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Abstract 

There is a paucity of pervasive middleware that allow integrations between 

Artificial Intelligence (AI) of the kind supported by software agents and 

sensor/actuator networks (SAN) while simultaneously featuring all of the 

following characteristics: a) a systematic way to achieve the integrations, b) 

transparency, c) multiple MAS (Multi-Agent System) support and d) sensor, 

actuator and device heterogeneity. The thesis is a step forward to developing 

pervasive middleware for AmI (Ambient Intelligence) by presenting an 

approach with all the above characteristics. We propose a middleware that 

creates ubiquitous agents (UAs) by embedding software agents in the physical 

world as part of a ubiquitous computing environment. We use intelligent 

software agents residing in a multi-agent system (MAS) environment. UAs are 

built through linking the functionality of agents residing in MAS networked 

environments, to aggregations of sensors, actuators and devices in the physical 

world that we call avatars.   

The software agents consume services provided by physical sensors, actuators 

and SAN. The provider-consumer relationships enable agent functionality to 

access the data that is sensed by physical sensors and to also create effects in the 

physical world via physical actuators. Computationally expensive capabilities 

such as decision making and communication are performed by the agents in 

MAS platforms while the acting and the sensing in the physical world through 

their corresponding avatars.  

Our approach follows SOA principles to implement a message oriented 

middleware that architecturally consists of: a) a base-layer enabling the sensors 

and the actuators to register as service providers and the agents to register as 

service consumers using an API (Application Programming Interface) and b) a 

reflection layer that creates models of agents and avatars using registration 

metadata from the base-layer and uses these models to create and manage UA 

functionality.  
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Furthermore, the UA framework uses the Z-notation for a detailed specification 

of every component of the middleware enabling researchers to implement it 

using different technologies. The eVATAR middleware that was developed in 

this thesis is such an implementation. eVATAR was applied on two scenarios 

for smart homes that use a MAS platform. Firstly we applied agent AI from the 

GOLEM and the JADE MAS on a miniature smart home containing real sensors 

and actuators in order to provide with evidence that the proposed approach is 

systematic, transparent and supports device heterogeneity and multiple MAS. 

Then we used a custom smart home simulation to illustrate the potential of a 

system using MAS agents, eVATAR and a sensor/actuator network embedded 

in a home context for becoming useful in confronting everyday lives problems. 

The thesis also includes a performance evaluation of eVATAR and discusses 

latency and how to reduce it. As future work we explore ways to improve our 

approach and to extend the scope of supported devices. 
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1.  INTRODUCTION 

We live in a world in which people are increasingly relying on electronic 

devices in order to carry out their everyday activities. More and more of these 

devices can connect to networks like the Internet and can be used as sensors or 

actuators, depending on their purpose in the environment in which they are 

situated ([38], [79]). It is anticipated that the numbers of networked devices and 

sensors will reach to the levels of tens of billions and trillions respectively [37].  

The abundance of connected devices and sensors offers a great opportunity for 

realizing computing concepts such as the vision for Ambient Intelligence (AmI) 

that aspires to utilize them for integrating services in our environments at 

home, at work, on the move, for entertainment, transport, healthcare and in 

general in most environments inhabited by people. AmI is a relatively new 

paradigm in computing referring to digital environments that are sensitive, 

responsive and potentially adaptive to human needs and behaviours aiming to 

transparently empower human capability ([18], [29]). We are particularly 

interested in domestic AmI applications (often referred to as smart homes). 

AmI combines elements of Ubiquitous Computing, Artificial Intelligence (AI) 

and sensor/actuator networks. It has its roots in Ubiquitous Computing which 

was described by Mark Weiser [60] as the concept of computers “weaving 

themselves into the fabric of everyday life until they are indistinguishable from 

it.” AmI systems use contextual information provided by the embedded in the 

environment sensors to adapt it in a way that adds to human capability in a 

transparent, unobtrusive manner. Other characteristics of AmI are 

personalization, being anticipatory and being adaptive to the needs of 

individual users and to changes in the environment [32].  

Several characteristics and especially the intelligence aspect of AmI are typically 

drawn from AI techniques. AI techniques offer great potential for adding 

further sophistication and intelligence to the processing of sensory data in 
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sensor and actuator networks (SAN) [40]. Furthermore, the reasoning and 

adaptability of AI agent architectures that are typically designed for dynamic 

environments (see [30] and [51]) can implement AmI when applied to SAN. 

Software agents often support high-level software capabilities, such as 

reasoning and planning, because they usually run on computationally powerful 

and network connected MAS platforms, in contrast to the low-level capabilities 

of sensors and actuators that are commonly used in smart home SANs. By 

integrating the two, the SAN can benefit from the computation and 

communication capabilities of the MAS platform. This way agent technology 

can be used to make devices in a SAN smarter in a cost effective way without 

requiring costly hardware upgrades for implementing more intelligent 

behaviours. 

In the thesis we investigate how to create a systematic way for enabling 

developers to integrate software agent functionality into networks of sensors 

and actuators for the creation of AmI in a smart home. We want to provide a 

framework that is transparent to the developers concealing the low-level 

implementation details that describe how the integrations are achieved. This 

way we provide developers with a solution to the problem of achieving such 

integrations when implementing AmI systems that also require the use of AI of 

the kind supported by software agents. The framework should also allow 

developers to use a MAS platform of their choice based on their application 

requirements, MAS platform availability and personal preferences (i.e. they 

should not need to be trained to program a new MAS platform if they are 

already familiar with one). Furthermore, due to the aforementioned anticipated 

increase in the numbers of sensors and connected devices in our environments, 

the framework should be able to manage heterogeneity. 

1.1. Motivation 

The inclusion of software agent AI functionality in wired or wireless SAN/SN 

(Sensor Networks) is usually implemented by middleware. There are numerous 
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middleware based approaches that could potentially be used for integrating 

software agent intelligence with sensor and actuator networks. We can identify 

three categories: agent-based SAN/WSN (Wireless Sensor Networks) 

middleware, SAN/WSN middleware that support integration with external 

resources and applications (e.g. a MAS) and high-level middleware for 

pervasive systems. The first two categories describe middleware approaches 

that implement SAN or WSN. The latter describes middleware approaches that 

use sensory data directly from sensors or as derived via a SAN/WSN 

middleware in order to support pervasive computing applications. 

Agent based middleware frameworks for WSN such as [8], [91] and [17] are 

usually implemented with an intrinsic support of a single platform overlooking 

heterogeneity issues. Also, such middleware approaches are usually bound to a 

single agent platform. Furthermore, it is a challenging task for developers to 

program agents in decentralised nodes of a SAN to coordinate their activities 

and perform sophisticated cooperative tasks. 

The second category of SAN middleware of interest include SOA (Service 

Oriented Architecture) based implementations that besides providing with a 

way to interconnect heterogeneous SAN/WSN nodes, they also enable them to 

interact with external applications such as a MAS. Middleware approaches of 

this category include [62], [10], [23] and [95]. SOA based approaches can 

generally implement the communication between SAN and an external to the 

SAN application which in our case would be a MAS. We are interested in 

systematizing a specific application that deals with the dynamic creation, 

management and monitoring of relationships between software agents and 

hardware sensors/actuators at runtime. Middleware approaches of this 

category cope well with heterogeneity in terms of physical devices and 

supported MAS platforms but a higher level middleware would be required to 

systematize how such integrations would be achieved in a transparent way for 

the system developers.  
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The aforementioned SOA based approaches are still dependent on the low-level 

SAN / WSN functionality and they tend to focus on gathering information 

from sensors while a higher-level middleware would focus on using this 

information efficiently. There is a variety of such middleware approaches from 

the areas of pervasive computing e.g. [43], [105], [81] and [108]. Similarly to the 

low-level SAN middleware approaches, there is a paucity of pervasive 

middleware that allow integrations between software agents and SAN while 

simultaneously featuring all of the following characteristics: 

1. A systematic way to achieve the integrations. 

2. Transparency. 

3. Multiple MAS support. 

4. Sensor, actuator and device heterogeneity. 

To support this claim in the Background chapter 2 we describe in more detail 

and evaluate the above categories of middleware and approaches as well as a 

number of other middleware frameworks that were carefully selected based on 

their potential to achieve the integration of agent AI with sensor and actuator 

networks and their impact on their respective areas of application.  

1.2. Hypothesis 

Our hypothesis is that it is possible to create a middleware framework for 

enabling developers to integrate software agent functionality into networks of 

sensors and actuators for the creation of AmI in a smart home that is 

simultaneously: 

 Systematic.  

 Transparent to the developers. 

 Supporting multiple MAS. 

 Supporting heterogeneous devices and software. 
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1.3. Aims and Objectives 

In this section we make explicit what the aims and objectives of the thesis are 

and how they will be demonstrated. The aims of the thesis are as follows: 

1. Create a middleware framework that can integrate software agent 

functionality with a SAN. This will be demonstrated by providing with a 

proof of concept in which the framework enables a software agent to 

interact with a set of physical sensors and actuators.  

2. Develop a systematic way in the framework to integrate software agent 

functionality with sensors and actuators. It should include a standard way 

for implementing the integrations. This will be demonstrated by 

implementing at least two case studies each following the exact same 

method to enable software agents to be applied to SAN. 

3. Support system developers who will act as the users of the framework to 

transparently integrate software agents with sensors and actuators. The 

developers should include the middleware functionality in their 

applications using abstract interfaces that conceal the low-level details of 

how software agents are applied to a SAN. Transparency should be 

demonstrated by providing case studies that implement the integrations 

using abstract interfaces without the requirement to write application code 

for dealing with how the integrations are achieved.  

4. Provide framework support for multiple MAS platforms. This will be 

demonstrated by creating at least two case studies each providing a proof of 

concept using a different MAS platform.  

5. Offer framework support for heterogeneous sensors, actuators and devices. 

This will be demonstrated by creating case studies that involve a variety of 

heterogeneous devices. 

 

In order to achieve the above aims, the objectives of this thesis are as follows: 
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I. Use the Z-notation [45] to specify a framework for a middleware that 

fulfils the aims of the thesis as stated above. 

II. Implement the middleware specified in the framework. 

III. Evaluate the proposed approach as described in the Z-Notation 

framework and its implementation in terms of satisfying the aims of the 

thesis using an application that integrates the GOLEM MAS [82] and real 

sensors and actuators and an application using JADE [25]. 

IV. Implement a test suit consisting of a smart home simulation and a MAS 

for simulating smart home scenarios that involve the integration of MAS 

AI to smart home sensor/actuator networks and implement a scenario 

that shows in simulation the potential of our approach in becoming 

useful in a person’s every day activities. 

V. Use the simulation to test the middleware’s performance. 

VI. Compare the proposed approach with other approaches in terms of 

achieving the aims of the thesis. 

1.4. Approach 

In the same spirit as Mark Weiser’s [60] definition of ubiquitous computing this 

thesis presents an approach for ubiquitous agents (UAs) by “weaving software 

agents into the fabric of everyday life until they are indistinguishable from it.” 

At this point it would be useful to provide a brief description of the software 

agents of the approach. Shoham in [96] defines agents as software entities 

functioning in a continuous and autonomous manner within a specific 

environment that is potentially also a home to other agents, software processes 

and objects. Within the context of this work and based on the definitions of 

Franklin and Graesser in [85], we will be calling agents those software 

programs that have the following features: reaction to the environment, 

autonomy, goal-orientation and persistence. According to Wooldridge and 
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Jennings in [61], agents also present social ability enabling them to 

communicate between them.  

Agents are being reactive by responding to perceived changes in the agent 

environment. Persistence refers to agent continuity within the agent 

environment. According to [42], agents need to satisfy the requirements for 

continuity and autonomy in order to be able carry out activities in the 

environment without the need for constant guidance or intervention by other 

entities such as human users or software programs. A goal directed behaviour 

enables purposeful action to the reactive, autonomous and persistent nature of 

agents. 

It would be useful to introduce the notions of the software agent “mind” and 

“body” as well, which are integral to the proposed in this thesis approach as we 

will see in the following. More specifically, the separation of the “mind” 

(supporting capabilities such as decision making and reasoning) from the 

agent’s “body” (responsible for aggregating the sensors/actuators situating the 

agent on a distributed application environment) has been for a long time 

common practice both in the MAS literature [52], but also in MAS development 

practice ([82], [50], [84] , [4]). Thus, at least in principle, it should be possible to 

link an agent’s software “body” to one with presence in the physical 

environment. 

In the rest of the thesis the notion of “Ubiquitous Agent” or UA will be used to 

describe an entity that is capable of simultaneous presence in both a MAS 

electronic and a physical environment. UAs are built through enabling software 

agents residing in electronic networked environments, to connect to and control 

the aggregation of one or more devices in the physical world. At the same time 

their bodies may still bare sensors and actuators allowing them to interact with 

their electronic MAS environment. 

Furthermore, the term avatar will represent any aggregation of connected 

devices whether sensors, actuators or smart devices that are embedded in a 

finite physical environment such as a smart home (including mobile robots). 
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Our use of the term “avatar” does not follow the popular computing definition 

for an avatar being a graphical representation of a user [99]; instead we defined 

it to be the software agent’s bodily form in the physical environment via a set of 

physical sensors and actuators. 

Therefore, a UA = Software Agent + Avatar. It is assumed that the software 

agents usually run on powerful, in terms of computational capabilities and 

connectivity, MAS platforms. The computationally expensive capabilities such 

as reasoning, planning and communication are performed by the agents in the 

MAS platform while the acting and the sensing in the physical world through 

the corresponding avatars. The UAs are viewed as connected within a network 

as all agents within a MAS such as JADE [25] or GOLEM [82] are capable of 

communicating with each-other within the MAS environment therefore the 

same applies for the UAs they belong to. This way, even the simpler hardware 

of the sensor-actuator network appears to have access to more information and 

implement more context aware behaviours when powered by MAS agents. An 

AmI system in the context of this architecture is typically a network of nodes 

that are UAs. 

In our approach, sensors and actuators interact with the middleware using an 

API (Application Programming Interface). The API provides an XML based 

metadata language providing an ontology that enables abstract interaction with 

the middleware in order to create agent – SAN integrations concealing the low-

level details of how these integrations are achieved (transparency). In our 

approach, any external data source that uses the API is considered to be a 

sensor. Similarly, any external to the middleware resource that can produce an 

effect in the physical world and uses the API is considered to be an actuator. An 

avatar body is a collection of such sensors and actuators. Accordingly, our 

approach considers agent sensors as code that internalizes sensory data to the 

agent mind/reasoning component from the API and actuators as code that 

enables this component to interact with the API in order to create control 
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messages. In our approach we call an agent body a collection of agent sensors 

and actuators as described above. 

Our approach follows Service Oriented Architecture (SOA [57] and [89]) 

principles to implement a message oriented middleware that architecturally 

consists of: a) a base-layer enabling the sensors and the actuators to register as 

service providers and the agents to register as service consumers using the API 

and b) a reflection layer (see [33] and [27]) that creates models of agents and 

avatars using registration metadata from the base-layer and uses these models 

to create (dynamic discovery) and manage UA functionality (mediator). The 

provider-consumer relationships enable software agents to access the data that 

is sensed by sensors and to also create effects in the physical world via 

actuators.  

In the thesis, sensors and actuators are also referred to as “interactors” as they 

are the means by which an agent may interact with the physical environment 

via sensing and acting. We use the term “interactor” for both physical 

sensors/actuators as well as the sensing and acting software components of a 

software agent body. 

1.5. Contribution 

This work contributes an approach consisting of an architecture and a 

framework for a middleware component providing a link between MAS and 

SAN networks using UAs. The Z notation is used to specify the components of 

the framework and their interaction. The Z specification of the framework aims 

to describe a systematic and transparent way for linking software agents to sets 

of physical sensors and actuators that is implementation independent, thus 

allowing different researchers to implement it with different technologies. Also 

the framework is MAS platform and physical device platform independent. 

Another contribution of the work is the implementation of a middleware 

platform according to the specified framework. This platform consists of a) the 
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eVATAR middleware (a play with the words electronic and avatar to denote 

that the middleware enables an electronic entity i.e. a software agent to have an 

avatar in the physical environment) and b) BIL (for Body Integration 

Language), a metadata language for describing sensors and actuators belonging 

to agents or embedded in physical environments. EVATAR implements a SOA 

to provide with systematic way for linking agent and SAN functionality. It also 

features a component that implements reflection allowing it to dynamically link 

agent bodies to physical avatars and to manage and monitor their interactions 

and the middleware itself. The thesis also contributes a proof of concept 

involving the implementation of a smart home security scenario using 

EVATAR, real sensors/actuators embedded in a miniature house and the 

GOLEM MAS [82]. Also, a simpler application using a JADE agent [25] was 

implemented indicating MAS platform independence. A simulation of a smart 

home that we call RoboHome is another contribution of this work. It was used 

with EVATAR and the GOLEM MAS to evaluate EVATAR in terms of 

improving everyday life activities. In the case studies we used different 

hardware and software and implemented different applications following the 

same systematic method (evidence with regards to the systematic aim). 

Furthermore, we used high level interfaces to interact with EVATAR 

(transparency aim). Finally, the scenarios included heterogeneous devices, this 

way satisfying the relevant aim.  

The experience gained from the implementation of these scenarios as well as the 

results of the performance testing of EVATAR were used as the foundation for 

the final contribution of this work which is summarized in an evaluation and a 

discussion regarding EVATAR, UAs and AmI. This work also provides with 

ideas regarding future work. 

1.6. Structure 

After this introductory chapter, chapter 2 is describing the background for the 

thesis presenting the state of the art as well as the concepts and influences of the 
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described work. Chapter 3 presents the proposed architecture and chapter 4 

formally describes the framework of the proposed approach. In Chapter 4 in 

particular, the Z-Notation is used to specify a middleware that can be used for 

creating UAs. Chapter 4 also specifies an API enabling MAS and physical 

sensors/actuators to participate in an AmI system that uses UAs. 

Chapter 5 follows, describing EVATAR which is essentially an implementation 

of the framework using SOA principles and reflection. In chapter 6, we can see 

the framework and EVATAR being utilized in two case studies. In the case 

studies we see how we achieved the aims that were set in the introduction and 

also collect data that will be used in the evaluation/discussion chapter that 

follows. Finally, in the evaluation/discussion chapter 7 we see an evaluation of 

EVATAR with a specific focus on performance and scalability. This chapter also 

discusses failure handling in systems that use EVATAR. It concludes with a 

discussion on related work, aiming to evaluate EVATAR against other 

middleware. The thesis concludes with an assessment epilogue (chapter 8) and 

some concrete ideas and considerations for future work including a discussion 

regarding the potential of using EVATAR and MAS AI to create an 

infrastructure for the “Internet of Things” (IoT) [37], [70]. 

1.7. Previous publications 

The thought process that has led to this thesis can be reflected in a number of 

publications. The beginning of this process was signified by the conception of 

the idea for devising a systematic way for approaching the task of 

amalgamating software agents with physical environments while considering 

issues that deal with action and perception in [67]. The first version of eVATAR 

was presented shortly after in [68] where we introduced the basic ideas behind 

it and presented it from a Service Oriented Architecture (SOA [89], [58]) 

perspective. In [69] we see a more complete version of EVATAR featuring a 

more resilient approach and an architecture that fits in with AmI systems. This 

thesis presents the latest version of eVATAR that also features a metadata layer 
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for implementing reflection that enables eVATAR to dynamically link agent to 

avatar bodies and ensure service continuity and resilience. This thesis also 

provides with a framework and a more concrete approach for testing and 

evaluating the middleware. 
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2.  BACKGROUND 

Our domain of interest is predominantly smart home environments. Software 

integrations in networks of sensors and actuators such as the ones encountered 

in smart homes are commonly pursued with the use of middleware. In this 

chapter, we examine middleware approaches for such systems in relation to the 

task of enabling software agents to connect with networks of sensors and 

actuators in order to sense, act and implement intelligent behaviours in physical 

world environments. This chapter essentially focuses on the different types of 

middleware, also identifying concepts and relevant approaches and 

technologies to the work described in the thesis. At this point we can proceed 

with defining what middleware is and identify the particular category of 

middleware that are relevant to our problem. 

2.1. Middleware for Distributed Applications 

In this section we describe what constitutes a middleware for distribute 

applications. The concept of middleware revolves around a piece of 

connectivity software enabling the interaction between software processes that 

are running on distributed within a network machines or on the same machine 

[57] (in this thesis we focus on middleware for distributed applications). 

Architecturally, middleware operates on a layer between the operating system 

(OS) and the distributed application layer. Figure 2-1 illustrates middleware in 

relation to the Open Systems Interconnections (OSI) model [39] for 

communication systems. In particular, middleware operates on the session and 

presentation layers. The first is responsible for the establishment, management 

and termination of connections between local and remote applications within 

the network. The presentation layer deals with the context and representation 

of data derived from application software that could potentially be 

heterogeneous. 
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Figure 2-1. Middleware in the OSI reference model. 

 

Middleware hides the complexity of distributed systems providing with an 

infrastructure for distributed applications in a way that enables communication 

among heterogeneous platforms, thus allowing for interoperability. It 

commonly resolves heterogeneity issues stemming from the use of a different 

operating systems, hardware and networks within the same distributed system. 

According to [57], middleware provides interfaces in order to: 

 Abstract distributed application functionality allowing developers to 

implement distributed systems without having knowledge of 

application implementation details.  

 Provide platform transparency enabling distributed applications to 

interact with each other without the need to take into consideration of 

each other’s underlying implementations.  

 Provide location transparency enabling applications to interact with 

other applications across the network as if they were local to them and 

without having knowledge of their location.  

 Offer services such as authentication and security with regards to the 

interaction of the distributed applications.  
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2.1.1. Categorization of Middleware  

Middleware is often characterized by the model of interaction they implement. 

In synchronous communication, the execution flow of the caller code is 

suspended (blocking and waiting), until the called code in a distributed location 

is executed and returns control. A synchronous middleware (e.g. a middleware 

using RPC [57]) presents tight coupling meaning that the calling and the called 

code are highly dependent on one another. In asynchronous interaction, the 

caller code does not need to block and wait for the called code to return control 

and it can continue with its tasks. The called code does not need to execute 

immediately either. Hence, asynchronous interaction commonly promotes loose 

coupling meaning the calling and the called code have no knowledge of or 

dependencies to each other. This is very useful in environments with processes 

whose behaviour can vary depending on their design, runtime usage and the 

workload or time required to perform a task. 

 The need for pure asynchronous communication and loose coupling led to the 

development of the “Message Oriented Middleware” or MOM paradigm. The 

two main types of messaging that are used for asynchronous communication in 

MOM [57]: message queueing (also known as “store and forward” MOM) and 

publish-subscribe (also known as “event-based” MOM). The messages are 

typically described in XML format [107].  The architecture of the “store and 

forward” approach features client applications, server applications and a 

message server between them. Message servers are commonly referred to as 

“integration brokers”. An integration broker is a separate architectural element 

within the distributed environment (see Figure 2-2). Its purpose is to store the 

messages it receives from sending applications in message queues and forward 

them to the applications that receive them. 
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Figure 2-2. MOM based on a “store and forward” approach. Sending applications place 
their messages in local message queues (should they exist) while receiving applications 
retrieve them from their own local message queues (again if they exist). The integration 
brokers store the messages from sender applications in queues and forward them from 
the queues to the appropriate recipient applications. The purpose of the integration 
brokers is to decouple client and server applications ensuring asynchronous interaction 
(only loose coupling is supported).  

 

The sending and receiving applications commonly use adapter ports that 

ensure that the required message format is used to interact with the integration 

brokers [57].  

Publish-subscribe MOM middleware implement an architecture consisting of 

three main elements ([57], [71]): the publisher applications, the subscriber 

applications and the event service (integration broker).  

 

 
Figure 2-3. Publish-subscribe MOM ([57], [71]). The publisher applications produce 
some type of information in the form of events (messages) and publish it via the 
integration broker. The subscriber applications express interest in these events by 
subscribing to receive them. The integration broker receives the published events and 
notifies the applications that have subscribed to them. The integration broker matches 
events against subscriptions. The published events are placed in a queue for each 
subscriber. 
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The event notification service enables the asynchronous communication and 

loose coupling between heterogeneous clients. There are two types of 

subscriptions: topic (subject) based and content based [71]. In topic based 

subscriptions, the publishing applications publish events within specific topics 

(subjects) and the subscribers subscribe to particular topics of interest. In 

content based subscriptions, the publishers again publish events that belong to 

particular topics and the subscribers subscribe to them. The main difference is 

that these implementations filter which events are received by a subscriber from 

a topic that it has subscribed to [57]. 

Another common type of asynchronous communication uses shared tuples that 

can be accessed concurrently by processes in order to share data. We will see a 

number of examples of middleware that follow the message oriented approach 

(e.g. [43], [105] and [81]) and the tuple spaces approach (e.g. [17], [6] and [7]). 

The Object Oriented technologies such as RMI [112] or CORBA [86] would not 

be very suitable for dynamic environments such as ones containing sensor 

actuator networks. The first provides synchronous communications which as 

we saw previously is not suitable for the dynamic environments containing 

sensor and actuator networks and the latter promotes asynchronous 

communications but does not strictly present loose coupling due to the lack of a 

versioning mechanism [86]. 

Another important characteristic deals with the ability of a system to reason 

about itself enabling it to inspect and change itself during runtime. The 

reflective middleware model was conceived for dynamic environments in order 

to support the development of flexible and adaptive distributed systems [27]. 

The foundations for reflection were laid out in [13] and a system is reflective if it 

reasons about itself and therefore it is also able to inspect and change itself 

during runtime. There are two levels in a reflective application, the base-level 

and an internal representation/model of the base-level that is called the 

reflection-layer. In object-oriented reflective systems, the entities populating the 

reflection-layer are called meta-objects and they reflect base-level objects 
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(Figure 2-4). The base-level deals with the usual functionality of the application 

within its problem domain while the reflection-layer reasons about the base-

level in order to be able to enrich, monitor and potentially change the behaviour 

of the application during runtime (Figure 2-4). 

 

 

Figure 2-4. Reflective middleware ([27], [33]). 

 

 The fundamental concepts of reflective middleware ([27], [33]) are: 

• Reification: the action of making aspects of the internal representation 

(meta-objects) of the middleware explicit and accessible from the base-

level application. 

• Absorption: the reverse of reification. It essentially consists of effecting 

the changes made to reified base-level objects into the internal 

representation of the system.  

• Reification and absorption are realizing a causal connection link between 

the model and the application it models.  

• A reflective system has a base-layer dealing with the application and a 

reflection-layer dealing with reflective computation. 

 

Reflection has been used by middleware in order enable service discovery 

protocols to cope with heterogeneity with regards to connected services. It is 

commonly used to provide a second layer in the middleware on top of the 

heterogeneous service discovery protocols in order to map service discovery 
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queries from a particular protocol to service discovery queries of other 

potentially heterogeneous protocols. 

The question here would be what other characterizations exist and is there a 

useful taxonomy that would classify existing approaches enabling us to find a 

solution to the problem of systematically linking MAS AI to sensor and actuator 

networks.  

Focusing on our domain of interest, the latest advances in sensor networks and 

in particular in WSN (Wireless Sensor Networks) provide with a variety of 

middleware that could be used as a starting point for the discussion about the 

composition of our own solution. A number of comprehensive middleware 

reviews have been published in the domain of WSN for example [53] by Römer 

et al. and [66] by Wang et al. They offer taxonomies that are useful as a means 

of categorization. Wang et al. in [66] provided with a taxonomy containing 

important characteristics of such middleware. The following feature tree is 

inspired by the one in [66]. It divides the characteristics into two types: 

characteristics related to developing systems using the middleware and 

implementation characteristics.  

 

 

Figure 2-5. Feature tree for a taxonomy of middleware characteristics. 
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The programming paradigm refers to the structure and building components of 

the middleware. Common paradigms include agent based programming 

approaches where the agents implement the middleware functionality, 

database programming, event driven models (implementing the publish-

subscribe [71] pattern) and SOA among others. In the following we will 

describe several middleware from each category. The SOA paradigm as we will 

see in the following middleware reviews has been used extensively for 

middleware integrations between heterogeneous platforms and we will 

describe it here in further detail. 

According to Papazoglou ([58], [57]), Erl [89] and the OASIS (Organization for 

the Advancement of Structured Information Standards) [115] definitions, SOA 

is not a concrete architecture. It is instead a paradigm that leads to the 

implementation of concrete architectures for scalable distributed information 

systems featuring autonomous, interoperable, reusable, discoverable and multi-

platform services. According to the same sources we can describe a service as a 

mechanism that provides interfaces for accessing one or more capabilities. A 

service can be viewed as an application that can be interacted with via a 

programmable interface. The main architectural elements of a SOA are the (see 

Figure 2-6): 

 

 Service provider: the entity that uses the service to offer one or more 

capabilities.  

 Service consumer: the entity that needs the capabilities offered by the 

service provider via the service. It is also known as the client.  

 Service broker: an entity acting as a mediator. It offers directories that are 

used by service providers to publish their services. It also features 

functionality making the services visible and consequently discoverable 

by consumers. 
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Figure 2-6. Roles and interactions in SOA. 

 

The service providers advertise their services via the broker using service 

descriptions. The descriptions also define how to invoke and interact with a 

service using the service interface. The consumers search for desired capabilities 

of services in the directories of the broker according to their needs. Consumers 

use the information they acquire from the broker to bind to a required service 

and interact with it. In general the interaction between the services and their 

consumers is performed via messaging. 

According to [58], [57], [89] and [115], a SOA is designed based on a number of 

principles as: 

 Reusability: a service is implemented only once and can be used multiple 

times. 

 Contract: the contract (see description in Figure 2-6) defines how to 

communicate/interact with the service. 

 Discoverability: SOA should include a directory for enabling clients to 

determine which services have registered the capabilities they are after. 

 Loose coupling: the calling and the called code have no knowledge of or 

dependencies to each other. 

 Abstraction:  the service interfaces conceal the implementation and the 

details of the provided by the service capabilities from the consumers of 

the service and the distributed system environment. 
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 Composability: ability to aggregate services to collectively automate a 

particular task or process. Services can also be used by other services. 

The service composition is an important concept that addresses the many 

aspects associated with combining services into aggregate distributed 

solutions. It deals with topics such as runtime messaging, message 

design and inter-service security controls ([89], [58]). 

 Autonomy: Services have control over their underlying runtime 

execution environment and resources [89]. 

 Statelessness: state information between different service calls is not 

maintained and all temporary service information is discarded. 

Based on the same sources (see [58], [57], [89] and [115]) interoperability is an 

intrinsic characteristic of SOA that follow the above principles.  

The abstraction level in the feature tree of Figure 2-5 can be either low level i.e. 

programming each node individually or system level i.e. programming the 

system as a whole. In the second case, middleware add transparency by hiding 

the complexity of low-level functionality such as: a) code distribution, b) how 

the data is accessed from the nodes and c) how the nodes coordinate their tasks. 

Also, the programing interface defines how application developers interact 

with the middleware. This can be done with descriptive high-level interfaces 

(more resources) e.g. using XML or a type of syntax that resembles a database 

query (SQL query) or with imperative interfaces requires to write code to 

interact with the system (more complexity). 

2.1.2. Middleware Approaches of Interest 

In this section we justify the selection criteria for the middleware that have been 

chosen and reviewed in this chapter. We focus on the elements of the above 

taxonomy that are most relevant to the problem we are trying to solve. These 

elements are highlighted in the above tree structure and will be described and 

explained in relation to our problem as we go along with the chapter leading to 

a feature comparison of all the important technologies through a set of carefully 
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selected middleware that implement them. With regards to our problem, there 

are two ways that middleware commonly incorporate agent AI. The first is 

about middleware that purport to support intelligence, commonly by applying 

agents to each node in the sensor (and potentially actuator) network. These 

middleware implement the agent model programming paradigm (see Figure 

2-5). The second way is by integration. According to [66] an important aspect of 

SN/SAN (Sensor Networks/ Sensor and Actuator Networks) middleware is the 

ability to facilitate the integration with internet, cloud based systems, database-

based systems and external applications such as MAS.  

Despite this, WSN middleware usually implement close networks i.e. networks 

that do not have connections with the outside world and therefore, another 

middleware would be required to enable such connections with external 

applications. High-level pervasive computing/AmI middleware can be used in 

conjunction with the SN/WSN middleware to implement integrations. 

According to [66] the increasing availability of heterogeneous sensors and 

actuators in our environments create new challenges in terms of dealing with 

complex heterogeneity problems. They argue that integrating WSN/SN 

middleware with high-level pervasive computing/AmI middleware is 

inevitable with the first focusing on gathering information from the physical 

world and the latter on using this information to support pervasive 

computing/AmI applications. 

