
Noname manuscript No.
(will be inserted by the editor)

Ask-Elle: an adaptable programming tutor for
Haskell giving automated feedback

Alex Gerdes · Bastiaan Heeren · Johan
Jeuring · L. Thomas van Binsbergen

Received: date / Accepted: date

Abstract Ask-Elle is a tutor for learning the higher-order, strongly-typed func-
tional programming language Haskell. It supports the stepwise development of
Haskell programs by verifying the correctness of incomplete programs, and by
providing hints. Programming exercises are added to Ask-Elle by providing a
task description for the exercise, one or more model solutions, and properties that
a solution should satisfy. The properties and model solutions can be annotated
with feedback messages, and the amount of flexibility that is allowed in student
solutions can be adjusted.

The main contribution of our work is the design of a tutor that combines (1)
the incremental development of different solutions in various forms to a program-
ming exercise with (2) automated feedback and (3) teacher-specified programming
exercises, solutions, and properties. The main functionality is obtained by means
of strategy-based model tracing and property-based testing. We have tested the
feasibility of our approach in several experiments, in which we analyse both inter-
mediate and final student solutions to programming exercises, amongst others.

Keywords Functional programming · Haskell · Tutoring · Model tracing ·
Automated feedback · Adaptability

Alex Gerdes
QuviQ and Chalmers University of Technology
E-mail: agerdes@me.com

Bastiaan Heeren
Open Universiteit Nederland
E-mail: Bastiaan.Heeren@ou.nl

Johan Jeuring
Utrecht University and Open Universiteit Nederland
E-mail: J.T.Jeuring@uu.nl

L. Thomas van Binsbergen
Royal Holloway, University of London
E-mail: ltvanbinsbergen@acm.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Royal Holloway - Pure

https://core.ac.uk/display/77297818?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Alex Gerdes et al.

1 Introduction

Haskell is a lazy, purely functional programming language (Peyton Jones, 2003).
It is taught at universities all over the world: just the English Haskell beginners’
books (Bird, 1998; Hutton, 2007; Hudak, 2000; Thompson, 2011) together sold
more than 50, 000 copies, and there are lecture notes and books available in Span-
ish, Dutch, German, Portuguese, Russian, Japanese, etc.

Ask-Elle1 is a tutor that supports the stepwise development of simple func-
tional programs in Haskell. Using this tutor, students learning functional program-
ming develop their programs incrementally, receive feedback about whether or not
they are on the right track, can ask for a hint when they are stuck, and can have a
look at a worked-out solution. Ask-Elle is an example of an intelligent tutoring
system (VanLehn, 2006) for the domain of functional programming.

Why would a teacher or a student use such an intelligent tutoring system?
Evaluation studies have indicated that

– using an intelligent tutor that supports the stepwise development of solutions
to problems is almost as effective as a human tutor (VanLehn, 2011),

– working with an intelligent tutor supporting the construction of programs is
more effective when learning how to program than doing the same exercise “on
your own” using only a compiler, or just pen-and-paper (Corbett et al., 1988),

– using intelligent tutors requires less help from a teacher while showing the same
performance on tests (Odekirk-Hash and Zachary, 2001),

– using such tutors increases the self-confidence of female students (Kumar,
2008), and

– the immediate feedback given by many of the tutors is to be preferred over the
delayed feedback common in classroom settings (Mory, 2003).

The type of exercises that a learning environment supports determines to a
large extent how difficult it is to generate feedback. For example, it is much easier to
specify feedback for a multiple-choice exercise, than for an essay. Le and Pinkwart
(2014) propose a classification of programming exercises supported in learning
environments. They base their classification on the degree of ill-definedness of a
programming problem. Class 1 exercises have a single correct solution. Examples
are quiz-like questions with a single solution, or slots in a program that need to
be filled in to complete some task. Class 2 exercises can be solved by different
implementation variants. Usually a program skeleton or other information that
suggests the solution strategy is provided, but variations in the implementation
are allowed. Finally, class 3 exercises can be solved by applying alternative so-
lution strategies. Independently developing a program solving a class 3 exercise,
is an important learning objective for learning programming (Joint Task Force
on Computing Curricula Association for Computing Machinery (ACM) and IEEE
Computer Society, 2013). Ask-Elle offers class 3 exercises.

Teachers need control over the learning environment they use: adaptability of
learning environments is important (Anderson et al., 1995; Bokhove and Drijvers,
2010). Ask-Elle offers a teacher a lot of flexibility in adding new programming ex-
ercises to the tutor, and in adapting or specialising the feedback. The feedback and
hints provided by Ask-Elle are calculated automatically from teacher-specified,
annotated solutions and properties for a programming exercise.

1 http://ideas.cs.uu.nl/FPTutor/

Ask-Elle 3

Programming tutors have been built since the 1970s, for programming lan-
guages such as Lisp (Anderson et al., 1986), Prolog (Hong, 2004), Java (Holland
et al., 2009), Pascal (Johnson and Soloway, 1985), C (Wang et al., 2011), and
many more. None of these tutors supports automatic feedback on the incremental
development of programs for class 3 exercises, in which teachers can easily add
programming exercises and adapt feedback. For example, the Lisp tutor (Ander-
son et al., 1986) does give feedback on the steps a student takes towards a solution
to a programming exercise, and allows students to solve a program flexibly in that
students do not have to follow a strict top to bottom, left to right order (Corbett
et al., 1988), but it offers class 2 exercises. Also, adding an exercise to the Lisp tutor
is non-trivial. Successors of the Lisp tutor, such as ELM-ART (Brusilovsky et al.,
1996), still offer class 2 exercises. As another example, the Prolog tutor (Hong,
2004) does offer class 3 programming exercises, but forces a student to first select
the kind of solution she wants to write, and only then allows the development of a
program. As a final example, AutoLEP (Wang et al., 2011), which is an program
assessment system rather than a programming tutor, offers class 3 exercises, but
cannot deal with intermediate, incomplete programs.

The main contribution of this paper is the design of a programming tutor
that offers class 3 programming exercises, supports the incremental development
of solutions to such exercises, and automatically calculates feedback and hints.
These feedback and hints are derived automatically from teacher-specified anno-
tated solutions for a problem. The main functionality of the tutor is obtained by
means of strategy-based model tracing (Heeren et al., 2010), and property-based
testing (Claessen and Hughes, 2000). Furthermore, we use quite a bit of compiler
technology for functional programming languages to offer as much flexibility as
possible. We test the feasibility of our approach in several experiments, in which
we analyse both intermediate and final student solutions to programming exercises
to find out how well our tutor deals with possibly incomplete student programs,
amongst others.

This paper is organised as follows. Section 2 introduces Ask-Elle by means
of an example session of a student interacting with Ask-Elle, and shows what a
teacher has to do to add a programming exercise to the tutor. This section exem-
plifies our research contributions. Section 3 shows the design of Ask-Elle, and
contains our main research contribution: it gives the architecture of Ask-Elle,
and briefly discusses the technologies we use for diagnosing student programs. Af-
ter the sections that introduce Ask-Elle, we describe three experiments we have
performed with Ask-Elle. Section 4 shows an experiment in which we use Ask-
Elle for assessing a lab exercise, and Section 5 describes a class experiment in
which we use a questionnaire to find out how students experience the use of Ask-
Elle. After performing these experiments we decided on a classification of student
programs, which we describe in Section 6. Using this classification, Section 7 de-
scribes an experiment in which we analyse the quality of the feedback given by
Ask-Elle. We discuss related work in Section 8. Section 9 discusses future work
and concludes the paper.

This paper combines and revises results described in several earlier workshop
and conference papers and demonstrations (Gerdes et al., 2010, 2012a,b; Jeuring
et al., 2012, 2014).

4 Alex Gerdes et al.

Figure 1 The web-based functional programming tutor

2 An example session

This section introduces Ask-Elle by means of an example session, in which a
student develops a program in Ask-Elle and uses several of its features. Then
it shows how a teacher can add an exercise to Ask-Elle and adapt the feedback
and behaviour of Ask-Elle.

2.1 An example student session in Ask-Elle

We demonstrate Ask-Elle by showing some interactions of a hypothetical student
with the functional programming tutor. A screenshot of Ask-Elle is shown in
Figure 1. Ask-Elle sets small functional programming tasks, and gives feedback
in interactions with the student. We assume that the student has attended lectures
on how to write simple functional programs on lists.

At the start of a tutoring session the tutor gives a problem description. Here
the student has to write a program for converting a list of binary numbers to its
decimal representation.

Write a function that converts a list of bits to the corresponding

decimal value:

fromBin :: [Int]→ Int

For example:

> fromBin [1, 0, 1, 0, 1, 0]
42

> fromBin [1, 0, 1]
5

Ask-Elle 5

The tutor displays the following starting point:

•

The task of a student is to refine the holes, denoted by •, of the program. The
starting point of an exercise is a single hole. After each refinement, a student can
ask the tutor whether or not the refinement is bringing her closer to a correct
solution. If a student does not know how to proceed, she can ask the tutor for
a hint. A student can also introduce new declarations, function bindings, and
alternatives.

Suppose the student has no idea where to start and asks the tutor for help.
The tutor offers several ways to help. For example, it can list all possible ways to
proceed solving an exercise. In this case, the tutor responds with:

You can proceed in several ways:

- Implement fromBin using the foldl prelude2 function.

- Take the inner product with a list of factors of two.

- Implement fromBin with a helper function using an extra

parameter.

We assume that a student has already been exposed to the functions and concepts
mentioned in the feedback, for example via lectures, a teaching assistant, or lecture
notes. However, the prelude functions in the feedback are linked to external web
pages with detailed information, such as their type signature and example usages.

The tutor can make a choice between the different possibilities, so if the student
does not want to choose, and just wants a single hint, she gets:

Implement fromBin using the foldl prelude function.

Here we assume that the teacher has set up the tutor to prefer the solution that
uses foldl , defined by:

foldl :: (a → b → a)→ a → [b]→ a
foldl op e [] = e
foldl op e (x : xs) = foldl op (op e x) xs

Let us briefly explain this function before we continue with the session. The
higher-order function foldl processes a list using an operator that associates to
the left (Hutton, 2007). Its definition covers two cases: one for the empty list [],
and the case of one element (x) in front of the rest of the list (xs). Consider the
list of bits from the session’s example: [1, 0, 1, 0, 1, 0]. Given some binary operator
⊕ and a start value e, foldl turns this list into the expression:

(((((e ⊕ 1)⊕ 0)⊕ 1)⊕ 0)⊕ 1)⊕ 0

Now if we let n ⊕ b = 2 ∗ n + b and e = 0, we can indeed calculate the expected
result (42) from the above expression.

