple cases of multi-variate time series for causality. Only for Granger Causality
there are methods available for a direct comparison of performance.

3.7 Summary

In this chapter we have proposed MCD, a method for learning causal relations within
high-dimensional data, such as multi-variate time series, as they are typically recorded
in non-experimental databases. The contribution presented in this chapter is the
implementation of an algorithm that integrates linear non-Gaussian additive models
(LiNGAM) with tensor analytic techniques and opens up new ways of understanding
causal discovery in multidimensional data that was previously impossible. We have
shown how the algorithm relies on a statistical decomposition that flattens higher di-
mensional data tensors into matrices. This decomposition preserves the causal infor-
mation and is therefore suitable to be included in the structure learning process of
causal graphical models, where a causal relation can be generalised beyond dimension,
for example, over all points in time. Related methods either focus on a set of cases for
instantaneous effects or look at a single case for effects at certain points in time. We
have also evaluated the resulting algorithm and discussed its performance both with
synthetic and real-world data.

One reason why the model works so well is related to heteroskedasticity, that is the
dynamic variation of noise. It could be that the system of functional equations that
model the data generating process consist of Gaussian white noise and for every point
in time a different variance parameter applies to the Gaussian noise distribution. This
has been shown to introduce non-Gaussianity (Hyvärinen et al., 2010) and therefore
renders the causal relation discoverable. Is there a way to exploit this as a criterion for
causal discovery?
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4 | Flexible Causal Discovery

The last chapter showed how MCD exploits Gaussian noise by tensor-analytical dimen-
sionality reduction. We argued that dynamical systems can introduce heteroskedasticity
and heteroskedasticity results in non-Gaussian noise. The dimensionality reduction pro-
jected dimensions with random variables that follow a Gaussian noise distribution on
lower dimensionality inducing non-Gaussian random variables. Essentially, we are sim-
plifying the underlying Additive Noise Model (ANM). Thus, we remove heteroskedas-
ticity and turn it into a different functional form to support causal discovery. One could
argue that this is suboptimal. While reducing dimensionality we could loose informa-
tion that is potentially instructive for causal discovery. For example, with MCD we can
fabricate a case where the functional relation is periodically oscillating in a certain pro-
portion to its periodically changing noise distribution. In this case, the collapsed data
would be best described by a Gaussian (as opposed to a super-Gaussian), rendering the
true causal model not identifiable for MCD.

Instead of removing this information, we could deal with dynamical systems through
a generalisation of the notion of ANMs as presented in section 2.4 to account for het-
eroskedastic noise. Would such a generalisation improve performance? This thesis
suggests that it does. We will investigate the previously introduced notion of func-
tional ANM more closely. To do this, we need to take a step back from the previous
approach and abstract away from temporal dependence over random variables to in-
vestigate static, instantaneous effects. The dynamic aspects of the system enter the
functional equations through noise, only. We model this explicitly as an ANM with a
set of functional equations. The functional equations are comprised of a mean function
accounting for linearity, a homoskedastic GP component accounting for static levels
of noise and a heteroskedastic GP component accounting for changing levels of noise.
The interplay between these components allows us to discover cause and effect without
making too strong assumptions about the nature of the true underlying causal function
and noise, for example linearity or strictly additive noise. It also allows us to explicitly
formalise noise terms that dynamically change over the input space, as it would happen
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through heteroskedasticity that is caused by temporal dependence.
In the following, we will introduce relevant results for identifiability of causal direc-

tion and relate this directly to noise distributions. We will show how heteroskedasticity
and non-Gaussianity can play a role in both linear and non-linear settings. The work
generalises previous approaches to ANM in cases where only two continuous-valued
variables have been observed. An efficient algorithm will be designed. We will prove
correctness of its inference step for discovering causal directions. It will further be val-
idated through extensive experimentation and comparison with the state-of-the-art for
both artificial and real world data.

4.1 Different Kinds of Noise and Causality

Finding structures of cause and effect is fundamental for the process of scientific discov-
ery. The causal discovery problem amounts to developing computational mechanisms
capable of inferring such underlying causal structure from observational data. Given
this underlying structure, such mechanisms determine whether X causes Y or vice
versa. Typically, we assume a set of functional equations that model the underlying
causal structure generating the data (Pearl, 2000)

y = f(x,η) (4.1)

where f is a functional relation between the variables x and y and η is a noise term
often referred to as error.

Given a functional representation, existing work discovers the direction of cause and
effect in two ways:

1. by using graphical criteria and (conditional) independence testing (Pearl et al.,
1991; Spirtes et al., 2000; Spirtes, 2001), commonly known as constrained-based
causal discovery (section 2.4.1); and

2. by making assumptions on functions and drawing conclusions given observations
and assumptions (functional causal discovery, see e.g. Shimizu et al. 2006; Hoyer
et al. 2008a; Zhang and Hyvärinen 2009; Mooij et al. 2010; Peters et al. 2011;
Schaechtle et al. 2013; Janzing et al. 2012; Chen et al. 2014, the background is
described in section 2.4.2).

For some cases, purely constrained-based methods cannot output a unique solution.
This holds for the simplest non-trivial causal graph, viz., a graph with two nodes rep-
resenting two variables, which is the main focus of this chapter. To output a decision
or a Bayesian posterior belief with regards to the direction of cause and effect, we need
resort to functional causal discovery.
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The idea behind functional causal discovery is that we can infer the direction of
cause and effect if we make certain assumptions on the data generating process. One
rather strong assumption is that noise is additive, resulting in a set of equations of the
form:

y = f(x) + η. (4.2)
The intuition behind exploiting this functional assumption is the following (Hoyer et al.,
2008a; Kpotufe et al., 2014):

a) y can be computed as an optimally fitted function (f1) of x plus a noise term
independent of x, that is x ⊥⊥ η,

b) x cannot be computed as an optimally fitted function (f2) of y plus independent
noise.

This assumption is statistically testable: using the residuals η1 = y − f1(x) and η2 =

x− f2(y). We decide x→ y if η1 ⊥⊥ x but η2 6⊥⊥ y. Reversely, we decide y→ x.
Even in the very restricted case of purely additive noise, we encounter problems: if

we choose f to be a linear function and assume the noise to be Gaussian distributed,
then b) is violated. As a result, in a linear setting we need the noise to be non-Gaussian
to ensure the direction of cause and effect can be discovered (Shimizu et al., 2006;
Lacerda et al., 2008; Hyvärinen et al., 2010; Kawahara et al., 2011; Schaechtle et al.,
2013). Alternatively, if we choose f to be non-linear, most approaches do not rely
directly on the noise distributions. In fact, different kinds of non-linearity alone can
render the relation in (4.2) discoverable (Hoyer et al., 2008a; Zhang and Hyvärinen,
2009; Mooij et al., 2010; Peters et al., 2011).

What happens if the noise is not purely additive anymore? The most important
example for this is heteroskedastic noise, where the variability of the noise distribution
changes over the domain of the cause. Although ubiquitous in empirical data acquisi-
tion, heteroskedasticity has not gained much attention in existing work. One reason for
this could be that the mathematics of the soundness on functional causal discovery is
still in its infancy and heteroskedasticity complicates the matters further. Existing work
abstracts away from heteroskedastic noise and input dependent changes in the causal
mechanism, for example in biological systems that have been tuned to their input dis-
tributions through evolution (as pointed out in Mooij et al. 2010). The problem we see
here is that we ignore a large fraction of existing real world problems (e.g. some bio-
logical systems) by excluding heteroskedastic scenarios from the set of problems where
we desire to discover cause and effect.

The contribution of this chapter is that it introduces a criterion for causal infer-
ence that allows noise to be heteroskedastic, thus reflecting different variability of noise
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in the data. Also, we present a new causal data generative process and we offer im-
provements on inferring causal direction. Our focus is on the two-variable problem
where both variables are continuous-valued. We allow latent confounders only in the
form of heteroskedastically dependent noise which is an instance of latent confounders
manifested as dependent error variables (Shimizu and Bollen, 2014). The resulting al-
gorithm, FlexCD (Flexible Causal Discovery), covers a wide variety of settings because
the assumed noise can be comprised of both homoskedastic and heteroskedastic compo-
nents. These settings include scenarios with different measurement noise and different
underlying data generating functions. The interplay of both components is key for in-
ferring cause and effect. We also present a Bayesian model, which produces posterior
probability distributions given a change in causal variables.

4.2 Theory

4.2.1 Functional Causal Discovery and Noise

Existing frameworks for causal discovery exploit different assumptions to discover cause
and effect. One such assumption is that the functional relation is linear and the noise is
not Gaussian distributed. The Linear Non-Gaussian Acyclic Model (LiNGAM) (Shimizu
et al., 2006) relies on the Independent Component Analysis (ICA). Within certain set-
tings of ICA, one optimises negentropy (2.11) as a measure of non-Gaussianity. This
can be approximated with a contrast function (e.g. eq. (26) in Hyvärinen and Oja
2000) where one can compute the contrast for each component simultaneously with the
following matrix:

G(D>W) =
1

a1
log cosh a1D>W. (4.3)

D is the two column data matrix comprised of the vectors x and y and 1 ≤ a1 ≤ 2 to
approximate negentropy. W is a constant matrix that transforms the data into a space
where the signals are statistically as independent from each other as possible. With a
permutation-optimisation algorithm, this matrix is permuted to a lower triangular ma-
trix that represents a directed acyclic graph. Entries in this matrix are linear regression
coefficients.

For the case of Gaussian noise, a kind of non-linearity is required in the underlying
data (Peters et al., 2011). We differentiate between non-linear and post-non-linear
settings.

In a non-linear setting, GP have been proposed to account for the non-linearity that
is needed to allow the discovery of cause and effect within the context of the ANM-
algorithm (Hoyer et al., 2008a; Peters et al., 2014). ANM relies on conditions a) and b)
from section 4.1. The method of probabilistic latent variable models for distinguishing
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between cause and effect also uses GPs for the functional relations between two variables
by exploiting the complexity of the (conditional) probability distributions (Mooij et al.,
2010).

In a post-non-linear setting we apply a non-linear distortion to a non-linear function
plus additive noise (Zhang and Hyvärinen, 2009). The function relies on (i) the assump-
tion that the post-non-linearity is invertible and (ii) statistical testing of conditions a)
and b) of section 4.1. Also, information theoretic decision criteria are available for
causal discovery (Janzing et al., 2012; Chen et al., 2014). These are based on the idea
of uncorrelatedness between the two actual processes that generate p(x) and p(y|x).

4.2.2 Heteroskedastic Gaussian Processes

Some of the functional causal discovery methods explained above resort to GPs for
regression (section 2.2.3). In a standard GP model one assumes that the output is
generated by a simple ANM (4.2) with η ∼ N (0, σ2). Instead of modelling f directly,
f is assumed latent and assigned a GP prior given a mean and covariance function
f(x) ∼ GP(m(x), k(x,x′)), where m(x) is a function of the mean of all functions that
map to yi at xi. Often, this mean function is assumed to be 0. For this chapter, we
will not make this common assumption. It is simple to assume a global linear model to
describe the mean of the GP, e.g. by letting m(x) be a linear combination of functions.
f is now defined as

f(x) = m(x)>b+ fµ=0(x) (4.4)
where the noise is modelled with a zero-mean with GP fµ=0(x) ∼ GP(0, k(x,x′)) and
b ∼ N (b,B). The residuals of a global linear model are described with a zero-mean
GP. Typically, for causal discovery we assume homoskedastic Gaussian noise (e.g Hoyer
et al., 2008a). However, recently, heteroskedastic noise has been introduced in the
form of a Variational Heteroskedastic Gaussian Process (VHGPR) (Lázaro-Gredilla
and Titsias, 2011). In the context of (4.2), a heteroskedastic GP is a modification of
GP as follows:

f(x) ∼ GP
(
m(x), kf (x,x′)

)
, ηi ∼ N

(
0, r(x)

)
, (4.5)

thus allowing for a change of the noise distribution in the observations x parametrised
as:

r(x) = eg(x) (4.6)
with g(x) ∼ GP(µ0, kg(x,x

′)) to ensure that the noise variance is positive. Note that
although marginal likelihood and predictive density are not analytically tractable, they
can be approximated with a variational Bayesian method (section 2.3).
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Figure 4.1: a) the heteroskedastic causal data generating process, when x→ y. b) the
causal data generating process, when y→ x. Observable variables are depicted in grey,
hidden ones in white. A squared node indicates an unknown vector of parameters.