There is a plethora of middleware that are used in the WSN, SN and pervasive 

systems contexts. In the following we will review middleware approaches that 

enable the incorporation of AI in physical environments that are enhanced by 

sensor and actuator networks either directly by using agents or via integration 

to external applications in the internet, the cloud or a MAS.  The following tree 

provides with an overview of such middleware.  
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Figure 2-7. Tree depicting the middleware approaches of interest. In accordance to our 
selection criteria this tree only includes middleware that can support intelligence. Also, 
we tried to include approaches with high impact on their domains. Note that a 
middleware may belong to more than one category.  

 

Also, our goal is to review middleware with high impact on their respective 

domains and in relation to the one of the thesis which is smart homes. 

2.2. SAN Middleware Encompassing 

Intelligence 

The types of middleware that we will be reviewing in this section already use 

software agents (in particular mobile agents) as part of their functionality. They 

create modular applications that distribute mobile code through the sensor 

network providing in this way dynamic reconfiguration capabilities and 

increased usability. They also react to their environment in ways that could 

potentially support intelligence.  

2.2.1. SensorWare 

The SensorWare [8] middleware is designed for application on networks of rich 

in terms of processing and memory resources devices (in particular on Wireless 
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Ad hoc Sensor Networks – WASN [9]). Nodes in such networks are described 

as providers of services that are consumed by agents. It allows service 

reconfiguration during runtime according to the needs of each application. The 

agents distribute the processing by executing tasks using services offered by 

nodes. Each node can facilitate a single or multiple agents that implement state 

machines. The state machine functionality enables the agents to respond to their 

environment, sensing events and timeouts. It follows the “active sensor” 

approach [8] abstracting the runtime environment of a sensor node by 

providing native services. 

The system is programmed using a scripting language (TCL [46]) that also 

poses a requirement for expensive computation capabilities. TCL implements a 

high-level scripting language for programming the WASN allowing dynamic 

configuration and program updates. Furthermore, SensorWare enables the 

reconfiguration of nodes and the services that they offer at run time. For 

example in data fusion (aggregation) tasks, that could prove beneficial 

especially when changing the fusion (aggregation) rules and requirements at 

runtime.   

The main drawback of this approach is that it requires significant processing, 

memory and communication capabilities from every participating node due to 

the fact that the agents should be able to execute on each node. Also, 

SensorWare intrinsically does not support heterogeneity in terms of integrating 

nodes that do not adhere to its hardware and operating system requirements. It 

also does not support communication with external applications. 

2.2.2. Agilla 

Agilla [17] implements mobile agents in WSNs by integrating them into a tuple 

-space model. Each node contains a tuple space and agents reside within it. 

Agents are programmed according to the application requirements and they are 

cloned to the tuple spaces of nodes from a base centre. Agents are cloned 

between tuples without the need for pre-configuration or pre-allocation of 
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memory. Also, a maximum of four agents can run on a single node. Every agent 

is programmed to perform a specific task. The tuple spaces of all nodes 

essentially implement a network wide shared memory. 

Agents are adaptive to their environment at node level and can change their 

behaviours. Despite this, it features decentralized behaviours at a certain degree 

by for example preventing concurrent agent activity and managing collective 

data collection latencies. It does so by enforcing specific behaviours in the 

agents thus implementing decentralized application activities. Also, bottlenecks 

can be observed during deployment of multiple agents (cloning and migrating). 

Furthermore, agents in Agilla are simple and do not offer real reasoning 

capabilities. Also, the deployment is restricted to nodes running TinyOS [130] 

(heterogeneity). Finally, its low-level programming model creates hard to read 

and maintain code.  

2.2.3. Impala 

Impala [91] is designed for long running sensor networks. It uses an 

asynchronous, event-based middleware layer that compiles mobile agents into 

native code and deploys them in network nodes. The agents in native code are 

then linked dynamically in the node where they are deployed without 

interfering with applications that are already running.  Impala provides 

application adaptation and new protocols can be applied at runtime. The agents 

in Impala enable the system to adapt to application requirements and network 

conditions by switching between protocols using an approach that implements 

finite state machines aiming to ensure scalability and openness. 

The main drawback with Impala is that it does not support heterogeneity as it is 

designed to be applied on a single hardware platform (Hewlett Packard iPAQ 

Pocket PC running Linux).  
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2.2.4. Discussion 

As we have seen above, the main drawback with middleware that use mobile 

agents as part of their functionality is that such programming approaches 

intrinsically support a single platform and they do not support heterogeneity. 

Other approaches of middleware with similar characteristics to the ones 

reviewed and enhanced by agents are described by Shakshuki et al. in [24], 

González-Valenzuela et al. in [87] and Freitas et al. in [76]. The task of 

programming decentralised nodes to exchange increased volumes of context 

data describing their environment as well as to coordinate their activities to 

perform sophisticated cooperative tasks is a complex one.  

2.3. SAN Middleware Supporting the 

Integration with External Applications 

In this section we will review SN middleware that enable interaction with an 

external to the SN system and potentially a MAS. Two types of integration are 

supported: task and data integration. When task integration is supported, the 

SN nodes and the external system are running applications and coordinating 

their tasks. In data integration applications the SN produces data to be used by 

the external system. The SOA paradigm (see 2.1.1) enables the implementation 

of such integrations through the representation of nodes in SN and external 

systems as services and service consumers. The “web services” are a messaging 

model that enables the deployment of a SOA and have been commonly used for 

WSN integration (see below). According to [57], they encapsulate existing and 

new applications in a way that the application communication will evolve from 

the paradigm of message exchanges to a new one that involves accessing, 

programming and integrating application services. The web service 

descriptions and messages use the XML format.  

A SOA requires from services to provide with well defined interfaces for 

interaction and discoverability. The interfaces and the services are described 
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using the “Web Services Description Language” (WSDL) [132]. The WSDL 

typically describes the web services, while the “Simple Object Access Protocol” 

(SOAP) [125] describes the communications protocols. SOAP is used to 

implement the interaction between services. SOAP supports both synchronous 

OOM communication and asynchronous MOM communication. The XML 

schemas are used for marshalling types to and from programming language 

types making the web services language independent. We will now review a 

number of SN middleware that follow the SOA approach to implement 

integration with the potential of also integrating with external 

applications/systems (e.g. a MAS). 

2.3.1. Open Geospatial Consortium (OGC) Sensor 

Web - NOSA 

Sensor Web [35] was developed to support wired and wireless sensor networks. 

It is a paradigm for enabling heterogeneous sensors, actuators and devices to be 

discoverable, accessible and controlled via external applications and the web. It 

implements a service oriented middleware for enabling data collection and task 

management among heterogeneous sensors. It uses XML and SOAP to 

implement the protocols for the communication within the system. The Sensor 

Web Enablement (SWE) standard was created to support the OpenGIS 

Consortium (OGC). It includes a number of specifications such as two XML 

based languages: SensorML [123] for describing sensors and platforms and 

“Observation and Measurement” defining terms used for measurements. It also 

specifies three important services: the sensor collection service, the sensor 

planning service for managing sensors and the web notification service for 

asynchronous messaging using a variety of communication protocols to interact 

with web applications.  

NOSA (NICTA - Open Sensor Web Architecture) [95] is a service oriented 

sensor web. The goal of this work is to support data access continuity over 

prolonged periods of time and for potentially large loads of data. It also 
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provides access and control of sensors that are exposed as services. It is open 

source architecture and it features service oriented architecture characteristics 

such as: abstraction concealing heterogeneous sensor platforms, interoperability 

and support for integration with external systems. This way the processing of 

the data can be shifted from the sensor networks to external applications with 

more computation capabilities. Besides the core SWE services NOSA includes a 

directory, a sensor coordination and data processing service [95], [35]. Currently 

it only supports nodes running the TinyOS operating system [130]. 

2.3.2. OASiS 

OASiS [62] provides with a service oriented WSN development framework 

using a multilayer development process. The functions of the WSN can be 

viewed as a set of services that are offered by the middleware such as: service 

discovery, composition, QoS (Quality of Service) and failure detection, 

management of the networked nodes. In particular it features dynamic service 

discovery and supports heterogeneous platforms. Following the SOA 

paradigm, it can be integrated with external to the WSN systems and 

participate in the design of real world applications. We need to note here that it 

does not support actuators, which is an important feature of our requirements. 

2.3.3. TinySOA 

TinySOA [10] allows the development of WSN applications. The high-level of 

abstraction of TinySOA enables external applications to access nodes in a SN 

via a simple API that supports a variety of programming languages. This 

abstraction hides the complexity of the underlying WSN hardware and the 

details of the WSN implementation from developers of applications that require 

access of sensor data. Therefore it is suitable for easy integration with web 

applications enabling them to acquire information from the sensors. To simplify 

the integration task further, TinySOA offers a node discovery service typically 

running on a gateway component that can be seen as the bridge between the 
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low-level WSN and the external applications. TinySOA is limited to nodes that 

run the TinyOS operating system [130]. 

2.3.4. USEME  

USEME [23] is a service oriented middleware for WSAN (Wireless Sensor and 

Actuator Networks) applications. It features five components for service 

discovery, invocation and communication, real time constraint management, 

configuration and group management. 

The discovery component includes a directory of available services allowing 

them to be discovered. The invocation and communication component 

translates external application commands into suitable communication 

messages between nodes. The constraint management sets priorities, maximum 

execution times. Finally, the middleware aggregates nodes sharing common 

functionalities into groups and manages the services of the created groups 

(group management component). 

2.3.5. SIXTH 

The SIXTH middleware [34] facilitates cross-platform and cross-service 

interoperability. It is JAVA based and implements a Sensor Web middleware. 

External applications (e.g. a MAS) would need to use adaptors to connect with 

SIXTH. The SIXTH API enables the creation of such adaptors. It implements the 

Open Service Gateway Initiative framework (OSGi) [118] that enables it to 

accept new connections dynamically at runtime. In order to support 

heterogeneity, SIXTH requires the creation of new adaptors for new sensors. 

Adaptors have been developed for TinyOS nodes [130], Arduino [102] and web-

based data sources (considered as sensors in SIXTH) such as Twitter. Also, it 

supports dynamic sensor re-programming e.g. request a sensing for light when 

no motion is detected. A main requirement of the thesis is to create a systematic 

way for linking agent functionality with sensors and actuators while SIXTH 

focuses primarily on sensors. 
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2.3.6. Discussion 

SOA provides with a way to connect heterogeneous WSN nodes (some 

supporting only sensors, others also actuators and devices) to external 

applications such as a MAS. Other middleware in this category are StreaMWare 

[56] and MidCASE [97] and [94]. The middleware described in this section can 

generally provide the desired integrations. However, further application 

development would be required for more sophisticated applications that deal 

with the dynamic creation, management and monitoring of avatar relationships 

between software agents and hardware sensors/actuators at runtime. A 

separate, higher level middleware could systematize how this integration 

would be achieved in a transparent way for the system developers. The 

middleware reviewed in this section are still dependent on the underlying SN 

and they tend to focus on gathering information from sensors while the higher-

level middleware would focus on using this information efficiently.  

2.4. Pervasive and Robotics Middleware 

We review next pervasive and robotics middleware that were selected 

according to the criteria of 2.1.2 and with the aim to achieve integration of agent 

AI to sensor and actuator networks. These types of middleware are looking at 

the integration from an application perspective that uses data and information 

stemming from SN as opposed to looking at it from the low-level data 

gathering perspective. Pervasive/AmI middleware can be used together with 

the SN/WSN middleware to implement efficient pervasive applications ([66], 

[29]). We also include types of middleware that represent different technologies 

and programming paradigms. 

2.4.1. SALSA 

SALSA - The “Simple Agent Library for Smart Ambients” or SALSA (Favela et 

al. [43] and Rodriguez et al. [65], [59]) implements the agent model 
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programming paradigm. It features a middleware and an architecture enabling 

the creation of autonomous agents that are reactive to the context of ambient 

computing environments. SALSA was designed based on requirements from 

the healthcare domain [59]. It can be categorized as a MOM for the 

development of AmI applications that uses agents to enable interoperability 

between different hardware, software, devices and humans. Agents are used as 

proxies to communicate and exchange information. SALSA uses an XML based 

language to describe services and protocols for enabling the communication 

between the agent-proxies. It also features an agent broker for managing 

communication amongst them. In particular it uses the Extensible Messaging 

and Presence Protocol (XMPP) [74] which is an XML based communications 

protocol for MOM and the “Jabber” open-source instant messaging server [65]. 

According to [65] the agent broker is capable of scaling to a high volume of 

streaming XML connections. 

With regards to the problem we are trying to solve, SALSA exploits MAS 

capabilities for creating a middleware for AmI. On the other hand, our goal is to 

extend MAS AI behaviours in the physical world for AmI and also to enable 

AmI to benefit from MAS computation and communication capabilities. 

Furthermore, we aspire to take away the complexity from the task of 

integrating software agents with physical avatars from the MAS, allowing the 

latter to apply its functionality to the physical world in a transparent way while 

SALSA uses the software agents to enable the integrations. 

2.4.2. Amigo 

The European IST Amigo project [105] pursued the AmI vision by aiming to 

develop a networked smart home. A major requirement of the system was to 

ensure the integration of heterogeneous devices and to achieve interoperability. 

The heterogeneous devices include personal computing, mobile computing, 

consumer electronics and home automation devices. The Amigo middleware 

supports a number of SOA protocols for service discovery (such as UPnP [131] 

and WS-Discovery [116]) and interaction (such as SOAP [125]) ensuring 
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interoperability and presenting system designers with a choice from a selection 

of protocols. It allows the development of software as services that are 

delivered and consumed on demand [105]. It enables the loose coupling of 

autonomous services, allowing them to communicate within a dynamic smart 

home environment. The interoperability between the services that describe 

heterogeneous devices is made possible via a semantic based framework 

(underlying the SOA implementation).  

Amigo consists of two main layers. The “Base Middleware” layer [105] deals 

with the networking and the communications. It implements a SOA and 

features discovery protocols and security mechanisms for authentication, 

authorisation and encryption. The “Intelligent User Services” layer acts as an 

integration broker between service providers and consumers. It also abstracts 

information from a variety of sources such as physical sensors, user activities 

and applications into high-level "contextual information". It will then use this 

high-level information to provide context aware services. 

Amigo is used for the integration of heterogeneous devices from the domains of 

personal and mobile computing, consumer electronics and home automation. 

There is a subtle difference between Amigo and the aims of the thesis. We aim 

to systematize the integration of MAS agents with AmI architectures while 

Amigo is designed to achieve interoperability between hardware devices in an 

AmI context. Besides interoperability we investigate how to make devices 

appear smarter in the environment without further increasing their cost. 

2.4.3. RoboCare 

The RoboCare Domestic Environment [81] is an experimentation environment 

for AmI applications that mostly revolve around transparent monitoring and 

supervision. RoboCare implements a web service oriented architecture with 

software agents and physical hardware being regarded as services or sets of 

services. The software and hardware are integrated using a service oriented 

middleware that uses an event manager agent to route requests amongst the 
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services that represent software and hardware agents. There is a tracking and a 

monitoring component that along with the event manager they provide the 

Active Supervision Framework (ASF). They use a service oriented approach for 

low-level messaging but the mediation of the messages is performed at MAS 

level. 

The middleware in RoboCare uses a service oriented approach for low level 

messaging but the mediation of the messages is performed at MAS level. In our 

case we want to hide the complexity of the mediation functionality from the 

agents and the hardware. In this way we can propose a middleware that can be 

used for creating applications using a variety of MAS systems.  

2.4.4. iCore 

An interesting approach was followed by the iCore project ([108], [78] and [75]) 

that develops a platform focusing on aspects of IoT infrastructures that deal 

with device heterogeneity, unreliability, resilience and the complexity 

associated with the huge quantities of usable objects in a smart city context. The 

architecture of iCore uses the concept of the virtual object (VO) to represent any 

real world object (RWO) similarly to the way software agent interactors 

represent physical world ones in the proposed in this thesis approach. The 

iCore platform uses “Restful” web services [55] to enable the VOs to interact 

with RWOs and the functionality of VOs is aggregated to create composite VOs 

(CVOs) that are the equivalent of the software agents in our approach. In 

general a CVO that interacts with RWOs is not dissimilar in concept to the UA 

of the thesis. 

The iCore project produced a platform that implements an IoT infrastructure. In 

the thesis we aspire to provide with a systematic way toward the creation of 

middleware that can be used for creating platforms like iCore. One key 

difference with iCore is that we want to enable system developers to use a MAS 

of their choice as long as it fulfils (subject to certain requirements as we will see 

in the following). The iCore platform uses “Restful services” [55] to allow the 
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VOs to connect to and control the physical objects. The approach is tailored to 

the VO layer of iCore that consists of the specific types of iCore VOs. The 

challenge that we confront deals with linking agent sensors and actuators from 

a variety of MAS to physical objects combining them into complex cognitive 

and communicative entities (UAs).   

2.4.5. PEIS 

The PEIS (Physically Embedded Intelligent Systems) ecology [6], [7] provides a 

framework for incorporating smart devices into AmI systems. The PEIS-

Ecology approach is applied in the areas of domestic and service robotics 

focusing on the creation of a network of cooperating robotic devices as opposed 

to using a single powerful and competent robot [7]. According to [7] the 

cooperating robotic devices (PEIS) are distributed in the smart home 

environment and they can be: sensors, actuators, smart appliances, RFID-tagged 

objects or mobile robots. 

The approach utilizes the PEIS middleware by which devices of different types 

and capabilities (including mobile robots) can cooperate. The PEIS approach 

implements a distributed tuple space that is deployed upon a peer-to-peer 

network and follows the publish-subscribe paradigm. Different PEIS publish 

information as tuples. PEIS clients can join and leave the system dynamically. 

The approach focuses on simplifying the communication between the devices 

for smart home applications that use data from a variety of sensors in a tagged 

environment. Our proposed approach presents integration potential to such a 

system by providing it with a link to intelligent agent behaviour. 

2.4.6. The “Middle Layer for Incorporations” 

The “middle layer for incorporations among ubiquitous robots” by Kim, Choi 

and Lim [92] connects physical and simulated sensor-actuator behaviours. The 

middle layer consists of a sensor and a behaviour mapper. The first helps 

simulated robot-agents obtain physical sensor information from mobile robots 
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while the second allows software robots to present physical behaviour. The 

“middle layer” does not focus only on providing software agents with access to 

the physical world, but it is also capable of the opposite, i.e. providing mobile 

robots with access to virtual resources. A shortcoming of the middle layer is the 

fact that as soon as the mapping table is created from the sensor/actuator 

mapper, it is not updated anymore. This static setup would create problems in 

dynamic environments such as in AmI systems where sensors, actuators and 

devices connect and disconnect at runtime. Furthermore, the “middle layer” 

works only with mobile robots. 

2.4.7. MARIE 

MARIE (for Mobile and Autonomous Robotics Integration Environment) [14] is a 

middleware platform that enables interoperability and distributed control of 

sensors and actuators that are generally applied in the context of robotic 

applications. It enables the integration of new and existing software for rapid 

prototyping of robotic applications in a distributed environment. MARIE 

follows the mediator design pattern providing mediator interoperability layers 

among applications. Thus, the key features of MARIE are the interoperability 

and reusability of robotic application components as well as the independent 

interaction with each connected application. 

MARIE uses the ACE library [129] for the transport layer (TCP/IP), operating 

system functions such as threads and processes, operating system 

interoperability and real-time support [14]. The main idea is to reuse code from 

existing robotic applications to create an integrated system (as long as MARIE 

knows how to interact with the particular code). The MARIE middleware uses 

four functional components for interaction and communication between the 

applications through a centralized control unit (implemented as a virtual space) 

that implements the mediator functionality. The four components are: the 

application adapter, the communication adapter, the communication manager 

and the application manager. The application adapter is responsible for the 

communication between the control unit and the applications. Its purpose is to 
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enable applications to integrate with the system. Furthermore, the 

communication adapter translates information allowing different applications 

to exchange data correctly [14].  The communication manager manages the 

communication between the different applications and the application manager 

is responsible for managing the whole system.  

MARIE does not offer automatic configuration and it features a static 

communication setup. Therefore it is not capable of coping well with the 

requirements of dynamic scenarios such as in AmI/IoT applications and it 

would not be suitable for our application. 

2.4.8. The Player/Stage project 

The Player/Stage project [12] features the simulation of multi-robot behaviours 

in virtual environments and the ability to reproduce the mechanical behaviours 

of the robots. It consist of two components the “Player” and the “Stage”. The 

Player component uses a repository of interfaces and drivers. A driver in this 

context refers to a software program for operating a sensor, actuator or robot 

that is supported by the middleware. The interface allows a client software 

application in a virtual environment to control a physical actuator or receive 

data from a sensor using the appropriate driver.  

The Stage component is a graphical simulator that is used for modelling 

devices. The clients are software programs using the Player component that acts 

as a middleware linking them to physical robots, sensors and actuators. The 

clients are developed using language specific libraries for different 

programming languages (such as C, C++, Java, and Python) enabling access to 

the Player. The Player serves as an interface to many different types of robotic 

devices and provides drivers for many hardware modules. The Player does not 

operate on an abstract level like many of the middleware we have seen so far 

(e.g. SOA based middleware) and integration tasks with new hardware and 

software present significantly higher complexity. Updating the Players’ library 

requires the creation of new drivers/software for the new hardware. 
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2.4.9. ReMMoc 

ReMMoC (Reflective Middleware for Mobile Computing) [73], is a web-services 

based reflective middleware. It was designed with the intention to adapt 

discovery and interaction protocols dynamically as per the requirements of the 

current mobile service environment aiming to overcome platform 

heterogeneity. It uses reflection, to select dynamically the most appropriate 

communication protocol according to the context [73].  

It provides a dynamically reconfigurable binding mechanism that allows clients 

to bind and interoperate with services that are implemented using a variety of 

communication models such as RMI, CORBA and “publish-subscribe”. If for 

example a new CORBA service is discovered, the binding framework will 

dynamically reconfigure itself to act as a CORBA client. 

ReMMoC uses the web services (WSDL documents [132]) abstractions. This 

way the service consumers (clients) can interact with services (providers). This 

abstraction is then mapped onto the appropriate protocol at run-time and 

services are invoked remotely by their clients. 

ReMMoC was designed to reside on mobile devices and it implements an API 

for performing service discovery and service interaction that is independent of 

protocol implementation (SOAP [125], XML-rpc [19] etc.). According to the 

ReMMoC middleware, interoperability in open wireless networks should be 

managed by the networked devices themselves. The main constraint is that 

service consumers (client applications) should be developed using the 

ReMMoC middleware. ReMMoC is only focusing on clients. This means that 

different ReMMoC clients can interact with a service that is using a different 

communications protocol but non ReMMoC clients cannot interact with 

services that are based on a different communication protocol (the services do 

not have an interoperability layer in ReMMoC). 
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2.4.10. Dynamic-TAO & CARISMA 

Another example of a middleware using reflective functionality is the dynamic-

TAO [28] project. It uses reflection techniques to reconfigure Object Request 

Broker (ORB) components [86] at run-time. The CARISMA [54] middleware 

provides developers with an abstract syntax framework to profile applications. 

Interoperability is achieved when applications use their profiles to interact with 

each other. It implements reflection for enabling applications to change their 

profiles during runtime. What follows is a more detailed overview of the 

ReMMoC middleware in order to provide with a better view of the reflective 

middleware paradigm. 

Reflective middleware such as ReMMoC ([72], [73]), dynamic-TAO [28] and 

CARISMA [54], were initially developed to enable the OOM to overcome their 

shortcomings especially with regards to interoperability amongst 

heterogeneous devices that support different communication protocols and 

with regards to implementing loose coupling. Also they were used for self-

monitoring. Reflection had shown great potential but currently the 

development of MOM, the SOA paradigm and the ESB technologies are more 

commonly used for implementing the above behaviours (namely 

interoperability and loose coupling). Other reflective middleware and in 

particular in the context of SN/WSN are Milan [94] and the Impala middleware 

[91] that was described in 2.2.3. 

2.4.11. Discussion 

In this section we reviewed a number of middleware that could potentially be 

used for integrating MAS directly with sensors/actuators or via cooperation 

with WSN and SN low-level middleware. This category of middleware presents 

potential for at least partially satisfying the aims of this thesis as we will see in 

the next section.    
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2.5. Evaluation 

Table 2-1 shows the key technologies used by each of the reviewed middleware, 

along with useful middleware features for the task of linking agent 

functionality to sets of physical sensor and actuators. We will use this table as a 

point of reference to evaluate which features are relevant to the thesis and also 

to determine whether existing work can achieve the aims of the thesis.  

  

 
Table 2-1. Cross-reference of approaches and middleware characteristics of middleware 
that support AI by using agents as part of their implementation or via integration. 

 

We have reviewed a number of representative middleware (see criteria in 2.1.2) 

that purport to support intelligence by using agents as part of their 

implementation. With regards to the aims that were set in the introduction, 

agent-based middleware is usually tied to a single agent platform and therefore 

they cannot support multiple ones without integration with external 

applications.  
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Furthermore, recall that one of the aims of this work is to make existing devices 

in a sensor and actuator network appear smarter. In situations where 

connectivity is limited, distributing the reasoning or localizing the reasoning on 

every node (e.g. in WSN where nodes are not always within the reach of 

servers) would pose a feasible solution. Implementing sophisticated intelligent 

applications is a challenging task due to hardware limitations or due to the 

complexity of programming distributed simple agents to coordinate their 

actions to support sophisticated and intelligent tasks. In domains such as smart 

homes, healthcare systems, museums there are commonly facilities for 

centralized processing and the sensors and actuators are usually either static 

(wired) or wireless within environments with strong and reliable connectivity. 

In such situations distributed or node processing is not as vital and we could 

use simpler sensors and actuators in terms of processing and memory 

capabilities with a potential impact on the cost. Also, another general 

observation is that agent based middleware approaches are usually 

implemented with an intrinsic support of a single platform overlooking 

heterogeneity issues, for example see [8], [91] and [17].  

After reviewing middleware that incorporate intelligence in the form of agents, 

we proceeded with middleware that allow the connection of the low-level 

WSN/SN/SAN to external applications. A relevant external application in this 

context would be a MAS. Middleware such as the reviewed [95], [62], [10], [23] 

and [34] have a proven record of integrating WSN/SN/WSAN with external 

applications. In particular, we saw that it is common practise to use SOA for 

integration and interoperability among heterogeneous devices. Therefore such 

middleware would be able to provide the necessary connectivity between 

software agents and SAN.  

We also saw that the WSN middleware focus on connectivity and 

interoperability issues as well as on the low-level tasks of gathering information 

from sensors and the controlling of actuators.  In this thesis we aim to use the 

data gathered by sensor/actuator networks to support a specific agent tasks. 
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These tasks will enable software agent bodies to sense and act in the physical 

world using avatars construed as aggregations of sensors and actuators in 

sensor/actuator networks.  The aforementioned middleware can achieve this 

but not in a systematic or a transparent way. 

In this work we aim to systematize this process and make the creation of such 

applications transparent to the system developers. In order to achieve this we 

would require a middleware that looks at the integration from an application 

perspective in order to systematize how this integration would be achieved. At 

the same time we want to abstract from the integrations’ functionality in order 

to make it transparent to the developers. 

We also reviewed pervasive/AmI middleware that specialize in similar 

applications in order to evaluate whether there is existing work that achieves 

this and also to build upon existing research to propose our own approach. 

Note that the list of middleware presented is not exhaustive but we carefully 

selected them based on the criteria of 2.1.2 and based on their potential to 

achieve the integration of agent AI to sensor and actuator networks. Table 2-2 

evaluates each reviewed middleware against the aims of the thesis. 

 
Table 2-2. Evaluation of pervasive/AmI middleware in relation to the aims of the thesis.  

 

The reviewed middleware implement pervasive applications and similarly to 

the previous set of reviewed middleware (SOA integration SN middleware) 

they could potentially achieve connectivity. We have identified positive aspects 

of the middleware towards our intended use and also recorded concerns, 

usually stemming from the fact that they were not designed for the specific 

application of the thesis.  
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Other pervasive middleware that support integrations but do not fulfil all of the 

aims of the thesis at the same time include the ones described in [47], [15], [63]. 

We conclude that there is paucity of frameworks defining a systematic way for 

linking the computation and functionality of intelligent agents to networked 

sensor/actuation devices in a transparent way enabling them to manifest their 

behaviours in the physical environment while at the same time fulfilling all of 

the aims that were set in the Introduction. Therefore, we find an opportunity to 

build upon experience gained from the reviewed research in this chapter and 

propose our own approach that will start the discussion for creating a 

middleware that satisfactory fulfils all the aforementioned aims. 

2.6. Summary 

In this chapter we reviewed a number of middleware and approaches for 

adding intelligence to sensor and actuator networks. We have also identified a 

paucity of frameworks defining a systematic way for achieving all the aims of 

the thesis due to the fact that the reviewed approaches were not designed for 

the specific application of the thesis. The following chapter will present a 

middleware architecture that capitalises upon the current discussion regarding 

the reviewed middleware and their corresponding implementations. 
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3.  REQUIREMENTS & 

ARCHITECTURE 

We have identified a paucity of middleware approaches that simultaneously 

satisfy all the aims of the thesis and in this chapter we will define a set of 

requirements and propose an architecture for a middleware that aims to fill this 

gap. We will craft our solution based on the reviews of the current state of the 

art and the evaluations of the relevant technologies as presented in the previous 

chapter. This chapter starts with this evaluation leading to an overview of the 

proposed approach. A description of the physical and software agent sensors 

and actuators of the approach follows. We then proceed with defining the 

requirements of the proposed solution that are used for the design of the 

proposed middleware architecture. We then identify and justify the use of a 

formal framework for the specification of the middleware in the next chapter. 

3.1. Overview 

Architecturally the proposed system consists of four layers, the:  

 Physical world environment layer: it can be any physical environment that 

contains physical sensors/actuators or sensor/actuator networks as 

implemented by low level middleware that also enable the sensors and 

actuators to be exposed to external to the SAN applications (see middleware 

in section 2.3). The external application in this case would be the 

middleware of the thesis. 

 MAS layer.  

 Middleware layer that allows the sensors, actuators and agents to interact 

with it via an API in order to implement UAs.  
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 Application layer: In our case we focus on smart home applications and in 

particular on enabling agents to add AI to SAN within smart homes.  

 

Figure 3-1 provides an overview of the system. 

 

 
 

 Figure 3-1. We see an overview of the proposed system architecture. In our approach, 
any external data source that uses the API is considered to be a sensor. Similarly, any 
external to the middleware resource that can produce an effect in the physical world and 
uses the API is considered to be an actuator. Accordingly, our approach considers agent 
sensors as code that internalizes sensory data to the agent mind/reasoning component 
from the API and actuators as code that enables this component to interact with the API 
in order to create control messages (section 1.4). The technologies referenced in the 
above figure are exemplifying what could potentially use the API to interact with the 
middleware. In 3.2.2 we describe how these technologies use the API. 

 



 64 

Our proposed approach aims to satisfy the aims of the thesis. As we saw in the 

background section, according to literature sources that include Papazoglou 

([58], [57]), Erl [89] and the OASIS [115], interoperability is an intrinsic 

characteristic of architectures that follow the SOA principles that were 

described in 2.1.1. Therefore the SOA paradigm has been used extensively to 

create middleware approaches that allow heterogeneity such as SALSA [59], 

Amigo [105] and the middleware frameworks of section 2.3. A SOA therefore 

could allow the integration of heterogeneous devices and heterogeneous 

applications such as multi-agent systems. We will use the SOA paradigm to 

implement a middleware framework enabling the integration of agent and 

sensors/actuator functionality in order to satisfy the aim for multiple MAS 

platform and the aim for heterogeneous devices support.  

Furthermore, the SOA principle for abstraction and in particular for concealing 

the implementation and the details of the provided by the services capabilities 

from the consumers of the services and the distributed system environment is a 

step towards transparency. 

We want to further abstract functionality and reason about the system. In 

particular we want end developers to think in terms of agent bodies and avatars 

when designing their systems instead of services and low level software and 

hardware. Then they should be able to interact with the middleware in a 

transparent way using a declarative service oriented interface in order to 

implement their applications.  

The “transparency” refers to the requirement that the application developer 

should be able to describe the agent and avatar bodies and register them to the 

system using a common method e.g. as services and then the system should 

take care of discovery, binding between the aggregations of services and the 

agents and communication management between the agent and the avatar 

bodies without the application developer being exposed to how this is done. 

This entails a way for the middleware to abstract aggregations of services in a 

way that they can be discovered by agent bodies that they will use them as 
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avatars. It also entails the management of these agent to avatar relationships 

that are implemented using message exchanges. 

A reflection layer in the middleware could implement the abstract aggregations 

of services and agent bodies within the middleware by creating a reflection of 

the overall system based on context from SOA services and reason on this 

model in order to implement and manage UA relationships. In 2.1.1 we saw 

that there are two levels in a reflective application, the base-level and an 

internal representation/model of the base-level that is called the reflection-

layer. In our approach, the base level would describe the service providers and 

consumers that correspond to the avatar and the agent interactors.  

Furthermore, we saw that in the reflection approach the entities of the 

reflection-layer model the base-level objects (Figure 2-4). This way we can 

create internally models of the agent and avatar sensors and actuators.  