The student starts by introducing the function name as asked by the exercise,
but postpones the definition of the function body by introducing another hole:

fromBin = •

The student can ask for more detailed information at this point about the body
of the function, and the tutor responds with giving increasing detail:

2 The prelude is the standard library for Haskell containing many useful functions.

6 Alex Gerdes et al.

Define the fromBin function using foldl. The operator should multiply

the intermediate result with two and add the value of the bit.

with the final bottom-out hint:

Define:

fromBin = foldl • •

At this point, the student can refine the function at two positions. We do not
impose an order on the sequence of refinements. Moreover, a student can refine
multiple holes at once:

fromBin = foldl op •
where

op • • = •

In the above step the student has made two refinements: she refined the operator
hole to the variable op, and introduced a function binding for that variable in a
where clause. The student continues with the operator and introduces two pattern
variables:

fromBin = foldl op •
where

op n b = •

which is accepted by the tutor. She continues with the definition of the operator:

fromBin = foldl op •
where

op n b = •+ •

If the student now asks for a hint, the tutor responds with:

Multiply n by two and then add b.

She continues with:

fromBin = foldl op •
where

op n b = 2 ∗ n + c

which gives:

Error: undefined variable c

This is a syntax-error message generated by the Helium compiler (Heeren et al.,
2003), which we use in our tutor. Helium gives excellent syntax-error and type-
error messages, and reports dependency analysis problems in a clear way. The
student corrects the syntax-error and continues with:

fromBin = foldl op 1
where

op n b = 2 ∗ n + b

which results in the following feedback message from the tutor:

Ask-Elle 7

Your implementation is incorrect for the following input: []

We expected 0, but we got 1

The definition does not match any of the model solutions, and by means of random
testing the tutor can find an example where the result of the student program
invalidates a teacher-specified property or differs from a model solution. We use
this example to generate the detailed feedback message. Correcting the error, the
student enters:

fromBin = foldl op 0
where

op n b = 2 ∗ n + b

which completes the exercise.
These interactions show that our tutor can give hints about which step to

take next, in various levels of detail, list all possible ways in which to proceed,
point out errors and pinpoint where the error appears to be, and show a complete
worked-out example. This subsection exemplifies our main research contribution:
a programming tutor that offers class 3 programming exercises, supports the in-
cremental development of solutions to such exercises, and automatically calculates
feedback and hints.

2.2 Teacher

This subsection demonstrates how a teacher adds a programming exercise to the
tutor, and adapts the feedback given by the tutor. An exercise is specified by a set
of model solutions to the programming problem and a configuration file, grouped
together in a directory. A configuration file is a Haskell source file that contains a
task description together with a list of QuickCheck (Claessen and Hughes, 2000)
properties for the exercise. Each model solution is specified in a separate file. The
interactions of the tutor are based on these model solutions and properties.

A teacher can group exercises together, for example for practising list problems,
collecting exercises of the same difficulty, or exercises from a particular textbook.

2.2.1 Model solutions

A model solution is a program that an expert writes, using good programming
practices. We have specified three model solutions for fromBin (see Figure 2). We
already explained the first model solution that is based on foldl .

The second model solution reverses the input list, and then computes the inner
product of this list and a list of powers of two. The definition consist of three parts,
which are combined using function composition (◦). Function composition takes
two functions as argument and applies the left-hand side function to the output of
the right-hand side function. The first part of this solution reverses the input list,
which turns the list in least significant bit first order. The second part creates an
infinite list of powers of two by using the iterate function:

iterate (∗2) 1 = [1, 2, 4, 8, 16, . . .]

8 Alex Gerdes et al.

-- 1. Solution with foldl
fromBin = foldl op 0

where
op n b = 2 ∗ n + b

-- 2. Inner product with powers of two
fromBin = sum ◦ zipWith (∗) (iterate (∗2) 1) ◦ reverse

-- 3. Tupling, passing around the length as extra argument
fromBin bs = fromBin ′ (length bs − 1) bs

where
fromBin ′ [] = 0
fromBin ′ n (b : bs) = b ∗ 2∧ n + fromBin ′ (n − 1) bs

Figure 2 Three model solutions for the fromBin programming exercise

The powers of two are multiplied element-wise with the reversed list using zipWith.
The third and final step is to add all elements using the sum function. Note that
this solution relies on lazy evaluation for dealing with the infinite list. The zipWith
function discards excess elements if one list is longer than the other.

The final model solution uses a helper function fromBin ′, which takes as extra
parameter the length of the input list (n) for calculating the correct power of two.
The value of n is decremented by one at every recursive call. The advantage of
this extra parameter is that we only have to calculate the length of the list once,
instead of at each recursive call. Passing around extra, intermediate results is a
well-known programming technique called tupling.

The tutor uses these model solutions to generate feedback. It recognises many
variants of a model solution. For example, the following solution:

fromBin xs = let f z [] = z
f z (x : xs) = f (base ∗ z + x) xs

base = 2
start = 0

in f start xs

is recognised from the first model solution. To achieve this, we not only recognise
the usage of a prelude function, such as foldl , but also its definition. Furthermore,
we apply a number of program transformations to transform a program to a normal
form.

2.2.2 Adapting feedback

A teacher adapts the feedback given to a student by annotating model solutions.
An annotation is done via a pragma, which is a special kind of source code com-
ment. Using the following construction a teacher adds a description to a model
solution:

{-# DESC Implement fromBin using the foldl prelude function. #-}

Ask-Elle 9

The first hint in Section 2.1 gives the descriptions for the three model solutions for
the fromBin exercise. The appearances of prelude functions in a hint are hyper-
linked to web pages with detailed information. These links are generated automat-
ically. More fine-grained and location specific feedback can be added to a model
solution using the FB feedback annotation:

fromBin =
{-# FB Define the fromBin function using foldl. The op... #-}
foldl op 0

where
op n b = {-# FB Multiply n by two and add b. #-}2 ∗ n + b

Thus we can give a detailed explanation of how to construct the operator op. These
feedback messages are organised in a hierarchy based on the abstract syntax tree of
the model solution. This enables the teacher to configure the tutor to give feedback
messages with an increasing level of detail.

The DESC and FB annotations can be used to steer the textual feedback given
by Ask-Elle to a student. In addition to these textual feedback annotations,
Ask-Elle offers two annotations that a teacher can use to control the variation
of accepted solutions. We mentioned before that we not only recognise the usage
of a library function, such as foldl , but also the definition of that function. When
a student is not aware of a particular library function and defines such a function
herself, we can recognise and approve it. Sometimes, however, a teacher wants a
student to use a library function instead of her own definition. To enforce the usage
of a library function, in this case iterate, a teacher can annotate the function with
the MUSTUSE annotation:

fromBin = sum ◦ zipWith (∗) ({-# MUSTUSE #-}iterate (∗2) 1) ◦ reverse

The MUSTUSE annotation limits the variation of allowed implementations. A teacher
can also introduce an alternative implementation for a library function to allow
more implementations by means of the ALT annotation, of which we give an ex-
ample in Section 4.1.

2.2.3 Configuration file

A teacher needs to create a configuration file (besides model solutions) to define
an exercise. This configuration file is a Haskell source file that contains a global
description of the exercise and a list of QuickCheck properties. We reuse the DESC

annotation for the global description that introduces the programming problem.
For example:

{-# DESC Write a function that converts a list of bits to the

corresponding decimal value: fromBin::[Int]→ Int. For example:

> fromBin [1, 0, 1, 0, 1, 0]
42

> fromBin [1, 0, 1]
5

#-}

10 Alex Gerdes et al.

This description is shown when a student starts the exercise.
The configuration file also contains a list of QuickCheck properties. QuickCheck

(Claessen and Hughes, 2000) is a library for property-based testing in Haskell.
The list of QuickCheck properties can be viewed as a semi-formal specification
of the program. QuickCheck automatically tests properties on a large number of
randomly generated test cases.

The following property is responsible for the feedback of the counterexample
in the example session from the previous subsection:

propModel f bs = feedback msg (output model)
where

output = f bs
model = foldl (λn b → 2 ∗ n + b) 0 bs
msg = "Your implementation is incorrect for the " ++

"following input: " ++ show bs ++ "\nWe expected " ++
show model ++ ", but we got " ++ show output

The property propModel takes a student program (f) as argument and checks that
for every list of bits the output of the student program is equal to the output of
a model solution (model). A teacher can use the feedback function to attach a
feedback message to a property. This message will be shown when the property
has been falsified.

Another property we check is that removing the most significant bit from a
(non-empty) list is the same as dividing the corresponding decimal value by two.
The following QuickCheck property expresses this characteristic:

propDivByTwo f bs = (bs /= []) =⇒ f (init bs) f bs ‘div ‘ 2

The expression before the implication (=⇒) makes sure we only test with non-
empty binary lists.

The third and last property tests the so-called round-trip property: if we con-
vert a list of bits to a decimal value and back to a list of bits again, then we should
end up with the same list.

propSound f bs = feedback msg (bs toBin (f bs))
where

msg = "Converting back results in a different list of bits"

We omit the implementation of toBin, which converts an decimal value to a list
of bits. The properties for an exercise are grouped together in a list:

properties :: [([Int]→ Int)→ Property]
properties =

map (λp → forAll genBin ◦ p) [propModel , propDivByTwo, propSound]

The elements in the properties list are functions that take a student program as pa-
rameter and return a QuickCheck property. Using the QuickCheck forAll function
we let the properties use a special-purpose binary number generator (genBin).

If a teacher does not want to specify any properties, she can leave the list
empty. This does not mean that Ask-Elle will skip testing a student program.
It is always possible to construct a property that compares a student program

Ask-Elle 11

against one of the model solutions. However, if a teacher wants to attach a specific
feedback message to the property that validates against a model solution, she
needs to define it herself, like we showed above.

Thus to add a programming exercise to Ask-Elle, a teacher specifies the
exercise text, model solutions for the exercise, and possibly extra feedback and
properties that a solution should satisfy. A teacher does not need to have any
knowledge of the internals of Ask-Elle. This exemplifies our contribution that
feedback and hints are derived automatically from teacher-specified annotated
solutions for a problem.