4.3 FlexCD: A New Model and Algorithm

In this section, we present a novel, generalised model for causal discovery. The causal
model builds on two observations about assumptions that are made in the ANM related
literature.

Firstly, the algorithm for ANM (Additive Noise Model) (Hoyer et al., 2008a; Peters
et al., 2014) assumes homoskedastic noise, abstracting away from scenarios where the
residuals are allowed to have changing distributions. If the noise is not stable over
the domain of a variable, ANM cannot cover it. This leads us to reformulate the
functional equation for cause and effect which describes the hypothetical underlying
data generating process (not the approximation described below for causal discovery):

y = f1(x) + η1(x, ϕ) (4.7)

where an unknown vector of parameters ϕ governs the change in the noise over the input
domain. The hypothesis induces a restriction on the noise. We assume a deterministic
function η1 that maps x to the noise that is added. For reasons that will become
clear below, we assume that the latent variable ϕ is Gaussian distributed and models a
Gaussian prior on the space of possible noise distributions. This formulation resembles
the one presented in (4.2), but it is not strictly additive anymore, since it gives rise to
non-additive error terms, for example when η1(x, ϕ) = x ∗ ϕ, where ϕ can be drawn
out of any Gaussian. We assume ϕ to be independent from x whereas the actual noise
distribution is dependent of x (see Fig. 4.1).

This leads to the following constraints that we deploy for causal discovery:

x ⊥⊥ ϕ
x 6⊥⊥ ϕ | e where e ∼ η

(4.8)

Similarly, we model the anti-causal1 direction with x = f2(y) + η2(y, θ).
Secondly, the work of Mooij and colleagues (2010) assumes that the distribution

1by anti-causal, we simply mean the non-causal direction, that is, if X → Y then we mean the
direction from Y to X.
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of the cause is “independent” from the causal mechanism, but as the authors note
themselves, this assumption is often violated in biological systems (where the causal
mechanisms may have been tuned to their input distributions through evolution).

We weaken the assumptions made in the ANM related literature by modelling the
space of possible functions conditioned on the data with GPs. Deploying GPs for causal
discovery is not new in this context but unlike previous research, we do not explicitly
require a certain functional form such as linearity or non-linearity. More precisely,
FlexCD provides a criterion that accounts for the possibility of linearity, non-linearity,
homoskedastically distributed noise and noise distributions that change.

To derive why and how FlexCD works, we need to be aware of the fact that the
error distribution and the parameters that govern the heteroskedasticity cannot be
observed. Let ϕ be the prior on a set of deterministic noise functions. Assume that
this prior is independent of x and governs the relation between input domain and noise
with a finite set of parameters. Knowing the value of ϕ would result in knowing the
function parameters that govern the noise. This would render the causal part of the
model x → η1(x, ϕ) deterministic. For readability, we will write η1 for η1(x, ϕ). This
determinism can be exploited by taking a parametric view on the non-parametric model.
Let α and β be finite sets of parameters corresponding to the noise-free latent function
values at the training inputs for a GP (see Rasmussen and Williams, 2006, chapter 5).
This leads to the following key assumption: assume that α and β, if optimally fit to
the data, correspond to the function parameters with prior ϕ and determine the noise
in the causal data generating process. In a non-parametric setting, the dependencies of
these sets are x → α → y in the causal direction and y → β → x in the anti-causal
direction (see Fig. 4.2).

Janzing and colleagues (2012) show that, for a deterministic functional relationship,
if x causes η, then:

KL(p(x)||Ex) ≤ KL(p(η)||Eη) (4.9)
where KL(q||p) denotes the Kullback-Leibler divergence. This does not hold for any
anti-causal deterministic functional relation. Ex is chosen by Janzing and colleagues as
a reference distribution where they define E to be an exponential manifold.

Definition (Exponential Manifolds (Janzing et al., 2012)). Let Ω ⊆ Rd and assume a
finite-dimensional vector space V of functions f : Ω → R is given. Then, V defines an
exponential manifold E by the set of probability densities that can be written as

p(x) ∝ eV (x). (4.10)

For any density p, KL(p||E) denotes the infimum of KL(p||q) with q ∈ E . If there is a
q with KL(p||E) = KL(p||q), it is called projection of p onto E .
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Figure 4.2: The non-parametric best guess for β, α for the parameters that govern how
the noise of the causal data generating process between x and y varies over the input
domain. a) how we treat the parameters in the direction x → y. b) how we treat the
parameters in the direction y→ x. β, α correspond to f, g in the VHGPR model.

Unlike Janzing and colleagues, we are interested in a latent approximation of a
finite set of parameters that determine the noise. We therefore define a suitable set of
reference distributions.

Definition (Latent Exponential Manifolds). Let Ω and V be defined as before. We put
a prior belief on the space of deterministic functions that govern the heteroskedasticity
in the data generating process. With the help of this prior we treat the space of possible
parameters as hidden values themselves. We can define for latent distributions what
(4.10) is for observed distributions:

p(α) ∝ Ey[eV (α|y)]. (4.11)

Given this prior, we compute the expected values of the parameters that we treat as
values of a hidden variable. This is illustrated in Fig. 4.2.

Given the two data generating models we see that we must have one of two deter-
ministic relationships. Either x→ η1 or y→ η2 (see Fig. 4.1).

Theorem 4.3.1. Whenever x→ y is the ground truth, then it holds that:

KL(p(β)||Eβ) ≤ KL(p(α)||Eα) (4.12)

where α and β are defined as the optimal parameters for the functions for the underlying
causal data generating process as defined in (4.7).

Proof: Due to (4.9) our definition of latent exponential manifolds, the following holds
when α and β are optimally fit and given the above described determinism prevails:

KL(p(x)||Ex) ≤ KL(p(α)||Eα) (4.13)

and
KL(p(α)||Eα) ≤ KL(p(y)||Ey). (4.14)

This holds since α 6= ϕ. We can read from the graph that represents the nonparametric
estimation that in this GP setting, α blocks the path between x and y. The anti-causal
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hypothesis indicates:
KL(p(y)||Ey) ≤ KL(p(β)||Eβ) (4.15)

and
KL(p(β)||Eβ) ≤ KL(p(x)||Ex). (4.16)

However, from (4.7), the described independencies and the deterministic nature of the η1
function, (4.15) is violated. Consequently, due to transitivity, the theorem is proven. �

4.3.1 The FlexCD Algorithm

How can we deploy inequality (4.12) so that it is useful for causal discovery? We need to
find a formulation that will not only guarantee (4.12) to hold, but that is also suitable
to model (4.7). Therefore, we choose the causal process to be modelled via GPs with a
simple modification of (4.4):

y = f(x) + η = m(x)>b+ fµ=0(x) + η (4.17)

where fµ=0(x) ∼ GP(0, kf (x,x′)) and η ∼ N (0, r(x)) with r(x) as in (4.6). The first
summand in the right-hand side of the equality accounts for any linear relationships; we
will only consider the space of simple linear functions for m(x). The second summand
covers non-linear relationships. The third summand models noise. If the variance
parameter r(x) is stable, η is Gaussian. However, if r(x) is changing, η gives rise to
heteroskedastic noise.

Previous research argued that heteroskedasticity is one possible scenario that di-
rectly implies non-Gaussianity in the noise (Hyvärinen et al., 2010). Therefore, het-
eroskedasticity renders the causal direction discoverable in the case of a linear functional
relationship as underlying ground truth. This case is not restricted to independent noise
(see, for example, the work on dependent noise through latent confounders (Hoyer et al.,
2008b; Shimizu and Bollen, 2014)). The linear case can be covered by (4.17) through
the linear mean function. In (4.17), the GP parameters f and g correspond to α in (4.7)
(see Fig. 4.2). As Lázaro-Gredilla and Titsias (2011) showed, f and g can be learned
with a variational method. Their variational approximation is an ideal choice for mod-
elling KL(p(α)||Eα) = KL(p(f ,g)||Ef ,g), as it approximates the intractable expectation
(4.11) and provides parallel semantics to information geometric decision criteria based
on KL. The variational approach aims to find the best factorised variational densities
to model p(f ,g). The resulting KL is equivalent to our definition of latent exponential
manifolds. (4.12) becomes:

KL(q(fβ)q(gβ)||p(fβ,gβ|x))

≤ KL(q(fα)q(gα)||p(fα,gα|y)).
(4.18)
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We can give an intuitive interpretation of why this should indicate the causal direction.
We calculate the KL divergence from the product of individual distributions of f and g

to their joint posterior distribution. We therefore prefer the regression in which f and
g are more independent as the plausible causal direction. As a result, we prefer the
direction in which the noise is less heteroskedastic. This is in line with ANM related
approaches: we prefer the direction in which the noise depends in a less complicated
way on the data generating function.

We account for the linear parts of the causal mechanism as follows. Whereas a
normal GP assigns a Gaussian prior to the linear coefficients b, we resort to ICA.
We observe that (4.3) is a good estimator for the negative log-likelihood of the ICA
model (Murphy, 2012):

G(D>W) ≈ −log p(W). (4.19)
We can then minimise G to subsequently permute independent components to compute
the linear coefficients of our simple mean functions (Shimizu et al., 2006). This results
in an estimation for the coefficients of the linear functions relating x and y in both
causal directions.

m(x)>1 b1 = b1x + c1

m(y)>2 b2 = b2y + c2
(4.20)

For simplicity, we will drop the constants c1 and c2. Since (4.19) estimates the log-
likelihood of our linear causal coefficient, we replace the Gaussian prior on the mean
functions of the GP with this likelihood.

Including the linearity, as in the permutation of W, the evidence described in (2.15)
which we approximate with the second line of (4.18) becomes:

pα(y|x) =

∫∫
p(y|f ,x) p(f |W,x) p(W) dfdW; (4.21)

the evidence for the GP in the opposite direction becomes:

pβ(x|y) =

∫∫
p(x|f ,y) p(f |W,y) p(W) dfdW. (4.22)

The parameterisation of f in (4.21) differs from the parameterisation of f in (4.22) due
to the choice of the best β and α. Both equations above are VHGPR models but
instead of a zero-mean GP, we deploy (4.20) as the mean function to model possible
causal linearity in the data, therefore the dependence on W. For readability we omit g.
By rearranging both sides of (4.18), the evidence (4.21,4.22) has a lower bound in each
side for any choice of the variational probability densities q(f) and q(g) (Lázaro-Gredilla
and Titsias, 2011).

We are now left with a number of optimisation problems. We need to find the
optimal permutation of W which we need to combine with the VHGPR optimisation
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for both hypotheses. In the following, we introduce an optimisation function that can
be used for gradient based minimisation of all these optimisation problems in parallel.

F (α, β,W) = KL(q(fα)q(gα)||p(fα,gα|y))

+ KL(q(fβ)q(gβ) ||p(fβ,gβ |x))

+ 2G(D>W).

(4.23)

The model weights two components that allow causal discovery in the context of addi-
tive noise (Peters et al., 2011): (a) the non-linear functional relationships and (b) the
evidence for linearity and for the distance from Gaussianity in the noise as it can result
from heteroskedasticity.

We minimise (4.23) with respect to the hyper-parameters β and α parameterising
(4.21) and (4.22), as well as the ICA-transformation matrix W. We can do this in a
gradient-descent based setting, since critical parameters do not depend on each other
whilst we take the derivatives. Notes on covergence can be found in Appendix B.