According to [33] and [27] the base-level deals with the usual functionality of 

the application within its problem domain which in our case includes 

describing agent and avatar sensor/actuator functionality as service consumers 

and service providers respectively, implementing their communication 

protocols with the middleware and enabling them to register with it. The 

reflection-layer on the other hand reasons about the base-layer in order to be 

able to enrich, monitor and potentially change the behaviour of the application 

during runtime (Figure 2-4). In our case the reflection layer would process the 

models of the interactors, use them to create models of agents and avatars and 

implement transparently more complex discovery functionality for binding 

agent bodies to avatars. Changes in the base layer e.g. a message from an agent 

interactor will be reflected in changes in the reflection layer and the latter 

would this way manage the message exchanges between agents and avatars.  

Our approach should use SOA and reflection to implement a middleware that 

will enable the integration of agent functionality with SAN this way satisfying 

the first aim of the thesis (see 1.3). To satisfy the second aim of the thesis, the 

middleware should integrate the agent functionality with avatar bodies in a 
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systematic way. We will use the SOA paradigm to implement a systematic way 

for enabling agents and sensors/actuators to connect to the middleware using 

an API that should entail: 

 Describing each interactor as a service provider (if it is a physical 

sensors/actuator) or a service consumer (if it belongs to an agent) using 

metadata. 

 Using API functions to initialize a connection with the middleware. 

 Using the API to interact with other interactors via the middleware.  

System developers should be able to use the API as described above in order to 

integrate agents with avatars (create UAs) without having to deal with the low-

level details of how these integrations are achieved. The middleware internally 

should deal with the following: 

 Implement service registration. Agent interactors should register as 

service consumers and avatar interactors as service providers.  

 Perform discovery of compatible agent and avatar bodies dynamically. 

We remind that in our approach an avatar/agent body is an aggregation 

of sensors and actuators as per the definition of 1.4. Therefore the 

discovery involves the matching of a set of service consumers in an agent 

body to a set of service providers in an avatar body. 

 Bind interactors of agent and avatar bodies; specifically bind each service 

consumer in an agent body to a service provider in an avatar body. 

 Managing the message exchange between the bound to each-other 

interactors. 

The above middleware functionality should be transparent to the system 

developers that use the middleware (thus we satisfy this way the transparency 

aim of the thesis).  The proposed approach is striving for a lightweight solution 

with regards to the resources it requires from the participants of the system 

aiming for the minimum amount of added complexity and resource 
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consumption from them. The goal is to build our framework based on mature 

and commonly used middleware technologies such as SOA making our 

solution more portable thus enabling engineers that attempt to do something 

similar to reproduce and benefit from it. 

A description of a simple scenario would be useful in terms of introducing the 

basic concepts of our proposed architecture and the way we would use it to 

create an application. Consider an end user aspiring to empower his networked 

(in a LAN-Local Area Network) devices with MAS intelligence. For simplicity 

we assume that the user’s network consists of a single remote control light 

switch and a single wireless door sensor that senses whether a door is opened 

or closed. They are both controlled remotely by software running on a 

computer using radio frequency communications. For this example let us 

consider the control software, radio frequency communication mechanism and 

proposed remote controlled light switch and door sensor that are described in 

[127]. The first step of the end user towards realizing the system would be to 

call a consultant whom we will call the “system designer”.  

The proposed architecture considers the light switch and the software (see 

[127]) that controls it as an actuator (the same applies for the sensor). The 

system designer will create metadata descriptions for the sensor and the 

actuator. The end user should also inform the system designer of what he 

would like the system do. For our simple example let us consider a simple task 

for the system such as changing the state of the light (switching it on or off) 

every time the door opens and closes. 

As we will see in the following we consider for our architecture agents that 

feature a decision making component (see [44]) and a set of agent sensors and 

actuators for interacting with the agent environment. For the purposes of the 

described scenario we assume using the GOLEM platform [82] to create such 

agents. The system designer would use the GOLEM platform in order to 

program an agent baring a decision making component, an agent “door” sensor 

and an agent “light” switch actuator. When the decision making component 

receives a sensing event via its agent “door” sensor it will issue a command to 
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switch the light on or off using its agent actuator. The designer will then create 

metadata describing the agent sensor that senses the state of a door through 

receiving sensory data in the form of the values “OPEN” and “CLOSED”. 

Similarly, the designer will create metadata describing an agent actuator that 

sends command messages for switching a light on or off. 

The agent, the light switch (with control software) and the door sensor (with 

control software) should be connected to the same local area network. In this 

setting the system designer is now ready to apply the middleware based 

solution that is proposed in the thesis. This entails connecting the middleware 

to the same network and enabling the agent and physical sensors and actuators 

to connect to the middleware using an Application Programming Interface 

(API) for sending and receiving messages (we will describe the API in the 

following sections). 

The end user can now start the system and the following should happen: 

 The agent and physical sensor/actuator metadata descriptions will be sent 

to the middleware via the API. 

 The middleware will process these descriptions in order to determine which 

connections to make between the agent and physical sensors and actuators. 

In other words it will process the metadata descriptions to connect (bind) 

the agent “door” sensor to the physical door sensor and the agent “light” 

switch actuator to the physical one forming a Ubiquitous Agent. 

 The middleware will enable and manage the communications and 

interactions between the connected agent and physical sensors and 

actuators. 

 The agent will apply its policy. Every time the door opens/closes the door 

sensor will be producing a message that will be received by the agent 

“door” sensor of the agent via the middleware. The virtual door sensor of 

the GOLEM agent will notify the decision making component which in its 

turn will instruct the agent actuator to send a switch command. The 

command will reach the physical light switch via the middleware and the 

switch will turn the light on or off accordingly. 
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The proposed architecture should cope with replacing sensors and actuators 

with ones that present the same functionality without requiring re-

configurations or system changes. In the proposed approach, adding new or 

different types of sensors/actuators would require new metadata descriptions 

and possibly programming the agent with new decision policies implementing 

new scenarios. We can scale the above example by adding more physical 

sensors, actuators and more agents that communicate with each other in order 

to implement complex scenarios. In the following we describe the requirements 

for a MAS and a physical world environment that contains connected sensors 

and actuators in order to participate in the proposed architecture. 

3.2. MAS and Physical World 

In this section we describe what we assume for the MAS and the physical world 

interactors in order to participate in the proposed approach.  

3.2.1. MAS Scope 

We are particularly concerned with software agents that separate intelligence 

via goal directed reasoning and decision making from capability allowing them 

to sense and act in a MAS electronic environment. The intention is to extend 

this capability for interacting with the physical world. A requirement for the 

MAS is that the agents should be residing in a MAS environment that is rich in 

computational resources and communication capabilities. MAS platforms vary 

in terms of the implementation of perception and action execution. Indeed, 

agent platforms like GOLEM [82] and CaRTAGo [5] use agent sensors and 

actuators explicitly as components of an agent's body, while platforms like 

JADE [25], [26] use them implicitly as part of sending and receiving messages. 

With regards to the agent architectures considered by our approach, we assume 

that there will be a straightforward correspondence between agent 

perception/action execution (which may be manifested as a message exchange) 

and the sensing/acting of avatars. 
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Our approach has been inspired and motivated by the agent platform GOLEM 

[82], in particular, to enable agents deployed in the platform to access the 

physical environment. GOLEM is based on ideas of the PROSOCS [50] platform 

to support the deployment of three main entities: agents, objects and containers. 

Agents are cognitive entities that can interact with each other and with objects 

in the agent environment. As shown in Figure 3-2, agents are composed of two 

main components: (a) a declarative mind that contains the decision making of 

the agent and (b) an imperative body that contains the sensors and actuators of 

the agent.  

The mind bestows, in addition to decision making, other reasoning capabilities 

to the agent such as planning and temporal reasoning [82]. The mind is situated 

in the agent environment within the agent body component. This component 

contains sensors enabling the agent to sense the virtual environment and 

actuators (effectors) to act upon it. In other words, sensors and effectors 

represent the interface between the agent environment and the agent mind. The 

software component that links the mind with the sensors and effectors in the 

GOLEM agent architecture is called the “brain”. The agent interaction is 

mediated by the environment, which is an evolving composite structure 

supporting agent-agent and agent-object interaction.  

                                                                               

Figure 3-2. The architecture of an agent in GOLEM (borrowed from [82]). Interaction 
in the platform is event-based. Actions that happen in the MAS environment notify the 
body sensors. Similarly, actions of the agent via the body’s actuators generate events 
represented as attempts of action in the MAS environment. Such attempts happen if the 
action is possible. 
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Besides agents, our approach requires interfaces which in our architecture are 

defined as software allowing the interaction of MAS entities with external to the 

MAS code. Such interfaces in GOLEM can be treated as objects that can be 

interacted with by the agent body. They then transform this interaction into a 

second interaction with an external resource. Furthermore, the nature and the 

format of the data that the MAS recognizes and uses could be incompatible to 

the format of the data of the external resource. Therefore a mechanism is 

required that would also transform the data being exchanged with the external 

resource into the appropriate formats.  

GOLEM objects are reactive entities. They have a trigger to receive events from 

the environment and an emitter to produce reactions to such events [82]. The 

trigger and the emitter ensure that the interaction between the object and the 

environment is completely asynchronous. An object is composed by an external 

object which is connected to the trigger and the emitter, and its purpose is to 

hide the complexity of an internal object, which could represent an external to 

the electronic environment of the agent resource. The general idea behind the 

internal object is that it wraps in it a resource of the external environment, thus 

hiding from the agents the complexity of interfacing with an external resource 

[82] (e.g. a web service).  

Agents and objects are situated within containers. A container represents a 

portion of the agent environment and it works as a mediator for the interaction 

taking place between agents and objects. Events describe what happens in the 

agent environment as a result of actions being executed by effectors. When an 

event occurs, the agent environment notifies those sensors capable of perceiving 

it. The perceived events encapsulate data produced as the result of: a) “speech 

acts”, which are actions by agents enabling them to communicate with each 

other, b) “sensing acts”, which are essentially attempts by the agent to perceive 

the environment actively and c) “passive sensing”, which can be described as 

the reaction of the environment to an event, by notifying instantaneously all the 

types of sensors that are capable of detecting it. 
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We described GOLEM as a platform that can be used in this thesis to provide a 

concrete example of a platform that features all the required functionality. 

GOLEM will be used in the case studies of Chapter 6.  

3.2.2. Physical World Scope 

Our approach considers sensors any data sources that present networked 

connectivity and are able to use the API, including software applications. 

Similarly any effector, software or device that uses the API and can produce an 

effect in the physical world is considered by our approach as an actuator. The 

API can be used by the sensors and actuators in a variety of ways (also see 

Figure 3-1): 

 

 Directly by the sensor/actuator. In this category we have sensors/actuators 

running embedded O/S that allow them to be programmed to sense or act 

in their environment. They can include the API in their implementation to 

interact with the middleware. Examples include devices running the TinyOS 

operating system [130]. 

 Mobile devices running mobile O/S such as smartphones and tablets 

commonly embed sensors and actuators. These platforms (including 

Windows Mobile, Android and IOS) feature sensors and actuators such as a 

touchscreen sensor, a GPS sensor, a camera, a  speech recognition sensor, 

voice/sound recorder, accelerometers, gyroscope, music/sound player 

actuators and software applications that can be regarded by our approach as 

actuators. For example an email/SMS sending application that can be 

controlled by an agent would be considered as an actuator. The above list is 

indicative of what we can do with such platforms and is by no means 

exhaustive. All such sensors and actuators can be accessed via applications 

running on the mobile operating system. Such applications should use the 

API to interact with the middleware enabling them to be accessed by agent 

functionality. 
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Sensors/actuators in embedded platforms consisting of embedded O/S 

(embedded Linux, Windows) running on embedded boards such as ARM 

[11] are accessed similarly i.e. the API is used by the application that 

controls the sensor/actuator and runs on the device O/S. An example of this 

and in particular of using the Raspberry Pi [126] platform with Arduino 

hardware to create and access sensors can be found in [16].  

 Using sensors/actuators of WSN or SAN as exposed by low-level 

WSN/SAN middleware such as the SOA middleware described in section 

2.3 (e.g. OASiS [62], NOSA [95] and USEME [23]) to an external application. 

The latter uses the API to interact with the high-level middleware approach 

of the thesis. 

 Examples of home automation technologies that incorporate sensors and 

actuators include ZigBee [133], z-wave [134] and “off the shelf” radio 

frequency transmitter-receivers (e.g. Tellstick [127]). In order to control 

sensors and actuators, such technologies commonly feature a control 

application, usually in a centralized computer. This application would use 

the API to enable agents to control the sensors/actuators via the 

middleware. These technologies also commonly offer a custom software 

development kit (SDK) or an API. 

The above provide with an indication of what could in principle use the API to 

interact with the proposed middleware. Finally, an “avatar” is a conceptual 

grouping of physical interactors that is controlled by a single agent. 

3.3. The Middleware Requirements 

We wish to develop a middleware component that takes agents from MAS 

environments such as the ones described in Section 3.2.1 and link their 

functionality to avatars that are built from sensors and actuators such as the 

ones described in section 3.2.2 in order to create UAs (see Figure 3-3). 
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Figure 3-3. Middleware for Ubiquitous Agents. 

 

The middleware will be described in terms of its desired functionality using 

requirement definitions and diagrams. The requirements will also define an 

API (Application Programming Interface) for enabling distributed physical and 

agent sensors and actuators to interact with the middleware. In this context, the 

API implements the endpoint for communication with the middleware. Agent 

and avatar sensors and actuators use the API to interact with the middleware 

independently. The avatar and agent interactor software that connect to the 

middleware may assume the role of the service provider and the role of the 

service consumer respectively. 

3.3.1. The Life-Cycle of a UA 

The life-cycle of each UA (Figure 3-4) in the middleware consists of the stages of 

“binding” and “UA session”. The life-cycle starts after the registration of agent 

and avatar bodies to the middleware. A body is a set of interactors that belong 

to a particular agent or avatar. The middleware implements discovery by 

finding compatible agent and avatar registered bodies and binds them together 

in order to start communication sessions between them. A communication 
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session is the quintessence of a UA. As soon as the UA session is stopped 

(termination) the bound instance of the UA is freed and the UA ceases to exist.  

 

 

Figure 3-4. The life-cycle of a Ubiquitous Agent. 

 

In the following we will see an in more depth description of what is required 

from the middleware to create a UA and what is required for each stage of the 

UA life-cycle. 

3.3.2. Registration 

Agent or avatar body interactors connect to the middleware using the 

middleware API. The latter also enables the acquisition of a metadata 

description (e.g. from the hard disk) for the interactor as well as the messaging 

between the interactor and the middleware. The descriptions, the messages and 

the protocols used by the API should be implemented by using a meta-

language. WSDL [132] is an example of such a language, despite the fact that 

we did not use it in the proposed implementation as we will see in the 

following. The system designer (see section 3.1) is responsible for creating the 

metadata descriptions and adding the necessary information in them. The 

following illustrate what the metadata should include: 

 

 A unique identifier for the interactor. 

 A unique identifier for the agent/avatar with which the interactor is 

associated.  
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 A list of all the unique identifiers for all of the sensors and actuators that 

constitute the body of the particular agent/avatar. By enumerating the 

unique identifiers of interactors in the metadata description, system 

designers are able to describe a set of interactors as an agent or an avatar 

body. Especially in the case of physical avatars, the system designers are 

able to describe any set of physical interactors as an avatar body. 

 The “binding type” that instructs the middleware on how to bind agents 

with avatars. Binding refers to the establishment of connections between 

agent and avatar interactors within a UA. “Targeted” binding connects 

agent interactors to specific avatar interactors while “agnostic” binding 

allows the middleware to decide which agent will connect to which avatar 

interactors.  

 If the binding type is “targeted”, the metadata should also provide with the 

necessary management information that will instruct the middleware which 

bindings are allowed to be performed. Otherwise the binding must be set to 

“agnostic”. 

 The “service type” indicating whether it is a provider of a service or a 

consumer. For example the light switch of the scenario that was described in 

3.1 is described as a service provider and the agent “light switch” actuator as 

a service consumer. 

 A description section of the metadata that describes the functionality of the 

particular interactor in an abstract way as a service provider or consumer. 

The architecture assumes that agents and avatars share ontology so that e.g. 

“switch on” on one side means the same thing on the other.  

 

Flowchart 1 shows the registration process for a new interactor like the door 

sensor of the scenario that was described in 3.1. 
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Flowchart 1. Registration of a new interactor to the middleware. 

All metadata coming from the distributed interactor software via the 

middleware API is stored by the middleware in a data storage component that 

we will call the “registration list”. As we can see in the Flowchart 1, the 

middleware processes the registration list in order to use the stored metadata 

descriptions for the creation of internal representations of agents, avatars and 

their interactors which we will call models. The interactor models (stored in a 

data structure called the “interactor model repository”) consist of two layers: an 

information layer and an interactivity layer. The information layer stores the 

unique identifier of the interactor, a description of the interactor based on the 

metadata that is stored in the registry and also the type of binding that the 

interactor supports. The interactivity layer enables this model to exchange 

messages with other interactor models within the middleware. It should also be 

able to exchange messages with the particular physical interactor that is being 

modelled. We discuss next how this is achieved. 
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The agent/avatar (entity) model holds information about the agent/avatar as 

well as about interactor models. This information includes the enumeration of 

all the unique identifiers for all of the interactors that belong to the particular 

agent/avatar body as acquired from the interactor registration metadata. The 

set of entity models in the middleware will be referred to as the “entity model 

repository”.  

Following Flowchart 1, when the middleware processes the metadata for an 

interactor that has been registered, it will create two models if they do not 

already exist (avoiding duplicate registrations): one that represents internally 

the agent/avatar it belongs to and one that represents the particular interactor. 

For every consequent interactor registration the middleware will be associating 

a new interactor model with the existing agent/avatar model without having to 

create the same entity model multiple times. 

The middleware considers an agent or an avatar to be fully registered if all of its 

sensors and actuators have been registered by sending their metadata 

descriptions through their individual connections. Each agent and avatar model 

stores a list that enumerates the identifiers of all of the sensors and actuators 

that constitute the body of the agent/avatar (entity) that it models. The 

registration metadata of every interactor includes the particular list. In practice 

only one registered interactor with the particular list would be enough for 

passing this information to the middleware. The purpose of this list is to enable 

the middleware to test when an entity is fully registered by checking if all entity 

identifiers point to interactor models that have already been created. 

3.3.3. Discovery and Binding 

In this section we will describe discovery in the proposed framework. As 

shown in Flowchart 2, every time a new interactor model is created, the 

middleware will check if the particular entity that it belongs to is fully 

registered. If it is then it will search through the entity model repository for a 

compatible and fully registered body. Two bodies are compatible if one of them 
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is attributed to an agent, the other to an avatar and all of the sensors and 

actuators of the agent body are compatible for binding to sensors and actuators 

of the avatar body. In the proposed middleware, discovery involves identifying 

agent and avatar bodies that consist of compatible interactors for the creation of 

exclusive communication sessions between them within the context of a UA 

session. An agent body is typically a set of service consumer and an avatar body 

is typically a set of service providers. Binding is the result of the discovery logic.  

 

Flowchart 2. The discovery logic. 

 

In the following we will describe what the aforementioned compatibility 

entails. An agent and a physical interactor are compatible for binding if: 

 The former is the consumer and the latter the provider of a service. 

 They both support the same type of binding and describe either a sensor 

or an actuator. 

 The binding type is “targeted” and they both share the same value in the 

“target” section of the metadata, or the binding type is agnostic and the 

target value will not be evaluated.  

Consider again the simple scenario of 3.1. Agnostic binding would be more 

appropriate if the end user wanted to replicate the same scenario with the same 

setting consisting of a door sensor and a light switch in a different room (the 
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interactors of each room are grouped into different avatars). The idea here is to 

register a set of agents allowing the middleware to dynamically match them to 

avatars in a random manner (as both rooms feature the same setting) in order to 

create UAs. On the other hand, if we wanted to use a single avatar controlling 

the sensors and actuators of both rooms then the binding type would have had 

to be set to “targeted”. This way we avoid undesired behaviour such as for 

example the situation in which input from the door sensor in one room 

resulting to switching the light of the other room. This would have been a 

possibility if the middleware performed the bindings based only on 

functionality and not locality (“target”).  

If no compatible body is found for an entity, it will remain available for 

discovery in the entity model repository.   

3.3.4. UA sessions 

A successful binding is achieved when all the interactors of an agent are bound 

to interactors of an avatar enabling the creation of a “Ubiquitous Agent 

session”. Figure 3-5 illustrates a UA session where agent and avatar interactors 

exchange messages to support software agents for accessing and possibly 

changing the physical environment. The interaction in the UA session context 

takes place within the exclusive relationships between agent and avatar 

interactor models.  

 

Figure 3-5. Example of a Ubiquitous Agent session. 
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There are three ways in which interaction is initiated when a UA is started: (a) 

when an agent is trying to access the environment through active observation 

(message from agent to avatar) (b) when an avatar detects environment change 

and creates a passive observation for the agent (the agent did not actively look 

for it - e.g. consider a fire alarm in a building) and (c) when an agent requests 

for an action to be executed. The aforementioned types of observations are 

discussed in the KGP model, see [3]. The UA acts as a mediator [21] achieving 

loose coupling. For example in the scenario of 3.1, the door sensor would be 

sending messages to the middleware containing its status changes and the UA 

will ensure that the agent “door” sensor will be receiving them. The agent 

“door” sensor will then pass them to the decision making component of the 

GOLEM agent. The latter would be deciding whether the agent “light” switch 

would send a control message to the middleware in order for it to be received 

by the wireless light switch which in its turn would switch the light on or off 

according to the received command. 

Another requirement for the middleware is to monitor the state of the 

connections involved in a UA session. The approach should also provide with 

resilience and failover mechanisms in the case that something has gone wrong 

with the middleware itself. Having described the requirements and what the 

proposed middleware should do, it is time to answer the question of how to do 

this by presenting the architecture of the proposed middleware. 

3.4. The Middleware Architecture 

The middleware architecture follows SOA principles. In chapter 2 we saw that 

SOA can be deployed in a variety of middleware architectures. Our application 

requires asynchronous communication and loose coupling among the 

communicating entities. The main reason is that the behaviour of individual 

entities (agent, avatar sensors/actuators) can vary depending on their design, 

runtime usage and the workload or time required performing a task. We 
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propose a message oriented middleware architecture based on SOA. In Figure 

3-6 we see an overview of the proposed architecture for the middleware. 

 

Figure 3-6. The architecture of the proposed middleware. 

 

The proposed middleware uses an integration broker that implements 

reflection. The reflection functionality creates models of agents, avatars and 

their interactors based on context from SOA services and reasons on these 

models in order to implement UAs as per the requirements of the previous 

section. The main components of the middleware are implemented in two 
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layers: the base layer and the reflection layer that adds more sophisticated 

functionality to the system. 

The base layer of the middleware uses transport layer protocols (TCP [49]) to 

implement a connection server that manages connections from networked 

physical/agent interactors that use the middleware API. It also creates an 

incoming and an outgoing queue for every connection. Before a message is 

handled, it should be placed in an incoming queue and similarly, outgoing 

messages towards interactors are placed in outgoing queues. 

The interactors register to the middleware as service providers or as service 

consumers using their service metadata descriptions. The “service registration” 

component deals with acquiring and processing the interactor metadata 

descriptions from the connection server and storing them in a “service 

registration repository” data storage component in the base layer of the 

middleware. All the services will be available via the middleware and 

consumers will register interest for services through it. This way we implement 

the agent/avatar registration requirement of the previous section. 

Returning to the scenario of 3.1, the light switch actuator would be described as 

a service provider. It would advertise the service via the middleware by 

sending its service description in the form of descriptive metadata. On the other 

hand, the agent “light” actuator would register by sending a description of the 

service that it would require to consume. This service would again use 

metadata to describe the light switch functionality. As we will see in the 

following, the communication between the provider and the consumer of the 

service begins if the middleware binds the agent to the avatar body (binds all of 

their respective interactors) and creates a UA session for them.  

The middleware should perform “store and forward” functionality in order to 

pass messages from the providers to the consumers and vice versa.  

The reflection layer provides four main functionalities: the creation of models as 

described in the requirements section, the discovery of compatible agent and 

avatar bodies (see 3.3) and the binding between them via their models, the 

management of the resulting UAs and the monitoring of the communications 
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for resilience. The components that implement these functionalities are 

referenced in Figure 3-6. 

The reflection layer uses the service registration repository to create interactor, 

agent and avatar models. The interactor models are causally connected with the 

base interactors they represent. They collectively constitute a self-representation 

of the system. The causal connections between base entities and models are 

implemented via the service oriented architecture that enables communication 

between them. Changes in the state of the base entities should reflect to changes 

in self-representation, and vice versa.  

The idea is to manipulate and reason on the models to solve problems 

regarding the base-layer. The models contain descriptions of the interactors that 

they represent and the discovery component of the architecture uses these 

descriptions in order to find compatible bodies and aggregate them into UAs as 

per the requirements of 3.3.3. The “Ubiquitous Agent” component (UA Session 

in Figure 3-6) is responsible for managing the communication within a UA 

context as per 3.3.4. 

From the agent/avatar interactor perspective, an API (Application 

Programming Interface) enables distributed interactor software to interact with 

the middleware. The API enables the conversion of information from the 

application's format to the common format of the communication (XML based 

SOA) within the middleware and the opposite. The API provides with the 

means to describe an interactor as a service or a service consumer and to also 

support the communication protocols for interacting with the integration 

broker. 

Depending on the MAS implementation, the API is used directly by the 

interactor software, or indirectly via a separate MAS software object (e.g. 

GOLEM objects [82]). In the second case the sensors/actuators interact with the 

MAS object and the latter translates this interaction to API function calls. In the 

physical world layer the API is used as per the description of section 3.2.2. 
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3.5. Framework Specification 

The following chapter presents a formal specification of the proposed in this 

thesis approach and solution. Formal methods are concerned with the use of 

mathematical techniques and notations for describing, analysing and specifying 

the properties of software systems (Clarke et al. [20]). Typically, the 

requirements of a system are described using informal language. The 

specification of the system is essentially the transformation of the requirements 

into what the system must do without saying how it is to be done [45].  

The Z-notation [45] will be used to specify the properties of our proposed 

system. The Z-notation is based on Zermelo-Fraenkel set theory and first order 

predicate logic. It is commonly used to specify and analyse the behaviour of 

systems and to model it. The Z-notation was chosen for the following reasons: 

 

 It is a formal “language”. Its resemblance to a programming language 

and use of set theory make it accessible by a wider audience from 

programming and mathematics backgrounds [45].  

 The abstraction provided by the Z-notation formal specification allows 

us to describe the functionality of the system without having to refer to 

huge amounts of program code or assumptions regarding imprecise 

documentations and descriptions [45]. 

A Z specification consists of schemas, each representing a part of the system. 

Schemas describe static and dynamic aspects of a system [45] such as: the states 

it can occupy, the invariant relationships that are maintained as the system 

evolves from state to state, the possible operations including the relationship 

between their inputs and outputs and dynamic state changes. Z schemas are 

divided into two sections, the upper section for declaring variables as well as 

their types and the lower  section that creates relationships using the variables 

of the first while putting constraints on them. The specification of chapter 4 is 

presented in Z. The specification uses diagrams to represent the schemas such 

as the state space schema and the operation schema.  
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In order to describe the Z-Notation we will use Z-notation schemas to specify a 

system that describes the room in the scenario of 3.1. Sets are fundamental in Z. 

In our example we define the “SENSORS” and the “SWITCHES” sets as the sets 

of all sensors and switches in a room: 

 

[SWITCHES, SENSORS] 

 

We use a schema to represent a room consisting of a finite set of sensors and 

switches that have joined it. A room has a door sensor (“door_sensor”) and a 

remote controlled light switch (“rc_light_switch”). 

 Room  

switches : ℙ SWITCHES 

sensors : ℙ SENSORS 

door_sensor: SENSORS 

rc_light_switch: SWITCHES 
 

door_sensor ∈ sensors 

rc_light_switch ∈ switches 
 

 

We are describing the state space of a system and the variables such as the 

“sensors”, “switches”, “door_sensor” and the “rc_light_sensor” represent 

important observations which we can make of the state. The predicate section 

presents a constraint that should always be fulfilled which is that the 

door_sensor belongs to the set of the sensors in the room and similarly the 

rc_light_switch is one of the switches of the room. We can use schemas to 

define new variables e.g. room_1, room_2: Room. We access variables in the 

schema by using the syntax “schema name ‘.’ variable name” e.g. 

room_1.rc_light_switch. 

In this description of the state space of the system, we have not been forced to 

place a limit on the number of items recorded in ”Room”, nor to say that the 

entries will be stored in a particular order. We have avoided making a 

premature decision for example about the format of the “sensors” or the 

“switches”. At this stage we treat them as abstract objects.  
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The “operation schemas” describe operations on the variables of schemas. In 

general, operations cause changes in variables of the particular schema. The 

following operation specifies the addition of a new sensor to the “Room”. 

 AddMotionSensor  

ΔRoom 

motion_sensor?: SENSORS 
 

sensors = sensors∪{motion_sensor?} 
 

 

We add the new motion sensor “motion_sensor?” to the set of sensors: “sensors 

= sensors ∪ {motion_sensor?}”. The use of the set union symbol ‘∪’ denotes that 

the “motion_sensor?” sensor is now a member of the “sensors” set and 

therefore a sensor in the room. The ‘Δ’ symbol is used before the name of the 

schema upon which the operation will take place and denotes that the state of the 

system has changed after this operation. If the state had not been changed, the 

‘Ξ’ symbol would have been used instead. Operations may have input variables 

represented using the ‘?’ symbol (see “motion_sensor?” above) and output 

variables using the ‘!’ symbol. We can see above that not all variables that 

describe the state of the “Room” system have changed with the 

“AddMotionSensor” operation. For example the “switches” set doesn't change 

when a new sensor is added. If we wanted to add a new switch we would use 

the following operation that specifies the addition of a new dimmer switch. 

 AddDimmerSwitch  

ΔRoom 

dimmer_switch?: SWITCHES 
 

switches = switches∪{dimmer_switch?} 
 

 

In Z we can combine schemas. In particular we can include a schema within 

another schema. For example the room has a subset of switches that feature 

network connectivity and following the scenario of 3.1 they could participate in 

a UA architecture.  
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 ConnectedSwitches  

Room 

connected_switches:ℙSWITCHES 
 

connected_switches⊆switches 
 

 

The “Room” schema is included within the “ConnectedSwitches” schema with 

all the variables and constraints of the “Room” being included in the 

corresponding sections of the “ConnectedSwitches” schema. It is equivalent to: 

 

 ConnectedSwitches  

switches : ℙ SWITCHES 

sensors : ℙ SENSORS 

door_sensor: SENSORS 

rc_light_switch: SWITCHES 

connected_switches:ℙSWITCHES 
 

door_sensor ∈ sensors 

rc_light_switch ∈ switches 

connected_switches⊆switches 
 

 

Z also allows global variables and functions (see Table 3-1) that can be defined 

outside schemas and within the axiomatic definitions that will be described 

below. The following example of an axiomatic definition describes a global 

variable representing a light sensor (no predicates therefore one section only): 

 

 

light_sensor: SENSORS 
 

 

Finally, functions too (see Table 3-1) can be defined within axiomatic 

definitions. Axiomatic definitions may also contain two sections, one for 

declaring variables and one for predicates. All of their variables and predicates 

are global elements that can be used by other schemas. Below we see a table 

describing the symbols that we used for the definition of the proposed in this 

thesis framework. 
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Specifications 

 

Schema box: 

 SchemaName  

A 

 

 

B 

Axiomatic Definition: 

A 

 

B 

 

Operation: 

 ΔS  

S 

 

S ′ 

 

[A]          basic type definition 

Δ S          change of state 

Ξ S           no change of state 

 

Logical operators 

¬                         negation 

∧                          AND, conjunction 

∨                          OR, disjunction 

P ⇒ Q                  implication 

P ⇔ Q                 equivalence 

∀x : T                  for all x : T, universal quantifier 

∃ x : T                  there exists x : T, existential quantifier 

∃1 x : T               exactly one  x : T, unique quantifier 

Sets  

 

x ∈ S                membership 

x ∉ S                non-membership 

{x1, …, xn}       set 

S ⊆ T               subset relation 

S ⊂ T               proper subset relation 

∅                      empty set 

∪                      set union 

∩                      set intersection 

∖                       set difference 

A: ℙ B               declares A to be a  

                          subset of B 

⦁                        used for quantification  

 

Functions\Relations 

A ⇸ B            partial function, a function that maps a 

subset of its domain type.  

dom   X         domain of relation. 

A → B            total function, a function that maps every 

element of its domain type. 

 

Basic Expressions 

 =                       equality    

 ≠                       inequality 

 ♯                        number of elements in finite set 

if P then E1       conditional expression else E2   

∀x:X | P1 ⦁ P2     universal quantification any element of 

X that  satisfies predicate P1 also satisfies predicate P2. 