3 The design of Ask-Elle

The previous section illustrated how Ask-Elle can be used for class 3 program-
ming exercises by students and teachers. Teachers can add programming exercises
to Ask-Elle by providing a task description for the exercise, one or more model
solutions, and properties that a solution should satisfy. A teacher can annotate
properties and model solutions with feedback messages, and can specify how much
flexibility is allowed in student solutions. This section shows the design of Ask-
Elle, and contains our main research contribution. It gives the architecture of
Ask-Elle, and briefly discusses the technologies we use for diagnosing student
programs.

Ask-Elle is a programming tutor

– that targets first year computer science students,
– in which a student incrementally develops a program that is equivalent (mod-

ulo syntactic variability) to one of the teacher-specified model solutions for a
programming problem,

– that gives feedback and hints on intermediate, incomplete, and possibly buggy
programs, based on teacher-specified annotations in model solutions,

– that reports counterexamples when properties for an exercise are not satisfied,
– to which teachers can easily add their own programming exercises, and in which

teachers can adapt feedback,
– and in which a student can use her preferred step-size in developing a program:

from making a minor modification to submitting a complete program in a single
step.

Using our programming tutor students develop programs by making small, in-
cremental, changes to a previous version of the program. Other common scenarios
in teaching programming are to give a student an incomplete program, and ask
her to complete the program, or to give a student a program, and ask her to
change the program at a particular point. In such assignments, a student refines
or rewrites a program. Both rewriting and refining preserve the semantics of a
program; refining possibly makes a program more precise.

The feedback that we offer, such as giving a hint, is derived from a strategy.
Strategies play a central role in our approach. We use strategies to capture the
procedure of how to solve an exercise. A strategy describes which basic steps have
to be taken, and how these steps are combined to arrive at a solution. In case of
a functional programming exercise, the strategy describes how to incrementally

12 Alex Gerdes et al.

Web
application

Ask-Elle

Helium

GHC and
QuickCheck

model solutions
and config

database
front-end back-end

1. request

7. reply

2. read
3. compile

5. check properties
6. log

4. trace models

Figure 3 Ask-Elle’s web-based architecture

construct a program. We reuse an embedded domain-specific language (EDSL) for
defining strategies for programming (Heeren et al., 2010).

We will first present Ask-Elle’s web-based architecture, and then discuss the
technology behind the tutor’s model tracing capabilities. We conclude this section
with property checking for finding and reporting counterexamples.

3.1 Ask-Elle’s web-based architecture

Our tutor can be accessed via a web browser. On the main page, a student selects
an exercise to work on. While developing a program, a student can check that she
is still on a path to a correct solution, ask for a single hint or all possible choices
on how to proceed at a particular stage, or ask for a worked-out solution.

The programming tutor consists of a front-end and back-end. The front-end
handles the interaction with the student, such as displaying feedback messages.
The back-end takes care of the feedback generation. Figure 3 shows a schematic
overview of our programming tutor architecture: we explain each of the steps in
this figure.

The front-end of the tutor is implemented as a web application, using Ajax
technology to call services. Each time a student clicks a button such as Check

or Hint, our web application sends a service request (1) to the functional pro-
gramming domain reasoner (the back-end). This request contains all information
about where the student is in solving the exercise, including the current program.
Requests are encoded in a simple JSON format.

The back-end of our tutor is a domain reasoner, also called the expert knowl-
edge module in the traditional four-component ITS architecture described by
Nwana (1990), for the domain of functional programming exercises in Haskell.
The domain reasoner is built using a generic software framework for specifying
domain reasoners (Heeren and Jeuring, 2014)3. This framework offers feedback

3 http://ideas.cs.uu.nl/www/

Ask-Elle 13

services to external learning environments. The feedback services handle particu-
lar requests, and are based on the stateless client-server architecture. For example,
the diagnose feedback service is used to analyse a student step, i.e., an interme-
diate program that is submitted by the student. Another example of a feedback
service is derivation, which generates a complete worked-out example showing all
steps a student can take to solve an exercise.

The domain reasoner starts with reading the model solutions and configuration
file (2) for an exercise. These files are turned into a programming strategy (for
model tracing), properties (for property-based testing), and feedback scripts (for
generating feedback messages). We then compile (3) the student program with the
Helium compiler, which is a Haskell compiler designed for reporting good error
messages and warnings targeted at students learning the language. We extended
the compiler to deal with the incomplete programs that can be submitted with
our tutor. Compilation either produces an error message, which is reported to the
student, or delivers an abstract syntax tree (AST). This AST is compared against
the model solutions (4) using the programming strategy (details in Section 3.2).
If the submitted program cannot be recognized, we check the properties (5) to
search for counterexamples (details in Section 3.3).

At this point we use the results of steps 3–5 and the feedback script to produce
a reply that is returned to the front-end (7). The request-reply pair, together with
some meta-information, is stored in a database (6) for later analysis.

3.2 Model tracing

A programming strategy is derived from the set of model solutions of an exercise.
We use this strategy to track the progress of a student, and to calculate seman-
tically rich feedback. The programming strategies are expressed in the strategy
language (Heeren et al., 2010) that is supported by the general software frame-
work on which Ask-Elle is built. The strategy language offers combinators for
choice, sequence, repetition, labels, and many more. Such a strategy can be in-
terpreted by the framework as a context-free grammar, i.e., a set of sentences
consisting of basic steps, which turns model tracing into a parsing problem.

In the case of Ask-Elle, the basic steps are refinement rules to make an
intermediate program more defined. We have defined refinement rules for most
language constructs, for example, to replace a hole • by the conditional expression
if • then • else • with three new holes. We use the strategy language to control
the order in which the refinement rules are applied (e.g., the condition before
the two branches, but without further restrictions – refinement steps in the two
branches can even be interleaved). In the process of generating the programming
strategy, we also take care of the annotations that have been specified by a teacher
in the model solutions.

Programming languages typically offer all kinds of syntactical variations to
write (essentially) the same program, and Haskell is no exception in this. For
instance, λx → λy → x and λx y → x have a different representation, but should
often be treated the same during model tracing and feedback generation. Before
we compare a student (intermediate) program to the programs generated by the
strategy, we normalise all programs using various program transformations. All
transformations preserve the semantics of a program. For example, Ask-Elle has

14 Alex Gerdes et al.

a transformation for renaming variables (a transformation that is known as alpha-
conversion in the lambda calculus (Barendregt, 1984)), removing syntactic sugar
(desugaring), and algebraic properties such as n + 1 = 1 + n.

3.3 Property-based testing

In 2013 we added property-based testing to Ask-Elle. Properties of an exercise,
such as that sort returns a permutation of the input list that is non-descending, are
specified in its configuration file and are tested on a student program when none of
the model solutions can be recognised. We use the QuickCheck library (Claessen
and Hughes, 2000) for testing, which supports specifying and testing properties,
and defining customized random input generators. If QuickCheck finds a coun-
terexample, we report it to the student. Thus we use both static (matching against
model solutions) and dynamic (testing against properties) techniques to analyse a
student program.

We use GHC4, the default compiler for Haskell, to test properties and to evalu-
ate a student program. Again, special care is needed to deal with holes that appear
in incomplete programs. When QuickCheck runs into a hole, we discard the test
case and continue with the next, instead of reporting the hole as a counterexam-
ple. Because of Haskell’s lazy evaluation, we can find counterexamples early on for
programs with holes.

To summarize this section: we have presented Ask-Elle’s web-based design
that combines model tracing with property checking. We generate programming
strategies from model solutions and configuration files, and these strategies are
used by a generic software framework to trace the refinement steps that a student
takes. We use QuickCheck for property checking, even for student programs that
contain holes. With this design we can automatically calculate feedback and hints,
which teachers can further adapt to their needs.

4 Experiment 1: assessing student programs

Traditionally, a teacher or a teaching assistant assesses a student’s abilities and
progress. However, providing timely feedback is not always possible with large class
sizes. Repeatedly assessing student exercises is tedious, time consuming, and error
prone. It is difficult to keep judgements consistent and fair. To assist teachers in
assessing programming assignments, many assessment tools have been developed.

In the first experiment, conducted in 2009, we use Ask-Elle as an assessment
tool for student programs. The assessment tool uses programming strategies and
programming transformations to classify programs based on model solutions for
the assignment. Using programming strategies we can guarantee that a student
program is equivalent to a model solution, and we can report which solution strat-
egy has been used to solve a programming problem. The assessment tool only
assesses fully defined programs, i.e., there are no holes present in the program.
The normalisation procedure exploits this fact and performs a number of program
transformations that are not allowed on intermediate programs, such as removing

4 https://www.haskell.org/ghc/

Ask-Elle 15

program code that is not used in the main functionality (dead-code elimination),
and inlining.

4.1 Automated assessment with programming strategies

Many programming exercise assessment tools are based on some form of test-
ing (Ala-Mutka, 2005). Test-based assessment tools try to determine correctness
by comparing the output of a student program to the expected results on test
data. Using testing for assessment has a number of problems. First, an inherent
problem of testing is coverage: how do you know you have tested enough? Test-
ing does not ensure that the student program is correct. Second, assessing design
features, such as the use of good programming techniques or the absence of im-
perfections, is hard if not impossible with testing. This is unfortunate, because
teachers want students to adopt good programming techniques. Consider the fol-
lowing function that solves the problem of converting a list of binary numbers to
its decimal representation from the example session:

fromBin :: [Int]→ Int
fromBin [] = 0
fromBin (b : bs) = b ∗ 2∧ (length (b : bs)− 1) + fromBin bs

This function returns correct results, hence test-based assessment tools will most
likely accept this as a good solution. However, the length calculation is unusual,
because an element is added to the list and then the length of the list is subtracted
by one. We found this imperfection frequently in a set of student solutions. Third,
testing cannot reveal which algorithm has been used. For instance, when asked to
implement quicksort, it is difficult to discriminate between bubblesort and quick-
sort. Fourth, testing is a dynamic process and is therefore vulnerable to bugs, and
even malicious features, that may be present in solutions.