α and b1 parameterise f and g for the VHGPR that is fitted in the direction x→ y,
β and b2 do the same for the opposite direction. Minimising the first summand of (4.23)
is equivalent to maximising the lower bound of (4.21). It also guarantees an optimal
and tractable approximation for fα,gα in the second line of the decision criterion (4.18).
Minimising the next summand is equivalent to maximising the lower bound of (4.22).
It also provides an optimal and tractable approximation for fβ,gβ in (4.18).

The last term approximates p(W) in (4.21) and (4.22), weighting this informa-
tion into the discovery process. This has been proven to be useful for causal discov-
ery (Shimizu et al., 2006). As the first two lines of (4.23) indirectly depend on the
last line, we perform the permutation steps during every iteration of the optimisation
(algorithm 3, steps 6 to 9; analogue to Shimizu et al., 2006). We can further manipulate
the first two summands to get a practical variational expression that allows to optimise
efficiently. Details of the variational inference are omitted here, but are described in
the work of Lázaro-Gredilla and Titsias (2011).

To determine the causal direction we check (4.18). The entire process of fitting the
model and determining the causal direction is summarised in algorithm 3. Steps 5-8
are analogue to the LiNGAM discovery algorithm. Since we assume the two variable
case, we can look up the linear coefficients of (4.20) in line 9 and 10.
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The computation required for steps 5-8 and 13 is negligible for the two variable
case. The complexity of an iteration amounts to twice the complexity of computing the
VHGPR approximation resulting in a complexity of O(n3), where n is the number of
observations (see Lázaro-Gredilla and Titsias 2011).

Algorithm 3. Flexible Causal Discovery
1: procedure flexCD( Xraw)
2: X← whitening(Xraw)
3: β0, α0,W0 ← initialise-β, α,W0

4: while F not converged do . Start, iterate over i

5: W̃← arg min
perm(Wi)

∑
i

1
|Wi|

6: W̃∗ ← divide rows of W̃ by corresponding
diagonal element

7: B̂← I− W̃∗

8: B← arg min
perm(B̂)

∑
i≤j B̂2

ij

9: bi1 ← B2,1 . Assign linearity parameter eq. (4.20)

10: bi2 ← B1,2

11: compute ∇F (αi) . partial derivatives (4.23),line 1

12: compute ∇F (βi) . partial derivatives (4.23), line 2

13: compute ∇F (Wi) . (4.23), line 3

14: αi+1,βi+1,Wi+1 ←gradient-descent- step(∇F (αi,βi,Wi))
15: check joint-convergence
16: end while
17: if eq. (4.18) holds then
18: assign x→ y

19: else
20: assign y→ x

21: end if

22: end procedure

end

4.3.2 Practical Considerations

For computing G we mean-centre the data to make the estimation of W simpler and
better conditioned. We also whiten the data with singular value decomposition (see
Hyvärinen and Oja, 2000, section 5.2). Since the components are used as the coefficients
of a global linear model underlying the GP, we assume that the global model of the data
generating process follows an ICA data model, and that the expectations are evaluated
correctly (in line with previous research on fixed-point ICA (Hyvärinen, 1999)). To
compute G with a gradient-based approach we have to compute G in two steps, one
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for each row. We impose a Lagrangian constraint that each row is of unit length and
subsequently de-correlate the rows with each other. With a normalisation step during
each iteration we project each row back onto the constraint surface.

We use the same kernels kf and kg within VHGPR for both pα(y|x) and pβ(x|y).
For kf we choose a sum of a squared exponential covariance function with isotropic
distance measure, plus a covariance function for a constant function. For kg we choose
a sum of a squared exponential covariance function with isotropic distance measure
plus independent noise (we will not delve into the details of covariance functions here,
for a good explanation, see Rasmussen and Williams, 2006). Although we choose the
same covariance function for both pα(y|x) and pβ(x|y), we learn two sets of parameters
each, that is we parametrise kf and kg twice. To initialise the parameters, we run a
homoskedastic GP. For simplicity, we use a gradient descent algorithm to optimise
F (α, β,W). The convergence properties can be derived from convexity of the GP and
computation of ICA plus practical considerations presented above. A typical run takes
ca. 5 seconds to optimise on an i7CPU.

4.4 Evaluation of FlexCD

4.4.1 Artificial Data

For the evaluation with synthetic data, we considered two different functional relations:

f1(xi) = sin(a1xi) +
√
xi + e

f2(xi) = vi sin
(
(a1xi) +

√
xi
)
) + (1− vi)a2xi + ci + e

(4.24)

where a1 and a2 are parameters, ci is a constant and vi is an entry in the vector v. v

is a boolean vector that enables us to combine the two functions, creating “regions” of
ones and zeros v = {1, 1, 1, 1, 0, 0, 0, 0, 1, ...}. ci is an entry in the vector c that adds
constants in order to provide a seemingly smooth functional relationship (illustrated in
Fig. 4.3). This models a change in the causal mechanism. For generating test data
sets, we made the following choices: a1 and a2 were varied for each data set. a1 is
drawn from a uniform distribution between 0.5 and 1.5 and a2 from a Gaussian one.
x is also uniformly distributed between 0 and 30. To the functional relationships we
added either homoskedastic or heteroskedastic noise. For the homoskedastic case the
noise is Gaussian. For the heteroskedastic case, we simulated noise with a Gaussian
distribution where the variance parameter is changing over the domain of the cause.
This results in a total of four experimental conditions: two functions × two different
kinds of noise. For each condition we created 50 data sets with 500 data points each
resulting in a total of 200 synthetic data sets.

80



x

y

a)

x

y

b)

x

y

d)

x

y

c)

Figure 4.3: Data generated with function f1 (a) and b)) and f2 (c) and d)) from (4.24).
Homoskedastic noise is added in a) and c). Heteroskedastic noise is added in b) and d).
Data and actual functions are depicted in blue, FlexCD’s best guess in bright green.
The actual noise is light red, FlexCD’s estimation of the noise is light green, overlap
of both is green-grey. FlexCD inferred the correct direction of cause and effect in all
examples that we chose to illustrate. FlexCD estimates the data generating function
and the noise well, depicted through the agreement of actual and estimated function
and noise.
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Table 4.1: Accuracy (in percent) of finding the true causal direction in 200 different
data sets. f1 and f2 are described in (4.24). Either homoskedastic and heteroskedastic
noise is added.

FlexCD IGCI LiNGAM ANM GPI
f1, hom. 100 <48∗ <48∗ 100 <48∗

f1, het. 94 <48∗ 48 <48∗ 100
f2, hom. 94 76 78 100 96
f2, het. 84 64 58 82 100
Overall 93 <48∗ 48 70 84

We compare our results with a benchmark consisting of Information Geometric
Causal Inference (IGCI) (Janzing et al., 2012), the linear non-Gaussian acyclic model
(LiNGAM) (Shimizu et al., 2006), the additive noise model (ANM) (Hoyer et al., 2008a)
and the probabilistic latent variable model for distinguishing between cause and effect
(GPI) (Mooij et al., 2010). The background of the benchmark methods has been dis-
cussed in the section about functional causal discovery. FlexCD obtains the best results
in the entire benchmark (see tab. 4.1). We have marked results that are significantly
lower than chance with an asterisk. Such results arise because of the way the data is gen-
erated (4.24). This happens for example with ANM in the case of a non-linear function
with heteroskedastic noise. The ANM depends on the assumption that where x → y,
y can be computed as a function of x plus a noise term independent of x, whereas x

cannot be computed as a function of y plus independent noise. We generated the data
in a way that the noise increases with x. That means we create a dependency that
ANM takes as evidence for an inverse causal direction, introducing a strong bias to
the result. Something similar happens to LiNGAM in the case of a non-linear function
with homoskedastic noise. We use a sine-like data generating mechanism here. If we
flip cause and effect, we could fit a line between the two, providing a reasonable guess
(averaged over all data points). Considering everything which differs from sinx = 0 as
noise, the sine oscillations will provide “noise” that is distant from Gaussian. LiNGAM
interprets this as a linear relationship with non-Gaussian noise, again introducing a
strong bias towards the inverse direction of cause and effect.

Tab. 4.2 summarises the average runtime for one of the above data sets. Note that
for these experiments, the parameters for our code as well as for the benchmark are

Table 4.2: Average runtime in seconds.

FlexCD IGCI LiNGAM ANM GPI
250.88 0.001 0.11 7.62 231.10
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tuned so that the runtime is longer than typical for using either algorithm out of the box.
We see that the two algorithms that perform best, FlexCD and GPI, are significantly
slower in this experimental configuration than the others. We also see that FlexCD is
only minimally slower than GPI but exhibits a significant performance gain. Note that
all algorithms come with a number of free parameters, thus, a complete comparison of
performance, runtime and parameter configuration is not trivial. In general, we have
tuned the parameters for all algorithms in a way that the performance in terms of causal
discovery is optimal.

Matlab code and re-producible experiments can be found in www.schaechtle.com/

Software.html.

4.4.2 Real World Data

We tested our algorithm on 81 real world data sets2. These data were selected out of
88 cause-effect pairs, where we excluded data sets with binary variables and data sets
that were comprised of more than two variables. To increase computational speed we
subsampled 500 datapoints. Additionally, we ran the experiments again subsampling
100 datapoints to show that FlexCD is more robust than previous alogrithms with less
observations available. The ground truth was provided by the database owners. FlexCD
outperformed all other algorithms (see tab. 4.3). We believe this result is partly due
to heteroskedasticity being ubiquitous in empirical data.

We will elaborate on this last point about heteroskedasticity by discussing two cause-
effect pairs where FlexCD found the correct causal direction. In Fig. 4.4 a) the causal
ground truth is that the altitude of where a temperature measurement is taken has a
causal influence on the temperature measured. This is an inherently heteroskedastic
problem. We know that maritime regions with near-zero altitude have milder seasonal
differences, then for the next 1000 meters, noise will increase with distance from the
sea. Noise will decrease in high mountain areas where it is very cold. Therefore, we
would expect noise to be lower the higher the altitude gets.

In Fig. 4.4 b) the causal ground truth is that the age of an abalone snail (as indicated
by the number of rings in the shell) has causal effect on its length (as in the longest shell
measurement). Noise is increasing with the age of the snail. This makes sense, since
the additive noise term summarises all latent confounders affecting the measurements.
Without any further knowledge, we can assume that the older the snail, the higher
the chance that something affects the growth of the snail over the course of time and
confounds our measurement.

2https://webdav.tuebingen.mpg.de/cause-effect/
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Figure 4.4: Heteroskedasticity within the cause-effect pair database. a) The causal
ground truth is that the altitude of a temperature measurement (x-axis) has a causal
influence on the temperature measured (y-axis). b) depicts the causal effect the age
of an abalone snail (as indicated by the number of rings in the shell, x-axis) has on
its longest shell measurement (y-axis). In both graphs, we plot FlexCD’s prediction in
form of a red line and it’s guess for the estimated noise in grey.

For both examples, FlexCD models the heteroskedastic nature of the noise ade-
quately.

Table 4.3: Accuracy (in percent) and standard deviation of finding the true causal
direction in 81 real world data sets where n is the number of samples used per data set
and w indicates whether or not (3,7) the weighting suggested by the database owners
was taken into account.

n w. FlexCD IGCI LiNGAM ANM GPI
100 7 73 5 60 3 66 1 53 3 60 4
100 3 71 5 66 4 63 1 57 4 66 4
500 7 75 2 66 3 65 1 61 1 68 2
500 3 74 2 72 3 61 1 67 2 74 2

4.5 Summary

FlexCD is a novel causal discovery method that allows noise to be heteroskedastic,
reflecting different variability of noise in the data. The model reflects changes in the
causal mechanism given the changes in the cause. The implementation of the model
provides a competitive predictive capability, due to a state-of-the-art regression model in
use. FlexCD offers significant improvements on inferring causal direction in comparison
with other approaches for functional causal discovery. The method does especially well
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in scenarios where the prior assumptions of previous approaches such as LiNGAM and
ANM cause those methods to fail. Its implementation is efficient due to the variational
algorithm deployed.