∃ x:X  ⦁ P          existential quantification, at least one 

element of X satisfies predicate P. 

∃ x:X  ⦁ P          existential quantification, exactly one 

element of X satisfies predicate P. 

 

Table 3-1. Z-notation sample reference table. 

 

In chapter 4 we can see the schemas that were used for the specification of the 

system that is proposed in this thesis. The specification that is described in 

chapter 4 has been type-checked using fuzz for Z [48]. 
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3.6. Summary 

In this chapter we provided a general overview of the architecture for the 

proposed in this thesis system. We saw the main components and the general 

requirements for each in order to participate in the proposed architecture. 

Based on the requirements and the architecture of the system, we may proceed 

with the following chapter that uses the Z-Notation to provide with formal 

specification of a framework for it.  
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4.  THE UBIQUITOUS AGENTS 

FRAMEWORK 

In this chapter we specify using the Z-notation the middleware that we 

introduced in the previous chapter. The resulting framework is intended to be 

used as a reference for implementing middleware for UAs. In section 4.1 we 

will specify the middleware and how the subsystems (MAS, physical world) 

can use it in order to create UAs. Then in section 4.2 we specify an API 

(Application Programming Interface) that is used by distributed interactor 

software (which we will be calling DIS for the remainder of this chapter) in 

order to interact with the middleware. The importance of the formal 

specification is that the resulting framework can be transparent, intelligible and 

easy to use as the foundation for the creation of systems and platforms that 

share similar aims and objectives to the ones of this thesis. We used the fuzz 

type-checker [48] to check the specification of the framework for inconsistences 

and ambiguities. 

4.1. Specifying the Middleware 

As we saw in the previous chapter the middleware can be described as a set of 

UA sessions. The basic framework for the middleware supports the following 

functionality:  

a) Connecting and registering agent/avatar interactor software. The 

distributed interactor software (DIS) will be characterized with internal 

representations that we will be calling models.  

b) Binding of agent to avatar bodies (by linking their interactors). This is the 

result of the discovery logic that identifies compatible agent and avatar 

bodies (see 3.3.3 and 4.1.7). As we have seen in the requirements that 

were set in the previous chapter this entails the processing of the models 
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that were created in a). It essentially binds models and the 

communication between the actual agent and avatar interactors will take 

place via these models, thus implementing a UA session. 

c) Managing the interaction within the UA session.  

This way we specify the middleware as a set of UAs. We will use the 

requirements of the previous chapter to specify the middleware functionality as 

a series of Z-Notation schemas and operations. For the purposes of the 

middleware section of the framework, an interactor will be referring to sensor 

or actuator software that uses an API to interact with the middleware (see 

chapter 3). We assume that the reader is familiar with the requirements and the 

architecture of the middleware as described in chapter 3. 

4.1.1. Middleware definition 

We begin by describing the finite sets that represent the basic types of the 

specification that are used to describe the main aspects of the system.  

 

[ENTITY_MODELS, INTERACTOR_MODELS, UBIQUITOUS_AGENTS,   

METADATA] 

 

Their descriptions: 

 ENTITY_MODELS: this set is representing the agent and avatar models as 

defined in the reflection layer of the middleware system (see section 3.3.2). 

 INTERACTOR_MODELS: the set of interactor models in the reflection layer 

of the middleware system (see section 3.3.2). 

 UBIQUITOUS_AGENTS: the set representing all Ubiquitous Agents in the 

system. A UA is a communication session between agent and avatar 

interactors. 

 METADATA: a set of metadata describing agents, avatars and interactors. 
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Now we can define the state space of the middleware with a schema: 

 Middleware  

entities : ℙ ENTITY_MODELS 

interactors : ℙ INTERACTOR_MODELS 

UA_sessions: ℙ UBIQUITOUS_AGENTS 

metadata: ℙ METADATA 
 

Listing 4-1. The state space of the middleware system. 

 

Besides the basic types of the middleware system we define more sets that will 

allow us to specify the functionality of the proposed framework. These sets 

describe the data types that are used by the middleware (their descriptions can 

be found in appendix A-1): 

 

 

[INTERACTOR_IDENTIFIERS, SERVICE_DESCRIPTIONS, TARGET, MESSAGES, 

ENTITY_IDENTIFIERS] 
 

 

We also define global variables representing the above sets in the middleware 

system. 

 

 

interactorIDs: ℙ INTERACTOR_IDENTIFIERS 

entityIDs: ℙENTITY_IDENTIFIERS 

srv_descriptions: ℙ SERVICE_DESCRIPTIONS 

target:  ℙTARGET 

message: ℙMESSAGES 
 

Listing 4-2. Creating global variables for sets that describe elements of the middleware. 

 

 

Finally, we define free types which are sets containing exact numbers of 

predefined values (their descriptions can be found in Appendix A-1): 
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OUTCOME ::= ok | fail 

BINDING_TYPE::= targeted  | agnostic 

TYPE_OF_INTERACTOR::= sensor | actuator 

ENTITY_TYPE::= agent | avatar 

SERVICE_TYPE::= provider | consumer 

 

In the previous chapter we saw that the middleware follows a two layered 

architecture with a base and a reflection layer. In order to specify the operations 

of the Ubiquitous Agents middleware we need to first define functions upon 

the above sets. As we will see next, the functions represent how the types that 

are described by the above sets are interrelated within the middleware and in 

particular how the reflection layer uses the base-layer to implement its 

functionality. 

4.1.2. Interactors as Service Providers and 

Consumers 

DIS register to the middleware as service providers and service consumers by 

sending metadata descriptions to the middleware consisting of information that 

contains all the elements that were described in section 3.3.2. We specify 

interactor descriptions using Z: 

 BS_IncomingRegistrationData  

interID?: INTERACTOR_IDENTIFIERS 

inter_type?: TYPE_OF_INTERACTOR 

bindingType?: BINDING_TYPE 

locTarget?: TARGET  

entityID?: ENTITY_IDENTIFIERS 

entityType?: ENTITY_TYPE 

expectedInteractorIDs?: ℙINTERACTOR_IDENTIFIERS 

serv_type?:SERVICE_TYPE 

service_description?:  SERVICE_DESCRIPTIONS 
 

Listing 4-3. Incoming metadata description from an interactor. 

 

The “serv_type?” specifies whether the interactor is a service provider or a 

consumer. Most of the names here are self-explanatory and appendix A-1 
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describes the types of the above variables. For example the 

“service_description?” variable is of type “SERVICE_DESCRIPTIONS” and 

describes the functionality of an interactor as a service provider or consumer. 

What needs explaining is the “locTarget” that stores the target value that is 

used to map (bind) an interactor to another interactor with the same target 

value. Also the “expectedInteractorIDs” variable stores the set of interactor 

identifiers that point to the interactors that are expected to register and belong 

to the same agent or avatar body. 

4.1.3. Base Layer Functionality 

The middleware accepts registrations by agent and avatar distributed interactor 

software. We use the following axiomatic definitions to specify global functions 

that formally define the base layer functionality of the middleware that enables 

it to manage registration and store and process the registration data. We specify 

the following base layer functions: 

 

registration_list: INTERACTOR_IDENTIFIERS ⇸METADATA 

reg_id_of_interactor: METADATA  ⇸ INTERACTOR_IDENTIFIERS 

reg_type_of_interactor: METADATA ⇸ TYPE_OF_INTERACTOR 

reg_binding_type_of_interactor: METADATA ⇸ BINDING_TYPE 

reg_target_of_interactor: METADATA ⇸ TARGET 

reg_id_of_entity:METADATA ⇸ ENTITY_IDENTIFIERS 

reg_type_of_entity: METADATA ⇸ ENTITY_TYPE 

reg_expected_interactorIDs: METADATA ⇸ ℙINTERACTOR_IDENTIFIERS 

reg_service_type_of_interactor: METADATA ⇸ SERVICE_TYPE 

reg_description_of_interactor : METADATA ⇸SERVICE_DESCRIPTIONS 
 

Listing 4-4. Base layer functions. 

 

The functions specify base layer functionality that was described in section 3.3, 

e.g. the “registration_list” function specifies the service registration list. We use 

the above functions to specify the operation for receiving and processing the 

registration descriptions from the DIS. The main idea is that when the 

middleware receives registration data as specified in 

“BS_IncomingRegistrationData”, it will first check whether the interactor has 
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already been registered using the “registration_list” function. If it has not, it will 

then use the rest of the functions that were specified in Listing 4-4 (e.g. 

“reg_id_of_interactor”, “reg_type_of_interactor” etc.) in order to store the 

information from “BS_IncomingRegistrationData” in a new metadata entry (see 

“reg_data!” below). It will then add this registration metadata to the 

“registration_list” for the particular interactor identifier. The functions of 

Listing 4-4 are consequently used to access information from the metadata 

entries.  

 BS_ReceiveAndProcessRegistrationData  

BS_IncomingRegistrationData 

reg_data!: METADATA 
 

registration_list(interID?)∉METADATA∧ 

reg_id_of_interactor = reg_id_of_interactor ∪ {reg_data!↦ interID? } ∧ 

reg_type_of_interactor= reg_type_of_interactor ∪ {reg_data!↦ inter_type?} ∧ 

reg_binding_type_of_interactor= reg_binding_type_of_interactor ∪  

{reg_data!↦ bindingType?} ∧ 

reg_target_of_interactor = reg_target_of_interactor ∪ {reg_data!↦ locTarget?} ∧ 

reg_id_of_entity= reg_id_of_entity∪{reg_data!↦ entityID? }∧ 

reg_expected_interactorIDs = reg_expected_interactorIDs ∪ 

{reg_data!↦ expectedInteractorIDs?}∧ 

reg_type_of_entity = reg_type_of_entity ∪{reg_data!↦ entityType?}∧ 

reg_service_type_of_interactor= reg_service_type_of_interactor 

 ∪{reg_data! ↦ serv_type?}∧ 

reg_description_of_interactor= reg_description_of_interactor ∪ 

{reg_data!↦ service_description?}∧ 

registration_list = registration_list ∪ { interID? ↦ reg_data!} 
 

Listing 4-5. Specifying the receiving and processing of registration data by the 
middleware. 

4.1.4. The Entity Models in the Reflection Layer 

According to the requirements that were laid in the previous chapter, when the 

middleware processes the metadata for the first interactor that has been 

registered, it will create two models: one that represents internally the 

agent/avatar and one that represents the particular interactor. For every 

consequent interactor registration the middleware will be associating a new 

interactor model to the existing agent/avatar model. We specify the following 
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functions that belong to the reflection layer of the middleware and enable the 

framework to specify the operation for creating a new entity model: 

 

ent_model_model_list: ENTITY_IDENTIFIERS⇸ ENTITY_MODELS 

ent_model_metadata: ENTITY_MODELS⇸METADATA 

ent_model_id: METADATA ⇸ ENTITY_IDENTIFIERS 

ent_model_type: METADATA ⇸ ENTITY_TYPE 

ent_model_expected_ids: METADATA ⇸ ℙINTERACTOR_IDENTIFIERS 

ent_model_registered_ids: METADATA ⇸ ℙINTERACTOR_IDENTIFIERS 
 

Listing 4-6. Reflection layer functions for the creation of entity models. 

 

We saw in 3.3.2 that entity models contain metadata. The framework specifies 

the above functions in order to acquire information from the registration list of 

the base layer using the functions of Listing 4-4. It will then use this information 

to create an entity model and add metadata to it (“ent_model_metadata” 

function). This information includes an identifier for the entity, its type (agent 

or avatar) and a list of all the unique identifiers for all of the sensors and 

actuators that constitute the body of the particular entity. The 

“ent_model_model_list” function is implementing the “entity model 

repository” (see requirements in previous chapter). We formally define the 

more complex global function that uses the above functions to create the 

metadata of a particular entity model based on the registration metadata of the 

base layer as accessed using the functions of Listing 4-4: 

 

ent_model_create_metadata: METADATA→METADATA 
 

∃registration_data: METADATA; ent_model_metadata:METADATA 

 ⦁ 

ent_model_create_metadata(registration_data) = ent_model_metadata ⇔ 

ent_model_id = ent_model_id ∪ 

{ ent_model_metadata ↦ reg_id_of_entity(registration_data) }∧ 

ent_model_type = ent_model_type ∪ 

{ ent_model_metadata ↦ reg_type_of_entity(registration_data) }∧ 

ent_model_expected_ids = ent_model_expected_ids ∪ 

{ ent_model_metadata ↦ reg_expected_interactorIDs (registration_data) } 
 

Listing 4-7. Creating the entity model metadata. 
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According to the framework, the entity model (as we will also see in the 

following) is created when the first interactor is registered. For consequent 

interactor registrations to the base layer we only update the list of registered 

interactor identifiers in the metadata of the entity model (see 

“ent_model_registered_ids” in Listing 4-8). The rest of the metadata have 

already been added with the registration of the first interactor. We specify the 

updating of the metadata layer of an entity model with the following global 

function: 

 

ent_model_update_metadata: METADATA →METADATA 
 

∃reg_metadataIn: METADATA; model_metadataOut:METADATA; 

registeredIDs: ℙINTERACTOR_IDENTIFIERS; 

entID:ENTITY_IDENTIFIERS ⦁ 

ent_model_update_metadata(reg_metadataIn)=model_metadataOut⇔ 

entID = reg_id_of_entity(reg_metadataIn) ∧ 

model_metadataOut = ent_model_metadata (ent_model_model_list(entID))∧ 

registeredIDs =  ent_model_registered_ids (model_metadataOut)∧ 

registeredIDs = registeredIDs ∪{ reg_id_of_interactor (reg_metadataIn) }∧ 

ent_model_registered_ids= ent_model_registered_ids ∪ 

{ model_metadataOut ↦ registeredIDs } 
 

Listing 4-8. Updating the metadata of an entity model. 

 

The next function that we will specify is used to return the entity model of a 

newly registered interactor and create it if it does not already exist. The input is 

the registration metadata from the base layer for the particular interactor. It will 

use the entity identifier for the particular entity to check whether the entity 

model exists in the entity model repository using the 

“ent_model_model_list“function. If it does not exist it will create and update it 

with all the relevant metadata. Otherwise it returns the existing entity model 

after it has updated the list of registered interactor identifiers. In the first case it 

calls the “ent_model_create_metadata” function of Listing 4-7 and in the second 

the “ent_model_update_metadata” of Listing 4-8. 
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ent_model_get_model: (METADATA × ℙ ENTITY_MODELS) 

 →ENTITY_MODELS 
 

∃1registration_data: METADATA; entMetadata:METADATA; 

entities:ℙENTITY_MODELS; entityModel:ENTITY_MODELS ⦁ 

 (ent_model_get_model(registration_data, entities) = entityModel ⇔ 

ent_model_model_list (reg_id_of_entity(registration_data))∉ENTITY_MODELS∧ 

entities= entities ∪{entityModel}∧ 

entMetadata = ent_model_create_metadata(registration_data)∧ 

ent_model_model_list = ent_model_model_list ∪ 

{ reg_id_of_entity(registration_data) ↦ entityModel }∧ 

ent_model_metadata = ent_model_metadata ∪{ entityModel ↦ entMetadata }∧ 

entMetadata = ent_model_update_metadata(registration_data) )∨  

(ent_model_get_model(registration_data, entities) = 

 ent_model_model_list (reg_id_of_entity(registration_data)) ⇔ 

entMetadata = ent_model_update_metadata(registration_data)) 
 

Listing 4-9. Return the entity model and create one if it does not exist. 

 

Having specified the metadata of the entity model, we specify the function for 

associating a set of interactor models to it: 

 

ent_model_registered_interactors: ENTITY_MODELS ⇸ ℙINTERACTOR_MODELS 
 

Listing 4-10. Adding an interactor model to an entity model. 

4.1.5. The Interactor Models in the Reflection Layer 

Interactor models have a metadata and an interactivity layer (see 3.3.2). The 

metadata layer is updated using functions of the reflection layer specified as: 

 

intr_model_by_id: INTERACTOR_IDENTIFIERS⇸INTERACTOR_MODELS 

intr_model_metadata: INTERACTOR_MODELS⇸METADATA 

intr_model_id: METADATA⇸ INTERACTOR_IDENTIFIERS 

intr_model_type :METADATA⇸ TYPE_OF_INTERACTOR 

intr_model_service_type: METADATA ⇸ SERVICE_TYPE 

intr_model_description: METADATA⇸ SERVICE_DESCRIPTIONS 

intr_model_binding_type: METADATA ⇸ BINDING_TYPE 

intr_model_target: METADATA ⇸ TARGET 

intr_model_entityID: METADATA ⇸ENTITY_IDENTIFIERS 

 

Listing 4-11. Reflection layer functions for the creation of interactor models. 



 100 

The following function uses the above functions of the reflection layer and the 

registration data as stored in the registration list of the base layer of the 

middleware in order to create the interactor model and add its metadata. 

 

CreateInteractorModel: (METADATA×ℙINTERACTOR_MODELS) 

→INTERACTOR_MODELS 
 

∃ registration_data, interactorMetadata: METADATA; 

interactors:ℙINTERACTOR_MODELS; 

newInteractorModel:INTERACTOR_MODELS ⦁ 

CreateInteractorModel(registration_data, interactors)= newInteractorModel ⇔ 

intr_model_by_id(reg_id_of_interactor(registration_data)) 

∉ INTERACTOR_MODELS∧ 

interactors = interactors ∪{ newInteractorModel}∧ 

intr_model_id = intr_model_id ∪ 

{ interactorMetadata ↦ reg_id_of_interactor(registration_data)}∧ 

intr_model_type = intr_model_type ∪ 

{ interactorMetadata ↦ reg_type_of_interactor (registration_data)}∧ 

intr_model_service_type = intr_model_service_type ∪ 

{ interactorMetadata ↦ reg_service_type_of_interactor (registration_data)}∧ 

intr_model_description = intr_model_description ∪  

{ interactorMetadata ↦ reg_description_of_interactor (registration_data)}∧ 

intr_model_binding_type = intr_model_binding_type ∪ 

{ interactorMetadata ↦ reg_binding_type_of_interactor (registration_data)}∧ 

intr_model_target = intr_model_target  

∪{ interactorMetadata ↦ reg_target_of_interactor (registration_data)}∧ 

intr_model_entityID = intr_model_entityID 

∪{ interactorMetadata ↦ reg_id_of_entity (registration_data)}∧ 

intr_model_metadata = intr_model_metadata∪{ newInteractorModel ↦interactorMetadata} 
 

Listing 4-12. Creating a new interactor model while also adding the metadata.  

 

When registration is complete, the base layer will be using two message queues 

to serve the message exchanges between the middleware and the interactor. 

The first will be used for the incoming messages from the particular interactor 

(and only) and the second for the messages from the middleware towards it.  

 

incoming_queue : INTERACTOR_IDENTIFIERS ⇸ MESSAGES 

outgoing_queue : INTERACTOR_IDENTIFIERS ⇸ MESSAGES 
 

Listing 4-13. The incoming and outgoing queues for the particular interactor identifier. 
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These queues are used as the interactivity layer by the interactor model with the 

particular identifier. A message from the agent or physical interactor will reach 

the incoming message queue that is accessed by the corresponding interactor 

model. The messages that are placed in the outgoing queue originate from the 

incoming queues of other interactor models. These messages are subsequently 

sent to an agent or physical interactor. 

Finally, after the middleware has created a new interactor model it will 

associate it with the corresponding entity model. We specify this with the 

following function. 

 

addInteractorToEntity:( ENTITY_MODELS ×INTERACTOR_MODELS)→  

ℙINTERACTOR_IDENTIFIERS 
 

∃interactorModel: INTERACTOR_MODELS; entityModel: ENTITY_MODELS; 

interactorIDsOfEntity: ℙINTERACTOR_IDENTIFIERS; 

interactorsOfEntity: ℙINTERACTOR_MODELS  ⦁ 

addInteractorToEntity ( entityModel,interactorModel) = interactorIDsOfEntity ⇔ 

interactorsOfEntity = ent_model_registered_interactors (entityModel)∧ 

interactorsOfEntity = interactorsOfEntity ∪{ interactorModel }∧ 

ent_model_registered_interactors  = ent_model_registered_interactors ∪ 

{entityModel↦  interactorsOfEntity } 
 

Listing 4-14. This function specifies the addition of a new interactor model to an entity 
model. 

4.1.6. Registration  

At this point we have defined the reflection and base layer functionality that 

would allow for the specification of the registration operation. We will use the 

above functions to formally specify the operation for registering an interactor.  

The “BS_ReceiveAndProcessRegistrationData” (Listing 4-5) specifies how the 

middleware receives the registration descriptions from DIS and checks whether 

the interactors have already been registered. If an interactor has not registered 

the “CreateInteractorModel” (Listing 4-12) function will create the model for it 

and associate it with the appropriate entity model (see “addInteractorToEntity” 

in Listing 4-14). We get the entity model by calling the “ent_model_get_model” 



 102 

function and if one does not already exist it will create and return it. We specify 

the above with the following operation: 

 RegisterInteractor  

ΔMiddleware 

BS_ReceiveAndProcessRegistrationData 

registeredBodyInteractorIDs: ℙ INTERACTOR_IDENTIFIERS 
 

 intr_model_by_id (interID?) ∉interactors; 

registeredBodyInteractorIDs  = 

 addInteractorToEntity(ent_model_get_model ( reg_data!, entities) , 

CreateInteractorModel(reg_data! ,interactors)) 
 

Listing 4-15. Interactor registration 

 

4.1.7. Reflective Discovery & Binding 

We call the binding between service providing and consuming interactors 

reflective because it takes place in the reflection layer using models that reflect 

their functionality within the middleware. The “Bind” operation is specified in 

the end of this section. This operation uses a number of functions that will need 

to be specified before we present it. It is the result of the discovery logic that 

will also be described in this section. 

Part of the discovery functionality is to evaluate agent and avatar models by 

performing an initial check to ensure that one entity is an agent, the other entity 

is an avatar and they are both fully registered. We remind that agents and 

avatars are considered to be fully connected when all of their sensors and 

actuators have been registered. We formally specify this with the following 

function that determines that an entity is fully registered by comparing the sets 

returned by the “ent_model_registered_ids” and “ent_model_expected_ids” 

functions (described in 4.1.4). If they are the same it means that all the 

interactors of a particular entity have already registered. If all above statements 

are true the function will return “ok” otherwise it will return fail. 
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initDiscoveryChecks:( ENTITY_MODELS× ENTITY_MODELS) → OUTCOME 
 

∃1firstEntityModel, secondEntityModel:ENTITY_MODELS ⦁ 

(initDiscoveryChecks(firstEntityModel, secondEntityModel) = ok ⇔ 

ent_model_type (ent_model_metadata (firstEntityModel)) ≠  

ent_model_type (ent_model_metadata (secondEntityModel)) 

∧ ent_model_registered_ids (ent_model_metadata (firstEntityModel) )= 

ent_model_expected_ids (ent_model_metadata (firstEntityModel)) 

∧ ent_model_registered_ids(ent_model_metadata (secondEntityModel)) = 

ent_model_expected_ids (ent_model_metadata (secondEntityModel))) 

∨ initDiscoveryChecks(firstEntityModel, secondEntityModel) = fail 
 

Listing 4-16. Check whether to attempt a binding. 

 

A UA entails the exclusive communication of every interactor in an agent body 

with an interactor in an avatar body for control or sensing. We call “reflective” 

binding the dynamic creation of such relationships by the middleware at 

runtime. Before we describe the process of binding we need to formally specify 

the following function: 

 

bound :  INTERACTOR_MODELS ⇸ INTERACTOR_MODELS 
 

Listing 4-17. Support function for binding. 

 

The “bound” function specifies a relationship between two interactor models. 

When it is applied to an interactor model it returns the interactor model with 

which it has formed a binding. We use the above function to formally specify 

how the middleware implements the binding between two interactors. 

 

createBinding:(INTERACTOR_MODELS× INTERACTOR_MODELS)→ OUTCOME 
 

∃ InteractorF, InteractorS: INTERACTOR_MODELS ⦁ 

createBinding(InteractorF, InteractorS) = ok⇔ 

 bound = bound ∪ {InteractorF↦ InteractorS} 

∧  bound = bound ∪ {InteractorS↦ InteractorF} 
 

Listing 4-18. Binding two interactors. 
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As we saw in the requirements chapter (section 3.3), when all the interactor 

models of an entity are bound to interactor models of another entity, the two 

entities form a UA session. The following function of the “Bind” operation 

specifies an entity model participating in a UA session: 

 

UA_of_entity: ENTITY_MODELS ⇸ UBIQUITOUS_AGENTS 
 

Listing 4-19. A relationship between an entity model and a UA session. 

 

We can now formally specify the part of the binding functionality that deals 

with the creation of the UA sessions. 

 

createUA:(ENTITY_MODELS× ENTITY_MODELS×ℙ UBIQUITOUS_AGENTS) 

→ UBIQUITOUS_AGENTS 
 

∃firstEntityModel, secondEntityModel:ENTITY_MODELS; 

UA_sessions:ℙUBIQUITOUS_AGENTS; UA:UBIQUITOUS_AGENTS ⦁ 

createUA(firstEntityModel, secondEntityModel,UA_sessions) = UA ⇔ 

UA_sessions = UA_sessions  ∪ {UA} 

∧ UA_of_entity = UA_of_entity ∪  

{firstEntityModel ↦ UA} 

∧ UA_of_entity = UA_of_entity ∪  

{secondEntityModel ↦ UA} 
 

Listing 4-20. Creation of a UA. 

 

We add the new UA session to the set of UA_Sessions. Also, when creating a 

new UA we also update the “UA_of_entity” relationship for both participating 

entities. 

In order to create a binding, the middleware should implement discovery logic 

that identifies agents and avatars that bare compatible interactors. Two 

interactors are compatible when their registration descriptions that are stored in 

the “registration_list“of the base layer (4.1.3) fulfil a number of criteria. The first 

criterion is that one of them should be a description of a physical and the other 

one a description of an agent sensor/actuator (different entity types). The 

second criterion requires them to be of the same interactor type (both sensors or 

both actuators). The third criterion requires that the interactor service 
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description (as acquired by the”intr_model_description” function) that is 

associated with the avatar interactor model should describe the same 

functionality as the one required to be consumed by the agent interactor. The 

way this comparison is achieved is a matter of implementation as we will see in 

chapter 5. For the specification of our framework we will be using the term 

“compatible” interactor service descriptions to abstract the above functionality 

and we will be describing it with the equality symbol ‘=’ e.g.:  

 

“intr_model_description (intr_1) = intr_model_description (intr_2)”. 

 

The next criterion requires that the values returned by the 

“intr_model_service_type” regarding the two interactor models should not be 

the same i.e. one of them should be a service provider and the other one a 

service consumer.  

The last important criterion deals with the”intr_model_binding_type”. Both the 

agent and physical interactor models should have the same binding type. If 

they both support agnostic binding (the”intr_model_binding_type” function 

returns the value”agnostic” for both interactor models under consideration) 

then the criterion will be satisfied. If the value is”targeted” then they will also 

need to have the same value returned by the”intr_model_target” function in 

order to satisfy the particular discovery criterion.   

We formally specify the above with the following function that specifies the 

discovery functionality. It discovers compatible agent and avatar models by 

evaluating them and their interactors and binds their interactors using 

“createBinding”. It then creates a UA session using the “createUA” function. If 

the discovery and binding are successful the function will return “ok” and the 

new object that represents the UA session; otherwise it will return fail with an 

empty variable for the UA.  
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discoverAndBindBodies: (ENTITY_MODELS×ENTITY_MODELS× 

ℙ UBIQUITOUS_AGENTS)→ (OUTCOME ×UBIQUITOUS_AGENTS) 
 

∃firstBody,secondBody: ℙINTERACTOR_MODELS; 

firstEntityModel, secondEntityModel: ENTITY_MODELS; 

UAs:ℙUBIQUITOUS_AGENTS; 

entMetadataF, entMetadataS:METADATA; 

UA: UBIQUITOUS_AGENTS 

 ⦁ 

discoverAndBindBodies(firstEntityModel,secondEntityModel, UAs) = (ok,UA)⇔ 

firstBody= ent_model_registered_interactors(firstEntityModel)∧ 

secondBody= ent_model_registered_interactors(secondEntityModel)∧ 

 (∀ InteractorF: firstBody ⦁(∃1 InteractorS:secondBody⦁ 

entMetadataF = intr_model_metadata(InteractorF)∧ 

entMetadataS = intr_model_metadata(InteractorS)∧ 

intr_model_type (entMetadataF) =  intr_model_type (entMetadataS)∧ 

intr_model_service_type(entMetadataF) = intr_model_service_type(entMetadataS)∧ 

intr_model_description (entMetadataF) =  intr_model_description (entMetadataS)∧ 

intr_model_binding_type (entMetadataF) = intr_model_binding_type (entMetadataS)∧ 

intr_model_target (entMetadataF) =  intr_model_target (entMetadataS)∧ 

 createBinding(InteractorF, InteractorS) = ok)∧  

(intr_model_binding_type(entMetadataF) = agnostic∨ 

intr_model_target (entMetadataF)  = intr_model_target(entMetadataS)∧ 

UA = createUA(firstEntityModel,secondEntityModel, UAs)) 

∨ discoverAndBindBodies(firstEntityModel,secondEntityModel, UAs) = (fail, UA)) 
 

Listing 4-21. Evaluates two entity bodies and binds them. 

 

Now we have all the building blocks that will enable us to formally specify the 

“Bind” operation.  

 Bind  

ΔMiddleware 

firstEntityModel? : ENTITY_MODELS 

secondEntityModel? : ENTITY_MODELS 

UA! : UBIQUITOUS_AGENTS 

outcome!:OUTCOME 
 

initDiscoveryChecks(firstEntityModel?, secondEntityModel?) = ok∧ 

(outcome!,UA!) =  

discoverAndBindBodies(firstEntityModel?,secondEntityModel?, UA_sessions)   
 

Listing 4-22. The Bind operation. 
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We note that the “UA_sessions” is the set of existing ubiquitous agents in the 

middleware. If the function “initDiscoveryChecks” returns “ok” meaning that 

we can attempt the binding, the middleware will call the 

“discoverAndBindBodies” that will return “ok” and the new UA if the binding 

was successful otherwise it will return “fail”. 

4.1.8. Ubiquitous Agents 

The middleware can be described as a set of UAs that are the result of the 

binding operations. The UAs in the system are specified by the “UA_sessions” 

set (see Listing 4-1). In this section we will specify how messages are mediated 

within each UA session and in particular between the interactors that are bound 

to each other. The messages from the interactors of both entities that create the 

UA (agent and avatar) are stored in the incoming message queues of the 

middleware. The UA accesses these queues via their corresponding interactor 

models (see 4.1.5). Based on the “bound” relationship that was described in 

Listing 4-18 the UA will then place these messages in the outgoing queues of 

the interactors that are bound to them. Thus the mediated messages will be sent 

to the appropariate DIS.  

This way the mediator is implemented in the framework. The interactor models 

of entity models that belong to a UA session do not exchange messages directly 

but through the UA session (using the “UA_of_entity” and “bound” functions). 

The schema below describes the “MediateMessages” operation for routing 

messages within a UA by reading the messages in the incoming queues of all 

participating interactors and placing them in the outgoing queues of the 

interactors that are bound to them. 
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 MediateMessages  

ΔMiddleware 

UA?: UBIQUITOUS_AGENTS 
 

∀senderEntityModel:ENTITY_MODELS ⦁ 

UA? ∈ UA_sessions∧ 

UA? = UA_of_entity (senderEntityModel) ∧ 

(∀senderInteractorModel:INTERACTOR_MODELS;  

message : MESSAGES;  

recipientInteractorModel:INTERACTOR_MODELS ⦁ 

senderInteractorModel ∈ ent_model_registered_interactors (senderEntityModel)∧ 

message = incoming_queue(intr_model_id (intr_model_metadata(senderInteractorModel)))∧ 

recipientInteractorModel = bound(senderInteractorModel)∧ 

 outgoing_queue = outgoing_queue ∪  

{intr_model_id (intr_model_metadata(recipientInteractorModel))↦ message}) 
 

Listing 4-23. Message mediation within a UA. 

4.2. Specifying the Middleware API 

In this section we specify the middleware API (Application Programming 

Interface) that enables DIS (Distributed Interactor Software) to connect to the 

middleware and participate in UA sessions. We specify an API providing the 

main elements for the interaction between the DIS and the middleware 

allowing for the establishment of service provider-consumer relationships and 

communications as required by the proposed SOA framework. The API 

transparently provides to the DIS the following functions: 

 

 “apiRegistration” in Listing 4-29 for registering with the middleware. 

Physical sensors and actuators register as service providers by sending their 

descriptions to the middleware to advertise their services and make them 

discoverable. On the other hand the agent sensors and actuators register as 

service consumers by sending the descriptions of the services that they 

require in order for the middleware to bind them to the providers of these 

services. 
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 “apiGetMessageMetadata” in Listing 4-30. This API function uses the 

service description (that was sent to the middleware by the 

“apiRegistration”) to create new metadata for describing sensing/acting 

requests or action feedback/sensory data messages. It returns this metadata 

to the DIS. 