We use programming strategies, derived from teacher annotated model solu-
tions, and our normalisation procedure to assess functional programming exercises
in Haskell. Our approach is rather different from testing: we can guarantee that
the submitted student program is equivalent to a model program. We can recog-
nise many different equivalent solutions from a model solution. For example, the
following student solution:

fromBin = fromBaseN 2

fromBaseN b n = fromBaseN ′ b (reverse n)
where

fromBaseN ′ [] = 0
fromBaseN ′ b′ (c : cs) = c + b′ ∗ (fromBaseN ′ b′ cs)

is recognised from the foldl model solution (see Figure 2). Despite the fact that
the student solution appears very different from the model solution, they will be
recognised as equivalent. The two solutions use a similar recursion pattern and
are essentially the same. In fact, the explicit recursive definition of fromBaseN ′ is
recognised as an instance of the foldr function. In contrast to foldl , foldr combines
the list elements from right to left. For example:

16 Alex Gerdes et al.

foldl (⊕) e [x1, x2, x3] = ((e ⊕ x1)⊕ x2)⊕ x3

foldr (⊕) e [x1, x2, x3] = x1 ⊕ (x2 ⊕ (x3 ⊕ e))

The foldl function can be defined as a foldr by reversing the list and flipping the
operator’s arguments. We specify this as an ALT annotation:

{-# ALT foldl op b = foldr (flip op) b ◦ reverse #-}

With this annotation, the student solution (with explicit recursion) and the model
solution (with foldl) are normalized to the same program.

In the remainder of this section we show how programming strategies and
program transformations can be used to assess functional programming exercises.
Using strategies for assessing student programs solves the four problems of using
testing for assessment described above:

1. if a program is determined to be equivalent, it is guaranteed to be correct
2. we can recognise and report imperfections
3. we can determine which algorithm has been implemented
4. strategy-based assessment is carried out statically.

In contrast with our strategy-based assessment approach, test-based assessment
tools can give a judgement of all programs including incorrect ones. Test-based
assessment tools can prove a program to be incorrect by providing a counter-
example. By adding testing with QuickCheck to our assessment tool we get around
this disadvantage. With this addition, however, we do not solve the fourth problem
we mentioned, and become vulnerable to bugs and malicious software as well.

4.2 Programming exercise and model solutions

We have applied our assessment tool to student solutions that were obtained from a
lab assignment in a first-year functional programming course at Utrecht University
(2008). We were not involved in any aspect of the assignment, and received the
solutions after they had been graded ‘by hand’ by the teaching assistants. In total
we received 94 student solutions.

The students had to implement the fromBin function. This is a typical begin-
ner’s exercise in Haskell. The fromBin exercise can be solved in various ways, using
different kinds of higher-order functions. We use the model solutions in Figure 2.
All three model solutions are elegant, efficient, and use recommended programming
techniques. We added a fourth model solution that is simple, but inefficient:

fromBin [] = 0
fromBin (b : bs) = b ∗ 2∧ length bs + fromBin bs

This definition is similar to model solution 3 with tupling, except that the length
of the list is calculated in each recursive call. Hence, it takes time quadratic in
the size of the input list to calculate its result. The other model solutions are all
linear. It is up to the teacher to decide to either accept or reject solutions based on
this model. This flexibility is one of the advantages of our approach. The teacher
can accept the solution and add feedback, which is given to the student after she
completes the exercise, explaining the inefficiency.

Ask-Elle 17

4.3 Classification of student solutions

The most important features we want to assess in a student program are:

– Correctness: does the program implement the requirements?
– Design: has the program been implemented following good programming prac-

tices?

We have partitioned the set of student programs into four categories by hand:

Good. A good program is a proper solution with respect to the features we assess
(correctness and design). It should ideally be recognised as equivalent to one
of the model solutions.

Good with modifications. Some students have augmented their solution with sanity
checks. For example, they check that the input is a list of zeroes and ones. Since
the exercise assumes the input has the correct form, we have not incorporated
such checks in the model solutions. The transformation machinery cannot yet
remove such checks: we have removed them by hand.

Imperfect. We reject programs containing imperfections. The solution to fromBin
given at the beginning of Section 4.1 is an example of an imperfect solution.
Another common imperfection we found is the use of a superfluous case:

fromBin [] = 0
fromBin [b] = b
fromBin (b : bs) = b ∗ 2∧ (length bs) + fromBin bs

In this example, the second case is unnecessary.

Incorrect. A few student programs were incorrect. They all contained the same
error: no definition of fromBin on the empty list.

4.4 Results

From the 94 student programs, 64 programs fall into the good category and 8 fall
into the good with modifications category. From these 72 programs, our assessment
tool recognises 62 programs (86%). Another, and perhaps better, way of looking at
these numbers is that 62 student solutions are accepted based on just four model
solutions. All of the incorrect and imperfect programs were not recognised by our
tool in the experiment, that is, we did not have any false positives. Some of these
incorrect programs were not noticed by the teaching assistants that corrected these
programs.

Using our tool a teacher only needs to assess the remaining student solutions.
If our tool cannot recognise a program as an instance of a model solution, we
can use testing to find a counterexample, such as the empty list for the incorrect
student programs.

It may happen that a correct student solution does not correspond to a model
solution. If such a solution is elegant and efficient, a teacher could add it to the
set of model solutions. In the case it does not meet the requirements for a model
solution, it is up to the teacher to take a decision. For example, the following
student solution uses the tupling technique:

18 Alex Gerdes et al.

fromBin [] = 0
fromBin [b] = b
fromBin (b : c : rest) = fromBin ((2 ∗ b + c) : rest)

Instead of using a tuple or an extra argument, this solution ‘misuses’ the head of
the list to store the result. The teacher needs to decide whether or not this misuse
is an imperfection or not.

By checking all model solutions independently, we can tell which model solu-
tion, or strategy, a student has used to solve the exercise. Our test showed that
18 students used the foldl model solution, 2 used tupling, 2 the inner product
solution, and 40 solutions were based on the extra model solution with explicit
recursion.

It is unlikely that a solution is accepted by more than one model solution. In
our test all solutions were accepted by a single model solution. If model solutions
are very similar, it might be possible to use an ALT annotation to recognise both
from a single model solution.

4.5 Related work on assessment

The survey of automated programming assessment by Ala-Mutka (2005) shows
that many assessment tools are based on dynamic testing. In contrast, our assess-
ment tool statically checks for correctness. The survey provides many pointers to
related work. We describe the three closest approaches.

The PASS system, developed by Thorburn and Rowe (1997), assesses C pro-
grams by evaluating whether a student program conforms to a predefined solution
plan. A drawback of the system is that it needs testing for this evaluation. More-
over, a solution plan is much more strict compared to a strategy. For example,
the system considers the definition of any helper function incorrect. Our approach
allows a higher degree of freedom by means of standard strategies and program
transformations.

The approach of Truong et al. (2004) is also based on model solutions and
abstract syntax tree inspections. However, their primary use is to assess software
quality and not so much correctness. In addition to similarity checks, their system
also calculates software metrics, which are used to give feedback to a student. A
drawback of their approach is that it does not take the different syntactic forms of
a model solution into account. Moreover, the similarity check considers only the
outline of a solution and not its details.

Xu and Chee (2003) show how to diagnose Smalltalk programs using program
transformations. Their approach is rather similar to our approach. The set of trans-
formations for a functional programming language is much smaller and simpler.
We would like to implement their advanced method for locating errors in student
programs.

Program verification tools are used to prove programs correct with respect to
some specification (Mol et al., 2002). Automatic program verification tools provide
as much support as possible in constructing this proof. However, users always need
to give hints or proof steps to complete proofs for non-trivial programs, such as
fromBin.

Ask-Elle 19

Question Score

1 The tutor helped me to understand how to write simple functional programs 3.15

2 I found the high-level hints about how to solve a programming problem useful 3.43

3 I found the hints about the next step to take useful 3.05

4 The step-size of the tutor corresponded to my intuition 2.85

5 I found the possibility to see the complete solution useful 4.25

6 The worked-out solutions helped me to understand how to construct programs 3.55

7 The feedback texts are easy to understand 3.25

8 The kind of exercises offered are suitable for a first functional programming
course

3.90

Table 1 Questionnaire: questions and scores.

5 Experiment 2: questionnaire

We have used our functional programming tutor in a course on functional program-
ming for bachelor students at Utrecht University in September 2011. The course
attracted more than 200 students. Around a hundred of these students have used
our tutor in two sessions in the second week of the course after three lectures.
40 students filled out a questionnaire about the tutor, and we collected remarks
during the lab sessions. Table 1 shows the questions and the average score on a
Likert scale from 1 to 5. The first seven questions are related and indicate how
satisfied students are with the tutor. The last question addresses how students
value the difficulty of the offered exercises.

At the time of this experiment, there was no support for property-based test-
ing in the Ask-Elle tutor. The goal of this experiment was to analyse if students
appreciate our incremental approach, such as giving feedback on intermediate an-
swers, and to discover which parts of the tutor need further improvements.

5.1 Reflection on the scores

The scores show that the students particularly like the worked-out solution feed-
back. A worked-out solution presents a complete, step-wise, construction of a pro-
gram. Furthermore, the kind of exercises are as expected by the students. The
results also show that the step-size used by the tutor does not correspond to the
intuition of the student. We also noticed this during the experiment. The students
often took larger steps than that the tutor was able to handle.

The average of the first seven question gives an overall score of the tutor of 3.4
out of 5. This is sufficient, but there is clearly room for improvement.

5.2 Evaluation of open questions

In addition to questions about the usage of the tutor, the questionnaire also con-
tained some general questions, including:

1. We offer the feedback services: strategy hint, step hint, step, all steps, solution,
and we check the program submitted by the student. Do you think we should
offer more or different feedback services?

20 Alex Gerdes et al.

2. Do you have any other remarks, concerns, or ideas about our programming
tutor?

The answers from the students to the first question indicate that the feedback
services are adequate. We received some interesting suggestions on how to improve
our tutor in response to the second open question. The remarks that appear most
are:

– Some solutions are not recognised by the tutor
– The response of the tutor is sometimes too slow

The first remark may indicate that a student believes her own solution is correct,
where in fact it is not. It could be that the program is incorrect or contains
imperfections, such as being inefficient, and hence is rejected by the tutor. This
remark addresses the fact that we cannot give feedback on student programs that
deviate from a path towards one of the model solutions. When a student program
deviates from a path towards a model solution there are three possibilities:

– The student program is incorrect, and we should be able to detect this and
give a counterexample. This observation has resulted in adding property-based
testing to Ask-Elle (see Section 3.3).

– The student program is correct and uses desirable programming techniques, but
our tutor rejects it. In this case the set of model solutions should be extended
with this solution.