As opposed to the approaches of the previous chapter, we made the dynamics ex-
plicit. We have encoded assumptions about dynamically changing noise into the func-
tional equations. To do this, we have assumed a latent heteroskedastic noise component
that is conditioned on the data.

How could we weaken the assumptions of this approach? Is there a way to let the
data speak for themselves with regards to the existence of latent structures?
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5 | Abstract Dynamical Causality
& Probabilistic Programming

In the previous chapter, we have made the assumption of a heteroskedastic noise com-
ponent and exploited it for causal discovery. We did not discover this component in a
data-driven way.

The data-driven discovery of latent components is one of the main tasks of machine
learning (see e.g. Bishop, 2006, for a latent variable perspective on various kinds of
machine learning). Ideally, we would like to include the discovery of latent components,
such as heteroskedastic noise, into the causal discovery process instead of restricting
ourselves to relations between observable entities. In fact, this is the main focus for
many applications of causal reasoning. For example, we define medical diagnosis as
“The act or process of identifying or determining the nature and cause of a disease
or injury through evaluation of patient history, examination, and review of laboratory
data.” (The Free Dictionary: Diagnosis, 2015). The “nature or cause” is often not
observable. All we can observe are the symptoms over the course of time.

In diagnosis, we find symbolic representations for such latent causes that form our
hypothesis space such as as “Disease X” or “Condition Y ”. Symbolic description of
continuous-valued data domains is hard as it entails intelligent abstraction from a set
of coordinates in Rn to infer the structure that causes observations to take a certain
shape. The abstraction itself relies on sound empirical inference which, as we showed
in previous chapters (2 and 4), is best done with GPs. Symbolic reasoning on the
other hand is native to probabilistic programming. A generative causal probabilistic
programming framework that deals with GP is therefore desirable.

In this chapter, we introduce a probabilistic programming technique that provides
the semantics necessary for such reasoning. We will present GP memoization (gpmem)
as a linguistic representation of a Stochastic Process (SP) for GPs. We will implement
this into a framework of probabilistic programming. We then aim to demonstrate the
expressiveness of the technique and show how it can solve hard problems. Examples
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for such hard problems are regression in the presence of outliers, learning of symbolic
expressions for continuous-valued time series, data-driven diagnosis with clinical deci-
sion making and Bayesian Optimization. gpmem introduces a statistical alternative to
standard memoization which refers to the storing of previously computed values for
functions. Our contribution is threefold:

• we introduce an efficient implementation of gpmem in form of a self-caching wrap-
per that remembers previously computed values;

• we illustrate the statistical emulator that gpmem produces and how it improves
with every data-point that becomes available; and

• we show how one can solve hard problems of state-of-the-art machine learning
related to GP using gpmem in a Bayesian fashion with only a few lines of Venture
code.

gpmem is an extension of previous approaches to stochastic memoization. Previ-
ous approaches such as the one introduced for Dirichlet Processes in the Church lan-
guage (Goodman et al., 2008) deal with the discrete-valued domain. We introduce
memoization for the continuous-valued domain. This is important for problems of re-
gression and optimization where target functions should not be artificially discretized.

We present results that were previously not available. gpmem allows us to implement
causally structured hyper-priors, which has never been done in probabilistic program-
ming. Furthermore, we use it to discover latent causal structure for kernel composition.
This was not available before in a Bayesian fashion. Finally, we use gpmem for Bayesian
optimization with Thompson sampling which is also novel.

The chapter is structured as follows, we will first provide the theory on memoization.
We will explain programming in Venture and GPs in Venture (section 5.1). We introduce
gpmem and its use in probabilistic programming and Bayesian modelling (section 5.2).
Finally, we will show how we can apply gpmem on problems of causally structured
hierarchical priors for hyper-parameter inference (section 5.3), structure discovery for
Gaussian Processes (section 5.4) and Bayesian Optimization (section 5.5) including
experiments with real world and synthetic data. Code to reproduce all the experiments
is available1.

1currently, one can download the code under https://github.com/Schaechtle/matrixGP. How-
ever, this will soon be migrated to http://probcomp.csail.mit.edu/venture/.
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5.1 Gaussian Processes in Probabilistic Programming

Probabilistic programming could be revolutionary for machine intelligence due to uni-
versal inference engines and the rapid prototyping for novel models (Ghahramani, 2015).
Venture, for example, supports inference in terms of empirical gradient-ascent, MCMC
and variational approximation. This accelerates the design and testing of new models
as well as the incorporation of complex prior knowledge which currently is a difficult
and time consuming task. Probabilistic programming languages aim to provide a for-
mal language to specify probabilistic models in the style of computer programming and
can represent any computable probability distribution as a program. In this work, we
will introduce new features of Venture, a recently developed probabilistic programming
language. We consider Venture the most compelling of the probabilistic programming
languages because it is the first probabilistic programming language suitable for general
purpose use (Mansinghka et al., 2014). Venture comes with scalable performance on
hard problems and with a general purpose inference engine. The inference engine de-
ploys Markov Chain Monte Carlo (MCMC) methods (for an introduction, see Andrieu
et al., 2003). MCMC lends itself to models with complex structures such as probabilis-
tic programs or hierarchical Bayesian non-parametric models since they can provide a
vehicle to express otherwise intractable integrals necessary for a fully Bayesian repre-
sentation. MCMC is scalable, often distributable and also compositional. That is, one
can arbitrarily chain MCMC kernels to infer over several hierarchically connected or
nested models as they will emerge in probabilistic programming.

One powerful model rarely treated in probabilistic programming languages are GPs.
In addition to our use of GPs for flexible causal discovery (chapter 4), GPs are gaining
increasing attention for representing unknown functions by posterior probability dis-
tributions in various fields such as machine learning (Rasmussen and Williams, 2006),
signal processing (Clifton et al., 2013), computer vision (Kemmler et al., 2013) and bio-
medical data analysis (Shepherd and Owenius, 2012). Making GPs available in proba-
bilistic programming is crucial to allow a language to solve a wide range of problems.
Hard problems include but are not limited to hierarchical prior construction (Neal,
1997), Bayesian Optimization (Snoek et al., 2012) and systems for inductive learn-
ing of symbolic expressions such as the one introduced in the Automated Statistician
project (Duvenaud et al., 2013; Lloyd et al., 2014). Learning such symbolic expres-
sions is a hard problem that requires careful design of approximation techniques since
standard inference method do not apply.
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5.1.1 Memoization

Memoization is the practice of storing previously computed values of a function so that
future calls with the same inputs can be evaluated by lookup rather than recomputation.
Research on the Church language (Goodman et al., 2008) pointed out that although
memoization does not change the semantics of a determinstic program, it does change
that of a stochastic program. The authors provide an intuitive example: let f be a
function that flips a coin and return “head” or “tail”. The probability that two calls of
f are equivalent is 0.5. However, if the function call is memoized, it is 1.

In fact, there is an infinite range of possible caching policies (specifications of when to
use a stored value and when to recompute), each potentially having a different semantics.
Any particular caching policy can be understood by random world semantics (Poole,
1993; Sato, 1995) over the stochastic program: each possible world corresponds to a
mapping from function input sequence to function output sequence (McAllester et al.,
2008). In Venture, these possible worlds are first-class objects, known as traces (Mans-
inghka et al., 2014).

5.1.2 The Venture Language

Venture is a probabilistic programming language that allows both the design of custom
inference algorithms and arbitraly nested and hierarchical models. It comes with two
different front end syntaxes, one Scheme-like and one JavaScript-like.

Venture provides a powerful and concise way to represent probability distributions,
including distributions with a dynamically determined and unbounded set of random
variables. In this chapter we will use only the four basic Venture directives: assume,
observe, sample and infer (Mansinghka et al., 2014).

• assume induces a hypothesis space for (probabilistic) models including random
variables by binding the result of a supplied expression to a supplied symbol.

• sample samples the value of the supplied expression within the current model
program. Such an expression is evaluated within a trace of the model program.
Thus, the value of an expression within a model program is a random variable,
whose randomness comes from the distribution on possible execution traces of the
program.

• observe constrains the supplied expression to have the supplied value. In other
words, all samples taken after an observe are conditioned on the observed data.

• infer uses the supplied inference program changes the modeled probability distri-
bution. This will result approximate sampling from the true posterior, conditioned
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on the model and constraints introduced by assume and observe. The posterior
on any random variable can then be approximately sampled by calling sample to
extract values from the modeled distribution.

infer is commonly done using the Metropolis–Hastings algorithm (MH) (Metropolis
et al., 1953). Many of the most popular MCMC algorithms can be interpreted as special
cases of MH (Andrieu et al., 2003). We can outline the MH algorithm as follows. The
following two-step process is repeated as long as desired (say, for T iterations2): First
we sample x∗ from a proposal distribution q:

x∗ ∼ q(x∗ | xt); (5.1)

then we accept this proposal (xt+1 ← x∗) with probability

α = min

{
1,
p(x∗)q(xt | x∗)
p(xt)q(x∗ | xt)

}
; (5.2)

if the proposal is not accepted then we take xt+1 ← xt.
Venture includes a built-in generic MH inference program which performs the above

steps on any specified set of random variables in the model program. In that inference
program, partial execution traces play the role of x above.

5.1.3 Venture GPs

We will first introduce common covariance functions (a.k.a. kernels) as they will become
important for our models below:

SE = σ2 exp(−(x− x′)2
2`2

) (5.3)

LIN = σ2(xx′) (5.4)

C = σ2 (5.5)

WN = σ2δx,x′ (5.6)

RQ = σ2
(

1 +
(x− x′)2

2α`2

)−α
(5.7)

PER = σ2 exp

(
2 sin2(π(x− x′)/p

`2

)
. (5.8)

SE stands for squared-exponential, LIN for linear, C for constant, WN for white noise,
RQ for rational quadratic and PER for periodic. Custom covariance functions can
be implemented in Python outside of Venture. All of the above will be shipped with

2choosing the right T is difficult. Convergence results are only known for simplest cases. Often, the
choice of T is a matter of trial and error
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Venture in future releases3.
We demonstrate a simple smoothing GP in Venture. The Venture procedure make-gp

takes as input a mean function and a covariance function, and outputs a procedure for
sampling from a Gaussian process. In effect, each call to this procedure samples from
(2.16) conditioned on the return values of all previous samples. make-gp allows us to
perform GP inference in Venture with only a few lines of code. We can concisely express
a wide variety of GPs: simple smoothing with fixed hyper-parameters, or a prior on
hyper-parameters, or a custom covariance function. Inference on hyper-parameters can
be performed using Venture’s built-in MH operator or a custom inference strategy.

Venture code to create and sample from a GP with a smoothing kernel and hyper-
parameters is shown in Listing 5.1.

Listing 5.1: Venture GP

// HYPER-PARAMETERS

1 assume sf = tag(quote(hyper), 0, gamma(1,1)))

2 assume l = tag(quote(hyper), 1, gamma(1,1)))

// COVARIANCE FUNCTION

3 assume se = make_squaredexp(sf, l)

// MAKE GAUSSIAN PROCESS

4 assume gp = make_gp( 0, se)

// INCORPORATE OBSERVATIONS

5 observe gp(array x[1],...x[n])= array(y[1],...,y[n])

// INFER HYPER-PARAMETERS

6 infer mh(quote(hyper), one , 1)))

The first two lines declare the hyper-parameters. We tag both of them to belong
to the “scope” quote(hyper). Scopes denote a collection of related random choices.
Scopes may be further subdivided into blocks, on which block proposals can be made.
In the program above we assign two blocks, 0 and 1. These tags are supplied to the
inference program (in this case, MH) to specify on which random variables inference
should be done. In this chapter, we use MH inference throughout and do not use block
proposals; MH inference is done on one variable at a time.

3The covariance functions will be available as type Venture-Function.