 “apiEditMessageMetadata” in Listing 4-32. The DIS uses the message 

metadata that it has acquired from the “apiGetMessageMetadata” function 

and edits it using this function. In particular it adds at runtime 

parameterized data values describing sensing/acting requests or action 

feedback/sensory data messages. This way it creates messages using 

structured metadata that contains values that describe particular events. 

 “apiSendMessage” in Listing 4-33. It is used by the DIS for sending the 

messages that were created using “apiEditMessageMetadata” to a DIS that 

is bound to it via the middleware.  

 “apiReceiveMessage” in Listing 4-34 for receiving messages from a DIS that 

is bound to it via the middleware. 

 “apiProcessMessage” in Listing 4-35. Specifies the API operation for 

enabling the DIS to extract the values that describe a sensing/action request 

or sensory data/feedback from message metadata that is acquired from a 

received message (see “apiReceiveMessage” operation). 

 

The framework for the middleware API was also type-checked using the fuzz 

type-checker [48]. 

4.2.1. API Definition 

We specify the main sets for the API framework as follows: 
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[INTERACTOR_IDENTIFIERS,  ENTITY_IDENTIFIERS, SERVICE_DESCRIPTIONS, 

TARGET, MESSAGES, METADATA, DIS_INPUT_DATA] 

 

Most of the names here are self-explanatory and the descriptions of the sets can 

be found in appendix A-2. We use the above sets to create variables that will 

constitute the data that is stored by the API in order to implement its 

functionalities. Now we can define the schema for the API framework: 

 API  

descriptionMetaData: METADATA 

ID : INTERACTOR_IDENTIFIERS 

type : INTERACTOR_TYPE 

binding_type: BINDING_TYPE; 

locTarget: TARGET 

entity_ID: ENTITY_IDENTIFIERS;  

entity_type: ENTITY_TYPE 

body_ids: ℙ INTERACTOR_IDENTIFIERS 

service_type : SERVICE_TYPE 

service_description  : SERVICE_DESCRIPTIONS 
 

Listing 4-24. The schema of the middleware API. 

 

In particular, the “descriptionMetaData” variable specifies metadata describing 

the interactor by association with the rest of the sets/variables of Listing 4-24. 

In the following we will see how we create these associations (Listing 4-27). We 

also define free types which are sets containing exact numbers of predefined 

values (their meaning is also described in appendix A-2): 

 

BINDING_TYPE::= targeted |agnostic 

INTERACTOR_TYPE::= sensor |actuator 

ENTITY_TYPE::= agent |avatar 

SERVICE_TYPE::= provide |consumer 
 

We use the API schema to define the “api” variable allowing us to access the 

elements of the schema globally in order to help us specify the functionality of 

the API. 
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api:API 
 

Listing 4-25. An “API” object for accessing the variables of the API schema. 

 

The middleware supports two types of messages that contain: metadata 

describing interactors for registration purposes and metadata that describes 

control/sensing requests and action feedback/sensory data. We specify a 

support function for creating such middleware messages using metadata:  

 

metadataToMessage:  MESSAGES ⇸ METADATA 
 

Listing 4-26. Adding metadata to a middleware message. 

 

We note that the operations of the specification that will be prefixed with “api” 

specify the middleware API functions that are accessible by the DIS. 

4.2.2. Registration 

The system designer describes an interactor with metadata that is stored on the 

hard disk. The API uses the following functions to support the functionality for 

reading and storing internally this metadata. The functions of Listing 4-27 are 

described in appendix A-3. 

  

idToMetaData: METADATA ⇸ INTERACTOR_IDENTIFIERS 

typeToMetaData: METADATA ⇸ INTERACTOR_TYPE 

bindingTypeToMetaData: METADATA ⇸ BINDING_TYPE 

targetToMetaData: METADATA ⇸ TARGET 

entityIdToMetaData: METADATA ⇸ ENTITY_IDENTIFIERS 

entityTypeToMetaData: METADATA ⇸ ENTITY_TYPE 

bodyIdsToMetaData: METADATA ⇸ ℙINTERACTOR_IDENTIFIERS 

serviceTypeToMetaData:  METADATA ⇸ SERVICE_TYPE 

serviceDescriptionToMetaData:  METADATA ⇸ SERVICE_DESCRIPTIONS 
 

Listing 4-27. API functions for acquiring metadata that describes the interactor. 
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We are particularly interested in the service description that is part of the 

metadata and can be retrieved using the “serviceDescriptionToMetaData” 

function. The service description is created by the system designer and it is a 

description of interactor sensing or acting functionality as service providing or 

service consuming based on the service type. At this point we can define the 

function that reads the entire user defined data (e.g. stored in the hard disk).  

 

readMetaData    : (INTERACTOR_IDENTIFIERS ×INTERACTOR_TYPE× 

BINDING_TYPE× TARGET×ENTITY_IDENTIFIERS×SERVICE_TYPE × 

SERVICE_DESCRIPTIONS×ENTITY_TYPE× ℙ INTERACTOR_IDENTIFIERS)  

→ METADATA 
 

∃metadata: METADATA ⦁ 

readMetaData   (api.ID, api.type, api.binding_type, api.locTarget, api.entity_ID, 

api.service_type, api.service_description , api.entity_type, api.body_ids) = metadata ⇔ 

idToMetaData = idToMetaData ∪ { metadata ↦ api.ID} 

∧  typeToMetaData = typeToMetaData  ∪ { metadata  ↦ api.type  } 

∧  bindingTypeToMetaData = bindingTypeToMetaData∪{metadata ↦ api.binding_type} 

∧  targetToMetaData = targetToMetaData ∪ { metadata ↦ api.locTarget} 

∧  entityIdToMetaData = entityIdToMetaData ∪ { metadata ↦ api.entity_ID} 

∧  entityTypeToMetaData = entityTypeToMetaData ∪ { metadata ↦ api.entity_type} 

∧  bodyIdsToMetaData = bodyIdsToMetaData  ∪ { metadata ↦ api.body_ids} 

∧  serviceTypeToMetaData = serviceTypeToMetaData ∪ { metadata ↦ api.service_type} 

∧  serviceDescriptionToMetaData = serviceDescriptionToMetaData ∪  

{ metadata ↦ api.service_description } 
 

Listing 4-28. Getting the metadata that describes the interactor. 

 

Now we can proceed with specifying the registration operation that is available 

to the DIS. For this operation, the interactor metadata description is acquired 

using the “readMetaData” function and stored in “api.descriptionMetaData”. 

We remind that “api.descriptionMetaData” contains information 

(“SERVICE_TYPE” value) describing the interactor as a provider of a service or 

as a consumer of a service that is provided by other interactors. Then the 

“api.descriptionMetaData” is added to a registration message that will be sent 

to the middleware. The operation for the registration is specified with the 

following schema: 
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 apiRegistration  

registrationMessage!: MESSAGES 
 

api.descriptionMetaData = readMetaData   (api.ID, api.type, api.binding_type, 

 api.locTarget, api.entity_ID, api.service_type, api.service_description ,  

api.entity_type,  api.body_ids) ∧ 

metadataToMessage = metadataToMessage ∪ 

{registrationMessage! ↦ api.descriptionMetaData} 
 

Listing 4-29. The registration of the DIS. 

 

We are not interested in the low-level communication protocol that ensures that 

the message is received by the middleware e.g. by the latter sending back a 

confirmation as how this is achieved is usually a matter of implementation. 

Going into such detail in the specification of the framework could limit the 

adaptability of the framework in terms of application in a variety of settings.  

4.2.3. Messaging 

The API provides the DIS with the metadata that will be used for the creation of 

messages describing sensing and acting requests by agent sensors and actuators 

and sensory data or action feedback by the physical sensors and actuators. The 

metadata it uses includes the identifier of the interactor (“idToMetaData” 

function), the identifier of the entity (“entityIdToMetaData” function) and the 

service description.  

 

apiGetMessageMetadata: METADATA → METADATA 
 

∃messageMetaData: METADATA ⦁ 

apiGetMessageMetadata(api.descriptionMetaData) = messageMetaData ⇔ 

idToMetaData = idToMetaData ∪  

{ messageMetaData ↦ idToMetaData (api.descriptionMetaData) } 

∧ entityIdToMetaData = entityIdToMetaData ∪  

{ messageMetaData ↦ entityIdToMetaData (api.descriptionMetaData) } 

∧ serviceDescriptionToMetaData = serviceDescriptionToMetaData ∪  

{ messageMetaData ↦ serviceDescriptionToMetaData(api.descriptionMetaData) } 
 

Listing 4-30. This API function uses the service description element of the metadata 
description to create messaging metadata for describing sensing/acting requests or 
action feedback/sensory data messages. 
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The DIS use textual or numerical values to parameterize the aforementioned 

sensing/acting requests as well as the sensory data and action feedback. Then, 

they edit the metadata that they have acquired from the 

“apiGetMessageMetadata” function by adding these values. For example, in 

order for an actuator to issue a “switch the light on” request, it will need to use 

the metadata that describes the switching of the light and add the value “ON” 

to it. We specify the API support function for attaching the data input to the 

metadata that will be send as part of the middleware message: 

 

propertiesToMetadata: METADATA ⇸DIS_INPUT_DATA 
 

Listing 4-31. Adding input data values describing interactor activity to the metadata of 

a sensing/acting message. 

 

The API function that enables the DIS to create a message using the message 

metadata from the “apiGetMessageMetadata” and the parameterized data 

input is specified as follows: 

 

apiEditMessageMetadata: METADATA × DIS_INPUT_DATA → METADATA 
 

∃messageMetaData: METADATA; 

messageToSend: METADATA; 

dis_input_data: DIS_INPUT_DATA ⦁ 

apiEditMessageMetadata (messageMetaData, dis_input_data) 

 = messageToSend ⇔ 

 propertiesToMetadata = propertiesToMetadata ∪{messageMetaData ↦  dis_input_data} 

∧ messageToSend = messageMetaData 
 

Listing 4-32. The DIS uses the message metadata that it has acquired from the 
“apiGetMessageMetadata” function and adds to it at runtime the parameterized data 
values describing a sensing/acting request or an action feedback/sensory data message. 

 

The “apiSendMessage” function then specifies how the DIS uses the metadata 

that was created by “apiEditMessageMetadata” to create the message during 

runtime that will be sent to the middleware: 
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 apiSendMessage  

messageMetaData?: METADATA 

messageToSend!: MESSAGES 
 

metadataToMessage = metadataToMessage ∪ 

{ messageToSend! ↦ apiEditMessageMetadata (messageMetaData?, dis_input_data?)} 
 

Listing 4-33. Operation that is used by DIS for sending messages to the middleware. 
The DIS creates the messages using the “apiEditMessageMetadata“ function. 

 

Finally we specify the operation for receiving a message from the middleware. 

The DIS will use the following operation to receive messages from the 

middleware. The operation acquires the metadata from the received message 

using the “metadataToMessage” function. 

 apiReceiveMessage  

message?: MESSAGES 

messageMetaData!:  METADATA 
 

messageMetaData! = metadataToMessage (message?) 
  

Listing 4-34. The operation for receiving a message from the middleware and returns 
the metadata of the message. 

 

The next operation enables the DIS to use the metadata of the received message 

to extract data that is similar to the data input of the “apiSendMessage” 

operation. This data will then be passed to the DIS (“properties!” variable) in a 

format that allows it to process it. For example when a light switch actuator 

receives a message that contains metadata with the value “ON” it will acquire 

this value and act accordingly. 

 apiProcessMessage  

messageMetaData!:  METADATA 

properties!:  DIS_INPUT_DATA 
 

properties! = propertiesToMetadata(messageMetaData!) 
  

Listing 4-35. Specifies the API operation for enabling the DIS to extract the values that 
describe a sensing/action request or sensory data/feedback. The message metadata is 
acquired from a received message using the “apiReceiveMessage” operation. 
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4.3. Summary 

The main contribution of this chapter is a framework that uses the Z-Notation 

to specify a middleware for creating UAs. The framework is based on the 

requirements of chapter 3 and its purpose is to guide the development of such 

middleware. Having built a basic framework, we can extend it by adding 

monitoring functionality and more useful functions that reason upon the 

internal representation objects within the middleware. The middleware 

framework will be used, as we will see in the following chapter, for the design 

and implementation of the eVATAR middleware. 
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5.  EVATAR 

In this chapter we present the eVATAR middleware. The aim is to show how 

we can use the architecture and framework presented in chapters 3 and 4 to 

implement a middleware for UAs. The main contribution of this chapter is to 

describe how eVATAR implements a message oriented middleware as 

illustrated in the architecture of Figure 3-6 with a second layer of reflective 

functionality. This chapter presents the current state of the implementation of 

eVATAR and does not discuss improvements or future work (see chapter 8). 

We first provide the reader with a description of the base layer of eVATAR and 

its main components: the connection server, the interactor registration and the 

message queue components. We will also describe the BIL (Body Integration 

Language) metadata language. BIL describes physical and agent interactors as 

service providers and consumers and also provides with protocols for their 

communication with eVATAR. We then describe the eVATAR API that enables 

distributed interactor software to interact with the base layer of eVATAR. A 

description of the reflection layer of eVATAR follows that implements the 

“binding”, “models”, “ubiquitous agents” and “monitoring” components (see 

architecture in 3.4).  

5.1. The Base Layer of eVATAR 

eVATAR implements the base layer functionality of our middleware 

architecture following service oriented principles ([57], [58] and [89]). The agent 

interactors register to eVATAR as service consumers while the avatar 

interactors register as service providers. eVATAR and the eVATAR API 

implement the communication protocols between the service providers and the 

service consumers. eVATAR uses BIL (Body Integration Language) that 

provides ontology for the communication. Before we proceed with the 

description of the base layer of eVATAR it would be useful to define and 

present BIL. 
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5.1.1. The BIL Metadata Language 

BIL is an XML [107] based metadata language. BIL types constitute the 

foundation for the XML schemas against which all BIL documents may be 

evaluated. XML allows describing the types of documents using XML Schema 

Definitions (XSD). Such definitions specify the document structure with a list of 

legal elements and attributes [107]. The full XSDs for BIL are provided in 

Appendix B-1. BIL uses two schemas; the first is used for creating BIL 

descriptions of interactors (sensors/actuators) and the second for creating BIL 

messages useful for sending and receiving commands, sensory data and 

feedback. The following diagram illustrates the BIL description: 

 

Diagram 5-1. BIL description representation based on the bilDescription.xsd in 
Appendix B-1. 

 

The BIL description contains the metadata elements specified in the 

“BS_IncomingRegistrationData“specification of Listing 4-3 in the Z-Notation 



 119 

framework of chapter 4. The root element of the interactor BIL description is 

named "bilDescription" and it contains a required attribute called "InteractorID" 

that takes as a value the unique identifier of the BIL description for the 

interactor. The root element has two child elements, the “bilinfo” and the 

“Service”. The following table describes all the child elements of “bilinfo”: 

 

Element Description 

interactorType One of: “SENSOR” and “ACTUATOR”.  

entityType One of: “AGENT” and “AVATAR”. 

entityId The id (string value) of the entity that this interactor 

belongs to.  

body Contains two child elements, the “sensor” and the 

“actuator”. Both of these elements take sensor and actuator 

identifier values in the form of strings. They comprise a set 

including all the interactor identifiers that are associated 

with a particular agent or avatar (whose identifier is the 

string of the entityID tag).  

 

communicationType 

It defines the message exchange protocol between the 

service provider and the consumer at application level. 

Currently supported value: “REQUESTREPLY”.  

bindingType It is used to instruct the middleware what type of binding 

should be pursued, “targeted” or “agnostic” (see 3.4)  

Target If the binding type is “targeted”, then the middleware is 

instructed to only allow bindings between interactors that 

have BIL descriptions sharing the same value in their 

“target” tags. The value is “na” (not applicable) for 

agnostic binding. 

 

Table 5-1. The child elements of the “bilinfo” element that describe an interactor. 

 



 120 

Below we can see an example of a BIL description of an agent actuator based on 

the first schema.  

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<bilDescription InteractorID ="actuator2" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="bildescription.xsd"> 

<bilinfo> 

<interactorType>ACTUATOR</interactorType> 

<entityType>AGENT</entityType> 

<entityID>agent1</entityID> 

  <body> 

  <sensor>sensor1</sensor> 

<sensor>sensor2</sensor> 

<sensor>sensor3</sensor> 

<actuator>actuator1</actuator> 

<actuator>actuator2</actuator> 

  </body> 

<CommunicationType> REQUESTREPLY</CommunicationType> 
<bindingType>agnostic</bindingType> 

<target>na</target> 

</bilinfo> 

<Service> 

<ServiceType>CONSUMER</ServiceType> 

<Attribute>StatusOn</Attribute> 

<Attribute>ValueInt</Attribute> 

</Service> 

</bilDescription> 

 

Figure 5-1. BIL description of an actuator. 

 

The snippet of Figure 5-1 which is created based on the BIL description XSD 

that can be found in Appendix B-1 indicates that a “body” element may contain 

from none to as many “sensor” and “actuator” elements as the author of the BIL 

XML description wishes. 

 

<xs:element name="sensor" type="xs:string" minOccurs="0" 

maxOccurs="unbounded"/> 

<xs:element name="actuator" type="xs:string" minOccurs="0" 

maxOccurs="unbounded"> 

Figure 5-2. BIL snippet from the BIL description schema of Appendix B-1. 
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The above set of interactor identifiers in the BIL description of an interactor is 

used by eVATAR to determine when an agent or an avatar (with the value of 

the entityID as identifier) is fully registered. 

The second child element of the root that is tagged as “Service” contains two 

elements as we can see in the following table: 

 

Element Description 

 

   ServiceType 

It denotes whether the interactor is a provider or a 

consumer of a service, accepting the following 

strings: “PROVIDER” and “CONSUMER”.  

 

Attribute 

This element takes a string that could have the 

following values:{“ValueInt”, "ValueLong", 

"TEXT", "XML", "StatusOn", "Speed", 

"Temperature", "Duration", "Height", "Length", 

“ASSERT”}. 

 

Table 5-2. The child elements of the “Service” element that describe a service. 

 

It is up to the author of the XML document to decide how many “Attribute” 

child elements of the “Service” element the document will have. Each of them 

will be baring a value from the set of strings in Table 5-2. It needs to be noted 

that Table 5-2 only includes a representative set of string inputs for the 

“Attribute” element and the eVATAR implementation uses more. These values 

help describe a service whether it is the service offered by the particular 

interactor or the service that will be consumed by the particular interactor if it is 

a consumer. They will be used by eVATAR to find a compatible for connection 

interactor (see compatibility evaluation in 3.3.3 and 4.1.7). All interactor BIL 

descriptions can be validated against the BIL interactor schema in Appendix B-

1.  

The second schema in BIL defines the messages between the interactors (see 

second XSD BIL message in Appendix B-1). The diagram for the particular XSD: 
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Diagram 5-2.  BIL message representation based on the bilMessage.xsd in Appendix B-
1. 

 

 

An example of a BIL message that can be validated against the BIL message 

schema in Appendix B-1: 
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<?xml version="1.0" encoding="ISO-8859-1"?> 

<bilmessage messageID="message2" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="bilmessage.xsd"> 

<entityType>AGENT</entityType> 

<entityid>agent1</entityid> 

<InteractorID>actuator2</InteractorID> 

<Service> 

<StatusOn>ON</StatusOn> 

<ValueInt>1</ValueInt> 

</Service> 

</bilmessage> 

Figure 5-3. BIL Message. 

 

The “SenderInteractorID” element accepts a string value with the sender 

interactor’s identifier. All of the child elements of “Service” are optional (see 

bilMessage XSD in Appendix B-1). For example: 

 

<xs:element name="ValueInt" type="xs:integer" minOccurs="0"/> 

<xs:element name="XML" type="xs:string" minOccurs="0"/> 

<xs:element name="StatusOn" type="xs:string" minOccurs="0"/> 

 

Figure 5-4. Example of child elements in the “Service” tag. 

 

In Figure 5-4 we see that all elements state that minOccurs="0". The above list 

is representative, similarly to the list of values for the “Attribute” child 

elements of the “Service” element in the BIL interactor description. Table B-0-1 

in Appendix B describes the child elements of the “Service” tag for the BIL 

message explaining their uses. In all elements of Table B-0-1, if the value is 

“GET” instead of the defined acceptable character strings, it means that this is a 

sensing request. For example a “<Temperature>GET</Temperature>” tag 

would belong to a temperature sensing request from an agent sensor. 

BIL interactor descriptions register all the service information of the interactor 

with eVATAR as a combination of “Attribute” children of the “Service” element 

and BIL messages use the values of these “Attribute” elements as the children 

of their own “Service” element.  For example in the BIL description of the 

actuator we saw in Figure 5-1: 
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<Attribute>StatusOn</Attribute> 

 

In the BIL message of Figure 5-3 we saw the corresponding element as:  

 

<StatusOn>ON</StatusOn> 

 

BIL is used instead of using an existing service definition language such as 

WSDL (Web Services Description Language) [132]. BIL is light weight for 

domain specific descriptions needed for eVATAR interactions. BIL descriptions 

are similar in concept and in principle to the ones of the WSDL that is used to 

describe web-services. WSDL is a well-known and mature technology. BIL on 

the other hand is a purpose built language for the definition of agent/avatar 

bodies leading to the creation of compact service descriptions. In other words, 

BIL aspires to a reduced message processing overhead and network traffic for a 

specific application as opposed to WSDL which is designed for different types 

of applications and web services. 

5.1.2. Base Layer Components 

eVATAR is implemented in Java. The base layer of eVATAR is responsible for 

the MOM functionality of eVATAR. Following the architecture that was 

described in 3.4, the base layer should implement the connection server, the 

interactor registration and the message queue components. In Diagram 5-3 

below, we see a class diagram for the implementation of the base layer JAVA 

package. The diagram shows class names and relations between them while the 

more detailed diagram for every class can be found in Appendix B-3, in section 

“eVATAR Base Layer UML classes”. The main class of this component is called 

“evatarMain”.  

The “evatarMainProcess” function (see Appendix B-3, Diagram B-1) 

implements the main thread of execution of the middleware. All other threads 

are children of the “evatarMainProcess” thread. It is responsible for running the 

initialization function (from the “initialization” class) at the start-up of the 
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system in order to initialize all important data structures by providing them 

with their startup values in both base and reflection layers of eVATAR.  

 
 

 

Diagram 5-3. Base layer class diagram (for UML class details see Appendix B-3). 

 

The “evatarMainProcess” also creates the connection server object 

(implementing the “connectionServer” class) that will be running a separate 

thread of program execution. The connection server manages the connectivity 

between eVATAR and the distributed interactor software that connects to it as 

service providers and consumers. The connection server creates a TCP [49] 

server for accepting connections. It is a multithreaded server creating a new, 

separate thread of execution using the “connectionLoop” class (see Diagram B-4 

in Appendix B-3) to serve every new connection. All connections use blocking 

TCP sockets meaning that they will not return control to the thread of execution 

they are called from until a message has been sent or received [49]. The 

connection server also updates the “connectionData” storage facility that 

implements JAVA hash tables [103] that store information about the TCP 

connections. The following sample program code illustrates the main logic 

behind the implementation of the “connectionLoop” thread. 
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while (RUNNING) { 

// send messages from the outgoing message queue to the 
// interactor using the TCP connection 

 outgoingQueue.send();  
 
// read the next message in the incoming message queue 
message = incomingQueue.nextMessage(); 
 
// if the message is not null and it is a BIL description 

  if (isDescription(message) == true) { 
 
// update the registry and . . . 

   registrationManager.update(message); 
 
// notify the reflection layer that a new interactor 
// is registered 

   reflectionMain.notification(interactorID); 
  } 
  else { 
  // do nothing 
  // the messages will be processed by the reflection layer 
  } 

} 

Figure 5-5. Sample code describing the functionality of a “connectionLoop” object. 

 

All incoming messages via the connections’ TCP socket are placed in a FIFO 

(first in first out) message queue while messages from eVATAR to the 

interactors are placed in an identical outgoing FIFO queue. The queues are 

implemented using the “messageQueue” class which implements the “Queue” 

JAVA interface [110]. The queues support multi-threaded access (from the 

connectionLoop thread and from threads in the reflection layer of eVATAR as 

we will see in the following).  

The “connectionLoop” object sends messages in outgoing queues to the 

interactors using the TCP connection while it also reads the incoming queue for 

messages containing BIL descriptions. BIL messages in the incoming queue that 

do not contain descriptions are processed directly by the reflection layer (see 

section 5.2.2). The “bil” class offers eVATAR the functionality to process BIL 

descriptions and messages (see Diagram B-9 in Appendix B-3). 

If the message is a BIL description the “connectionLoop” object will notify the 

reflection layer functionality that a new interactor has been registered and it 

will also forward the description to the service registration functionality of the 
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base layer of eVATAR. The “service registration” component of the architecture 

that was described in 3.4 is implemented by two classes in Diagram 5-3: the 

“registrationRepository” and the “registrationManager”. Messages containing 

BIL descriptions of agent or avatar interactors will update the registration 

repository1.   

The “registrationManager” class manages the way interactors register with the 

system (and in particular with the repository). It implements the functionality 

that is described in sections 4.1.3 and 4.1.6 of the Z-Notation framework2. The 

data stored in the registration repository is used for the creation of the 

entity/interactor models in the reflection layer as we will see in the following.  

The “evatarMain” class also features a service continuity mechanism. At 

startup, it seeks for a file in a predetermined, by eVATARs’ configuration, 

location in the hard disk. We call this the “heartbeat” file. If the file does not 

exist or it is not updated within a predetermined time interval, eVATAR will 

assume that no other instance of eVATAR is running. It will then perform a 

system call to create a new eVATAR process and proceed with its middleware 

tasks. The “evatarMainProcess” will be updating the heartbeat file regularly. 

The second eVATAR process will detect the existence of a heartbeat file and it 

will then assume the role of the monitor.  

In the monitor eVATAR, the “evatarMainProcess” will be running the 

“monitoringLoop” function (see Diagram B-1 in appendix B-3) that loops in 

predetermined timed intervals checking whether the heartbeat file has been 

updated. In the case of failure of the active eVATAR, the monitor eVATAR will 

identify the failure (heartbeat reading failure) and assume the role of the active 

middleware. We call this mechanism as the “failover”. It will be using the same 

network address allowing the distributed interactor software to reconnect 

                                                 
1 It implements the “registration_list” of Listing 4-4 in the Z-Notation specification of 4 using 
hash tables that store BIL metadata. See Diagram 5-3. 
2 As we can see in Appendix B-3 it implements the registration functions of Listing 4-4 in the 
framework as well as the functionality for acquiring a BIL description from the connection 
server, processing it and storing it to the registration repository as specified in the 
“BS_ReceiveAndProcessRegistrationData” and “RegisterInteractor” operations in Listing 4-5 
and Listing 4-15. 
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aiming to maintain service continuity. The interactors will have to register again 

with the new instance of eVATAR. Finally, the “evatarMain” creates the 

“reflectionMain” object which is the main class of the reflection layer that 

manages the reflective functionality. It provides functionality in a separate 

thread of program execution to the one of the “evatarMainProcess”. We will 

describe the “reflectionMain” class in more detail in section 5.2.2. 

5.1.3. eVATAR API 

The eVATAR API enables DIS (Distributed Interactor Software) to register with 

eVATAR as service providers or service consumers and to also exchange 

messages with other DIS via eVATAR. The functionality of the eVATAR API 

was specified in section 4.2 of chapter 4. The listings that will be referenced in 

this section are also specified in 4.2. The prototype of the eVATAR API is a 

JAVA jar [113] file and this section will present the JAVA classes that 

implement its functionality. The class diagram for the eVATAR API: 

 

Diagram 5-4. The eVATAR API class diagram (class details in Appendix B-3). 

 

The system developer defines the XML based metadata description of the 

functionality that the DIS provides or consumes and in general all the 
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information required for the DIS to participate in the system by creating a BIL 

description document and storing it in the hard disk for the API to access. 

The “evatarAPI” class (Diagram 5-4 and Appendix B-3) provides functionality 

for starting a TCP [49] client that connects to the eVATAR server and enables 

the exchange of messages. The main API functions that are available to the DIS 

are prefixed with the word “api” and can be found in Diagram B-11. The 

“evatarAPI” class provides the DIS with the API functions that were described 

in section 4.2 of chapter 4. 

In particular it enables DIS to send a BIL description to eVATAR for registration 

purposes. This way it implements the “apiRegistration” operation of Listing 

4-29. The “bil” class (see Diagram B-12 in Appendix B-3) enables the API to 

process BIL metadata. It features internal data structures for storing information 

that describes the interactor (Listing 4-27).  When the DIS initialise the eVATAR 

API, the latter uses “bil” to acquire the BIL description that is stored on the hard 

disk by the system designer and to update the relevant “bil” data structures 

(Listing 4-28). The “bil” class also creates BIL message metadata based on the 

BIL message XSD (see Appendix B-1). It returns this metadata to the DIS (see 

the “apiGetBilMessageMetadata” function in Diagram B-11 that implements the 

specification of Listing 4-30).  

The API also returns a “bil” object to the DIS via the “apiGetBilObject” function 

(Diagram B-11) enabling it with the capability to also process BIL metadata. It 

uses the acquired BIL description metadata and in particular the service 

element (Table 5-2) to create messages that describe action/sensing requests, 

action feedback and sensory data messages. During the runtime, the DIS uses 

the functions that are available via the “bil” object to edit the BIL message and 

add to it the relevant values that describe a sensing or an acting event or 

request (implementing Listing 4-32). The API provides via the “bil” class with 

an extensive list of functions for reading and updating the important tags and 

attributes of BIL items (see Diagram B-12 in Appendix B-3). It offers “set” and 

“get” functions for every attribute. In the example of Figure 5-3 this would 

entail adding the appropriate values to the following tags: 
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<StatusOn>ON</StatusOn> % adding the “ON” value 
<ValueInt>1</ValueInt>  % adding the value 1 
 

Furthermore, the API provides functions for sending BIL messages to eVATAR 

(implementing the “apiSendMessage” function in Listing 4-33) or receiving BIL 

messages from it (“apiReceiveMessage” in Listing 4-34). With regards to the 

received messages, the “bil” object allows the recipient DIS to extract the values 

from the BIL message (in the above example the extracted values would be 

“ON” for the “statusOn” tag and “1” for the “ValueInt” tag). 

5.2. The Reflection-layer of eVATAR 

The reflection layer implements the models, binding, ubiquitous agents and 

monitoring components of the middleware architecture that was depicted in 

Figure 3-6. The implementation uses the JAVA language. There are two JAVA 

packages implementing the functionality of the reflection layer: the “models” 

and the “reflection” package. 

5.2.1. Models 

The following UML diagram describes the “models” package: 

 

 

Diagram 5-5. The “models” package class diagram (for UML class details see Appendix 
B-3). 
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The entity and interactor models that were described in sections 3.3.2 and 3.4 

are implemented as JAVA classes. An entity model object (from the 

“entityModel” class) contains information about the entity and the interactors 

that constitute its body (3.3.2). Following the specification of Listing 4-6 in 

chapter 4, the metadata of the “entityModel” class contains: 

 The identifier of the entity as a string of characters. 

 The type of the entity (character string “agent” or “avatar”). 

 A list containing the identifiers of the interactors that belong to the 

particular entity and have already been registered with eVATAR. 

 A list containing the identifiers of all the interactors that are expected to 

register with eVATAR and belong to the body of the particular entity. 

It also implements functions for accessing and updating the above variables 

and data structures. Furthermore, the interactor models can be accessed via the 

“entityModel” class. The latter features a function that accepts the interactor 

identifier as input and if it belongs to the list of registered identifiers for the 

particular entity the function will return the corresponding interactor model. 

The class diagram of the “entityModel” class can be found in Diagram B-14 of 

Appendix B-3. 

The interactor models reflect to the base interactors of agent or avatar bodies. 

They are also implemented in Java. Objects implementing the 

“interactorModel” class consist of two layers called the data layer and the 

interactivity layer. Similarly to the entity model, the data layer features 

metadata describing the base agent/avatar interactor. As per Listing 4-11, it 

contains the following metadata: 

 The identifier of the interactor as a string of characters. 

 The identifier of the entity it belongs to as a string of characters. 

 The type of the interactor (character string “sensor” or “actuator”). 
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 The service type as a character string for service: “provider”or 

“consumer”. 

 The binding type as a character string with values: “targeted”or 

“agnostic”. 

 A target value as an integer value. 

 A service description as a string containing a description of the service 

that the interactor provides or consumes that is described using XML 

syntax. 

 

The interactor model provides with functions for updating and querying the 

above variables and data structures. The interactivity layer of the interactor is 

implemented as two message queues, one for incoming and one for outgoing 

messages (Listing 4-13). The queues are the same queues that are used in the 

connection server (base layer) for the communication with the distributed 

interactor software. We remind that these queues allow multi-threaded access. 