– The student program is functionally correct but contains some imperfections,
such as length (x : xs)− 1 which should be simplified to length xs. In general,
the tutor cannot conclude that a student program contains imperfections when
it passes the tests but deviates from the strategy, and therefore it cannot give a
definitive judgement. However, after using an exercise in the tutor for a while,
and updating the tutor whenever we find an improvement, it is likely that
the set of model solutions is complete, and therefore unlikely that a student
comes up with a new model solution (see experiment 1 on the assessment of
student programs). Therefore, in this particular case we can give feedback that
a student program probably has some undesired properties.

The second remark is related to the step-size supported by the tutor. When a
student takes a large step, the tutor has to check many possibilities, due to the
flexibility that our tutor offers. We have addressed this problem by constraining
the search space and by introducing a special search mode that is used for recog-
nising steps. The technical details can be found in (Gerdes et al., 2012a) and its
accompanying technical report.

In addition to the described experiment, we also asked a number of functional
programming experts from the IFIP WG 2.1 group5 and student participants of
the Central European Functional Programming (CEFP 2011) summer school to
fill out a questionnaire. We asked for input about some of the design choices we
made in our tutor, such as giving hints in three levels of increasing specificity.
Both the experts as well as the students support most of the choices we made.
The main suggestion we got for adding extra services/functionality was to give
concrete counterexamples using testing for semantically incorrect solutions.

5 http://foswiki.cs.uu.nl/foswiki/IFIP21/

Ask-Elle 21

6 Classification for student programs

Based on the observations from the two experiments, we can now present a detailed
classification for student programs that takes correctness and design into account.
A full program is classified as correct if it has the expected input-output behaviour.
A partial program (with holes) is considered to be correct if replacing the holes
with expressions can lead to a correct program. We use the following categories
for classifying submitted student programs:

Compiler error (Error). Ask-Elle uses Helium and GHC to compile student pro-
grams. Both compilers report syntax and type errors, which the student first
has to repair.

Matches model solution (Model). Ask-Elle can match the student program with
a model solution. The student is on the right track solving the exercise, or
finished with the exercise (if there are no more holes).

Counterexample (Counter). Based on one of the properties QuickCheck finds a
counterexample and reports a specialised message explaining to the student
why her program is incorrect.

Undecided. Programs that cannot be matched with a model solution, and without
a counterexample, cannot be diagnosed as correct or incorrect by Ask-Elle.
Later we will separate this category into Tests passed, for programs for which all
tests pass, and Discarded, for programs for which most test cases are discarded,
in almost all cases because the program is undefined at too many places.

The first three categories correspond to steps 3–5 in Figure 3. Ideally, the
number of programs in the Undecided category is small. Programs for which cor-
rectness is undecided raise some interesting questions related to the quality of
feedback reported by the tutor:

– How many programs are classified as undecided?
– How often would adding a program transformation help with matching against

model solutions?
– How often would adding a model solution help?
– How often do students add irrelevant, with respect to the exercise, parts to a

program with the correct input-output behaviour?
– How many of the programs with correct input-output behaviour contain im-

perfections, such as redundant case-clauses, which are perhaps impossible to
remove automatically.

– How often does QuickCheck not find a counterexample, although the student
program is incorrect?

In the following subsections we take a closer look at why correct programs
cannot always be matched with a model solution, and why testing with QuickCheck
sometimes cannot find counterexamples for incorrect programs. We give answers
to the above questions at the end of Section 7.

22 Alex Gerdes et al.

6.1 Correct (but no match)

The student program is correct. It is not matched against one of the model solu-
tions because:

1. The student has come up with a way to solve the exercise that significantly
differs from the model solutions.

2. Ask-Elle misses some transformations to transform the student program and
a model solution into the same program.

3. The student has solved more than just the programming exercise. For example,
she has added checks on the input, or elaborate error messages.

4. The student implementation does not use good programming practices or con-
tains imperfections.

Case (1) leads to adding the student solution as a new model solution to Ask-
Elle. This of course raises the question when a solution is a new model solution,
and when can a solution be transformed into an existing model solution. In general,
it is impossible to develop a transformation system that can transform any two
semantically equal programs into each other (Voeten, 2001). Our basic approach
in Ask-Elle has been to only add transformations to Ask-Elle about which
we never want to give feedback to students. Existing transformations are mainly
related to style issues: the use of names, explicitly specifying arguments, using
local definitions, etc. This implies we do not check such style issues in Ask-Elle,
although we might use a tool such as HLint6 for this purpose. In case (2) we
should add the transformation to Ask-Elle or improve existing transformations.
In case (3) we probably want to report the fact that the student has done too
much, provided this can be recognised. Finally, the solutions in case (4) can be
regarded as residuals about which Ask-Elle cannot give a precise judgement.

We briefly reflect on categorising the 94 student programs from the assessment
experiment described in Section 4. The 62 recognized student solutions are classi-
fied as Model. However, the sanity checks in the 8 good with modifications programs
cannot be removed automatically, and are thus classified as Tests passed ; this is an
example of case (3). The imperfect student programs also end up in Tests passed
and illustrate case (4). A counterexample is found for all the incorrect programs.
Because we only collected final programs for this experiment, none of the programs
is classified as Error or Discarded.

6.2 Incorrect (but no counterexample)

QuickCheck will not always be able to report a counterexample for incorrect pro-
grams. Besides finding a counterexample, the outcome of checking the properties
can be:

– Tests passed. All test cases passed. By default, 100 test cases are run with
random values for each property.

– Discarded. Too many test cases are discarded. By default, more than 90% is
considered to be too many.

6 http://community.haskell.org/~ndm/hlint/

Ask-Elle 23

In case Tests passed, full programs that pass all test cases are likely to be correct;
it is very unlikely that programs with incorrect input-output behaviour pass all
properties without finding a counterexample. For partial programs (with holes)
we have to be a bit more careful since test cases that run into holes are discarded,
and this may influence the distribution of random values that are considered.
Case Discarded is a clear indication that the program is not yet defined enough.
Whenever a hole is encountered during evaluation, the test case will be discarded.
The outcome is Discarded if less than 10% of the test cases can be used. In this
case, the other at least 90% of the test cases need parts of the program that have
not been defined yet.

7 Experiment 3: student program analysis

In the third experiment we analysed the log files of Ask-Elle, with 5950 log entries
from students attending a second-year university class at Utrecht University on
functional programming in September 2013. Each of these log entries consists of:

– an IP address
– a user name
– a requested service: a hint, a list of exercises, or the diagnosis of a submitted

student program

We are particularly interested in the diagnosis requests. 3466 log entries request to
diagnose a student program. We will call these log entries interactions. Besides the
above components and some more administrative information, such as the version
of Ask-Elle used, these interactions consist of:

– a name of a programming exercise (such as fromBin, dupli or repli)
– a student program
– the result of the diagnosis of the student program. The diagnose service reports

that there is a syntax or a type error, that the student program can be com-
pleted into a model solution, that the student has finished the exercise, that
there is a counterexample for the student program, or that it cannot diagnose
the student program.

The 3466 interactions with Ask-Elle come from 116 out of the 285 students
registered for the course. Students seem to have worked top-down through the list
of exercises: the exercises dupli , range, and repli have been tried a lot; exercises
that appear at the bottom of the exercise list have been tried much less. In total,
the students worked on 26 different programming exercises. The log entries have
been grouped into exercise attempts: sequences of interactions resulting in either
a solution to the exercise, or the student giving up on the exercise. On average,
students worked on 5.62 exercise attempts (standard deviation 6.57). An exercise
attempt consists on average of 5.29 interactions (standard deviation 6.12). We
have divided the entire set of interactions and exercise attempts into the categories
given in the previous section. To classify an attempt we use its last interaction.
The overall results are shown in Table 2. The results for the functions for which we
received the most interactions (dupli , repli , and compress) are shown in Table 3.

24 Alex Gerdes et al.

Category Attempts Interactions

Compiler error 142 (21.8%) 1920 (55.4%)

Model 221 (33.9%) 754 (21.8%)

Counter 33 (5.1%) 201 (5.8%)

Tests passed 235 (36.0%) 436 (12.6%)

Discarded 21 (3.2%) 155 (4.5%)

total 652 3466

recognised 221/477 (46.3%) 754/1345 (56.1%)

classified 396/652 (60.7%) 2875/3466 (82.9%)

Table 2 Categorising student programs

We want to recognise as many correct programs as possible with the model
solutions. We define the ratio of recognised model solutions by Ask-Elle:

recognised =
|Model |

|Model | + |Tests passed | + |Discarded |

Note that this ratio is a lower bound: there may be undetected incorrect solutions
in the Tests passed and Discarded classes. Programs with a compiler error or for
which a counterexample is found are incorrect and thus excluded in this ratio.
Currently, 56.1% of the interactions (and 46.3% of the attempts) are recognised
to be correct.

Similarly, we define the ratio of classified correct or incorrect programs by:

classified =
|Model | + |Error | + |Counter |

|Total |

Of all interactions, 82.9% are classified as correct or incorrect. Of all attempts,
60.7% are classified as correct or incorrect.

Some observations about the data:

– The number of syntax and type errors is high, even in completed exercise
attempts. In 21.8% of the exercise attempts, a student gave up on the exercise
with a compiler error in her last submission.

– Ask-Elle scores better on individual interactions. However, many of the recog-
nised inputs are relatively small and largely incomplete: input such as dupli • =
• is classified as Model.

– A possible reason for why the results for dupli are better than the results for
the other two exercises is that there was a bug in the renaming of variables,
which was found during and repaired after the experiment. This bug would
fire sooner in definitions with two parameters instead of one. Another reason
can be that the number of specified model solutions for dupli is higher than
for repli (6 versus 4).

To increase the recognised and classified ratios, we analysed the set of pro-
grams in Tests passed and Discarded to discover which program transformations
or model solutions we should add. The results are discussed in Section 7.1. The
recognised ratio can also be increased by improving the properties that are used to
find counterexamples. During the analysis we found that some properties needed

Ask-Elle 25

Exercise Category Attempts Interactions

dupli Compiler error 44 (31.2%) 508 (63.8%)

Model 65 (46.1%) 184 (23.1%)

Counter 4 (2.8%) 27 (3.4%)

Tests passed 27 (19.1%) 68 (8.5%)

Discarded 1 (0.7%) 9 (1.1%)

total 141 796

recognised 65/93 (69.9%) 184/261 (70.5%)

classified 113/141 (80.1 %) 719/796 (90.3%)

repli Compiler error 12 (18.5%) 275 (67.2%)

Model 12 (18.5%) 40 (9.8%)

Counter 6 (9.2%) 15 (3.7%)

Tests passed 31 (47.7%) 62 (15.1%)

Discarded 4 (6.2%) 17 (4.2%)

total 65 409

recognised 12/47 (25.5%) 40/119 (33.6%)

classified 30/65 (46.2%) 330/409 (80.7%)

compress Compiler error 19 (31.2%) 270 (56.4%)

Model 11 (18.0%) 104 (21.7%)

Counter 4 (6.6%) 26 (5.4%)

Tests passed 24 (39.3%) 47 (9.8%)

Discarded 3 (4.9%) 32 (6.7%)

total 61 479

recognised 11/38 (28.9%) 104/183 (56.8%)

classified 34/61 (55.7%) 400/479 (83.5%)

Table 3 Categorising student programs for dupli , repli , and compress

adjustments. For example, changing the test case generators can result in discard-
ing fewer test cases and finding more counterexamples. This would decrease the
number of programs in the Tests passed and Discarded categories.