91



The assume directives describe the GP model: sf and l (corresponding to σ and ` in
the squared exponential covariance function (5.3)) are drawn from independent Γ(1, 3)

distributions (line 1 and 2). The squared exponential covariance function can be defined
outside the Venture code in a conventional programming language (e.g. Python) and
imported as a foreign SP. In that way, the user can define custom covariance functions
using his or her language and libraries of choice, without having to port existing code
into Venture’s modelling language. In the above, the factory function make-squaredexp,
which produces a squared exponential function with the supplied hyper-parameters, is
imported from Python (line 3, we have omitted the Python code).

Finally, we declare gp to be a GP with mean zero and covariance function se (line
4). We observe data (line 5) and take an MH step (line 6).

A Bayesian Interpretation

We illustrate and compare Bayesian and frequentist view points on GP with a simple
example (Fig. 5.1). We show how in a simple model, two outliers can bias a maximum
a posteriori inference. The data in Fig. 5.1 are generated with:

y = 2x+ 15 (5.9)

and outliers are generated with a parallel line:

ŷ = 2x+ 40. (5.10)

We add some small amount of white noise. To illustrate the flexibility of the universal
inference engine we demonstrate the difference between Maximum A Posteriori (MAP)
and MH. We generate eight data points with (5.9) and two with (5.10). Since we
suspect the underlying data generating mechanism to be linear, we fit a linear kernel
(5.4) with a constant covariance (5.5) as intercept and some white noise (5.6):

K = LIN + C + WN. (5.11)

where we upper case matrix notation denotes the covariance matrix of the complete
training data. Omitting the scaling parameter for the linear kernel, there are two
hyper-parameters to learn, that is the noise variance and the hyper-parameter for the
constant function. MAP inference fits the single one best line and accounts for the
outliers with a large noise scaling parameter. MH preserves the uncertainty. It assigns a
small amount of probability mass to a different scaling parameter and a larger constant.
The resulting prediction (indicated by the predictive mean in figure 5.1) is closer to the
true underlying function. We conclude that in example a Bayesian treatment is better
than a frequentist treatment.
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(a) MAP (b) MH

Figure 5.1: (a) depicts MAP inference on the data, (b) depicts MH for hyper-parameter
inference. The blue line is the actual data generating function. Red are samples drawn
from the posterior. The dark red line is the posterior predictive mean. We see that the
MH shifts the posterior closer to the ground truth than MAP.

5.2 Gaussian Process Memoization: gpmem

We implement gpmem by memoizing a target procedure in a wrapper that remembers
previously computed values. The technique gives rise to a number of use-cases of GPs
in a fully Bayesian setting which are otherwise hard to implement.

Algorithm 4. The restricted function

1: function frestr(x)
2: if x ∈ D then
3: return D[x]

4: else
5: raise Exception(’Illegal input’)
6: end if
7: end function

end

Data modelling as a special case of gpmem

From the standpoint of computation, a data set of the form {(xi, yi)} can be thought
of as a function y = frestr(x), where frestr is restricted to only allow evaluation at a
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specific set of inputs x (Alg. 4).
Modelling the data set with a GP then amounts to trying to learn a smooth function

femu (“emu” stands for “emulator”) which extends f to its full domain. Indeed, if frestr is
a foreign procedure made available as a black-box to Venture, whose secret underlying
pseudo code is in Alg. 4, then the observe code can be rewritten using gpmem as follows
(Listing 5.2, where the data set D has keys x[1],. . . ,x[n]):

Listing 5.2: Observation with gpmem

1 assume_list (f_compute f_emu) = gpmem( f_restr)

2 for i=1 to n:

3 predict f_compute( x[i])

4 infer mh(quote(hyper-parameters), one , 100)

5 sample (f_emu( array( 1, 2, 3))

Here, f_compute “probes” all data points calling frestr. This rewriting has at least two
benefits: (i) readability (in some cases), and (ii) amenability to active learning. As to
(i), the statistical code of creating a Gaussian process is replaced with a memoization-
like idiom, which will be more familiar to programmers. As to (ii), when using gpmem,
it is quite easy to decide incrementally which data point to sample next: for example,
the loop from x[1] to x[n] could be replaced by a loop in which the next index i is
chosen by a supplied decision rule. In this way, we could use gpmem to perform online
learning using only a subset of the available data.

5.3 Causal Structure for Hyper-Priors

The probability of the hyper-parameters of a GP as defined above and given covariance
function structure K is:

P (θ | D,K) =
P (D | θ,K)P (θ | K)

P (D | K)
. (5.12)

Let the K be the sum of a smoothing and a white noise (WN) kernel. For this case,
Neal (1997) suggested the problem of outliers in data as a use-case for a hierarchical
Bayesian treatment of Gaussian processes4. The work suggests a hierarchical system of
hyper-parameterization. Here, we draw hyper-parameters from Γ distributions:

`(t) ∼ Γ(α1, β1), σ
(t) ∼ Γ(α2, β2) (5.13)

4In (Neal, 1997) the sum of an SE plus a constant kernel is used. We keep the WN kernel for
illustrative purposes.

94



and in turn sample the α and β from Γ distributions as well:

α
(t)
1 ∼ Γ(α1

α, β
1
α), α

(t)
2 ∼ Γ(α2

α, β
2
α), · · · (5.14)

Assuming the covariance structure is additive comprised of a smoothing and a white
noise kernel, one can represent this kind of model using gpmem with only a few lines of
code (Listing 5.3).

Listing 5.3: Causal Hyper-Priors

/// SETTING UP THE MODEL
1 assume alpha_sf = tag(quote(hyperhyper), 0, gamma(7, 1))
2 assume beta_sf = tag(quote(hyperhyper), 1, gamma(7, 1))
3 assume alpha_l = tag(quote(hyperhyper), 2, gamma(7, 1))
4 assume beta_l = tag(quote(hyperhyper), 3, gamma(7, 1))

// Parameters of the covariance function
5 assume sf = tag(quote(hyper), 0, gamma(alpha_sf , beta_sf )))
6 assume l = tag(quote(hyper), 1, gamma(alpha_l , beta_l )))
7 assume sigma = tag(quote(hyper), 2, uniform_continuous(0, 2))

// The covariance function
8 assume se = make_squaredexp(sf , l)
9 assume wn = make_whitenoise(sigma)

10 assume composite_covariance = add_funcs(se, wn)

/// PERFORMING INFERENCE
// Create a prober and emulator using gpmem

11 assume f_restr = get_neal_blackbox ()
12 assume (f_compute , f_emu) = gpmem(f_restr , composite_covariance)

// Probe all data points
13 for n ... N
14 predict f_compute(get_neal_data_xs(n))

// Infer hypers and hyperhypers
15 infer repeat(100, do(
16 mh(quote(hyperhyper), one , 2),
17 mh(quote(hyper), one , 1)))

The hyper-prior structure is causal. The values of α and β have an effect on the
distribution of the hyper-parameters for the GP. We can express the causal relationship
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KΘ

σ ` θ

α` β` αθ βθ

Figure 5.2: A causal graphical model depicting the hyper-parameter structure described
with equations (5.13) and (5.14) and in lines 1:4 of Listing 5.3. KΘ is the composite
covariance matrix where Θ is a certain parametrisation of the covariance function. `
and θ are the hyper-parameters of the SE kernel. σ parametrises the WN kernel.

as a causal DAG (Fig. 5.2).
Neal provides a custom inference algorithm setting and evaluates it using the fol-

lowing synthetic data problem (Neal, 1997). Let f be the underlying function that
generates the data:

f(x) = 0.3 + 0.4x+ 0.5 sin(2.7x) +
1.1

(1 + x2)
+ η with η ∼ N (0, σ) (5.15)

We synthetically generate outliers by setting σ = 0.1 in 95% of the cases and to σ = 1

in the remaining cases. gpmem can capture the true underlying function within only
100 MH steps on the hyper-parameters to get a good approximation for their posterior
(see Fig. 5.3). Note that Neal devises an additional noise model and performs a large
number of Hybrid-Monte Carlo and Gibbs steps. We illustrate the hyper-parameter
by showing the shift of the distribution on the noise parameter σ (Fig. 5.4). We see
that gpmem learns the posterior distribution well, the posterior even exhibits a bimodal
histogram when sampling σ 100 times reflecting the two modes of data generation, that
is normal noise and outliers5.

5For this pedagogical example we have increased the probability for outliers in the data generation
slightly from 0.05 to 0.2, to make the illustration more clear
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(a) Prior Inference (b) Observed

(c) Inferred

Figure 5.3: (a)-(c) shows gpmem on Neal’s example. We see that prior renders functions
all over the place (a). After gpmem observes some data-points, an arbitrary smooth trend
with a high level of noise is sampled. After running inference on the hierarchical system
of hyper-parameters we see that the posterior reflects the actual curve well. Outliers
are treated as such and do not confound the GP.
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(a) Before (b) After

Figure 5.4: Hyper-parameter inference on the parameter of the noise kernel. We show
a 100 samples drawn from the distribution on σ. One can clearly recognise the shift
from the uniform prior U(0, 5) to a double peak distribution around the two modes -
normal and outlier.

Broader applicability of gpmem

Broader applicability of gpmem arises in two ways - either in cases where one wants to
design custom inference algorithms (e.g. MAP vs. MH) or with regards to the source
of the data.

More generally, gpmem is relevant not just when a data set is available, but also
whenever we have at hand a function frestr which is expensive or impractical to evaluate
many times. gpmem allows us to model frestr with a GP-based emulator femu, and also
to use femu during the learning process to choose, in an online manner, an effective set
of probe points {xi} on which to use our few evaluations of frestr. This idea is illustrated
in detail in Section 5.5. Before doing this, we will illustrate another benefit of having
a probabilistic programming apparatus for GP modelling: the linguistically unified
treatment of inference over structure and inference over parameters. This unification
makes interleaved joint inference over structure and parameters very natural, and allows
us to give a short, elegant description of what it means to “learn the covariance function,”
both in prose (using symbolic logic) and in code. Furthermore, the example in Section
5.4 below recovers the performance of current state-of-the-art GP-based models.
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5.4 Discovery of Latent Causal Structure

The space of possible kernel compositions is infinite. Combining inference over this space
with the problem of finding a good parameterization that could potentially explain the
observed data best poses a hard problem. The natural language interpretation of the
meaning of a kernel and its composition renders this a problem of symbolic computation.
Duvenaud and colleagues note that a sum of kernels can be interpreted as logical OR
operations and kernel multiplication as logical AND (2013). This is due to the kernel
rendering two points similar if k1 OR k2 outputs a high value in the case of a sum.
Respectively, multiplication of two kernels results in high values only if k1 AND k2 have
high values (see Fig. 5.5 exemplifies how to interpret global vs. local aspects and its
symbolic analog respectively). In the following, we will refer to covariance functions
that are not composite as base covariance functions.

Knowledge about the composite nature of covariance functions is not new. However,
until recently, the choice and the composition of covariance functions were done ad-hoc.
The Automatic Statistician Project6 came up with an approximate search over the
possible space of kernel structures (Duvenaud et al., 2013; Lloyd et al., 2014). However,
a fully Bayesian treatment was not available before. To the best of our knowledge,
we are the first to present a fully Bayesian solution to this. We deploy a probabilistic
context free grammar for our prior on structures (see Fig. 5.6)

Our probabilistic programming based MCMC framework approximates the following
intractable integrals of the expectation for the prediction:

E[y∗ | x∗,D,K] =

∫∫
f(x∗,θ,K)P (θ | D,K)P (K|Ω, s, n) dθdK. (5.16)

We will explain the terms above one by one below. The approximation is done by
sampling from the posterior probability distribution of the hyper-parameters and the
possible kernel:

y∗ ≈ 1

T

T∑
t=1

f(x∗|θ(t),K(t)). (5.17)

In order to provide the sampling of the kernel, we introduce a stochastic process
that simulates the grammar for algebraic expressions of covariance function algebra:

K(t) ∼ P (K | Ω, s, n) (5.18)

Here, we start with a set of possible kernels and draw a random subset. For this subset
of size n, we sample a set of possible operators that operate on the base kernels.