At this stage in the UA lifecycle, these queues contain only BIL messages for 

control or sensing and not descriptions. This way we implement a direct link 

between an interactor model and the TCP connection in the base layer that 

allows it to send and receive messages to the distributed interactor that it 

models in order to implement reflection (see 2.1 in the “Background” chapter). 

The “interactorModel” class uses the “createEvent()” and “receiveEvent()” 

functions to update the outgoing and incoming queues respectively. The first 

one models a message from the interactor (for an action or a sensing) while the 

second models a message towards the particular interactor. The Diagram 5-5 

shows class names for the “models” package and the relations between them 

while the more detailed diagrams for every class can be found in Appendix B-3. 

5.2.2. Reflection  

The “reflection” package implements the functionality for creating and 

updating with new information the entity and interactor models. It also 
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performs reflective binding and creates UAs following the requirements of 

chapter 3 and the specification of chapter 4. The Diagram 5-6 shows the names 

of the classes that implement the “reflection” package and the relations between 

them while the more detailed diagram of every class can be found in Appendix 

B-3, in section “Reflection functionality package UML classes”. 

 

Diagram 5-6. UML diagram of the “reflection” package. 

 

The “reflectionMain” class implements the entry point to the reflection layer. It 

deals with the dynamic creation of new models and UA sessions. It implements 

continuous loop functionality for receiving and managing notifications from the 

base layer of eVATAR using the “eventProcess” function (see Diagram B-16 in 

appendix B-3). In particular, it handles notifications about new BIL descriptions 

of agent/avatar sensors and actuators being added to the registration 

repository (see “registrationManager” in 5.1.2) by creating new interactors and 

entity models if they have not already been created (function “createModel” in 

class diagram of appendix B-3).  

The “createModel” function of “reflectionMain” uses the “modelBuilder” class. 

The latter implements the “CreateInteractorModel” function of Listing 4-12 that 

takes a JAVA string containing the interactor metadata as an input and returns 

an interactor model object. The interactor model needs to be associated with an 

entity model. To achieve this, the “createModel” function calls the 
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“create_updateEntityModel” function3. In particular this function uses the 

interactor metadata description that is contained in a JAVA string as input and 

returns the entity model for it. If one does not exist it will create it and store it in 

the entity model repository data structure. 

The “entityModelRepository” class4 implements a hash table structure and it is 

used by eVATAR as a data storage component containing entity model objects. 

It also provides with functions for updating and accessing the table. The 

“interactorModelRepository” class implements a hash table structure that is 

used as a data storage component containing interactor model objects5. This 

class also offers functions for updating and accessing the interactor model 

object storage. The “reflectionMain” creates both an entity and an interactor 

model repository that will be updated by the model creation function 

(“createModel”). 

After creating the models, the “eventProcess” function checks whether the 

entities have been fully registered (see “requirements” in 3.3.2) with eVATAR. 

It achieves this by comparing the list of identifiers for registered interactors 

(that belong to the particular agent/avatar body) with the list of the identifiers 

for all the interactors (again that belong to the particular agent/avatar body) 

that are expected to register with eVATAR. As we saw in 5.2.1, both lists are 

stored in the entity model objects (following the specification of Listing 4-6 in 

chapter 4). If an entity is fully registered the “eventProcess” will start the 

binding process by searching for compatible entity model bodies within the 

entity model repository. 

The “eventProcess” uses the “reflectiveBinding” class (Diagram 5-6) to 

implement the binding functionality that was illustrated in Flowchart 2 and can 

be found in the requirements section of chapter 3. Binding is a dynamic process 

taking place during runtime. As we saw in chapter 4, we call it reflective 

                                                 
3 It implements the function “ent_model_get_model” that was specified in Listing 4-9. 
4 Listing 4-6 specifies the “ent_model_model_list” type that we implement in EVATAR with the 
“entityModelRepository” class. 

5 It also implements the “intr_model_by_id” function that is specified in Listing 4-15 and is used 

for accessing the hash storage to get an interactor model object based on its identifier. 
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because the binding in eVATAR differs from common SOA implementations in 

which the binding is taking place between service providers and consumers. 

The binding in eVATAR is between agent and avatar bodies which are 

identified sets of service consumers and sets of service providers. 6  

In the Z-Notation specification of reflective binding (section 4.1.7) we specified 

the third criterion of compatibility which is that compatible interactor service 

metadata descriptions should describe the same functionality and the way this 

comparison is achieved is a matter of implementation. For the specification we 

symbolized metadata description compatibility with the equality symbol “=”.  

In eVATAR we implement this by comparing the “Attribute” tags in the 

“Service” elements of the BIL descriptions that are stored as the “service 

description” in the metadata layer of interactor models. The tags should have 

the exact same values in compatible descriptions. As soon as a binding is 

created between an agent and an avatar model, they both cease to be available. 

Thus it won’t be possible for two or more agent models to link to the same 

avatar model. 

The result of the binding is the creation of a UA object7 using the 

“ubiquitousAgent” class of Diagram 5-6. It stores the linking information 

between an agent model, an avatar model and their linked interactor models 

(“linkTable”). It implements a JAVA hash table that maps agent to avatar 

interactors. All UA objects are stored and managed by the UA repository object 

(“UARepository” class) that is also implemented as a hash table.  

The “messageMediatorLoop” function of a UA object (see Diagram B-21) is run 

on a separate thread of program execution that loops reading messages from 

every outgoing message queue of the participating interactor models and it 

applies them to the incoming queues of the interactor models that are bound to 

them. We remind that these are the base layer queues for the connections with 

                                                 
6 The “reflectiveBinding” class implements the binding algorithm that was described using the 
Z-notation in Listing 4-21 (function “discoverAndBindBodies“). As we can see in the class 
diagram of the “reflectiveBinding” class in Appendix B-3, it also implements the support 
functions “initDiscoveryChecks”,  “createBinding”, “createUA” that were specified in Listings 
Listing 4-16, Listing 4-18 and Listing 4-20. 
7 UA objects implement the “MediateMessages” functionality that was specified in Listing 4-23. 
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the distributed interactor software that are accessed via the interactor models. 

This is how eVATAR implements the absorption and reification concepts of the 

reflective middleware (see 2.1). The following sample program code illustrates 

the main logic behind the implementation of the “messageMediatorLoop” 

thread. 

 
while (RUNNING) { 
  
     // the set of the two entity models participating in the UA 
 enityModel[] models = {entity_1_model, entity_2_model}; 

 

// For every participating entity model 

for (enityModel entityModel: models) { 

 

// The interactor identifiers for the entity model in the 

list 

String [] interactors = entityModel.myInteractors(); 

 
// For every interactor model identifier 
for (int i = 0; i < interactors.length; i++) { 
   // get the corresponding interactor model 
   interactorModel = 

entityModel.getInteractor(interactors[i]); 
    
   // read the next message from the incoming message queue 

                   message = interactorModel.incomingQueue.nextMessage(); 
 

                    // if the message is not null and it is a BIL message 
     if (isMessage(message) == true) { 

   
 //get the interactor model that is bound to it 
   boundInteractorModel = linkTable.get(interactors[i]); 

                         
                        // place the message to the outgoing message  
                        // queue of the bound interactor model. 

   boundInteractorModel.outgoingQueue.add(message); 
                    } 
                } 

 } 
 } 

Figure 5-6. Sample code describing the mediation within a Ubiquitous Agent. 

 

The “messageMediatorLoop“ implements a “model-mediator” in the sense that 

it mediates messages between interactor models. The latter receive the 

messages from the agent/avatar interactors that they model. If one mediator 

has a problem for example if a communication protocol fails, or if an agent or 



 137 

an avatar interactor hangs on a blocking TCP connection it will not affect other 

mediators of other UAs.  

For the duration of a UA session between an agent and an avatar, all messages 

are switched (forwarded towards the correct recipient) based on the messages’ 

header that contains the identifier of the sender interactor (see interactor model 

metadata). The UA object will use this identifier with the linking table that will 

return the recipients identifier. This means that no processing of the body of the 

BIL XML message is required to perform the switching.  

Finally, the “connectionMonitor” class is responsible for monitoring existing 

UA sessions. Every UA is monitored by a connection monitor object. If there is 

inactivity in a connection within a UA for a pre-defined period of time, the 

“connectionMonitor” object will test (via the connection server functionality of 

the base layer 8) whether the meta-interactor is reachable within the network. If 

the test fails, eVATAR will assume that the corresponding connection is lost 

and it will release all the memory and processing resources that are consumed 

for supporting the particular broken connection. 

5.3. Summary 

This chapter described the implementation of the eVATAR middleware. The 

implementation followed the Z-Notation framework of chapter 4 and this way 

we satisfy objective II of the thesis (see section 1.3). A two layered approach was 

used with a base layer and a reflection-layer that uses a reflective model in 

order to reason about and monitor the base layer. As we have seen, while the 

reflection component plays a very important role in terms of dynamically 

creating and managing connections between agent and avatar bodies, it is not 

intrusive in terms of the message exchanges within the connection sessions, 

practically serving as a message routing component. The two layered 

                                                 
8 We call “public boolean isReachable(int timeout)”. Typically it will use ICMP echo requests. 
See: 
https://docs.oracle.com/javase/1.5.0/docs/api/java/net/InetAddress.html#isReachable(int) 
 

https://docs.oracle.com/javase/1.5.0/docs/api/java/net/InetAddress.html#isReachable(int)
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implementation aimed to simplify and systematize the application of 

connecting software agents to avatar bodies that are sets of sensors and 

actuators in the physical world. The “Case Studies” and “Evaluation & 

Discussion” chapters will exemplify and discuss the application of eVATAR in 

practical settings. 
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6.  CASE STUDIES 

This chapter describes two case studies that are used to exemplify and evaluate 

the eVATAR framework presented so far in this thesis. The first case study is 

about an implementation of a simple security scenario with the GOLEM [82] 

MAS, eVATAR and real sensors and actuators embedded in a miniature model 

home environment. The second case study uses simulation software designed 

to evaluate a more complex smart home scenario using eVATAR focusing on its 

potential for becoming useful in everyday life situations. This chapter is divided 

into two sections, one for each case study and each section concludes with an 

evaluation and the lessons learned about using eVATAR. 

6.1. Miniature RoboHome  

This case study revolves around the development of a miniature smart home, 

controlled by an intelligent agent that monitors interactions in the home to 

promote safety (e.g. from unauthorised intrusion). In this case study we sought 

a proof of concept using real sensors and actuators as opposed to simulated 

ones. The space and hardware limitations during the writing of the thesis led to 

the choice of a miniature smart home rather than a real instrumented home. An 

application using a real instrumented home with a human inhabitant is part of 

our future work plans as we will see in the future work section 8.2.  

The objective of this case study is to provide with evidence for eVATAR in 

terms of satisfying the aims of the thesis by: 

1. Integrating software agent functionality with physical sensors and actuators. 

This should be demonstrated by enabling a software agent to interact with a 

set of physical sensors and actuators.  

2. Implementing at least two scenarios each following the exact same method 

to enable a software agent to control sensors / actuators indicating a 

systematic way of achieving this.  
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3. Demonstrate transparency by using abstract interfaces at application level to 

integrate the agent with the sensor/actuator functionality without writing 

code for dealing with how the integrations are achieved (concealing 

dynamic discovery, binding and UA session functionality).  

4. The two scenarios should be using different MAS platforms.  

5. The two scenarios should use heterogeneous sensors, actuators and devices. 

6.1.1. Scenario 1 – A Security Scenario using GOLEM 

This scenario seeks to show how we can interface eVATAR and a MAS platform 

called GOLEM [82] that includes agents that are logic based and can provide 

interactions that are transparent to the user. A UA is going to implement a 

security scenario in a miniature house environment (Picture 6-1). The UA is 

going to make the house appear habited when the owner is away in order to 

deter burglars. The system runs autonomously and according to the scenario an 

observer should be able to interpret the light control management of the 

miniature smart home as an indication that it is habited when the house is 

empty. Furthermore, if the UA detects movement it will try to determine 

whether there is an unauthorized intrusion.  If there is, it will collect 

photographic evidence and inform the owner of the house while attempting to 

discourage the intruder from remaining in the premises. Otherwise, it will 

welcome the entrant and perform light switch control based on movement 

within the miniature house. 

The intrusion management is taking place every time a small toy-character is 

positioned inside the house. The observer of the experiment will be required to 

move the toy-person within the house, type verification passwords in a PC9 and 

interact with the miniature smart home. 

                                                 
9 The PC simulates a smartphone application that would interact with the home in a real world 
scenario. 
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Picture 6-1. Miniature Smart home before and after the UA has detected presence. 

 

We implemented an agent in GOLEM and programmed it to bind to an avatar 

body within the miniature smart home environment. The following figure 

depicts the overall architecture of the system that consists of GOLEM, eVATAR 

and the miniature smart home environment. A video demonstrating the 

scenario can be found in YouTube [106]. 

 

Figure 6-1. The architecture of the system that is described in this scenario. 

 

In the following we will describe the avatar within the miniature smart home 

and the GOLEM agent while at the same time we will be showing how we used 

the proposed framework to enable the agent interactors to bind to the avatar 

interactors in order to form a ubiquitous agent. 
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A variety of wired and wireless sensors, actuators and devices was used to 

implement a low-cost network of sensors and actuators within the miniature 

house.  

Avatar Interactors Function 

wireless camera 1 sensor: motion detection 

wireless camera 2 sensor: photo acquisition 

Keyboard sensor: password text acquisition  

PC - computing device sensor: physical world time acquisition 

Waveman wireless receiver actuator: light switch 1  

Waveman wireless receiver actuator : light switch 2  

wireless speaker actuator: voice\sound for user                  

interaction, alarm and password request 

PC - computing device actuator: email notification  

 

Table 6-1. “Miniature Smart Home” sensors and actuators. 

 

The sensors and actuators in the above table feature interface software either 

written in JAVA for the purposes of the experiment or by using a custom SDK 

(Software Development Kit) such as in the case of the interface software for the 

Waveman receivers [127]. The software functionality is basic as all that is 

required is to pass control messages to the actuators and receive sensory data 

from the sensors. The interface software for every sensor and actuator is run on 

the networked computing device (PC) of Table 6-1.  

Every sensor and actuator interface software uses the eVATAR API to interact 

with eVATAR. At the startup of the application, it uses the eVATAR API to 

start the TCP connection with eVATAR using the “apiInit” function (see 

Diagram B-11).  This function also reads the configuration file and the BIL 

description of the particular interactor from the hard disk. These files are 
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created by the system developer. It then sends the BIL description of the 

particular interactor to eVATAR for registration purposes (see 

“apiRegister“function in the “evatarAPI” class that is described in Diagram 

B-11). Following the requirements of chapter 3 we had to create BIL 

descriptions for every agent and avatar interactor that will be participating in 

the system.  For example in Figure 6-2 we see the BIL description of the 

password acquisition sensor (keyboard): 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<bilDescription InteractorID =" keyboardSensor1" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="bildescription.xsd"> 

<bilinfo> 

<interactorType>SENSOR</interactorType> 

<entityType>AVATAR</entityType> 

<entityID> avatarPhysical </entityID> 

<body> 

<sensor> keyboardSensor1</sensor> 

<sensor> timeSensor1</sensor> 

<sensor>wirelessCamera1</sensor> 

<sensor> wirelessCamera2</sensor> 

<actuator> wirelessSpeaker1</actuator> 

<actuator> wirelessReceiver1</actuator> 

<actuator> wirelessReceiver2</actuator> 

<actuator>emailActuator1</actuator> 

</body> 

<CommunicationType>REQUESTREPLY</CommunicationType>  

<bindingType>agnostic</bindingType> 

<target>na</target> 

</bilinfo> 

<Service> 

<ServiceType>PROVIDER</ServiceType> 

<Attribute>TEXT</Attribute> 

<Attribute>ValueLong</Attribute> 

</Service> 

</bilDescription> 

 

Figure 6-2. BIL Description of the keyboard sensor in the miniature smart home. 

 

All avatar interactors have BIL descriptions like the one described above. The 

interface software calls the “apiGetBilMessageMetadata” function (see 

“evatarAPI” class in Diagram B-11) that creates and returns the BIL message 
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XML metadata that will be used for the messaging between the DIS and 

eVATAR. The BIL message metadata is created based on the xsd schema of 

Diagram 5-2. The interface software also calls the “apiGetBilObject” function 

from the “evatarAPI” class that returns a “bil” object that will enable it to edit 

the BIL message metadata during runtime transforming events e.g. sensory 

data from the interface software of the keyboard sensor into BIL messages. In 

the “keyboard sensor” example that implements the password acquisition 

functionality the BIL messages include the sensor and avatar identifiers, the 

type of the interactor and also a service element “Service” with the tags ”TEXT” 

and “ValueLong” for the password and the time it was acquired (see 5.1.1). This 

BIL message that encompasses the sensory data comprising of the values in the 

”TEXT” and “ValueLong” tags  will be sent to eVATAR.  

Incoming messages from eVATAR are transformed into events by the interface 

software with the use of the eVATAR API. For example the interface software 

of the light switch will use the eVATAR API ”bil” object to transform the 

incoming message into a command that controls the particular light switch in 

the physical environment.  

We need to note at this point that the sensors and actuators do not necessarily 

need to be the traditional hardware interactors that are embedded in a physical 

environment. As we can see in Table 6-1, an avatar sensor can also be a piece of 

software that is external to the MAS. For example the physical world time 

acquisition sensor is run on a computing device and it is part of the avatar 

body. We consider sensors and actuators that are external to the MAS 

environment to be part of the miniature home sensor network even if they are 

also pure software.  

In 3.2.1 we saw an overview of the GOLEM platform. For the purposes of the 

scenario implementation we created a GOLEM agent baring sensors that sense 

events and pass the sensory data to the GOLEM agent mind and actuators 

enabling the latter to create events in the form of messages containing control 

commands. The interactors of GOLEM agents are implemented in Java. 
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The main difference in this implementation with the one of the avatars is that 

the GOLEM agent sensors and actuators (of the version of GOLEM that was 

used for this scenario) cannot interact with external to the agent environment 

resources such as the API directly. Instead they interact with the eVATAR API 

via GOLEM objects. In other words the agent interactors sent control requests to 

or sense events from GOLEM objects. 

A GOLEM object uses its internal object (see 3.2.1) to interact with the eVATAR 

API (external resource) to send/receive data to/from eVATAR. It uses the API 

to transform received requests (e.g. in the form of control messages from agent 

actuators) into BIL messages towards the middleware. Furthermore, when a 

GOLEM object receives a message from eVATAR it will use the API to 

transform it and emit it as an event in the MAS environment. The latter will 

notify the appropriate agent sensors about the event. A sensing in GOLEM 

occurs when a sensor is notified by the agent environment about events that 

occur in it. For example the GOLEM object may emit events that encapsulate 

messages containing a “YES”/”NO” string that will be perceived by the motion 

detection agent sensor.  

Every sensor subscribes to events from a unique GOLEM object. Similarly every 

actuator sends control requests (data structures containing values describing a 

command) exclusively to a unique GOLEM object. We created BIL description 

documents similar to the one in Figure 6-2 for every agent sensor and actuator. 

The eVATAR API enables the GOLEM objects to connect and interact with 

eVATAR in a similar way to the one of the physical interactors as described in 

the previous section through calling the same API functions and in the same 

order. With regards to participating in a system with eVATAR, an agent 

interactor is essentially a GOLEM sensor or actuator that features an exclusive 

one to one relationship with a GOLEM object that uses the eVATAR API to 

interact with eVATAR in order to exchange messages with a physical interactor 

that is bound to it. 

The following table describes the interactors of the GOLEM agent. 
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GOLEM Agent Interactors Function 

 

motion detection sensor  

senses events that are messages 

containing a “YES”/”NO” string of 

characters. 

 

photo acquisition sensor  

senses events that are messages 

containing a path to a photograph as a 

string of characters. 

password acquisition sensor senses events that contain a password as 

a string of characters. 

clock sensor  senses events that contain a 64–bit 

integer number that represents the time 

in the physical world. 

 

light switch actuator 1  

creates an event containing a command 

in the form of a string of characters 

(“ON”\”OFF”). 

light switch actuator 2 same as above. 

 

sound actuator  

creates an event containing a command 

as a string of characters with values 

describing a sound, speech, an alarm or 

a password request. 

email notification actuator creates an event containing a command 

as a string of characters that is typically 

an instruction to send an email. 

Table 6-2. The GOLEM agent interactors. 

 

We employ a basic reactive agent in GOLEM with the control cycle used in [83]. 

The cycle is specified in Prolog like syntax where ““ is interpreted as “if”, “,” 

as “logical and”. Terms starting with small letters (e.g. “sense”) denote 
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predicate names while terms starting with capital letters (e.g. “Percept”) denote 

variables. The GOLEM agent mind follows the cycle of execution that is 

described by the Prolog Program 1. We need to note here that the clock sensor 

of Table 6-1 is needed for the physical world time acquisition while the concept 

of time in GOLEM is based on the agent execution cycles. 

 

cycle(Brain) sense(Brain, Percept), 

  revise(Percept), 

  choose(Action), 

  execute(Brain, Action), 

  cycle(Brain). 

Prolog Program 1. The agent mind cycle. 

 

As we can see above, there are four main stages in the cycle: “sense”, “revise”, 

“choose” and “execute”. The agent sensors sense their environment by creating 

what is referred to in the nomenclature of the GOLEM implementation in [82] 

as “percepts”. They are descriptions of the environment that can be understood 

and processed by GOLEM agents. The sensing from every sensor is mapped 

into a percept and received by the agent mind via the brain (see 3.2.1). This is 

performed in the “sense” stage of the agent cycle (see Prolog Program 1). The 

sensors update a queue with percepts. Following the agent implementation of 

[83], the sense function takes sensory data regarding events in the agent 

environment from a particular sensor in the list of sensors (see below “Sensors“) 

and transforms it into a percept within the agent mind as described by the 

following Prolog rule: 

 

sense(Brain,Percept)   

getSensors(Brain,Sensors), 

getPercepts(Sensors,Percept). 

Prolog Program 2. From sensing to a percept. 

 

The mind this way knows at each cycle which sensor has perceived an event 

and the information associated with the particular event. The mind uses the 
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percepts to create an internal state of its view of the world and based on the 

percepts it will choose the next actions of the agent.  The internal state is 

typically a set of variables describing what is perceived by the agents’ sensors. 

The internal state is updated by the “revise” stage of the agent cycle. This is 

implemented using Prolog predicates, for example: 

 

revise(do(golem_object, sensing_act, Event))  

Event = avatar_event([Observation|Observations]), 

observation_effects([Observation|Observations]).  

 

Prolog Program 3. Revise predicate example for managing a sensing act, i.e. an act that 
has been received by passive or active observation. GOLEM supports two additional 
acts: physical acts and speech acts. While sensing, an agent will need to also deal with 
speech acts, which for simplicity of presentation we omit, as it is defined similarly. 

 

During the revise stage, a new internal state is created based on the previous 

ones and the newly sensed data. Above we see a “revise” predicate for 

updating the internal state of the agent using data from an event that was 

created by a GOLEM object. This data is essentially the sensory data from the 

avatar sensor that was received by the GOLEM object (that uses the API) via 

eVATAR and transformed into an event within the MAS environment in order 

to reach the corresponding agent sensor. The predicate 

observation_effects/1 revises the state of the agent with the new 

observations. If the observation variable already exists, it overrides it. The new 

internal state of the agent is used by the “choose” stage (see below) of the agent 

cycle in order to enable it to decide the next actions. The choose function selects 

the action to be performed.  

 

choose(Act)  

findall(select(Label, Act), select(Label, Act), Acts), 

higher_priority(Acts, Act).                                                                                                               

Prolog Program 4. How to choose an action to execute (from [83]). 
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A logic-based approach was followed for activity recognition in order to enable 

the intelligent agents to select the next action based on environmental 

conditions. In this approach we keep track of all logically consistent 

explanations of the observed actions. This is done in GOLEM and specifically 

by defining this in the logic-based reasoning capabilities of the agents [82]. We 

consider all action selection rules. The basic activity recognition approach that 

was implemented for this scenario borrows elements from the works of Kautz 

in [36] and Artikis et al in [1], [2] with regards to what is considered an activity 

in the system and how to recognize it.  However, we do not use time explicitly 

as they do, as we simply want to demonstrate feasibility of our approach 

according to the scenario specification rather than adhere to the principles of 

the generic activity recognition framework of [1] and [2]. 

We implement two types of perceived activities: simple and complex. A simple 

activity describes the perception of a singular event in an environment e.g. 

“motion detection” i.e. to detect movement in a room. Complex activities are 

combinations of simple ones. E.g. the simple activity “motion detection” 

combined with the simple activity “false password input” would result to the 

implicit recognition of the more complex activity “intrusion detection”. The 

logic-based rule in Prolog Program 5 describes the above example. It shows the 

way an agent in GOLEM selects actions in terms of what the agent has just 

observed. We can see that the agent has perceived two simple activities, which 

when combined can be used to describe how the agent should respond using a 

condition action rule of the form: 

select(home_monitoring, sound(alarm, setVolume(high))  

   detected(motion(Activity1)),  

   detected(authorisation(Activity2)),  

   status_of(Activity2, failed).  

Prolog Program 5. Selection rule example for the “choose” stage. 

 

The above “select” form is interpreted as in trying to respond to a situation of 

detecting an “intrusion” which is used as a label for an action selection rule to 
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“sound alarm” if a motion has been detected and an authorisation request has 

taken place but failed.  For more details on how to program GOLEM agents in 

the specific control framework the interested reader is referred to [82] and [83].  

We implemented the scenario using the GOLEM agent and avatar that were 

described above. In the setting of this scenario, eVATAR is also running on the 

networked PC of Table 6-1. All agent and avatar interactors of Table 6-2 and 

Table 6-1 register to eVATAR and the latter links them to create a ubiquitous 

agent. Thus, the ubiquitous agent implements the security scenario using the 

logic based approach for activity recognition and action that was described in 

the particular section. In appendix C-4 we can see a description of the activities 

that are recognized and the UAs’ reactions to them in conjunction with the 

hardware used. The video in [106] provides with a better overview of the 

implementation of the security scenario. 

6.1.2. Scenario 2 – A Simple Scenario Using JADE 

We also implemented a JADE [25] agent and enabled it to interact with the 

Miniature RoboHome setting of Picture 6-1. We implemented a simple scenario 

in which a UA performs light switch control based on sensing presence within 

the miniature house. In particular, when we position a small toy-character 

inside the house it will switch the light on for 10 seconds. The observer of the 

experiment will be required to move the toy-person in the house.  

The following table presents the hardware used to construct the avatar of the 

JADE agent within the miniature smart home. 

 

Avatar Interactors  Function 

wireless camera  sensor: motion detection 

Waveman wireless receiver actuator: light switch  

 

Table 6-3. Avatar interactors for the second scenario. 
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Similarly to the previous scenario, BIL describes the sensor and the actuator 

while their interface software uses the eVATAR API to interact with eVATAR. 

For example in Figure 6-3 we see the BIL description of the motion detection 

sensor (camera): 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<bilDescription InteractorID =" wirelessCamera1" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="bildescription.xsd"> 

<bilinfo> 

<interactorType>SENSOR</interactorType> 

<entityType>AVATAR</entityType> 

<entityID> avatarPhysical2 </entityID> 

<body> 

<sensor>wirelessCamera1</sensor> 

<actuator> wirelessReceiver1</actuator> 

</body> 

<CommunicationType>REQUESTREPLY</CommunicationType>  

<bindingType>agnostic</bindingType> 

<target>na</target> 

</bilinfo> 

<Service> 

<ServiceType>PROVIDER</ServiceType> 

<Attribute>TEXT</Attribute> 

</Service> 

</bilDescription> 

 

Figure 6-3. BIL Description of the motion detection sensor in the miniature smart 
home. 

 

The light switch actuator also has a BIL description like the one described 

above. At the startup of the application, the avatar interactor interface software 

uses the eVATAR API to start the TCP connection with eVATAR by calling the 

“apiInit” function (see Diagram B-11) that also reads the configuration file and 

the BIL description of each interactor from the hard disk. Assuming the role of 

the system developers we created these files. Then, as in the previous scenario, 

the interface software sends the BIL description of the particular interactor to 

eVATAR for registration purposes (see “apiRegister“function in the 

“evatarAPI” class that is described in Diagram B-11). 
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The interface software calls the “apiGetBilMessageMetadata” function (see 

“evatarAPI” class in Diagram B-11) that creates and returns the BIL message 

XML metadata that will be used for the messaging between the DIS and 

eVATAR. It also calls the “apiGetBilObject” function from the “evatarAPI” class 

that returns a “bil” object that will enable it to edit the BIL message metadata 

during runtime transforming events e.g. sensory data from the interface 

software of the camera sensor into BIL messages. In the “wireless camera 

sensor” example that implements the motion detection functionality the BIL 

messages include the sensor and avatar identifiers, the type of the interactor 

and also a service element “Service” with the tag ”TEXT” for the values 

“DETECTED” and “NOT_DETECTED” (see 5.1.1). This BIL message will be 

sent to eVATAR. The interface software of the light switch will use the eVATAR 

API ”bil” object to transform the incoming message into a command that 

controls the light switch.  

We also implemented a JADE agent with the following interactors: 

 

JADE Agent Interactors Function 

 

motion detection sensor  

senses events that are messages 

containing a “DETECTED” / 

”NOT_DETECTED” string of characters. 

 

light switch actuator 1  

creates an event containing a command 

in the form of a string of characters 

(“ON”\”OFF”). 

 

Table 6-4. The JADE agent interactors. 

 

JADE applications are implemented in JAVA. In our approach the piece of code 

in a JADE agent implementation that uses the eVATAR API to receive data 

from eVATAR is called a sensor and similarly an actuator is a piece of code that 

uses the API to send a control message to eVATAR. We described the 
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interactors of the JADE agent using BIL. For example, the BIL description of the 

JADE agent sensor: 

 

 

<?xml version="1.0" encoding="ISO-8859-1"?> 

<bilDescription InteractorID =" agentMotionSensor2" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" 

xsi:noNamespaceSchemaLocation="bildescription.xsd"> 

<bilinfo> 

<interactorType>SENSOR</interactorType> 

<entityType>AGENT</entityType> 

<entityID> JadeAgent1 </entityID> 

<body> 

<sensor> agentMotionSensor2</sensor> 

<actuator> agentLightActuator2</actuator> 

</body> 

<CommunicationType>REQUESTREPLY</CommunicationType>  

<bindingType>agnostic</bindingType> 

<target>na</target> 

</bilinfo> 

<Service> 

<ServiceType>CONSUMER</ServiceType> 

<Attribute>TEXT</Attribute> 

</Service> 

</bilDescription> 

 

Figure 6-4. BIL Description of the motion detection sensor of the JADE agent. 

 

 

Our agent features two cyclic behaviours (atomic behaviours that must be 

executed forever [31]), one for sending light switch control messages and one 

for reading the input from the motion detection sensor. It is a simple reactive 

agent implementation that essentially switches the light on for ten seconds if it 

detects motion in the entrance hall of the miniature smart home by setting a 

timer on. In the end of the timer it will switch the light off. Each behaviour uses 

an eVATAR API object to interact with eVATAR. The following JAVA code 

sample illustrates the implementation of the sensing behaviour in the JADE 

agent: 
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static evatarAPI api_ms = new evatarAPI(); 
 
...{ 
 
 api_ms.config.setConfigPath (configPath); 
 api_ms.config.setBilDescriptionPath (motionSensorBILPath); 
  
 /* Initialize the API, get the BIL description and connect to eVATAR. 
    eVATAR then will start the binding process */ 
 api_ms.apiInit(); 
          
 /* Add the CyclicBehaviour for sensing. */ 
 addBehaviour(new CyclicBehaviour(this)  
 { 
      
   /* The motion sensor of the JADE agent */ 
   public void action()  
   { 
       
     if(motion_sensed == false) 
     { 
    System.out.println("Sensing motion"); 
     

   /* The motion sensor software using the API to receive a message. 
      If the binding process is complete and the agent is bound to an  
      avatar body it should start receiving valid messages */ 

    String receivedMessage = api_ms.apiReceiveMessage(); 
    
        /* If the received message indicates motion detection... */ 
        String txtAttr =         

api_ms.bil.getTEXTAttributeValueFromBilMessage(receivedMessage); 
 
   if (txtAttr.equals ("DETECTED")) 

    { 
   /* update internal variable that a motion was sensed */  
       motion_sensed = true; 
        timer = 0; 
    } 
       }       
     }  
  } ); 
 
} 
 

Figure 6-5. The sensing behaviour of the JADE agent. 
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And the acting behaviour that performs the light control management: 
 
 

static evatarAPI api_ls = new evatarAPI(); 
 
...{ 
 
api_ls.config.setConfigPath (configPath); 
api_ls.config.setBilDescriptionPath (lightSwitchBILPath); 
  
/* Initialize the API, get the BIL description and connect to eVATAR. 
   eVATAR then will start the binding process */ 
api_ls.apiInit (); 
 
/* Add the CyclicBehaviour for switching the light on or OFF 
   If motion has been sensed switch the light ON for 10 seconds. */     
addBehaviour (new CyclicBehaviour(this) { 
 
/* The light switch actuator */ 
public void action()  
{ 
    String bilMsgMetadata = api_ls.apiGetBilMessageMetadata (); 
        

/* The light switch actuator of the JADE agent using the eVATAR API                      
to send a control command. The internal variable motion_sensed can only 
be true if the binding process is complete and the agent is bound to an  
avatar body that has sest a valid BIL message that a motion has been    
sensed */ 

    if (motion_sensed == true && timer == 0) 
    { 
        System.out.println("Switching the light ON"+ motion_sensed); 

String to_Send =       
api_ls.bil.setTEXTAttributeInBilMessage(bilMsgMetadata, "ON");  

        api_ls.apiSendMessage(to_Send); 
    }         
    else if(timer > 10) 
    { 
         System.out.println("Switching the light OFF"+ motion_sensed); 

String to_Send  = 
api_ms.bil.setTEXTAttributeInBilMessage(bilMsgMetadata, "OFF"); 

         api_ls.apiSendMessage(to_Send); 
         motion_sensed = false; 
     }  
   timer++; 
     }  
  }); 
} 

Figure 6-6. The acting behaviour of the JADE agent. 