7.1 Program transformation for student programs

For all 436 student programs of all exercises in the Tests passed category, we deter-
mined by hand whether or not they can be recognised if we would add or improve
Ask-Elle’s program transformations. We collected a list of program transforma-
tions that could help to recognise student programs. Besides program transfor-
mations, we have also investigated which programs require a new model solution,
which programs contain imperfections, and whether or not programs have the
correct input-output behaviour.

Adding model solutions to the tutor is very simple and requires no program-
ming: this can always be done for solutions that are not recognized. Improving the
tutor’s program transformations, however, takes a lot of effort. Semantic equality
of programs is undecidable, and there does not exist a normal form for programs.

26 Alex Gerdes et al.

This implies that there is no complete set of transformations to use when trans-
forming student programs and model solutions. In our analysis we have been con-
servative with marking programs as new model solutions, because the goals is to
improve Ask-Elle’s matching capabilities. Admittedly, the distinction between a
new solution and a program that can be recognized from an existing solution is
not sharp and requires judgement from a teacher or expert.

Below we list the program transformations that have to be added or improved
to match a student program to a model solution. These program transformations
are standard techniques for normalising and optimising functional programs that
are often found in compilers. These transformations are general and not specific
for the exercises we used. Note that one student program might require multiple
transformations, require a new model solution, and contain multiple imperfections.

1. Many students include type signatures in their programs. Although this is of
course good practice, our tutor does not recognise type signatures when match-
ing against a model solution. This is problematic for 94 student programs, many
of which are also unrecognised for other reasons.

2. Recognising more functions from the prelude and adding alternative definitions
for prelude functions helps in 37 cases. Using function definitions to perform
a beta-reduction step (performing the application of a function to an argu-
ment (Barendregt, 1984)), helps in 39 cases.

3. Dealing with function parameters uniformly. For example, the student pro-
gram palindrome = (λx → x reverse x) with a lambda-expression is not
matched against the model solution palindrome x = x reverse x , although
these definitions are equivalent. Not using function composition (◦) is another
example, e.g. dupli x = concatMap (replicate 2) x versus model solution
dupli = concatMap ◦ replicate 2. Often, some form of eta-conversion (abstract-
ing from an argument, removing a lambda, or, the other way around, introduc-
ing a lambda (Barendregt, 1984)), for example, replacing (λx → (+) 1 x) by
(+) 1, is sufficient to match more solutions. There are 8 + 54 + 13 = 75 occur-
rences of these transformations. We expect such programs can be recognised
by introducing eta-conversion, and by normalising definitions with parameters
to lambda-expressions (such as for the palindrome example).

4. The alpha-conversion normalisation step contained a bug. This problem ap-
pears in 48 programs. An additional 19 programs are not recognised due to
the use of a wildcard pattern in either the student program or in the model
solution (similar to the student program).

5. Inlining a value defined in a where-clause, a let-clause, or a separate top-level
definition helps in 26 cases.

6. If an expression is guarded by an equality such as a b, we can replace all oc-
currences of a by b (or b by a) in the expression. In 26 cases this transformation
helps.

7. In 22 cases, removing syntactic sugar from the program would help, such as
converting the Haskell list-notation [1, 2, 3] to constructor application 1:2:3:[].

8. One program requires removing an unused (helper) definition. We cannot re-
move an unused helper function in an incomplete program with holes, because
such a definition may still be used when a hole is further refined. The same
problem holds for inlining helper definitions.

Ask-Elle 27

9. Many more types of required transformations appear very infrequently, such
as: removing infix-notation, changing the order of arguments of a helper func-
tion, changing the order of function bindings, transforming between guards,
patterns, and if-then-else conditionals, etc.

Besides these transformations, we also found that it is sometimes worthwhile to
introduce a more abstract version of a model solution to increase the number of
student programs that are recognised. We give an example in Section 7.3.

7.2 Results

We return to the questions posed in Section 6.

– How many programs are classified as undecided? 17.1% of all interactions and
39.3% of all attempts end in Undecided. These results are better for smaller
assignments with many model solutions, such as dupli .

– How often would improving or adding a program transformation help with
matching against model solutions? Consider the 436 programs (interactions)
that were in the Tests passed category. By adding new transformations, Ask-
Elle now recognises 161 of these programs as model solutions. By fixing the
alpha-conversion transformation and improving other transformations Ask-
Elle can recognise an additional 96 programs.

– How often would adding a model solution help? Of the remaining 436− 161−
96 = 179 programs in the Tests passed category, we expect to recognise 84
programs by adding more model solutions. Note that to recognise some of
these programs, we need the improved or new program transformations from
the previous point. For 16 of the 26 exercises on which students worked we
need one or more new model solutions. Three of these were used in ten or
more student programs.

– How often do students add irrelevant, with respect to the exercise, parts to
a program with the correct input-output behaviour? In 3 programs a student
deals with cases that are excluded in the definition of the exercise, for example
a case for negative numbers in an exercise that states that the input number
is at least zero.

– How many of the programs with correct input-output behaviour contain im-
perfections, such as redundant case-clauses, or an inefficient implementation?
We have found 86 such programs, including the 3 from the previous point.
These programs contain superfluous patterns or cases (20), for example for the
empty list, the singleton list, and a cons pattern, where the singleton pattern
is covered by the cons pattern and the empty pattern, or a helper function that
directly (18) or indirectly (4) corresponds to a prelude function, such as an in-
stance of map without a function argument that applies a particular function
to each value in a list. Some students delay pattern-matching (25), for example
instead of pattern matching directly on a list, to get access to the first element
and the rest of the list, they use the prelude functions head and tail .

– How often does QuickCheck not find a counterexample, although the student
program is incorrect? The remaining 179−84−86 = 9 programs are incorrect,
but QuickCheck does not find a counterexample. For the incorrect programs
that contain holes (3) there is no way to fill the holes to obtain a correct

28 Alex Gerdes et al.

Category Interactions

Compiler error 1920 (55.4%)

Model 1095 (31.6%)

Counter 206 (5.9%)

Tests passed 87 (2.5%)

Discarded 158 (4.6%)

total 3466

recognised 1095/1340 (81.7%)

classified 3221/3466 (92.9%)

Table 4 Categorising student programs with improved program transformations and new
model solutions

program, but QuickCheck will not find counter-examples to these programs.
Since most of the tests are discarded, these programs end up in the Discarded
category. An example of such a program is dupli xs = map • xs. This definition
is correct for the input [], but will be incorrect for any non-empty input.
However, all tests with non-empty inputs are discarded. This error may be
caught by considering additional properties about the length of a duplicated
list.

We give the version of Table 2 for interactions, taking the new and improved
program transformations and new model solutions into account, in Table 4. We
move 161 + 96 + 84 = 341 from Test passed to Model and move the 3 incorrect
programs with holes to Discarded and the 5 incorrect programs without holes for
which we can update the properties of the exercise to Counter.

Thus the recognised ratio of interactions increases to 81.7% (was: 56.1%), and
the classified ratio to 92.9% (was: 82.9%).

7.3 Abstract model solutions

It is sometimes worthwhile to introduce a more abstract version of a model solution
to increase the number of student programs that are recognised. For example, a
number of our exercises require recursing over integers until a stop condition is
met. Consider the range exercise, in which a student should define a function that
enumerates all numbers in a given range. For instance, range 2 5 gives [2, 3, 4, 5].
We may assume the second integer to be larger than the first. Here are some
correct and equivalent definitions:

range1 a b | a b = [a]
| otherwise = a : range1 (a + 1) b

range2 a b | a b = [b]
| otherwise = a : range2 (a + 1) b

range3 a b | a > b = []
| otherwise = a : range3 (a + 1) b

range4 a b | a > b = []
| otherwise = range4 a (b − 1) ++ [b]

Ask-Elle 29

range5 a b | a 6 b = a : range5 (a + 1) b
| otherwise = []

The first definition can be transformed in the second definition by means of pro-
gram transformation 6 (from Section 7.1). The other definitions show various ways
in which the arguments a and b can be used to steer the recursion: going up from
a to b, or down from b to a. The use of , >, or 6 in guards increases the number
of variants, and there are many other constructs that introduce variants. Just as
foldr can be used to recognise uses of both foldr itself as well as its explicitly
recursive variants, we expect that many of the variants of the range function can
be inferred from a sufficiently abstract definition for this exercise, such as:

condIterate cond begin it af bf = step
where

step a b
| cond a b = begin
| otherwise = it a b (step (af a) (bf b))

range3 = condIterate (>) [] (λa xs → a : xs) (+1) id

We have yet to investigate laws for abstract functions such as condIterate, and the
kind of program transformations necessary to use this approach.

8 Related work

This section describes the related work in the area of intelligent tutoring for learn-
ing programming: related work on assessment has been discussed in Section 4 on
the assessment experiment we performed. Through the years several hundreds of
papers on intelligent tutoring systems and learning environments for learning pro-
gramming have been published. This section can only discuss a fraction of those.
We provide references to review papers in which interested readers can find more
information about various aspects of tutoring systems for learning programming.

Tools that support students in learning programming have been developed
since the 1960s (Ulloa, 1980; Douce et al., 2005). Some of these tools analyse
incremental steps a student takes (Anderson et al., 1986), and/or support the
development of programming plans (Soloway, 1985; Johnson and Soloway, 1985).
The early work in this area primarily targeted the programming languages Lisp
and Pascal (including Pascal-like imperative languages); a nice overview is given
by Vanneste et al. (1996).