The marginal probability of a kernel structure which, allows us to sample, is charac-
terized by the probability of a uniformly chosen subset of the set of n possible covariance

6http://www.automaticstatistician.com/
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SE × LIN + PER × LIN + RQ × LIN

SE × LIN

SE LIN

PER × LIN

PER LIN

RQ × LIN

RQ LIN

Figure 5.5: Composition of covariance function parsed using the example SE × LIN +
PER × LIN + RQ × LIN. We deploy kernel summation (+) and kernel multiplication
(×).

Stochastic Grammar

θ ∼ P (θ)

gpmem

Data Generation

K ∼ P (K)

f ∼ GP(m,Kθ)

t y

Figure 5.6: Graphical description of Bayesian GP structure learning.
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functions times the probability of sampling a global or a local structure, which is given
by a binomial distribution:

P (K | Ω, s, n) = P (Ω | s, n)× P (s | n)× P (n), (5.19)
with

P (Ω | s, n) =

(
n

r

)
pr+×(1− p+×)n−r (5.20)

and
P (s | n) =

n!

| s |! (5.21)

where P (n) is a prior on the number of base kernels used which can sample from a
discrete uniform distribution. This will strongly prefer simple covariance structures
with few base kernels since individual base kernels are more likely to be sampled in this
case due to (5.21). Alternatively, we can approximate a uniform prior over structures
by weighting P (n) towards higher numbers. It is possible to also assign a prior for the
probability to sample global or local structures. However, we have assigned complete
uncertainty to this with probability P = 0.5.

Many equivalent covariance structures can be sampled due to covariance function al-
gebra and equivalent representations with different parametrisation (Lloyd et al., 2014).
Certain covariance functions can differ in terms of the hyper-parametrisation but can be
absorbed into a single covariance function with a different parametrisation. To inspect
the posterior of these equivalent structures we convert each kernel expression into a
sum of products and subsequently simplify. Rules for this simplification can be found
in appendix A.

The Automatic Statistician Project is implemented using deterministic optimization
and search. We reproduce results from this Project in a Bayesian fashion using gpmem

(Listing 5.4). We first define a prior on the hypothesis space. Note that, as in the
implementation of the Automatic Statistician, we upper-bound the complexity of the
space of covariance functions we want to explore. We also put vague priors on hyper-
parameters.
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Listing 5.4: Learning Latent Causal Structure

// GRAMMAR FOR KERNEL STRUCTURE
1 assume kernels = list(se, wn , lin , per , rq) // defined as above

// prior on the number of kernels
2 assume p_number_k = uniform_structure(n)
3 assume sub_s = tag(quote(grammar), 0,
4 subset(kernels , p_number_k ))
5 assume grammar = proc(l) {

// kernel composition
6 if (size(l) <= 1)
7 { first(l) }
8 else { if (flip ())
9 { add_funcs(first(l), grammar(rest(l))) }

10 else { mult_funcs(first(l), grammar(rest(l))) }
11 }
12 }
13 assume K = tag(quote(grammar), 1, grammar(sub_s))
14 assume (f_compute f_emu) = gpmem(f_restr , K)

// Probe all data points
15 for n ... N
16 predict f_compute(get_data_xs(n))

// PERFORMING INFERENCE
17 infer repeat(2000, do(
18 mh(quote(grammar), one , 1),
19 for kernel ∈ K

20 mh(quote(hyperkernel), one , 1)))

We defined the space of covariance structures in a way that allows us to repro-
duce results for covariance function structure learning as in the Automatic Statistician.
This leads to coherent results, for example, for the CO2 data set (see Rasmussen and
Williams, 2006 for a full description). We find a posterior where the most probable
structure is almost identical to the highest scoring result reported in previous exper-
iments using a search-and-score method (Duvenaud et al., 2013, for our result, see
below: Appendix C) . For the airline data set describing monthly totals of international
airline passengers (Box et al., 1997, according to Duvenaud et al., 2013), we see that
the two most probable alternatives for a structural description both recover the data
dynamics (Fig. 5.7). However, the components factor in a different way due to different
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SE × LIN + SE × RQ × PER

SE × LIN SE × RQ × PER

(a)

LIN × PER × RQ × SE

LIN PER RQ SE

(b)

Figure 5.7: We see two possible hypotheses for the composite structure of K. (a) Most
frequent sample drawn from the posterior on structure. We have found two global
components. First, a smooth trend (LIN × SE) with a non-linear increasing slope.
Second, a periodic component with increasing variation and noise. (b) Second most
frequent sample drawn from the posterior on structure. We found one global component.
It is comprised of local changes that are periodic and with changing variation.

parametrisation of the individual base kernels.
Confident about our results, we can now query the data for certain structures being

present. We illustrate this using the CO2 data with an expressive hypothesis space. We
assume a relatively simple one consisting of only four kernels, a linear, a smoothing, a
periodic and a white noise kernel. In this experiment, we resort to the white noise kernel
instead RQ (similar to Lloyd et al., 2014). We can now run the algorithm, compute a
posterior of structures. We can also query this posterior distribution for the marginal
of certain simple structures to occur. We demonstrate this in Fig. 5.8 We present an
extensive case study deploying the method for discovery of latent causal structure in
Appendix D.
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What is the probability of a trend, a recurring pattern and noise in the data?
P
(
(LIN ∨ LIN× SE) ∧ (PER ∨ PER× SE ∨ PER× LIN) ∧ (WN ∨ LIN×WN)

)

Is there a trend? Is there noise?
P (LIN ∨ LIN× SE) P (WN ∨ LIN×WN)

A linear trend? A smooth trend? Heteroskedastic noise? White noise?
P (LIN) P (LIN× SE) P (LIN×WN) P (WN)

Is there repeating structure?
P (PER ∨ PER× SE ∨ PER× LIN)

P (PER) P (PER× SE) P (PER× LIN)

Figure 5.8: We start with an unstructured time series. The data is used to compute
a posterior on symbolic structure. Like in symbolic reasoning we can query the data,
checking if some logical statements are probable to be true. Here, we are interested in
three qualitative aspects of the data: (i) Is it true that there is a trend? (ii) Is it true
that there are recurring patterns and (iii) is it true that there is noise in the data?
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5.5 Bayesian Optimization

Bayesian optimization casts the problem of finding the global maximum of an unknown
function as a hierarchical decision problem (Ghahramani, 2015). Evaluating the actual
function may be very expensive, for example in computation time or or memory con-
sumption. For one example, when searching for the best configuration for the learning
algorithm of a large convolutional neural network, a large amount of computational
work is required to evaluate a candidate configuration, and the space of possible config-
urations is high-dimensional. Another typical example, alluded to in Section 5.3, is data
acquisition: for machine learning problems in which a large body of data is available, it
is often desirable to choose the right queries to produce a data set on which learning will
be most effective. In continuous settings, many Bayesian optimization methods employ
GPs (e.g. Snoek et al., 2012). To demonstrate Bayesian optimization with gpmem we
have implemented a version of Thompson sampling using GPs in Venture7.

5.5.1 Thompson Sampling Framework

Thompson sampling (Thompson, 1933) is a widely-used Bayesian framework for solving
exploration-exploitation problems. Our implementation has two notable features: (i)
the ability to search over a broader space of contexts than the parametric families that
are typically used, and (ii) the parsimony of the resulting probabilistic program.

We describe the setup of Thompson sampling for Markov Decision Processes (MDP).
An agent is to take a sequence of actions a1, a2, . . . from a (possibly infinite) set of
possible actions A. After each action, a reward r ∈ R is received, according to an
unknown conditional distribution Ptrue(r|a). The agent’s goal is to maximize the total
reward received for all actions. In Thompson sampling, the Bayesian agent accomplishes
this by placing a prior distribution P (θ) on the possible “contexts” θ ∈ Θ. Here a context
is a believed model of the conditional distributions {P (r|a)}a∈A, or at least, a believed
statistic of these conditional distributions which is sufficient for deciding an action a.
One example of such a sufficient statistic is the conditional mean V (a|θ) = E [r|a, θ],
which can be thought of as a value function. Thompson sampling thus has the following
steps, repeated as long as desired:

1. Sample a context θ ∼ P (θ).

2. Choose an action a ∈ A which (approximately) maximizes V (a|θ) = E [r|a, θ].
7The work described in section 5.5.1 and 5.5.2 was produced in collaboration with Ben Zinberg,

who included some of it in his MEng thesis (2015).
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3. Let rtrue be the reward received for action a. Update the believed distribution on
θ, i.e., P (θ)← Pnew(θ) where Pnew(θ) = P (θ | a 7→ rtrue).

Note that when E [r|a, θ] (under the sampled value of θ for some points a) is far from the
true value EPtrue [r|a], the chosen action a may be far from optimal, but the information
gained by probing action a will improve the belief θ. This amounts to “exploration.”
When E [r|a, θ] is close to the true value except at points a for which E [r|a, θ] is low,
exploration will be less likely to occur, but the chosen actions a will tend to receive high
rewards. This amounts to “exploitation.” Roughly speaking, exploration will happen
until the context θ is reasonably sure that the unexplored actions are probably not
optimal, at which time the sampler will exploit by choosing actions in regions it knows
to have high value.

Typically, when Thompson sampling is implemented, the search over contexts θ ∈ Θ

is limited by the choice of representation. In traditional programming environments, θ
often consists of a few numerical parameters for a family of distributions of a fixed func-
tional form. With work, a mixture of a few functional forms is possible; but without a
probabilistic programming machinery, implementing a rich context space Θ would be an
unworkably large technical burden. In a probabilstic programing language, however, the
representation of heterogeneously structured or infinite-dimensional context spaces is
quite natural. Any computable model of the conditional distributions {P (r|a)}a∈A can
be represented as a stochastic procedure (λ(a) . . .). Thus, for computational Thompson
sampling, the most general context space Θ̂ is the space of program texts of a proba-
bilistic programming language like Venture. Any other context space Θ has a natural
embedding as a subset of Θ̂.

5.5.2 Thompson Sampling in Venture

Because Venture supports sampling and inference on (stochastic) procedure-valued ran-
dom variables (and the generative models which produce those procedures), Venture
can capture arbitrary context spaces as described above. To demonstrate, we have im-
plemented Thompson sampling in Venture in which the contexts θ are GPs over the
action space A = R. That is, θ = (µ,K), where the mean µ is a computable function
A → R and the covariance K is a computable (symmetric, positive-semidefinite) func-
tion A × A → R. This represents a GP {Ra}a∈A, where Ra represents the reward for
action a. Computationally, we represent a context not as a pair of infinite lookup tables
for µ and K, but as a finite data structure θ = (Kprior, σ, `,apast, rpast), where

• Kprior = Kprior,σ,` is a procedure, with parameters σ, `, to be used as the prior
covariance function: Kprior(a, a

′) = σ2 exp
(
− (a−a′)2

2`2

)
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• σ and ` are (hyper)parameters for Kprior

• apast = (ai)
n
i=1 are the previously probed actions

• rpast = (ri)
n
i=1 are the corresponding rewards

To simplify the treatment, we take prior mean µprior ≡ 0. The mean and covariance for
θ are obtained by the usual conditioning formula:

µ(a) = µ (a | apast, rpast)

= Kprior(a,apast)Kprior(apast,apast)
−1 rpast

K(a,a) = K (a,a | apast, rpast)

= Kprior(a,a)−Kprior(a,apast)Kprior(apast,apast)
−1Kprior(apast,a).

Note that even in this simple example, the context space Θ is not a finite-dimensional
parametric family, since the vectors apast and rpast grow as more samples are taken. Θ

is, however, quite easily representable as a computational procedure together with pa-
rameters and past samples, as we do in the representation θ = (Kprior, σ, `,apast, rpast).