   

For the purposes of the scenario implementation the sensor behaviour senses 

motion events and uses the sensory data to update the internal variables of the 

agent that will be used by the light switch actuator behaviour enabling the latter 
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to create events in the form of messages containing control commands. The 

sensor of the sensing behaviour is the “action()” method that performs active 

sensing by requesting sensory data via the eVATAR API. The actuator is the 

“action()” method that uses the API to send a control message with the 

indication “ON” or “OFF”. 

In the setting of this scenario, eVATAR is running on the networked PC of 

Table 6-1. All agent and avatar interactors of Table 6-3 and Table 6-4 register to 

eVATAR and the latter links them to create a ubiquitous agent. Thus, the 

ubiquitous agent implements the light control management scenario. 

6.1.3. Discussion 

This case study provides with evidence for the eVATAR framework in terms of 

satisfying the aims of the thesis. Specifically: 

1. In scenarios 1 and 2 we provided with evidence with regards to integrating 

software agent functionality with physical sensors and actuators by enabling 

a GOLEM agent and a JADE agent respectively to interact with a set of 

physical sensors and actuators within a miniature smart home.  

2. In both scenarios, we followed the same systematic method to integrate two 

different MAS platforms with a different set of sensors and actuators each 

time. This involved describing each interactor using BIL, call the eVATAR 

API function to initialize a connection with eVATAR and then use the API to 

interact with it. eVATAR internally in both scenarios performed the 

dynamic discovery of compatible agent and avatar bodies, the binding and 

the management of the message exchange between the bound to each-other 

interactors. This case study further demonstrated the generality of the 

approach. 

3. We demonstrated transparency in the two scenarios by using abstract 

interfaces from the eVATAR API at application level to integrate the agent 

with the physical sensors/actuators. We abstract interactor functionality by 

describing it as a service provider or a consumer using BIL. The eVATAR 
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API uses the abstract XML descriptions of BIL to enable the communications 

with eVATAR and to achieve the integrations. In both scenarios we did not 

need to write code for dealing with how the integrations are achieved 

(concealing dynamic discovery, binding and UA session functionality) and 

this functionality was executed transparently.  

4. The two scenarios used different MAS platforms (GOLEM and JADE).  

5. Heterogeneity was demonstrated by using heterogeneous sensors, actuators 

and devices within the miniature smart home. We currently only support 

platforms that use JAVA as the API is implemented in JAVA. JAVA runs on 

any platform or O/S that has the JAVA virtual machine installed. The 

eVATAR API is designed to communicate with eVATAR using message 

exchanges over TCP/IP and therefore we can implement it using any 

platform, programming language and for any O/S that supports TCP/IP 

development (see future work section for our plans to implement different 

versions of the API). This way we can include heterogeneous devices that do 

not support JAVA. eVATAR on the other hand would not require any 

changes in order to be used by heterogeneous MAS platforms and SAN.  

Interoperability and openness are hinted via the aggregation of a variety of 

heterogeneous sensors and actuators working together within the UA body. For 

example, a light switch actuator and a camera motion detector sensor can 

appear in the environment as working together in order to achieve something 

useful (for example to implement behaviours such as “if motion is detected turn 

the light on”). 

On a different note, all pieces of hardware in Table 6-1 were low-cost, easy to 

acquire and did not feature on their own elements of intelligence. We 

demonstrate that integrating them with a GOLEM [82] agent via eVATAR 

enables them to collectively present smart home behaviour and implement an 

intelligent security scenario. There are several low-cost and popular wireless 

technologies that include simple sensors and actuators in order to make a house 

"smart" and "automated" such as Z-Wave [134] and ZigBee [133] among others. 
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However the low-cost hardware on its own allows applications presenting 

limited intelligence that would not be able to provide all the functionality 

needed for a scenario such as the first one of this case study. 

Furthermore, by evaluating the proposed approach in terms of satisfying the 

aims of the thesis using an application that integrates the GOLEM MAS [82] 

and real sensors and actuators and an application using JADE [31], we satisfy 

objective III (see section 1.3). We infer from this observation that by using the Z-

Notation framework of chapter 4 we specified the functionality of eVATAR, a 

middleware that fulfils the aims of the thesis. This way we also satisfy objective 

I of the thesis. 

In this case study due to limited resources available during the writing of the 

thesis we used a small number of sensors, actuators and devices. The next case 

study was designed to evaluate eVATAR using more agents and multiple 

sensors/actuators. 

6.2. Simulated RoboHome 

We have provided with evidence for eVATAR in terms of satisfying the aims of 

the thesis. The next step was to provide with insight as to whether it can be 

used in a more complex scenario with multiple sensors and actuators. We 

developed the RoboHome simulation, a smart home simulation that can be 

used with eVATAR and a MAS that has the characteristics defined in section 

3.2.1 to implement test applications. In many cases SAN, WSN and pervasive 

middleware are evaluated using custom simulation software. Examples of 

middleware that use custom simulations include MagnetOS [80], the cluster-

based middleware approach of [98] and TinyDB [88]. This way developers test 

specific features of the middleware that are relevant to a specific type of 

application. These types of testing environments are very useful when 

researching and prototyping new approaches allowing for insight as to whether 

the middleware achieves its aims. 



 159 

Nevertheless custom middleware are usually not useful in terms of comparing 

different middleware approaches due to the fact that they focus on different 

middleware characteristics and metrics. On the other hand generic testbeds 

such as TOSSIM [77] and Indriya [64] can be used by different middleware for 

evaluation. The problem with generic simulation platforms is that it is difficult 

to provide benchmarks for pervasive middleware frameworks due to the 

application specific nature of the latter. Such simulations are more appropriate 

for low-level middleware for WSN as they can adequately provide distribution 

performance information. Also, they commonly focus on sensors and sensor 

networks and not on actuators. Furthermore, the platform and programming 

language dependencies of generic middleware simulations and testbeds (in the 

case of TOSSIM [77] and Indriya [64]  these are the TinyOS operating system 

and the C/C++ programming language) exclude middleware that do not 

support them. Currently eVATAR only uses a JAVA based API but as part of 

our future work plans we intend to implement the eVATAR API using C/C++.  

Therefore we opted for a custom simulation to evaluate eVATAR.  

The objective of this case study is to implement a scenario using RoboHome 

and GOLEM that shows in simulation the potential of our approach in 

becoming useful in a person’s every day activities. 

6.2.1. The Scenario 

The scenario revolves around the simulation of a specific period (a week) in the 

life of a working person living in a small flat. The scenario assumes that “the 

resident” (as we will be calling the simulated person) works five days a week 

and performs a number of activities when he is at home. These include laundry 

(in a semi-random manner as we will see in the following), watching movies 

and TV programs, sitting in the living room and listening to music, going out 

on a Saturday night and in general several typical activities of modern lifestyle.  

According to the scenario, the simulation is run in two modes. In the first mode, 

an electricity consumption monitoring agent in the GOLEM MAS is linked via 
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eVATAR to sensors in the smart home in order to create a UA that will be 

monitoring the consumption during the simulated period. In the second mode, 

a second UA is created by linking an energy consumption conserving agent to 

an avatar in the smart home consisting of sensors and actuators. The two UAs 

will communicate at agent level in a way that they will monitor and save on the 

energy consumption using the actuators of the second UA. In appendices C-1 

and C-2, we can see detailed descriptions of the avatars and agents that were 

implemented for the scenario. Before proceeding with the details of the 

implementation of the scenario, it would be useful to describe the RoboHome 

simulation. 

6.2.2. The RoboHome Simulation 

To implement the scenario we developed a smart home simulation called 

RoboHome which is a discrete event-based simulation (DES) [90] implemented 

in Java. 

 

Figure 6-7. The RoboHome architecture reference model. 

 

Figure 6-7 illustrates the main components of RoboHome. The current version 

of RoboHome that was used for evaluating eVATAR consists of a set of JAVA 

objects that model the smart home environment. The “environment”, “room”, 

“device”, “sensor” and “actuator” objects are created to model the smart home 

that is represented in a UI that was implemented using JAVA and depicted in 

the following picture: 
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Picture 6-2. The RoboHome GUI. 

 

The smart home simulation model can be described as a collection of events. 

Each event models a change in the state of the above objects (see below for what 

we define as a “state” in RoboHome) and it schedules other events that are 

linked to this particular event. We will now describe the main concepts of the 

RoboHome DES. 

The “Environment” software component of the smart home module (Figure 6-7) 

is a JAVA object implementing a virtual space where all other entities and 

objects in the simulation are created and reside. The development framework is 

implemented using the JAVA concept of inheritance [109]. 

In Figure 6-8  we can see how the various device subclasses are derived from 

the “Device” superclass. All subclasses are overriding [119] the turnOn(), 

turnOff() methods with their own underlying implementation. For example 
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turning on an oven and turning on a light have a different significance and 

implementation with regards to simulating electricity consumption as they start 

different electricity consumption counters e.g. an oven would consume more 

than a light bulb. Also, a subclass may have more methods as we can see in the 

TV device subclass that has a third method for setting the TV on a standby 

mode (and consuming electricity at a reduced rate).  

 

 

Figure 6-8. Subclasses of the “Device” superclass. 

 

RoboHome and the objects it contains have a state which is a description of 

what is happening to them at a particular time. Time is implemented as a 

periodically increasing variable (see “clock” component in Figure 6-7) and the 

period of the time variable increment is intended to scale the time of the real 

world scenario that is simulated by RoboHome. The state is typically described 

by a single or a combination of descriptive variables. The state is altered by a set 

of interface methods that interact with these variables. For example the state of 

a device object such as the state of the TV features a variable with values 

"ON"/"OFF"/"STANDBY" and methods to interact with it (see “turnOn”, 

“turnoff”, “StandBy” in Figure 6-8). The main classes that are offered for 

creating subclasses and objects within the simulation environment are the: 

 Room: creates sub--environments within the environment containing other 

objects. 
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 Device: objects simulating electrical devices such as a TV, a home cinema, a 

light bulb or a washing machine. 

We call events any changes in the state of a variable belonging to a RoboHome 

JAVA object. Each event is associated with an event time and actions will be 

executed when the event occurs. Furthermore, the sensors are JAVA objects 

reading data about the state of the environment and device objects and the 

actuators JAVA objects altering the state of the environment and device objects 

by creating events. They read and alter the state variables of objects via the 

object methods (functions). They also use the API to make the connection to 

eVATAR possible. The system designer creates BIL descriptions for the smart 

home interactors. The sensor/actuator control software uses the eVATAR API 

to retrieve the BIL descriptions of their interactors and then use the metadata to 

register and interact with eVATAR (via the API). 

Simulation events are created by the event list JAVA object (see reference model 

in Figure 6-7). Event lists are JAVA objects producing queues of different kinds 

of events and they can simulate humans producing events (e.g. the “resident” 

of the scenario that was described in 6.2.1).  An event from the event list can 

also lead the creation of other events. For example, an event list object may 

create an event by directly having the “resident” enter a room (change the state 

of the room to “OCCUPIED”) which will lead to the creation of a second event 

from the UA that will use an actuator to change the state of the light to “ON”.  

The event mediator JAVA object is a broker for matching the state changing 

requests from the event list and actuator objects to the state changing methods 

of the corresponding objects. Sensor objects also use the event mediator to 

query about changes in the state variables of the objects they observe. The 

mediator is implemented as a set of hash-tables containing pairs of objects in 

which: a) the first object is the creator of an event while the second object the 

recipient of it or b) the first object senses events (e.g. a sensor) created by the 

second one. This way we define which actuators act on which objects and 

which sensors sense which objects. Lastly, an object can create an event 
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targeting multiple other objects and similarly a sensor can observe multiple 

objects. 10  

The “Random Number Generator” component of Figure 6-7 affects the 

occurrence and the duration of events. The occurrence of an event is based on 

three factors: a) the existence of the event in the event queue (sequential list of 

events), b) the user pre-defined restrictions for the occurrence of this event (e.g. 

maximum washing up frequency per week) combined with the current state of 

the system (e.g. room occupancy status) and c) a consultation with the 

probability calculator functionality. The probability calculator is only consulted 

if both a) and b) have already been satisfied. It is part of the “Random Number 

Generator” component and provides with functionality that will reach to a 

decision with regards to the creation of an event while taking into account of a 

weight that has been pre-programmed for the particular event and by using a 

discrete uniform distribution. The weights are applied when the event list 

object is created using the appropriate template (more details in Appendix C-5). 

All events have a duration (in clock cycles) which is decided based on: a) user 

pre-defined restrictions for the duration of this event and b) the random 

duration function (for more details see Appendix C-6). The duration restrictions 

(upper and lower limits) are pre-set for each event. For example the “night 

sleeping event” may last between 6 and 10 hours. The random duration 

functionality which is also provided by the “Random Number Generator”  

component will select a random number within the limits indicating the exact 

duration. 

The RoboHome environment, room, device, sensor and actuator objects are 

created and organized as per the UI snapshot of Picture 6-2. To create a new 

simulation based on a particular scenario, the system designer creates a 

simulation script that is translated as an event list. Furthermore, RoboHome 

provides the capability to use the sensor and actuator superclasses to create 

sensor and actuator objects that do not participate in the simulation of Picture 

                                                 
10 Both cases are implemented with multiple entries in the hash-table structures. 
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6-2. They can be described by the system designer using BIL in a way that they 

participate in an avatar body and use the eVATAR API to connect and interact 

with eVATAR. This way they can create UAs with agents and can be used for 

performance testing scenarios as we will see in chapter 7. 

6.2.3. The Implementation of the Scenario 

The scenario described in 6.2.1 was implemented using the RoboHome 

simulation. It is visualized in a GUI (Graphical User Interface) and in Picture 

6-2 we saw an instance of it during a simulation run.  

We used RoboHome to implement the avatars of appendix C-2. With regards to 

the GOLEM agents, we used the same implementation approach that was used 

for the agent that was described in 6.1.3. The agents follow the cycle that was 

described in Prolog Program 1, with the only difference being the set of goals 

that they pursue. They are also using a special type of acts in GOLEM, the 

“speech acts” that allow agents to exchange messages (and context) within the 

agent environment. The agents are described in C-2. The requirements of 

chapter 3 are also followed, similarly to the framework implementation in the 

first case study (section 6.1.1). 

The setting of the scenario was described in 6.2.1. We run the simulation twice 

in order to monitor electricity consumption with and without intervention from 

energy saving agents (appendix C-2). The electricity consumption is essentially 

the collective consumption of all devices that are monitored by UAs. The 

wattage and its cost for every device has been approximated based on realistic 

expectations (see Figure C-0-1 in appendix C-3) and the same values and costs 

have been applied in both runs of the simulation.  

The first time the electricity monitoring agent monitored only power 

consumption and it was not allowed to intervene in the everyday life of the user 

(event list object simulating the resident). In the second run, all agents were 

linked to avatar bodies within the Smart Home and they were allowed to 

intervene. Particularly, in the second run the consumption improving agent 
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described in appendix C-2 applied its policies to the smart home by switching 

on and off devices appropriately. For example it would switch the lights or 

devices off when the user would forget to do so (most commonly when leaving 

the room for a considerable amount of time. Other policies/goals of the agent 

are described in appendix C-2). In order to achieve this, it communicated with 

the first agent that provided with contextual information regarding which 

devices were consuming electricity at a given time and location.  

The electricity consumption monitoring agent provides this information to the 

consumption improving agent using agent to agent communication protocols 

within GOLEM (“speech acts” in [82]). It sends messages containing 

information regarding: a) identification of devices consuming electricity, b) 

identification of the location of these devices, c) information about the time that 

the consumption started and the time it ended and d) the power consumption 

specification of the relevant devices and the cost (some devices consume more 

than others and at a different cost). This is also related to the time of 

consumption (day and night cost rates). In Figure 6-9 and Figure 6-10 we can 

see the differences in electricity consumption and cost over a period of 

approximately 7 days with and without intervention. 

 

 

Figure 6-9. Electricity Consumption with and without intervention from UAs. The 
time in seconds refers to the scaled real time. 
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Figure 6-10. Costs with and without intervention from UAs. 

 

The improvement in terms of cost and energy consumption when using 

eVATAR and Ubiquitous Agents is illustrated by the above diagrams.  

6.2.4. Discussion 

The simulation demonstrated that the behaviour of simple devices in the UA 

body is affected by the collective behaviours and context of other devices within 

the same UA body as well as from context stemming from other UAs. The 

software agents and their associated UAs, can exchange information within the 

MAS. The energy consumption monitoring agent was communicating and 

cooperating with the energy consumption improving agent by means off the 

MAS environment. This way the energy consumption saving agent was enabled 

to make more informed decisions regarding its next actions. Thus, the devices 

belonging to the avatar bodies in the smart home appeared in simulation to 

present more intelligent and context aware behaviours when connected to 

agents via eVATAR. Taking this one step further, we can view all UAs as fully 

communicative nodes of an AmI system. In the RoboHome simulation the 
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simple devices are aggregated into UAs (nodes) transforming the simulated 

smart home into an AmI environment. 

Finally, the scenario of the RoboHome simulation illustrated the potential of a 

system using MAS agents, eVATAR and a sensor/actuator network embedded 

in a home context for becoming useful in confronting everyday lives problems. 

In the specific scenario of the simulation, we saw that the proposed UAs have 

the potential of reducing electricity consumption in a smart home environment, 

given that the assumptions made in the simulation hold (see in Figure 6-9 and 

Figure 6-10). 

In this section we satisfy objective IV of the thesis (see section 1.3) by creating a 

test suit consisting of a smart home simulation and GOLEM and by 

implementing a scenario that shows in simulation the potential of our approach 

in providing useful services in our everyday lives (in our case saving on 

electricity consumption). 

6.3. Summary 

This Chapter presented two case studies that illustrate the use of eVATAR. The 

first case study provided with proof of concept that eVATAR can be used for 

the creation of UAs in an application with commercial sensors and actuators 

and MAS such as the GOLEM and the JADE platforms. It also provided with an 

evaluation of eVATAR in terms of satisfying the aims of the thesis. The second 

case study revolved around the RoboHome simulation and a MAS being used 

to implement an electricity consumption improvement in a smart home 

scenario. The simulation was used to investigate the potential of architectures 

that use eVATAR for becoming useful in a person’s home environment (e.g. 

saving on electricity consumption). 
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7.  EVALUATION & 

DISCUSSION 

This chapter starts with an evaluation of eVATAR in terms of performance and 

then continues with a discussion regarding failure handling in systems that use 

it. The last section of this chapter compares eVATAR against the middleware 

platforms that were discussed in the “Background” chapter 2 with regards to 

achieving the aims of the thesis. 

7.1. Performance & Scalability Testing  

Performance in systems that use eVATAR is critical as such systems are 

typically real-time constrained by operational deadlines. For instance consider 

the simple scenario of a UA programmed to react to human presence in a room 

by switching a light on. All the message exchanges between the agent and 

physical sensors and actuators that are involved in this scenario need to take 

place within specific deadlines. Missing any of them would lead to a failure in 

meeting the constraints and to potentially undesired behaviour e.g. the human 

remaining in the dark for a prolonged period of time. In the following we 

evaluate eVATARs’ performance while the number of the connections (and UA 

sessions) it serves increases in a variety of hardware settings. The goal is to 

identify situations in which the real time constraints are not met and also 

discuss ways to avoid them.  

7.1.1. Latency in eVATAR 

The main objective of this evaluation is to monitor communication latency and 

identify the implications of scaling a system that uses eVATAR. Such systems 

scale by adding more agent and avatar interactors and thus creating more 

connections to eVATAR. 
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Network latency can be measured either “one way” as the time it takes for a 

packet to arrive from the source to the destination receiving it, or as “round 

trip” delay time. The main problem with following the “one way” approach is 

that we would need a global time. As we saw the two environments (MAS and 

physical world system) that are integrated by using eVATAR do not necessarily 

use a global time approach and they may feature different time systems. Their 

interactions are managed and synchronized by eVATAR. Therefore, we decided 

to collect “round trip” latency data as the time between sending a message and 

receiving a response. In our tests with eVATAR, the latency time is calculated 

as: 

Equation 1: L(m1,m2) = Tagav(m1) + Tavag(m2)  

Where: 

L is the Latency. 

m1 is the  message that the agent interactor sends to the avatar interactor. 

m2 is the  message that the avatar interactor returns to the agent interactor. 

Tagav(m1) is the time for message m1 to reach the avatar interactor (from the 

agent interactor). 

Tavag(m2) is the time for message m2 to reach the agent interactor (from the 

avatar interactor). 

 

The individual times for sending the messages from the agent interactor to the 

avatar one and vice versa are calculated as follows: 

Equation 2: Tagav(m1) = TageVATAR(m1) + TEVATAR(m1) + TEVATARav(m1) 

and 

Equation 3: Tavag(m2)= TaveVATAR(m2) + TEVATAR(m2) + TEVATARag(m2) 

Where: 

TageVATAR(m) is the time for a message m from the agent interactor to reach 

eVATAR. 

TEVATAR(m) is the time that eVATAR takes to process a message m. 
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TEVATARav(m) is the time for a message from eVATAR to reach the avatar 

interactor. 

TaveVATAR(m) is the time for a message from the avatar interactor to reach 

eVATAR. 

TEVATARag(m) is the time for a message from eVATAR to reach the agent 

interactor. 

7.1.2. Test 

The base layer of eVATAR implements a TCP server allowing connections (see 

chapter 5) with the agent and avatar interactor software. Each connection 

requires a separate thread of execution that consumes memory and processing 

resources. GOLEM and the RoboHome simulation (see chapter 6) were used as 

an agent and avatar generator for our tests. The scaling of the system is 

essentially achieved by increasing the number of connected interactors. In our 

tests, we achieve this by gradually adding new agents and avatars baring more 

interactors resulting in the creation of more eVATAR threads serving the 

connections with the interactor software. Latency (see below) is monitored and 

recorded during the scaling of the system.  

The setting of the tests involves two networked computers, one that runs 

GOLEM and the RoboHome smart home simulation and the other running 

eVATAR. A number of tests have been performed, with eVATAR running on a 

variety of machines featuring different levels of memory and processing 

capabilities. The test scenario is the same in all tests; the only thing that changes 

is the hardware that runs eVATAR.  

The test starts with one agent and one avatar carrying one actuator each and 

connecting to eVATAR. After they are registered and bound, the agent actuator 

starts sending BIL messages to the avatar actuator which in its turn returns 

them back as feedback messages with no processing. This way there is no delay 

on the recipient side. The size of each message is 503 bytes. According to the 

latency equation for eVATAR: 
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L(m) = Tagav(m_sent) + Tavag(m_rec) 

 
In the case of our tests m_sent ≈  m_rec meaning that the same size messages 

are sent and received for measuring the latency. The frequency of sending the 

messages is a message for every 5 milliseconds plus the latency of the previous 

message. Gradually and every 1 minute a new agent and a new avatar are 

added to the system each of them baring 30 actuators. After registering with 

eVATAR and becoming bound, they would start sending messages similarly to 

the first actuator and again with a frequency of 1 message per 5 milliseconds 

plus the latency of the previous message. This process will go on with new 

agents and avatars baring 30 actuators each being added every minute until the 

system becomes unstable indicating the limitations of the system for the 

particular hardware. In all tests the network speed was the same at 100mb\sec. 

The different machines running eVATAR on each test: 

 

1) “common” student laptop with CPU: Intel Core i5-2520M @ 2.50GHz, RAM: 

4gb, OS: Windows 7 

2) “low – end” computer with CPU: Intel Atom @ 1GHz, RAM: 2gb, OS: 

Windows 7 

3) “high - end” computer with CPU: Intel Core i7-2670QM @ 2.20GHz, RAM: 

8gb, OS: Windows 7 

The tests measure latency which is recorded in relation to time and stored in a 

file.  

7.1.3. Results 

The first test was run 50 times producing as many datasets for latency. Figure 

7-1 shows a representative chart from one of the runs. In all 50 test runs and in 

particular beyond a threshold of a total of 722 connections (between the 720th 

and the 730th second), the charts (just like the one of Figure 7-1) would start 

showing increased latencies and spikes. According to the test scenarios, the 
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system was scaled by connecting batches of interactors. The threshold in all 50 

runs of the test was consistently reached when the same number of batches was 

connected (722 connections).        

 

Figure 7-1. Using Equation 1 to create an average latency over time graph for the first 
piece of hardware. Appendix D-1 shows the numbers of agents, avatars and interactors 
that are being served by eVATAR as they increase during the execution of the test. 

We calculate the mean (average) latency of every run of the test from the 

beginning until we reach the threshold number of connections beyond which 

the system becomes unstable with high latencies (722 connections). The goal is 

to quantify the amount of variation in the 50 mean latencies by calculating the 

standard deviation ([93] and [121]). In our controlled environment experiments 

we see that the Bell curve of the distribution of the data (Figure 7-2) is very 

steep meaning that the data has a small standard deviation and it is clustered 

around the mean (which in this case is the mean of the mean latencies). This 

implies that there is little dispersion in the set of mean latencies of the 50 tests 

until we reach the threshold. The main point though is that beyond this 

threshold in the number of connected interactors we see greater variances and 

instability. 
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Figure 7-2. Bell curve of the distribution of the mean latencies. The mean here is the 
mean of the mean latencies. We see that most values are close to the mean. 

 

For the second test, eVATAR was run on the “low-end” computer that was 

described in the previous section. The test was also run 50 times. We observe 

similar results to the ones from the first test with the main difference being that 

the middleware could accept less agent/avatar interactor connections. The 

system this time starts becoming unstable (in all 50 runs) beyond a threshold of 

a total of 482 connections (the 490th – 500th second). The third test was 

performed using the third computer that was described in the previous section. 

The test was again run 50 times. This time an average of a number around 1202 

interactors had to connect before the latency started to significantly increase. In 

all tests the networking speed of the LAN (Local Area Network) remained the 

same and the same LAN router (with network speed at 100mb/sec) was used. 

The same tests were also carried by disabling the reflection layer of eVATAR 

and hardcoding the relationships between agent and “physical” interactors.  

Below we see a table describing all the experiments and results. Also, it would 
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be important to point out here that the average latency in Table 7-1 is the 

average (mean) of the mean latencies of all 50 test runs before the threshold of 

the number of connections is reached.  

  

 

Hardware / Software Setting 

Threshold 

(Number of 

connections) 

Average (mean) of  

Latency Means 

before Threshold 

CPU: Intel Core i5-2520M @ 2.50GHz, 

RAM: 4gb,  OS: Windows 7 

Reflection: YES 

 

722 

 

24.2 ms 

CPU: Intel Core i5-2520M @ 2.50GHz, 

RAM: 4gb, OS: Windows 7 

Reflection: NO 

 

722 

 

24.1 ms 

CPU: Intel Atom @ 1GHz,  

RAM: 2gb, OS: Windows 7 

Reflection: YES 

 

            

482 

 

 

31.85 ms 

CPU: Intel Atom @ 1GHz,  

RAM: 2gb, OS: Windows 7 

Reflection: NO 

 

 

482 

 

 

30.49 ms 

CPU: Intel Core i7-2670QM @ 2.20GHz, 

RAM: 8gb, OS: Windows 7  

Reflection: YES 

 

1202 

 

21.81 ms 

CPU: Intel Core i7-2670QM @ 2.20GHz, 

RAM: 8gb, OS: Windows 7 

Reflection: NO 

 

1202 

 

20.66 ms 

 

Table 7-1. Test results with averages of latency means for the 50 runs of each test and 
the connection thresholds for the different hardware settings. 

7.1.4. Discussion on Performance 

The tests indicated a clear relationship between scalability, hardware and 

performance. When the number of connections to the middleware surpasses a 

certain threshold which varies in different settings and hardware, we observe 

greater latencies. Adding more connections to eVATAR would eventually 
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render it unstable. The question at this point would be whether the choice of 

having a multi-threaded, blocking server implementation providing a thread of 

execution for every connection was the right one.  

Multi-threaded and blocking servers perform well with smaller numbers of 

connections (see metrics in Table 7-1) but are not as scalable [49] as single-

threaded event driven servers e.g. servers implementing the JAVA Apache 

“Mina” framework [101] or “libuv” [111]. Event driven servers use a single 

thread to process messages from multiple connections. They do not bare the 

processing costs and memory overhead from having multiple threads and they 

provide better scalability even when handling thousands of concurrent 

connections. Scalability is critical in common web server applications as they 

are typically designed to manage thousands of connections simultaneously (see 

C10k problem [128]) that are usually short lived and deal with small requests. 

They need to serve as many concurrent connections as possible. This leads to an 

overhead as more connections typically compete for the same memory and 

processing resources. On the other hand transferring large files usually requires 

a dedicated connection, such as the ones offered by blocking and multi-

threaded implementations.  

eVATAR requires permanent dedicated connections for the sensor and actuator 

communications justifying the choice for a blocking, multi-threaded server. The 

principle of transmitting sensory data from a sensor to the middleware is not 

dissimilar to the one of transferring large files over a network. The applications 

that use eVATAR are more dependent on performance as it is offered by a 

dedicated thread rather than scalability. The number of connections per 

instance of eVATAR running, especially in smart home applications is 

considerably lower than the one of web servers (see scenarios in the case studies 

of chapter 6) but there are still limitations. Therefore, the challenge when 

designing systems that use eVATAR on a specific hardware platform, is how to 

avoid a situation where the real time constraints are not met adequately and 

also improve the performance of eVATAR.  
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Larger scale applications would require splitting the workload over multiple 

instances of the eVATAR middleware running on the same or on distributed 

machines in order to increase speed and scalability. On the other hand, this 

approach raises costs as it relies on using more hardware devices running 

eVATAR. The abundance of computing devices in modern households could 

alleviate the cost problem.  

Finally, based on the test results of Table 7-1, disabling the reflection layer of 

eVATAR and hardcoding the connections would produce similar average 

latencies indicating that the overhead of the reflection functionality of eVATAR 

is insignificant. This behaviour was expected because while the reflection 

component is responsible for dynamically creating and monitoring connections 

between agent and avatar interactors, it is not intrusive in terms of the message 

exchanges within the UA sessions after they have been established. This way 

eVATAR reduces overhead and unnecessary processing that might have had a 

toll on connection performance. According to [33]: “a desirable middleware 

model provides transparency to the applications that want it and fine-grain 

control to the applications that need it”. 

By using the RoboHome simulation to test the middleware’s performance we 

also satisfy objective V of the thesis (see section 1.3). 

7.2. Failure Handling & Resilience 

This section discusses resilience as the ability of systems that use eVATAR to 

cope with different levels of failure including failure at middleware and failure 

at agent/avatar level.  

7.2.1. Failure at Agent & Avatar level 

Applications that use eVATAR potentially include a variety of hardware and 

software components including agents, avatars, sensors, actuators and devices. 

Failures occur due to loss of connectivity, software crashes/bugs and broken 

hardware among other causes. eVATAR ensures that failure of a single 
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interactor does not mean failure of the whole UA as the rest of the linked 

interactors should remain unaffected within their individual connection 

threads. Despite the fact that we connect bodies, if a body member is broken it 

doesn’t mean the whole body is broken. Similarly, if a set of interactors fails 

rendering an agent or an avatar and consequently the UA entity inoperative, 

the rest of the UAs should proceed with their tasks unaffected. On the other 

hand, if multiple UAs (or interactors within a UA) are working together 

towards a common goal and one of them fails then the goal may fail too. 