Our work is probably closest to the Lisp tutor and its successors (Anderson
et al., 1986; Brusilovsky et al., 1996; Corbett and Anderson, 2001). The main
difference with these tutors is that Ask-Elle offers class 3 exercises, and that
adding a programming exercise to Ask-Elle is relatively easy, and only requires
authors to provide annotated model solutions and properties in Haskell.

The next wave of programming tutors primarily targeted Java (Kölling et al.,
2003; Sykes and Franek, 2004; Holland et al., 2009) and Prolog (Sison et al., 2000;
Hong, 2004; Le et al., 2009), but tutors for other programming languages have
been developed as well, of course. A recent overview by Le et al. (2013) describes
the various AI-supported approaches that have been used in programming tutors.

30 Alex Gerdes et al.

Striewe and Goedicke (2014) review one such approach in detail: static analysis
for diagnosing student programs.

A current trend in the intelligent tutoring systems world is to use data-driven
techniques to give feedback and hints to users of intelligent tutoring systems and
other learning environments (Rivers and Koedinger, 2014; Jin et al., 2012; Price
and Barnes, 2015). Feedback and hints are now generated from previous student
solutions to a programming exercise, and possibly a seeding expert solution, in-
stead of from a complete collection of model solutions for a program. The tech-
niques used by Rivers and Koedinger (2013) are close to some of the techniques
we use: student solutions to a programming exercise are represented in a solution
space obtained by applying program transformations to student programs to ob-
tain programs in some normal form. This approach is particularly useful when it
is hard to come up with a more or less complete set of model solutions. A possible
disadvantage is the reduced teacher control over feedback and hints.

Many of the techniques we use have been used in earlier tutors, but none
of these early or more recent tools combines strategy-based model tracing and
property-based testing to construct a programming tutor for class 3 exercises, in
which students get automatic feedback and hints on intermediate steps, and in
which teachers can easily add exercises and adapt feedback.

As far as we are aware, the kind of analysis performed in Section 7 has not
been performed before. Designers of tutoring systems for learning Prolog (John-
son, 1990; Looi, 1991; Hong, 2004; Le and Menzel, 2009) have analysed complete
student programs in a similar fashion, but we think also analysing intermediate
diagnoses of student programs is essential for determining the quality of an intel-
ligent tutoring system. There has been quite some work on semantic-preserving
variations (Xu and Chee, 2003; Wang et al., 2007), used to equate student pro-
grams with model solutions. These variations correspond to our program transfor-
mations. The kind of program transformations we apply differ significantly from
earlier work, because we have a Haskell tutor instead of a tutor for imperative
programming.

9 Conclusions and future work

We have shown the design of Ask-Elle, a tutor for the lazy, typed, higher-order
functional programming language Haskell. We have performed several experiments
with the tutor, and have shown how these experiments influenced the design of
the tutor. Ask-Elle supports the incremental development of programs for class
3 programming exercises, offering feedback and hints while a student is developing
a program. The feedback and hints are automatically calculated from teacher-
specified annotated model solutions and from properties that a solution to the
exercise should satisfy. The main technologies we use to provide feedback and
hints are strategy-based model tracing and property-based testing.

Our experiments focus on determining the quality of the diagnoses of Ask-
Elle. Before we can use Ask-Elle to measure learning effects or learning effi-
ciency, we first need to make sure that the feedback is accurate and perceived as
useful. We performed several experiments in which we tested the accuracy and the
perceived usefulness of the analyses. We expect that with the implementation of
the improvements obtained from the analysis in our last experiment, the feedback

Ask-Elle 31

of Ask-Elle is good enough to use it in the daily practice of a course. Taking the
improvements found in the last experiment into account, we are able to recognise
nearly 82% and classify nearly 93% of all interactions. We will use this version of
Ask-Elle to measure learning effects and effectiveness.

The second experiment shows that students highly value the worked-out exam-
ples from Ask-Elle. This is in line with three decades of experimental research on
learning by observing and imitating examples in which an expert demonstrates how
to solve a problem versus learning by doing. For novices, who lack prior knowledge
of a task, observing examples or alternating example-study and problem solving
is more effective and efficient (leads to better learning outcomes in less time and
with less effort) compared to practising problem solving (Sweller et al., 2011). We
advise teachers to use Ask-Elle first to study the incremental development of
programs for some example exercises.

Ask-Elle is particularly useful for beginner’s exercises in Haskell, such as
exercises in which a student has to fill out a missing component, or develop a
small program performing a particular task. For such exercises, it usually suffices
to construct about five model solutions that cover the range of solutions students
submit. We expect that the hints of Ask-Elle help beginners realise that there are
different ways to solve a single problem. Ask-Elle is less suited for larger projects,
or for programs that involve I/O, since for these kinds of exercises the amount
of possible solutions gets very large, and specifying all possible model solutions
becomes impractical. This is not a problem: we think the kind of feedback and
hints provided by Ask-Elle are very useful for a beginner, and less useful for a
more advanced Haskell programmer. For example, a teacher might use Ask-Elle
in the first part of a course, say the first 50-100 hours spent by a student, and
then use the standard compiler for Haskell, and provide feedback and hints in a
different way, or on a different level. To promote deep learning, we think debriefing
sessions after using Ask-Elle during a session or some period of time are essential
for student learning.

In this paper we described a tutor for learning the functional programming
language Haskell. We believe, however, that our approach based on programming
strategies is also applicable to other programming languages and programming
paradigms, because the concepts on which our approach is based, such as strate-
gies, refinement rules, and program transformations, are applicable to every pro-
gramming language. A prototype of a tutor for introductory imperative program-
ming problems that is based on the same technologies was recently presented
by Keuning et al. (2014).

Ask-Elle shows that to extend a programming tutor with a new exercise, to
which a teacher wants to add a particular kind of feedback, a teacher only needs to
construct model solutions with feedback annotations, and does not need to know
anything about the internals of a tutoring system. This significantly reduces the
burden to use such a tutor.

9.1 Future work

Ask-Elle diagnoses a student program to be correct (transformable to a model
solution), or incorrect (together with a counterexample). A teacher sometimes
also gives more subtle feedback such as: this is a good solution, but it is better

32 Alex Gerdes et al.

to ... We want to draw up a feedback benchmark, in which we collect the kind
of feedback that is usually given by teachers on the kind of functional programs
that are offered in Ask-Elle. We want to study if we can incorporate this kind
of feedback in Ask-Elle, for example by specifying undesirable transformations
we may perform on a student program to transform it to a model solution, and
reporting these.

If a student program is syntactically incorrect, or if it contains a type error, we
cannot give any hints or feedback based on model solutions. Instead, in these situ-
ations we rely on the Helium compiler for error messages. We want to investigate
if we can use error-correcting parsing and other compiler techniques to also give
strategy-based model tracing hints and feedback on syntactically incorrect or type-
incorrect programs. We expect that with a good error-correcting parser (Swierstra
and Alcocer, 1999) we can deal with quite a few syntax errors, and we might be
able to provide more feedback and hints for a significant amount of the 55% of stu-
dent programs that contain compiler errors. We are less sure if a similar approach
would work for programs with type errors.

If a student program is incorrect, we report a counterexample. A counterex-
ample does not tell a student where the error occurs in the program. We want to
make use of contracts (Meyer, 1992) and types to propagate properties of solutions
to the components of a student program, to more precisely point to the part of a
program that violates a desired property.

We want to investigate if we can specify model solutions to programming ex-
ercises as much as possible with abstract functions such as condIterate (see Sec-
tion 7.3) and variants of folds, and if we can use laws for these functions and pro-
gram transformations to reduce the number of model solutions, and to increase
the number of recognised programs.

We are also currently performing a systematic literature review on what kind
of feedback is generated in learning environments for programming, what kind of
techniques are used to generate feedback, and how adaptable feedback is. We hope
to use the results of this review to further develop Ask-Elle.

Acknowledgements The authors would like to thank the anonymous reviewers for their
helpful suggestions. We also thank Andres Löh, Doaitse Swierstra, and Jurriaan Hage for
allowing us to perform experiments with our tutor in their classes. For the assessment experi-
ment, Stefan Holdermans provided a set of suitable programming exercises, accompanied with
a large amount of corrected student solutions. Bram Vaessen analysed the scores of our ques-
tionnaire. Peter van de Werken, Bram Schuur, Tom Tervoort and Gabe Dijkstra contributed
to the source code of Ask-Elle. Hieke Keuning found some of the related work, and is working
on a systematic literature review on automated feedback for programming exercises.

References

Ala-Mutka, K. M. (2005). A survey of automated assessment approaches for pro-
gramming assignments. Computer Science Education, 15(2):83–102.

Anderson, J. R., Conrad, F. G., and Corbett, A. T. (1986). Skill acquisition and
the LISP tutor. Cognitive Science, 13:467–505.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., and Pelletier, R. (1995). Cogni-
tive tutors: lessons learned. The Journal of the Learning Sciences, 4(2):167–207.

Ask-Elle 33

Barendregt, H. P. (1984). The Lambda Calculus: its Syntax and Semantics, revised
edition, volume 103 of Studies in Logic and the Foundations of Mathematics.
North-Holland.

Bird, R. S. (1998). Introduction to functional programming using Haskell. Prentice-
Hall.

Bokhove, C. and Drijvers, P. (2010). Digital Tools for Algebra Education: Criteria
and Evaluation. International Journal of Computers for Mathematical Learning,
15(1):45–62.

Brusilovsky, P., Schwarz, E., and Weber, G. (1996). Elm-art: An intelligent tu-
toring system on world wide web. In Frasson, C., Gauthier, G., and Lesgold,
A., editors, Intelligent Tutoring Systems, volume 1086 of LNCS, pages 261–269.
Springer-Verlag.

Claessen, K. and Hughes, J. (2000). QuickCheck: A lightweight tool for random
testing of Haskell programs. In Proceedings of ICFP 2000: the 5th ACM SIG-
PLAN International Conference on Functional Programming, pages 268–279.
ACM.

Corbett, A., Anderson, J., and Patterson, E. (1988). Problem compilation and
tutoring flexibility in the LISP tutor. In Intelligent Tutoring Systems, pages
423–429.

Corbett, A. T. and Anderson, J. R. (2001). Locus of feedback control in computer-
based tutoring: Impact on learning rate, achievement and attitudes. In Pro-
ceedings of CHI ’01: the SIGCHI Conference on Human Factors in Computing
Systems, pages 245–252. ACM.

Douce, C., Livingstone, D., and Orwell, J. (2005). Automatic test-based assessment
of programming: A review. Journal on Educational Resources in Computing
(JERIC), 5(3).