5.5.3 Implementation with gpmem

As a demonstration, we use Thompson sampling to optimize an unknown function V (x)

(the value function) using gpmem.
We assume V is made available to Venture as a black-box. The code for optimizing

V is given in Listing 5.5. For step 3 of Thompson sampling, the Bayesian update, we not
only condition on the new data (the chosen action a and the received reward r), but also
perform inference on the hyper-parameters σ, ` using a Metropolis–Hastings sampler.
These two inference steps take 1 line of code: 0 lines to condition on the new data (as
this is done automatically by gpmem), and 1 line to call Venture’s built-in MH operator.
The results are shown in Figures 5.9 and 5.10. We can see from the figure that, roughly
speaking, each successive probe point a is chosen either because the current model Vemu

thinks it will have a high reward, or because the value of Vemu(a) has high uncertainty.
In the latter case, probing at a decreases this uncertainty and, due to the smoothing
kernel, also decreases the uncertainty at points near a. We thus see that our Thompson
sampler simultaneously learns the value function and optimizes it.

In Listing 5.5, we see code for a complete Bayesian optimization system with Thomp-
son sampling using gpmem. In the loop (line 21), f_compute is called to probe the
value of f at a new argument. The new argument, (mc_argmax f_emu_pointwise

mc_sampler), is a Monte Carlo estimate of the maximum pointwise sample of f_emu
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(itself a stochastic quantity), with the Monte Carlo samples being drawn in this case
uniformly between −20 and 20.

Listing 5.5: Bayesian optimization using gpmem

1 assume sf = tag(quote(hyper), 0, uniform_continuous(0, 10))
2 assume l = tag(quote(hyper), 1, uniform_continuous(0, 10))
3 assume se = make_squaredexp(sf , l)
4 assume blackbox_f = get_bayesopt_blackbox ()
5 assume (f_compute , f_emu) = gpmem(blackbox_f , se)

6 define uniform_candidate = proc(prev_xs) {
7 uniform_continuous (-20, 20)
8 }

9 define mc_argmax = proc(func , prev_xs) {
// Monte Carlo estimator for the argmax of func.

10 run(do(
11 candidate_xs <- mapv(proc(i) {uniform_candidate(prev_xs)},
12 linspace(0, 19, 20)),
13 candidate_ys <- mapv(func , candidate_xs),
14 lookup(candidate_xs , argmax_of_array(candidate_ys ))))
15 }

16 define emulator_point_sample = proc(x) {
17 run(sample(lookup(
18 f_emu(array(x)),
19 0)))
20 }

21 infer repeat(15, do(pass ,
// Phase 2: Call f_compute on the next probe point

22 predict f_compute(
23 mc_argmax(emulator_point_sample , ’_)),

// Phase 1: Hyper-parameter inference
24 mh(quote(hyper), one , 50)))

After each new call to f_compute, the Metropolis–Hastings algorithm is used to
perform inference on the hyper-parameters of the covariance function in the GP model
in light of the new conditioning data (line 24). Once enough calls to f_compute have
been made (in our case we stopped at 15 calls), we can inspect the full list of probed
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(a, r) pairs with extract_stats. The answer to our maximization problem is simply
the pair having the highest r; but our algorithm also learns more potentially useful
information. This entails the right action to take to balance steps to gain information
and steps to climb the curve to reach a nearby optimum.

5.6 Summary

We have introduced novel stochastic processes for a probabilistic programming lan-
guage and unified them into a new technique. We have shown that this technique is
useful for probabilistic programming with continuous-valued random variables. It can
be applied to causal discovery as illustrated with causal hyper-prior systems and causal
discovery for latent symbolic concepts for time series data. We have demonstrated
how flexible non-parametric models can be treated in Venture in only a few lines of
code. We evaluated our contribution on a range of hard problems for state-of-the-art
Bayesian non-parametrics. The programs implemented with gpmem showed competitive
performance in all of them.
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Figure 5.9: Dynamics of Thompson sampling in Venture. The blue curve is the true
function V , and the red region is a blending of 100 samples of the curve generated
(jointly) by a GP-based emulator Vemu. The left and right columns show the state of
Vemu before and after hyper-parameter inference is run on the new data, respectively. In
the right column, the next chosen probe point is circled in green. Each successive probe
point a is the (stochastic) maximum of Vemu, sampled point-wise and conditioned on
the values of the previously probed points. Note that probes tend to happen at points
either where the value of Vemu is high, or where Vemu has high uncertainty. The sequence
continues in Fig. 5.10.
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Figure 5.10: Dynamics of Thompson sampling in Venture (continued). We can see, for
example, that after the seventh probe point in the sequence (top), the MH sampler
chose a “crazy” set of hyper-parameters, which was corrected at the next inference step.
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6 | Conclusion

In this thesis, we have studied models and algorithms for causal discovery and tested
them using data generated in complex dynamical systems and processes. The work has
strived to bridge the existing gap between probabilistic time series, dynamical systems
research and causal discovery. A large effort of the work has focused on computational
models and algorithms that exploit prior knowledge about temporal and dynamical
dependencies in data. Even if such relations can be considered conceptually unrelated
to causal inference, the thesis studies how they can be used to inform both modelling
of and inference over causal relations. In addition, the solutions provided by the thesis
cater for several kinds of data, generated in various types of complex dynamic systems
and processes. Such data can differ by various characteristics like dimensionality and
size, whether they are observed or not, how much we know about it, and what kind of
underlying mechanism generated it.

First, we have introduced Multidimensional Causal Discovery (MCD), suggesting
a notion of cause and effect over time. This notion was aimed at large data sets as
they exist in real-world databases, which we processed in form of tensors. We have
implemented the notion of cause and effect into the MCD-algorithm for causal discovery.
The method is more expressive than related approaches, as it generalises causal effects
over points in time. In contrast to conventional approaches, the algorithm does not
output large graphs containing a node for every random variable for every point in
time. It outputs causal relations over variables that statistically hold true over the
entire time that is reflected in the data. We have also shown the algorithms accuracy
and its performance compared to relevant benchmarks.

We have then introduced new, weaker assumptions for causal discovery by general-
ising causal discovery for scenarios with dynamically changing noise levels. The FlexCD
model and algorithm was explained and its application to a widely accepted benchmark
data set was illustrated. We demonstrated performance gains for the two-variable prob-
lem of causal discovery. The method relies on GPs with dynamically changing levels
of noise. Inspecting this noise, it prefers the direction in which the noise is less het-
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eroskedastic. This is in line with ANM related approaches. The direction in which the
noise depends in a less complicated way on the data generating function is preferred.
To measure heteroskedasticity we deployed a novel GP that accounts for different levels
of noise.

Finally, we have demonstrated gpmem, a new probabilistic programming technique
that propels causal discovery. We have provided an efficient implementation of gpmem
in form of a self-caching wrapper that remembers previously computed values. gpmem

produces a statistical emulator, which improves with every data-point that becomes
available. The efficacy of the technique has been demonstrated with a number of prob-
lems of the state-of-the-art in machine learning. It provides a fully Bayesian treatment
of model selection tasks, needed for causal discovery, that was not available before. To
demonstrate this, we applied gpmem to help discover symbolic statements that cause
certain dynamics to emerge over time. These concepts are latent, and are discovered in
the data with empirical inference. We have also shown its applicability to the learning
of hierarchical, causal hyper-parameter structures where hyper-parameters are depen-
dent similar to a causal Bayesian network. Finally, we have shown an application of the
technique to Bayesian Optimization.

In summary, we have presented a number of methods, criteria and algorithms for
causal discovery that uses data generated in various kinds of dynamical systems. All
these methods have been tested with both synthetic and real-world data yielding com-
petitive performance.

6.1 Future Work

In the following, we will first elaborate on chapters 3 to 5 one by one, identifying smaller
future efforts that directly result from the research described in these chapters. We will
then discuss more general future work that continues the journey started four years ago
and take further the experience and insights gained (section 6.1.4).

6.1.1 Multidimensional Causal Discovery

The practical value of MCD analysis needs to be determined by applying it to more real-
world data sets and comparing it to other causal inference methods for non-experimental
data. The real-world data analysed here are rather simple as they contain relations
between two variables only. It has been quite difficult to find multidimensional time
series where the underlying causality is clear. Here it would be useful to see how we
can also include discrete-valued variables into the MCD analysis. In most cases of
non-experimental data sets, we can find discrete-valued variables as well as continuous-
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valued ones.
Also, in the current method, the tensor analytic process of flattening the data relies

on the variance of the linear interaction between the decomposed subspaces. A more
direct integration of this aspect into the LiNGAM discovery process is desirable. We
aim to address this issue in future research too.

6.1.2 Flexible Causal Discovery

Future work involves a Markov Chain Monte Carlo implementation of the FlexCD algo-
rithm, preferably in the context of probabilistic programming with methods described
in chapter 5. It should be straightforward to implement the heteroskedastic GP with
MCMC samplers. Will performance be worse here than with the KL-base approxima-
tion as expected? The FlexCD algorithm should also be extended for problems with
more than two variables. Graph-based algorithms that form a hybrid between ANM
and constraint-based causal discovery are known (Tillman et al., 2009) and should also
be extensible for FlexCD.

6.1.3 Abstract Dynamical Causality & Probabilistic Programming

The closing chapter of our contribution provided novel means of causal discovery that
were previously unavailable. Future work that directly builds on this includes finding
novel problems that one could tackle with memoization in continuous-valued uncertain
domains. The use of gpmem its implication for computation and the trade off between
time and space complexity can be tested in various applications. An example for this
would be the computation of Fibonacci numbers. This has never been approached via
a regression framework. Another important question is which online-learning methods
can be recovered with gpmem.

A necessary and also interesting experiment would be an extensive empirical com-
parison of performance with regards to different bottlenecks. In the relevant literature,
slice sampling and HMC have been deployed for MCMC-based GP (Neal, 1997). We
resort to probabilistic programming-based MH, but both slice sampling and HMC are
available in Venture. What are the performance gains and how can they be measured?

Another pressing insight from this research is that we need to experiment with
approximative inference for GP-inference (not the Venture inference routines) in order
to cope with large data sets and potential problems that their size brings.
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6.1.4 Future Directions

Identifying a suitable benchmark for causal discovery is the most important bottleneck.
We think that the choice of data sets for the benchmark which has served in many
papers on causal discovery (recently described in the article by Mooij et al., 2014) may
not be the ideal to evaluate causal discovery in general. For example, we see that the
cardinality of a data dimension indicates it being the cause: often the continuous-valued
cause is artificially discretised in this data set whereas the effect is not. Also, some of
the data sets are prime examples for latent confounders. An example for this is the case
where the latitude of a country is treated as the cause for its GDP. Furthermore, this
benchmark consists almost exclusively of bivariate problems. A general causal discovery
framework should be able to cope with bivariate problems, multivariate problems, time
series data, symbolic causal discovery, latent concepts and latent confounders. Each
problem requires a set of real world data sets a new causal discovery algorithm can
work on. The ill-defined concepts regarding causality make it difficult to find data sets
where the researcher can be certain about the ground truth, that is the true causal
directionality. One must also decide on the variety of the functional form of synthetic
data to test the assumptions. While this effort seems trivial, it is key to allow progress
in causal discovery.

Another highly interesting direction of research is a deeper study of Bayesianism in
causal discovery. How can we mix prior assumptions about observed asymmetries for
cause and effect in a truly Bayesian way?

Many claims made by the causal discovery community about identifiability are
proven using probability density functions as a gold standard to model probability
distributions. Do the results on identifiability still hold when distributions are mod-
elled with a sampler as in probabilistic programming? Or could it be that asymmetries
arise between causal and anti-causal models in their likelihood? One argument of func-
tional causal discovery is that P (Y | X) depends in a less complex manner on P (X)

than P (X | Y ) depends on P (Y ). We mentioned in section 2.4.2 that complexity is ill-
defined here. But this only holds true for the traditional ways of modelling probability
distributions rather than for probabilistic programming. In cases where asymmetries
between cause and effect do not arise simply through means of a different way of mod-
elling probability distributions, we would like to define suitable measures of complexity
over execution traces of probabilistic programs. These could be more accurate than the
measures defined in previous work (Mooij et al., 2010; Daniušis et al., 2010; Janzing
et al., 2012; Chen et al., 2014).

For many practitioners computational complexity is the bottleneck of interest. We
mentioned that the causal discovery for graphical models can be NP-hard. We have
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also begun to show symbolic reasoning for causal discovery. Previous research showed
significant performance gains in machine learning through lifted computation (e.g. Choi
et al., 2010, 2011; Choi and Amir, 2012): parameter sharing and parameter typing over
semantically related concepts is expected to gain significant benefits. Identifying and
modifying the right framework for causal discovery will propel causal inference in real
world applications. Concepts of generalisation and abstraction to propel computation
come in many forms. We have chosen probabilistic programming, specifically Venture
for a first step in that direction showing a symbolic language of kernel algebra that can
be learned. We should elevate the symbolic structure to a context where it can learn
statements of a programming language such as Venture.

Finally, we think that research is now ready to transfer results from causal dis-
covery and probabilistic programming to the medical domain. Highly structured time
series data is readily available (Saeed et al., 2002). A study of adverse drug effects
(as described in the introduction) is feasible once the methods described in this thesis
are close to optimal when it comes to both time and space complexity. Given such
optimality, the work described can be directly applied to data from existing electronic
medical records. Aims for such a project would be to unify and test causal inference do-
mains where variables can be both discrete-valued and continuous-valued. An approach
should be Bayesian, not only to cope with missing values whilst providing estimates of
uncertainty and confidence but also because we have shown the broad applicability of
Bayesian methods like GPs in previous chapters. A software suite that is functional in
the medical domain should exploit logical structures present in the data. For the case
of the MIMIC2 database (Saeed et al., 2002), ontological coding is available - allow-
ing logical inference over instances of observations. Finally, such a project should be
conducted in cooperation with medical experts, able to differentiate between real and
unreal effects, and to formulate interesting causal queries for a probabilistic model.
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Appendix

A - Covariance Simplification

1 SE × SE → SE
2 {SE ,PER ,C,WN} × WN → WN
3 LIN + LIN → LIN
4 {SE ,PER ,C,WN,LIN} × C → {SE ,PER ,C,WN,LIN}

Rule 1 is derived as follows:

σ2c exp(−(x− x′)2
2`2c

) = σ2a exp(−(x− x′)2
2`2a

)× σ2b exp(−(x− x′)2
2`2b

)

= σ2c exp(−(x− x′)2
2`2a

)× exp(−(x− x′)2
2`2b

)

= σ2c exp

(
− (x− x′)2

2`2a
− (x− x′)2

2`2b

)
= σ2c exp

(
− (x− x′)2

2`2c

)
(6.1)

For stationary kernels that only depend on the lag vector between x and x′ it holds
that multiplying such a kernel with a WN kernel we get another WN kernel (Rule 2).
Take for example the SE kernel:

σ2a exp

(
− (x− x′)2

2`2c

)
× σbδx,x′ = σaσbδx,x′ (6.2)

Rule 3 is derived as follows:

θc(x× x′) = θa(x× x′) + θb(x× x′) (6.3)

Multiplying any kernel with a constant obviously changes only the scale parameter of
a kernel (Rule 4).
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B - Convergence FlexCD Objective Function

We solve different optimisation problems with a single objective function. We need to
find the optimal permutation of W which is needed for combination with the VHGPR
optimisation for both hypotheses.

The key for understanding why this optimisation is correct is that convergence
follows from the fact that gradient steps on each of the summands converge and that
the summands are independent from one another. In detail, we say that we would like
to maximize independence of:

1. fα and gα in terms of K, with respect to α;

2. fβ and gβ in terms of K, with respect to β;

3. linear components in terms of a contrast function with respect to w1 and w2,
where W = [w1,w2].

The trick here is that we can treat w1 and w2 as constants when optimizing 1. and
2. For 3., we make the necessary assumption that to create linear components that are
statistically as independent as possible, this does not depend on the other function of
interest. This function describes the dependence relationship between fα and gα or fβ

and gβ respectively. 3. only depends on the contrast function that maximizes statis-
tical independence for linear components. The objective therefore dictates, that 3. is
independent of 1. and 2. Thus, convergence for the w1 and w2 follows from Hyvärinen,
1999, Appendix A.

fα, gα does not share free parameters with fβ, gβ, thus, convergence for 1. and 2.
follows from Lázaro-Gredilla and Titsias, 2011.

C - Discovery of Latent Causal Structure with CO2 Data

Fig. C-1 illustrates coherent results for the CO2 data set (see Rasmussen and Williams,
2006 for a description). We have cut the tail of the distribution for space reasons since
the number of possible structures is large. We have computed leave-one crossvalidation
for quality insurance purposes resulting in 545 independent Markov chains. Each chain
consisted of 2000 nested steps each. We see the final sample of the each of the 545
chains. Note that Duvenaud et al. (2013) report LIN × SE + PER × SE + RQ × SE.
We see that the most probable structure is almost identical with what was reported
by previous work. Given the total of 545 samples, the frequency of the highest scoring
structure corresponds to an MH posterior probability of approximately 0.15 that this
structure is true.
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Figure C-1: Posterior on structure of the CO2 data. Frequency refers to the frequency
of a sample when we sample with MH at the end of a chain.
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D - Case Study: Discovery of Latent Causal Structure with
Medical Data in COMMODITY12

The COMMODITY12 project has designed, built, and performed trials with an in-
telligent Personal Health System (PHS) for the analysis of multi-parametric medical
data (Kafalı et al., 2013). The specific focus of the work has been to develop a multi-
layered multi-parametric infrastructure for continuous analysis of the advancement of
diabetes, type 1 and 2, and the interaction of these two types with cardiovascular co-
morbidities. This system is capable of taking the benefit of multi-parametric data, such
as physiological measurements, genetic data, laboratory reports, and other measure-
ments related to a person’s activity, lifestyle and surrounding environment. The system
also provides both to the health-care worker, as well as thr patient, with clinically
relevant indicators for the prevention and management of diabetes type 1 and 2, and
co-morbidities.

The management of diabetes is becoming an increasingly important problem world-
wide with recent efforts aiming at controlling short and long term complications. The
normalisation of blood glucose is one of the parameters that must be monitored by a
personal health system according to a formal model of the disease (i.e., medical guide-
lines). This is especially important for Type 1 diabetic patients, who need to have
their glucose levels monitored continuously. In this context, two of the most important
short-term complications of diabetes are hypoglycemia and hyperglycemia (very low
and high blood glucose; respectively), both of which can be life-threatening (Knobbe
and Buckingham, 2005; Palerm and Bequette, 2007; Turksoy et al., 2013).

We will now apply the latent causal structure learning that we have developed and
use it for the analysis of the Continuous Glucose Monitoring (CGM) data collected in the
COMMODITY12 project. For this research project glucose measurements of subjects
suffering from type 1 diabetes were collected which form the time series of interest. In
a clinical trial we have measured glucose continuously for 24 hours with five subjects.
Measurements were recorded every 5 minutes (Fig. D-1). The two specific medical
tasks that we will seek to demonstrate are: prediction in terms of extrapolating glucose
values and diagnosis in terms of finding symbolic (qualitative) structure underlying the
observations represented by the data.

For prediction, we extrapolate 6 steps ahead in time which corresponds to 30 min-
utes. There are two important points to be noted here:

• If we predict a Hypoglycemia episode 30 minutes ahead, then there is enough
time for the COMMODITY12 system to send an alert to the patient to increase
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Figure D-1: CGM data for one patient. We see an episode of Hypoglycemia at 21:14

glucose intake. This could potentially avoid dangerous situations in practice with
little effort.

• We sample from the posterior distribution which means that every prediction
comes with a degree of confidence defined by our posterior belief state and the
evidence available. Areas with more variability in the drawn posterior samples
indicate more uncertainty about what is the actual, true underlying function that
generates the data.

Data-driven Diagnosis with Prediction for Clinical Decision Making
Finding symbolic, qualitative structures that are causing certain observations to emerge
was one of our main objectives for data-driven diagnosis. The idea of symbolic reasoning
is a re-occurring pattern of artificial intelligence research. We have seen above that our
realisation of this is not only a gimmick that arises when one tries to emulate human
thinking but a way to gain competitive predictive performance. We will now investigate
what are the symbolic structures that we have “diagnosed”. We will see that those
structures are not only coherent among patients but also make intuitive sense when
there explanatory power is analysed.

We find that all posterior distributions peak at the same kernel structure, which
implies a Gaussian process with the following kernel structure:

K = LIN + PER+RQ+ SE. (6.4)
The most probable structure in the posterior suggests that there are four global

components that comprise the time-series:

1. a linear trend (LIN);

2. a periodic component (PER);
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(a)

(b)

(c)

(d)

(e)

Figure D-2: (a) - (e) Posterior Samples drawn from a GP learned with latent causal structure
learning. Blue dots correspond to the data, while red lines denote samples from the posterior.
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3. a smooth trend (SE); and

4. noise (RQ).

All of the above components contribute to what we see as time series (compare
the posterior distribution of symbolic components with the observed time series of Fig.
D-3 - D-7 (b) with D-3 - D-7 (a); note that the y-axis for all structures (a) depicts
unnormalized samples. For a posterior probability, divide the Monte Carlo samples by
100).

(a)

(b)

Figure D-3: (a) Glucose data of patient 1. (b) 100 samples drawn from the posterior
distribution on kernel structure.

We will now illustrate how we can use our approach for data driven diagnosis in
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(a)

(b)

Figure D-4: (a) Glucose data of patient 2. (b) 100 samples drawn from the posterior
distribution on kernel structure.

combination with prediction for clinical decision making using the data of a patient,
patient 3, as an example. We see that for patient 3, like all patients, the agent posterior
state of belief indicates a globally recurring pattern, that is P (PER) is high. With
high level reasoning, a clinical decison maker can build on this insight to make more
accurate predictions. We illustrate this schematically in Fig. D-8.

Prediction of Future Values

In the following we will show how we use our algorithm to predict future values.
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(a)

(b)

Figure D-5: (a) Glucose data of patient 3. (b) 100 samples drawn from the posterior
distribution on kernel structure.

We would like to emphasise that our approach does not need the amount of insights
of an expert, as it has been required by previous work, for example see Sparacino
et al. (2007). We elaborate why the prediction of future values is useful and adequate.
Fig. D-9 illustrates the predictive performance of our software on patient 3. We have
selected patient 3 because this patient’s curve includes a steep decrease in blood glucose
towards the end of the measurements. Such a decrease is what we want to predict,
taking previously computed values as training data to avoid Hypoglycemia. Moreover,
our algorithm comes with an online component as well. Our agent observes all the new
data that comes in. These observations are registered in its memory without training
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(a)

(b)

Figure D-6: (a) Glucose data of patient 4. (b) 100 samples drawn from the posterior
distribution on kernel structure.

any kind of learning algorithm. We can predict 5, 10, 15, 25 and 30 minutes ahead (the
full details are provided in Fig. D-9). Since we apply a fully Bayesian method, we are
also supplied with a confidence interval for every prediction.
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(a)

(b)

Figure D-7: (a) Glucose data of patient 5. (b) 100 samples drawn from the posterior
distribution on kernel structure.
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P (PER) is high. We are confident that there are recurring patters (PER), e.g:

and

We can now make prediction, given previous observations

Figure D-8: We see how a posterior on high level structure for prediction can inform
the decision making process. On top, we see a posterior distribution on structure,
modelled with samples. We see that it is very likely that a pattern is recurring. With
this information, we can predict ahead of time.
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(a)

(b)

Figure D-9: Glucose prediction ahead of time, up to 30 minutes. We took (a) 50 % and
(b) 70 % of the the data for patient 3 as training data to learn both the structure and
the hyper-parameters.
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