Gerdes, A., Heeren, B., and Jeuring, J. (2012a). Teachers and students in charge
— Using annotated model solutions in a functional programming tutor. In Pro-
ceedings EC-TEL 2012: the 7th European Conference of Technology Enhanced
Learning, volume 7563 of LNCS, pages 383–388. Springer-Verlag.

Gerdes, A., Jeuring, J., and Heeren, B. (2010). Using strategies for assessment of
programming exercises. In Lewandowski, G., Wolfman, S. A., Cortina, T. J.,
and Walker, E. L., editors, Proceedings of SIGCSE 2010: the 41st ACM technical
symposium on Computer science education, pages 441–445. ACM.

Gerdes, A., Jeuring, J., and Heeren, B. (2012b). An interactive functional pro-
gramming tutor. In Lapidot, T., Gal-Ezer, J., Caspersen, M., and Hazzan, O.,
editors, Proceedings of ITICSE 2012: the 17th Annual Conference on Innovation
and Technology in Computer Science Education, pages 250–255. ACM.

Heeren, B. and Jeuring, J. (2014). Feedback services for stepwise exercises. Science
of Computer Programming, Special Issue on Software Development Concerns in
the e-Learning Domain, 88:110–129.

Heeren, B., Jeuring, J., and Gerdes, A. (2010). Specifying rewrite strategies for
interactive exercises. Mathematics in Computer Science, 3(3):349–370.

Heeren, B., Leijen, D., and IJzendoorn, A. v. (2003). Helium, for learning Haskell.
In Proceedings of Haskell 2003: the ACM SIGPLAN Workshop on Haskell, pages
62–71. ACM.

Holland, J., Mitrovic, A., and Martin, B. (2009). J-Latte: a constraint-based tutor
for Java. In Proceedings of ICCE 2009: the 17th International Conference on
Computers in Education, pages 142–146.

34 Alex Gerdes et al.

Hong, J. (2004). Guided programming and automated error analysis in an in-
telligent Prolog tutor. International Journal on Human-Computer Studies,
61(4):505–534.

Hudak, P. (2000). The Haskell school of expression: learning functional program-
ming through multimedia. Cambridge University Press.

Hutton, G. (2007). Programming in Haskell. Cambridge University Press.
Jeuring, J., Binsbergen, L. T. v., Gerdes, A., and Heeren, B. (2014). Model solu-

tions and properties for diagnosing student programs in Ask-Elle. In Barendsen,
E. and Dagiené, V., editors, Proceedings of CSERC 2014: Computer Science Ed-
ucation Research Conference, pages 31–40. ACM.

Jeuring, J., Gerdes, A., and Heeren, B. (2012). Ask-Elle: A Haskell tutor —
Demonstration —. In Proceedings EC-TEL 2012: the 7th European Confer-
ence of Technology Enhanced Learning, volume 7563 of LNCS, pages 453–458.
Springer-Verlag.

Jin, W., Barnes, T., Stamper, J. C., Eagle, M. J., Johnson, M., and Lehmann, L.
(2012). Program representation for automatic hint generation for a data-driven
novice programming tutor. In Cerri, S. A., Clancey, W. J., Papadourakis, G.,
and Panourgia, K., editors, Proceedings of ITS 2012: the 11th International
Conference on Intelligent Tutoring Systems, volume 7315 of LNCS, pages 304–
309. Springer-Verlag.

Johnson, W. L. (1990). Understanding and debugging novice programs. Artificial
Intelligence, 42(1):51–97.

Johnson, W. L. and Soloway, E. (1985). Proust: Knowledge-based program under-
standing. IEEE Transactions on Software Engineering, 11(3):267–275.

Joint Task Force on Computing Curricula Association for Computing Machin-
ery (ACM) and IEEE Computer Society (2013). Computer Science Curricula
2013: Curriculum Guidelines for Undergraduate Degree Programs in Computer
Science. ACM.

Keuning, H., Heeren, B., and Jeuring, J. (2014). Strategy-based feedback in a
programming tutor. In Barendsen, E. and Dagiené, V., editors, Proceedings of
CSERC 2014: Computer Science Education Research Conference, pages 43–54.
ACM.

Kölling, M., Quig, B., Patterson, A., and Rosenberg, J. (2003). The BlueJ system
and its pedagogy. Journal of Computer Science Education, Special issue on
Learning and Teaching Object Technology, 13(4):249–268.

Kumar, A. N. (2008). The effect of using problem-solving software tutors on the
self-confidence of female students. In Proceedings of SIGCSE 2008: the 39th
SIGCSE technical symposium on Computer science education, pages 523–527.
ACM.

Le, N.-T. and Menzel, W. (2009). Using weighted constraints to diagnose errors
in logic programming - the case of an ill-defined domain. International Journal
of Artificial Intelligence in Education, 19:381–400.

Le, N.-T., Menzel, W., and Pinkwart, N. (2009). Evaluation of a constraint-based
homework assistance system for logic programming. In Proceedings of ICCE
2009: the 17th International Conference on Computers in Education, pages 51–
58.

Le, N.-T. and Pinkwart, N. (2014). Towards a classification for programming
exercises. In Proceedings of the 2nd Workshop on AI-supported Education for
Computer Science.

Ask-Elle 35

Le, N.-T., Strickroth, S., Gross, S., and Pinkwart, N. (2013). A review of AI-
supported tutoring approaches for learning programming. In Advanced Compu-
tational Methods for Knowledge Engineering, volume 479 of Studies in Compu-
tational Intelligence, pages 267–279. Springer-Verlag.

Looi, C.-K. (1991). Automatic debugging of Prolog programs in a Prolog intelligent
tutoring system. Instructional Science, 20:215–263.

Meyer, B. (1992). Applying ”design by contract”. Computer, 25(10):40–51.
Mol, M. d., Eekelen, M. v., and Plasmeijer, R. (2002). Theorem proving for func-

tional programmers – Sparkle: a functional theorem prover. In Proceedings of
IFL 2001, 13th International Workshop onImplementation of Functional Lan-
guages, volume 2312 of LNCS, pages 55–72. Springer-Verlag.

Mory, E. (2003). Feedback research revisited. In Jonassen, D., editor, Handbook
of research for educational communications and technology, pages 745–783.

Nwana, H. S. (1990). Intelligent tutoring systems: an overview. Artificial Intelli-
gence Review, 4(4):251–277.

Odekirk-Hash, E. and Zachary, J. L. (2001). Automated feedback on programs
means students need less help from teachers. In Proceedings of SIGCSE 2001:
the 32nd SIGCSE technical symposium on Computer Science Education, pages
55–59. ACM.

Peyton Jones, S. (2003). Haskell 98, Language and Libraries. The Revised Report.
Cambridge University Press.

Price, T. W. and Barnes, T. (2015). Creating data-driven feedback for novices in
goal-driven programming projects. In Conati, C., Heffernan, N., Mitrovic, A.,
and Verdejo, M. F., editors, Artificial Intelligence in Education, volume 9112 of
LNCS, pages 856–859. Springer-Verlag.

Rivers, K. and Koedinger, K. R. (2013). Automatic generation of programming
feedback: A data-driven approach. In Proceedings of AIEDCS 2013: the First
Workshop on AI-supported Education for Computer Science.

Rivers, K. and Koedinger, K. R. (2014). Automating hint generation with solution
space path construction. In Trausan-Matu, S., Boyer, K. E., Crosby, M., and
Panourgia, K., editors, Proceedings of ITS 2014: the 12th International Con-
ference on Intelligent Tutoring Systems, volume 8474 of LNCS, pages 329–339.
Springer-Verlag.

Sison, R. C., Numao, M., and Shimura, M. (2000). Multistrategy discovery and
detection of novice programmer errors. Machine Learning, 38:157–180.

Soloway, E. (1985). From problems to programs via plans: the content and struc-
ture of knowledge for introductory LISP programming. Journal of Educational
Computing Research, 1(2):157–172.

Striewe, M. and Goedicke, M. (2014). A review of static analysis approaches
for programming exercises. In Computer Assisted Assessment. Research into
E-Assessment, volume 439 of Communications in Computer and Information
Science, pages 100–113. Springer-Verlag.

Sweller, J., Ayres, P., and Kalyuga, S. (2011). Cognitive load theory. Springer-
Verlag.

Swierstra, S. D. and Alcocer, P. R. A. (1999). Fast, error correcting parser com-
binators: A short tutorial. In SOFSEM99: Theory and Practice of Informatics,
pages 112–131. Springer-Verlag.

Sykes, E. and Franek, F. (2004). A prototype for an intelligent tutoring system for
students learning to program in Java. Advanced Technology for Learning, 1(1).

36 Alex Gerdes et al.

Thompson, S. (2011). Haskell: The Craft of Functional Programming. Addison-
Wesley.

Thorburn, G. and Rowe, G. (1997). Pass: an automated system for program
assessment. Computers & Education, 29(4):195–206.

Truong, N., Roe, P., and Bancroft, P. (2004). Static analysis of students’ Java
programs. In Proceedings of ACE ’04: the sixth conference on Australasian
computing education, pages 317–325. Australian Computer Society, Inc.

Ulloa, M. (1980). Teaching and learning computer programming: a survey of
student problems, teaching methods, and automated instructional tools. ACM
SIGCSE Bulletin, 12(2):48–64.

VanLehn, K. (2006). The behavior of tutoring systems. International Journal on
Artificial Intelligence in Education, 16(3):227–265.

VanLehn, K. (2011). The relative effectiveness of human tutoring, intelligent tutor-
ing systems, and other tutoring systems. Educational Psychologist, 46(4):197–
221.

Vanneste, P., Bertels, K., and Decker, B. d. (1996). The use of reverse engineering
to analyse student computer programs. Instructional Science, 24:197–221.

Voeten, J. (2001). On the fundamental limitations of transformational design.
ACM Transactions on Design Automation of Electronic Systems, 6(4):533–552.

Wang, T., Su, X., Ma, P., Wang, Y., and Wang, K. (2011). Ability-training-
oriented automated assessment in introductory programming course. Computers
& Education, 56(1):220–226.

Wang, T., Su, X., Wang, Y., and Ma, P. (2007). Semantic similarity-based grading
of student programs. Information and Software Technology, 49(2):99–107.

Xu, S. and Chee, Y. S. (2003). Transformation-based diagnosis of student programs
for programming tutoring systems. IEEE Transactions on Software Engineering,
29(4):360–384.