Furthermore, as we saw in the implementation Chapter 5, the reflection layer of 

eVATAR features a monitoring mechanism for the connections with the agent 

and avatar interactor software. Every connection in eVATAR is managed by a 

separate thread of program execution. If a connection is inactive, this thread 

will be unnecessarily retaining memory and processing resources with a 

potential impact on the scaling of the system (see 7.1). If the monitoring 

mechanism of the reflection layer of eVATAR detects failure in a connection, it 

will terminate the thread freeing all memory and processing resources (see 

5.2.2).  

7.2.2. Failure at eVATAR level & Continuity 

There is a high dependency of the UAs on the functioning of the central hub i.e. 

the device that runs eVATAR. Failure of the central hub renders all UAs that 

are connected to it inoperative. Splitting the workload over multiple instances 

of the eVATAR middleware and when it is possible among distributed 

networked hosts would be a good way to ensure isolation of such failures into 

the subset of the UAs that are connected to the affected hubs. Furthermore, 

eVATAR has its own mechanisms for ensuring continuity of service.  

As we saw in the implementation chapter 5 regarding the local failover, there is 

a backup instance of eVATAR running on the same host computer as the active 

instance of eVATAR. The backup eVATAR is monitoring the active instance of 

the middleware (see heartbeat in 5.1.2). In the case of failure of the active 

eVATAR, the monitor eVATAR will identify the failure (heartbeat reading 



 179 

failure), assume the role of the active middleware using the same network 

address and start another monitoring redundant instance aiming to maintain 

service continuity. The interactors will have to reconnect and register again 

with the new instance of eVATAR. 

The failover continuity mechanisms of eVATAR were tested on the hardware 

that was described in 7.1. Finally, hardware failure in the host machine that 

runs eVATAR in the currently supported setting would mean failure of the 

overall system. In the future work section we will discuss and propose a 

solution based on networked redundant nodes for running monitoring 

instances of eVATAR.  

7.3. Comparing eVATAR against related work 

In this section we compare eVATAR against related work in terms of 

accomplishing the aims of the thesis. According to the criteria set in section 2.1.2 

of the “Background” chapter 2, we selected and reviewed middleware 

approaches that could potentially be used for integrating software agent 

intelligence with sensor and actuator networks (for the descriptions and 

reviews of each middleware see sections 2.2, 2.3 and 2.4). We have justified in 

section 2.5 and sections 2.2.4 and 2.3.6 why the middleware approaches of 

sections 2.2 and 2.3 respectively even though they achieve integrations of MAS 

AI to SAN they do not achieve all of the aims of the thesis simultaneously. 

Furthermore, in section 2.5 we identified and justified that the approaches of 2.4 

(high-level pervasive middleware) are the closest comparators to what we are 

trying to achieve. Furthermore each of these approaches was described and 

reviewed against the aims of the thesis in 2.4 and Table 2-2 provides with an 

overview of this.  Table 7-2 extends this table with the inclusion of eVATAR. 

The first case study in section 6.1 provided with evidence that eVATAR satisfies 

all 5 aims of the thesis simultaneously and in section 6.1.3 we discuss how 

exactly it provides evidence for each aim. 
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      1 Provided proof of concept with GOLEM and JADE. We need to try more MAS platforms. 

2 Currently the API is restricted to JAVA platforms. See future work. 

Table 7-2. Evaluation of pervasive/AmI middleware and eVATAR in relation to the 
aims of the thesis. 

 

Table 7-3 (below) extends Table 2-1 by including eVATAR. It provides a cross-

reference of approaches, technologies and characteristics of middleware that 

purport to support the integration of agent AI to sensor and actuator networks.  

 

Table 7-3. Cross-reference of approaches and technologies used by the different 
middleware. 

Having established that eVATAR is tailored to achieve the aims of the thesis, 

Table 7-3 is useful because it shows the fusion of technologies that were used to 

implement it. This combination of technologies and features could be used as a 
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starting point by developers that could potentially attempt the development of 

a similar middleware with similar aims. It can be contrasted to other 

middleware in Table 7-3 that implement different technological approaches. 

Despite of providing with evidence for the aims of the thesis, we identify the 

following issues in the current implementation of eVATAR: 

 Heterogeneity limitation due to the JAVA dependency of the eVATAR API. 

We should note that this is only a limitation of the current implementation 

of the eVATAR API. Any platform/programming language that supports 

TCP connectivity and basic XML parsing should be able to implement an 

API that can connect to and exchange messages with eVATAR (see future 

work plans in section 8.2). Furthermore, we have not tested eVATAR with 

all the platforms and technologies of 3.2.2. 

 So far we have only tested the system using two MAS platforms, GOLEM 

[82] and JADE [25]. The application using JADE especially was simple and 

its purpose was to provide with a proof of concept. We need to test with 

more MAS platforms to strengthen the claim for multiple MAS support. 

 As we saw in the beginning of this chapter, we have selected performance 

over scalability by implementing a multithreaded TCP server within 

eVATAR to manage the connections with the sensors and actuators. The 

question here is what we would need to do to improve scalability if an 

application requires it. 

 eVATAR requires both metadata describing service providers as well as 

metadata describing service consumers in order to create internal models of 

avatars as well as of the agents. Consequently, as we have seen the service 

consumers register with eVATAR following the same process as the services 

by sending their metadata descriptions. We therefore implemented BIL 

tailored to a particular ontology that supports registration, discovery and 

interactions in eVATAR. The fact that it is tailored to a particular ontology 

allowed us to create compact BIL descriptions and messages as opposed to 

using more generic languages such as OWL (XML-based, consists of 
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knowledge representation languages for creating ontologies) [120] that need 

to cater for a variety of applications and ontologies. Nevertheless, the 

proprietary nature of BIL makes it less accessible to the research community. 

The SensorML (Sensor Model Language [123] and [124]) is a common 

standard for describing sensors and actuators using metadata and it could 

be investigated in terms of implementing the required by eVATAR 

ontology, making our API more accessible by the research community (see 

future work section 8.2.5). 

In the future work section 8.2 we will describe how we will attempt to address 

the above issues. 

Finally, by comparing eVATAR with other approaches in terms of achieving the 

aims of the thesis we satisfy objective VI of the thesis. 

7.4. Summary - Conclusion 

In this chapter we discussed eVATAR in terms of performance, points of failure 

and continuity in systems that use it.  We have also seen how eVATAR 

compares in terms of achieving the aims of the thesis to the middleware 

approaches that where reviewed in chapter 2 and selected based on the criteria 

of section 2.1.2. We also identified a number of issues that eVATAR needs to 

improve on. In the following chapter this thesis concludes with a discussion 

about ideas for future work in terms of confronting these issues and a brief 

epilogue. 
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8.  EPILOGUE 

This last chapter concludes the thesis by presenting the synopsis of our work 

from the perspective of how it advances the state of the art. The chapter 

continues with a section presenting ideas for future work focusing on plans for 

improvements and further evaluation. 

8.1. Synopsis 

This section aims to clearly set out the novelty and advancement of the state of 

the art deriving from this thesis. There are numerous middleware approaches 

for integrating MAS AI to sensor (and potentially actuator) networks. In this 

thesis we are looking for a middleware approach with the following 

characteristics (which are also the aims of the thesis): 

1. Capability to integrate software agent functionality with a SAN.  

2. The framework should be systematic in the way it integrates software agent 

functionality with sensors and actuators. 

3. The framework should be transparent to the system developers in the way it 

integrates software agent functionality with sensors and actuators.  

4. The framework should support multiple MAS platforms. 

5. The framework should support heterogeneous sensors, actuators and 

devices. 

We reviewed numerous middleware approaches in the search for a middleware 

that simultaneously features all 5 characteristics. In particular we identified 

three categories of middleware that can integrate MAS AI with SAN: agent-

based SAN / WSN middleware, SAN / WSN middleware that support 

integration with external resources such as a MAS and high-level middleware 

for pervasive systems. Having reviewed middleware from each category in 

sections 2.2, 2.3 and 2.4 we identified a paucity of middleware frameworks (see 

section 2.5) that satisfy all aims of the thesis simultaneously.   
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We therefore set a number of objectives (see section 1.3) for studying the 

problem and providing and evaluating a novel solution that would advance the 

state of the art with a middleware that satisfies all of the aims of the thesiss. 

We used the Z-notation [45] to specify a framework (chapter 4) for a 

middleware that fulfils the aims of the thesis as stated above (objective I). We 

implemented eVATAR based on the Z-Notation framework (chapter 5) 

satisfying objective II. To achieve objective III we then implemented a case 

study using eVATAR, the GOLEM MAS platform, the JADE MAS platform and 

sensors and actuators embedded in a miniature smart home (see chapter 6 and 

section 6.1). In this setting we implemented two scenarios, a security scenario 

using GOLEM and a simpler “light control” scenario using a JADE agent. These 

scenarios provided with evidence that eVATAR achieves the aims of the thesis. 

Thus we inferred that by using the Z-Notation framework of chapter 4 we 

specified the functionality of eVATAR, a middleware that fulfils the aims of the 

thesis.  This way we also provided evidence for the Z-Notation framework.  

To further test and evaluate our approach we created a test suit (see objective IV 

in section 1.3) consisting of a smart home simulation and GOLEM (section 6.2). 

We then implemented a scenario that shows in simulation the potential of our 

approach in providing useful services in our everyday lives (in our case saving 

on electricity consumption). This simulation was also used to measure latency 

in controlled environment tests (objective V) leading to useful insights 

regarding the implementation of eVATAR and in particular the trade-off 

between performance and scalability (section 7.1). 

 Finally, in section 7.3 we compared eVATAR to other approaches (objective VI) 

and summarized how we advance the state of the art by adding a novel 

middleware solution achieving all the aims of the thesis. We also provided with 

a comparative table (Table 7-3) showing the fusion of technologies that were 

used to implement eVATAR being contrasted to other systems in Table 7-3 that 

implement different technological approaches. This combination of 

technologies and features could be used as a starting point by developers that 

could potentially attempt the development of a similar middleware with similar 
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aims. We also identified a number of issues that will be confronted as part of 

our plans for future work. 

8.2. Future Work 

As future work, we intend to confront the issues identified in the thesis as well 

as to extend the scope of the connected devices that can be part of our 

architecture. It is also in our plans to further test and evaluate our approach. In 

the following we describe in more detail how we are going to achieve the 

above. 

8.2.1. Performance vs Scalability 

 In chapter 7, we saw a discussion regarding the base layer server 

implementation of eVATAR that follows a multithreaded approach offering 

dedicated connections to DIS but also presenting scalability limitations. As 

future work, we intend to provide with a second implementation of the base 

layer of eVATAR that focuses on scalability using event driven technologies 

such as the one offered by the JAVA Apache “Mina” framework [101] or the 

one of “libuv” [111] (in this case we would either need to use a JAVA port of 

libuv or we would need to port eVATAR in C++). Following a modular 

approach, the intention is to enable system designers to use either of the two 

server implementations by editing a simple configuration file. Depending on 

the requirements of an application, the question that the system designers 

would need to ask would be whether a small overhead is acceptable in favour 

of scalability or whether performance is important on the expense of using 

fewer DIS (enough for most applications as we have seen) as in the current 

implementation. The rest of the functionality of the middleware should remain 

unaffected by this configuration. 
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8.2.2. Continuity of Service 

Furthermore, in 7.2.2 we identified a concern stemming from the use of a broker 

in eVATAR and specifically from the fact that a hardware failure in the host 

machine that runs eVATAR would mean failure of the overall system. 

Hardware problems in host machines are quite common in server applications. 

We intend to investigate the potential of using architectures that utilize High-

Availability (HA) clusters [22]. HA clusters are groups comprising of instances 

of eVATAR running on the same or on distributed hosts (computers, tablets 

etc.). The availability of distributed networked hosts allows for the deployment 

of remote failover mechanisms to further ensure continuity of service. The 

concept for the remote failover is similar to the local one that was described in 

5.1.2 with a key difference. In this case the heartbeat is implemented as a 

request-reply protocol over a TCP connection [49]. The idea is that in the case of 

hardware failure, the distributed interactor software will reconnect to a 

different instance of eVATAR that runs on a different hardware host. 

8.2.3. Expanding the Scope of Supported Devices 

In addition to the above, we intend to use different technologies for the 

eVATAR API that is currently implemented as a JAVA Jar. The JAVA version of 

the API is well suited for platforms that support Java. Despite this, there is a 

need for support of platforms that are not running the JAVA virtual machine 

(JVM) and also a need for addressing the concerns regarding the memory and 

processing power overhead of installing JAVA on software that control 

distributed sensors and actuators. This leads to a requirement for an alternative 

implementation of the eVATAR API as a dynamic library. Any 

platform/programming language that supports TCP connectivity and basic 

XML parsing should be able to implement an API that can connect to and 

exchange messages with eVATAR 

This implementation will be using C++ to follow an object oriented design that 

is similar to the one that was presented above for the JAVA version of the 
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eVATAR API. Two types of dynamic libraries should be implemented: a 

“shared object” for Linux based systems [100] and a “dynamic-link library” for 

the Microsoft Windows operating system [114]. The C++ implementation will 

be exposed by the dynamic libraries to calling applications (the distributed 

interactor software) using a low-level C based interface in order to further 

ensure portability. In terms of functionality, all versions of the API should be 

identical and it is up to the system developer to decide which one would be 

better suited for a particular implementation setting.  

PUCK [117] offers an interesting approach for an alternative way of integrating 

devices with MAS AI via eVATAR which can expand the scope of eVATAR 

with regards to the platforms it can use. PUCK is part of OGC-SWE framework 

(OGC Sensor Web Enablement standard) and it is a simple standard command 

protocol that automates the process of installing, configuring and operating 

devices by physically storing information about a device within the device 

itself.  

It features a simple protocol that defines a small “datasheet” that can be 

retrieved from devices that support PUCK and contains identifying metadata. It 

also stores additional information in the “payload” that is also accessible from 

the device. The payload can contain any type of information. Using a BIL 

description as a PUCK payload allows us to describe an instrument’s command 

protocol in a standard way (a similar approach has been followed by using 

SensorML [123] payloads [117]). This way we describe such instruments as 

service providers. By doing this, eVATAR should in principle be able connect to 

any PUCK enabled instrument that is described by this file. In terms of 

connectivity between the devices and eVATAR, PUCK allows connectivity over 

RS-232 interface or over TCP/IP using an Ethernet cable. As part of our future 

work plans we are going to adapt eVATAR to accept such connections over 

TCP/IP and this way enable agents to control the PUCK compliant instruments 

via eVATAR. Thus the scope of the devices that can use eVATAR is extended to 

devices that are PUCK compliant. By doing this we enable agent AI to be 
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integrated via eVATAR to a whole new range of applications in the field of 

maritime observations. 

8.2.4. Deployment - Usability 

The limited availability of hardware and testing environments during the 

writing of the thesis was a problem we had to confront.  Whilst the case studies 

and the performance testing proved quite successful in terms of allowing us to 

review the proposed framework for UAs and eVATAR using real 

sensors/actuators and a simulation, it would be important to evaluate eVATAR 

in an even more realistic world scenario deployment e.g. in a smart home with 

a human inhabitant, in a museum or in a smart city context. Furthermore, as 

part of our future work plans we intend to use eVATAR with as many 

technologies of 3.2.2 as possible to identify potential issues and improve 

eVATAR in terms of heterogeneity support. 

The question around usability investigates the steepness of the learning curve 

of the middleware. It is not uncommon in modern middleware to see such level 

of complexity where only a few of experts have the experience and skills to use 

them in terms of application design. The philosophy behind eVATAR strives 

for the exact opposite. To remove complexity from the task of integrating MAS 

with sensor networks and therefore it strives for a simple to use API. Poorly 

designed or complex APIs would negate the whole purpose of using eVATAR. 

As a part of the future work with eVATAR, we anticipate that eVATAR will be 

evaluated in terms of usability by system designers that will use it in their 

applications. 

8.2.5. From BIL to a SensorML ontology 

SensorML (Sensor Model Language [123], [124]) is an international standard 

and it is also part of the Open Geospatial Consortium (OGC) Sensor Web 

Enablement (SWE) [35] standards. It is an extensible Markup Language (XML) 

representation used to describe different aspects of sensor (and actuator) 



 189 

systems including process model, process chain, connections and system 

physical layout among others (for more details see [123]). The Component 

element of SensorML is used for transforming information from one format to 

another. The ProcessModel element is a simple atomic process providing a 

functional model of a sensor, an actuator or a filter using metadata. It is defined 

using the ProcessMethod element that defines an interface to a process as well 

as its inputs, outputs and parameters. The ProcessChain element is a composite 

processing block consisting of interconnected process models or other process 

chains. 

SensorML supports the implementation of different ontologies. Building on the 

above elements we can build an ontology similar to the one of BIL. In particular 

we can create avatar/agent process chains consisting of process model sensors 

and actuators. Therefore, as part of our future work plans we will investigate 

ways to create the ontology of BIL using SensorML to standardize the process 

and make it more accessible to the research community. 

8.2.6. Security 

A general requirement for middleware that are applied to AmI scenarios, 

including eVATAR, deals with security issues. Numerous novel ways for 

shifting sensitive data within distributed AmI environments in the context of 

integration, collaboration and communication have been proposed and this 

data needs to be protected. Applications using these middleware aspire in 

principle to become integral to the everyday life of people. If they were 

compromised by a malicious source, they could pose a physical danger to the 

same people whose activities they were designed to support. Researchers need 

to address the security issues and this is one of the main concerns that will 

inspire future research with eVATAR. As we have seen eVATAR enables 

localized applications (in local area networks) with the MAS being the single 

point of communication with the outside world. An extra layer of security in 

the MAS would allow the system to communicate with the internet and become 

part of larger architectures without allowing direct access to local sensors and 
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actuators and hence compromising their security (as also mentioned above in 

the discussion about using eVATAR in an IoT context). 

8.2.7. Enabling Robots To Access Virtual Reality 

So far we have seen connections in which software agents control avatars. The 

idea here is to investigate the potential of using eVATAR also for: 

a) robots using software/virtual agents and 

b) in the same application, robots controlling software agents as well as 

agents controlling robotic bodies or sets of sensors and actuators in the 

physical world (being the avatars as described in the approach of this 

thesis). 

What is important here is which entity has the control and which entity or set of 

sensors and actuators constitutes the avatar body. 
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APPENDIX A 

A-1 

Describing sets that represent aspects of the middleware: 

 INTERACTOR_IDENTIFIERS: a set of identifiers for the agent/avatar 

interactors. They are used in order to register agent and avatar interactors in 

the system. 

 ENTITY_IDENTIFIERS: The set of unique identifiers for agents and avatars. 

 SERVICE_DESCRIPTIONS: the set of avatar and agent interactor 

descriptions that describe them as service providers or service consumers. 

They refer to metadata registration descriptions that are stored as part of the 

metadata of interactors in the interactor metadata registration list (see 

section 3.3).  

 BINDING_TYPE: the “BINDING_TYPE“ set provides values that instruct 

the middleware on how to bind agents with avatars. Targeted binding 

connects agent interactors to specific avatar interactors while “agnostic” 

binding allows the middleware to decide which agent interactors will 

connect to which avatar ones.  

 TARGET: the set of all target identifiers that are used if the binding_type is 

“targeted”. Not applicable for agnostic binding and the value would be -1. 

 ENTITY_TYPE: declares the entity type which can be an agent or an avatar. 

 INTERACTOR_TYPE: declares the interactor type which can be a sensor or 

an actuator. 

 SERVICE_TYPE: declares whether the interactor presents service provider 

or a service consumer functionality. 
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 MESSAGES: the set of messages that are received by the middleware from 

the agent/avatar actuators and sensors. They refer to the messages created 

using meta-language as required by 3.4.1. 

 OUTCOME: the set containing exactly two values, “ok” and “fail”. They are 

used in the specification to represent successful or failed operations and 

actions. 

A-2 

Describing the basic sets that represent the main aspects of the API: 

 INTERACTOR_IDENTIFIERS: a set for all the unique interactor identifiers 

in the system. 

 ENTITY_IDENTIFIERS: the set of unique identifiers for agents and avatars. 

 METADATA: a set of metadata descriptions. A metadata description is a 

collection of data elements that describe agents, avatars and their 

interactors. 

 SERVICE_DESCRIPTIONS: metadata descriptions that describe the services 

that interactors offer or consume.  

 MESSAGES: messages to and from the middleware. 

 DIS_INPUT_DATA: a set of values that describe interactor activity at 

runtime. They are passed to the API by the DIS when it uses the API to send 

a message to the DIS that is bound to it (via the middleware). For example 

physical sensors send sensory data request messages, agent sensors receive 

sensory data messages, agent actuators send action request messages and 

physical actuators receive action request messages. 

 INTERACTOR_TYPE: set with values for describing the type of the 

interactor: {“sensor”, “actuator”) 

 BINDING_TYPE: set with elements used for instructing the middleware on 

how to bind entities from one system to entities in another system. Targeted 
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binding connects interactors in one system to specific interactors in the other 

system as selected by the system designer. The “agnostic” binding allows 

the middleware to decide the binding of the interactors autonomously and 

without user involvement. Set values:{”targeted”,  “agnostic”} 

 TARGET: if the binding_type is “targeted” it provides the middleware with 

a target identifier value. Not applicable for agnostic binding, the value 

would be -1. 

 ENTITY_TYPE: the entity type set which can have the elements: {“agent”, 

“avatar”}. 

 SERVICE_TYPE: the service type set which can have the elements: 

{“provider”, “consumer”}. 

 OUTCOME: the set containing exactly two values, “ok” and “fail” that will 

be used in the specification to represent successful or failed 

operations/actions. 

 

A-3 

The basic functions of the middleware API are described in the following table.  

 idToMetaData: adding the identifier of the interactor to metadata. 

 typeToMetaData: adding the type of the interactor (sensor/actuator) to 

metadata. 

 bindingTypeToMetaData: adding the binding type of the interactor 

(targeted/agnostic) to metadata. 

 targetToMetaData: adding the target value of the binding to metadata. 

 entityIdToMetaData: adding the id of the entity that the interactor is a 

member of to metadata. 
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 entityTypeToMetaData: adding the type of the entity (agent/avatar) that 

bares the particular interactor to metadata. 

 bodyIdsToMetaData: adding the set consisting of all interactor identifiers 

of the entity (agent/avatar) that bares the current interactor to metadata. 

 serviceTypeToMetaData: adding the service type of the interactor 

(provider/consumer) to metadata. 

 serviceDescriptionToMetaData: adding the service description data 

representation to metadata. Used in the registration description 

messages. 
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APPENDIX B 

B-1 

BIL uses the standard namespace. The URI associated with this namespace is 

the Schema language definition with the standard value 

“http://www.w3.org/2001/XMLSchema”. 

Schema 1:  XML Schema Definition (XSD) for BIL 

descriptions  

XML Schema Definitions for BIL interactor description, as acquired from the 

bilDescription.xsd: 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name="bilDescription"> 

  <xs:complexType> 

    <xs:sequence> 

 

<xs:element name="bilinfo"> 

        <xs:complexType> 

          <xs:sequence> 

            <xs:element name="interactorType" type="xs:string"/> 

      <xs:element name="entityType" type="xs:string"/> 

      <xs:element name="entityID" type="xs:string" 

minOccurs="0"/> 

<xs:element name="body"> 

        <xs:complexType> 

          <xs:sequence>       

<xs:element name="sensor" type="xs:string" minOccurs="0" 

maxOccurs="unbounded"/> 

<xs:element name="actuator" type="xs:string" minOccurs="0" 

maxOccurs="unbounded">        

          </xs:sequence> 

        </xs:complexType> 

      </xs:element>      

      <xs:element name="communicationType" type="xs:string"/> 

  <xs:element name="bindingType" type="xs:string"/> 

  <xs:element name="target" type="xs:string"/> 

    </xs:sequence> 

        </xs:complexType> 

      </xs:element>       

 

<xs:element name="Service"> 
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        <xs:complexType> 

          <xs:sequence> 

<xs:element name="ServiceType" type="xs:string"/> 

<xs:element name="Attribute" type="xs:string" minOccurs="0" 

maxOccurs="unbounded"/> 

  </xs:sequence> 

        </xs:complexType> 

      </xs:element>      

 

    </xs:sequence> 

    <xs:attribute name="InteractorID" type="xs:string" 

use="required"/> 

  </xs:complexType> 

</xs:element> 

</xs:schema> 

Figure B-0-1. BIL interactor description XSD. 

 

We see in the above figure: 

<xs:element name="entityID" type="xs:string" minOccurs="0"/> 

The minOccurs="0" means that this element is optional. In general eVATAR 

does not necessarily need the bilentity xml documents for avatars. Especially in 

the case of smart homes consisting of independent devices, sensors and 

actuators all of them may register to eVATAR without declaring a relationship 

to an avatar body. eVATAR will group them into an avatar body and assign 

them an avatar identifier. 

Schema 2: XML Schema Definition for BIL messages 

<?xml version="1.0" encoding="ISO-8859-1" ?> 

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"> 

<xs:element name="bilmessage"> 

  <xs:complexType> 

    <xs:sequence> 

 

 <xs:element name="entityType" type="xs:string"/> 

<xs:element name="entityid" type="xs:string"/> 

<xs:element name="InteractorID" type="xs:string"/> 

 

<xs:element name="Service"> 

        <xs:complexType> 

          <xs:sequence>       

<xs:element name="ValueInt" type="xs:integer" minOccurs="0"/> 

 <xs:element name="ValueLong" type="xs:long" minOccurs="0"/> 

 <xs:element name="TEXT" type="xs:string" minOccurs="0"/> 

<xs:element name="XML" type="xs:string" minOccurs="0"/> 

      <xs:element name="StatusOn" type="xs:string" 

minOccurs="0"/> 
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 <xs:element name="Speed" type="xs:string" minOccurs="0"/> 

      <xs:element name="Temperature" type="xs:string" 

minOccurs="0"/> 

 <xs:element name="Duration" type="xs:string" minOccurs="0"/> 

 <xs:element name="Height" type="xs:string" minOccurs="0"/> 

      <xs:element name="Length" type="xs:string" minOccurs="0"/> 

      <xs:element name="ASSERT" type="xs:string" minOccurs="0"/> 

          </xs:sequence> 

        </xs:complexType> 

      </xs:element>      

 

    </xs:sequence> 

    <xs:attribute name="messageID" type="xs:string" 

use="required"/> 

  </xs:complexType> 

</xs:element> 

</xs:schema> 

Figure B-0-2. BIL message XSD. 

B-2 

Child Elements of “Service” 

 

Element Description 

 

ValueInt 

it takes an integer value. It is typically used to describe a 

sensory data or an actuator control command as an 

integer value. 

ValueLong it takes a long integer value. It is typically used to 

describe a sensory data item or an actuator control 

command as an integer value. 

TEXT it takes a character string value. It is typically used to 

describe a sensory data item or an actuator control 

command as a string. There are no constraint on the 

contents of the string. 

XML it takes a string as a value. Acceptable strings are other 

structured xml documents. 

StatusOn it takes two strings: “ON” and “OFF”. It is typically used 
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to set switch actuators on and off. 

Speed it takes a string as a value. Acceptable strings are: 

“FAST”, “SLOW”, “MODERATESPEED”. 

Temperature sensor, it takes a string as a value. Acceptable strings are: 

“HOT”, “COLD”, “MODERATETEMP”. 

Duration actuator, it takes a string as a value. Acceptable strings 

are: “LONGDURATION”, “SHORTDURATION”, 

“MODERATEDURATION”. 

Height sensor, it takes a string as a value. Acceptable strings are: 

“HIGH”, “LOW”, “AVERAGEHEIGHT”. 

Length it takes a string as a value. Acceptable strings are: 

“LONG”, “SHORT”, “MODERATELENGTH”. 

ASSERT it takes a string as a value. Acceptable strings are: “YES” 

and “NO” 

DATA Used for fine grain communication. 

Signifies that we will not be using the BIL XML 

command but instead we will be sending data types in 

chunks of bytes. “DATA” takes as an input a text in XML 

format with information regarding the data that will be 

sent including data_type (e.g. integer values), name and 

size.  

DATA_COMMAND Used for fine grain communication in conjunction with 

“DATA”. The DATA_COMMAND is used to signify the 

beginning and the end of the fine grain transmission. It 

takes string values: “START”, “END”. It is sent right after 

the DATA message. Sending data in bytes will speed up 

the interaction and its more suitable for fine grain 

communication. 

Table B-0-1. Describing the child elements of the “Service” tag for the BIL message. 
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B-3 

eVATAR Base Layer UML classes 

In this section we see the detailed UML classes that correspond to Diagram 5-3. 

 

Diagram B-1. The “evatarMain” class. 
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Diagram B-2. The “initialization” class. 
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Diagram B-3. The “connectionServer” class. 
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Diagram B-4. The “connectionLoop” class. 
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Diagram B-5. The “connectionData” class. 
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Diagram B-6. The “messageQueue” class. 
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Diagram B-7. The “registrationManager” class. 
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Diagram B-8. The “registrationRepository” class. 
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Diagram B-9. The “bil” class. 
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Diagram B-10. The “runEVATAR” class. 
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eVATAR API UML classes 

In this section we see the detailed UML classes that correspond to Diagram 5-4. 

 

Diagram B-11. The “evatarAPI” class. 
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Diagram B-12. The “bil” class. 
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Diagram B-13. The “configuration” class. 
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Models Package UML classes 

 

In this section we see the detailed UML classes that correspond to Diagram 5-5. 

 

 

Diagram B-14. The “entityModel” class. 
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Diagram B-15. The “interactorModel” class. 
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Reflection functionality package UML classes 

In this section we see the detailed UML classes that correspond to Diagram 5-6. 

 

Diagram B-16. The “reflectionMain” class. 
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Diagram B-17. The “modelBuilder” class. 
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Diagram B-18. The “entityModelRepository” class. 
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Diagram B-19. The “interactorModelRepository”. 
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Diagram B-20. The “reflectiveBinding” class. 
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Diagram B-21. The “ubiquitousAgent” class. 
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Diagram B-22. The “UARepository” class. 
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Diagram B-23. The “connectionMonitor” class. 
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APPENDIX C 

C-1 

RoboHome Avatars: 

1st Avatar - Electricity consumption monitoring: 

Sensors  

Total 11 

 6 Electricity consumption Sensors from Light in 6 rooms 
(kitchen, living room, bedroom, corridor, toilet and 
laundry). 

 Electricity consumption of TV (in use and standby). 

 Electricity consumption of Sound System (in use and 
standby). 

 Electricity consumption of Blu ray-media player (in use and 
standby). 

 Electricity consumption of washing machine. 

 Electricity consumption of dishwasher. 
 

We can tell if a device is on, off or standby mode based on the 

current between the wall socket and the device. 

 

2nd Avatar – Energy Consumption Conserving: 

Sensors 

Total 7 

 This agent is equipped with 6 presence sensors (one for 
every room), they could be either motion detection sensors 
in the entry of a room or we just call them presence sensors 
(there many ways of doing this).  

 A sensor that receives the current time of this world. 

Actuators 

Total 11 

 6 power on-off actuators to control the lights. 

 3 ON/OFF/Standby actuators for the blu-ray player (media 
centre), sound system and TV. The standby is achieved by an 
off followed by an on (when he comes back home). The 
requirement here is that when a device is powered from off it 
will go to Standby mode. (Most are.) 

 2 ON/OFF actuators for the dishwasher and the washing 
machine. When the washing is done it should be turned off 
and not remain on until someone comes and turns it off. This 
is achieved using a timer. 
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C-2 

RoboHome GOLEM Agents: 

1st Agent - Electricity consumption monitoring agent: 

 

Description 

 

 

Monitor the Electricity Consumption 

 

 

 

 

 

Goals 

 display in Real Time the Electricity consumption for every 

Device in every room and the total. 

 Record the Electricity consumption for every device in 

every room, the total cost and the time that events happen. 

 Provide information regarding electricity consumption to 

other agents using agent to agent communication 

protocols within GOLEM. This information includes: a) 

identification of the device consuming electricity b) 

identification of the location of the device c) information 

about the time that the consumption started and the time it 

ended d) the power consumption specification of the 

device and the cost (some devices consume more than 

others and at a different cost). This is also related to the 

time of consumption (day and night cost rates). 

 Graphically Display the graph Cost over time.  

 

 

 

Sensors  

 

 Electricity consumption monitor for lights in SIX rooms 

(kitchen, living room, bedroom, corridor, toilet and 

laundry). 

 Electricity consumption monitor for TV (in use and 

standby). 

 Electricity consumption monitor for Sound System (in use 

and standby). 

 Electricity consumption monitor for Blu ray-media player 

(in use and standby). 

 Electricity consumption monitor for washing machine. 

 Electricity consumption of dishwasher. 

 

Sensors that will not be used for the Avatar relationship: 

 Message Listener, a listener for messages from other 
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agents within the MAS. 

 

Actuators 

 

 Message Sender, sends messages to other agents within 

the GOLEM MAS using GOLEM speech_acts. 

 

 

2nd Agent – Consumption Conserving agent: 

 

Description  

 

Save on electricity consumption  

 

 

 

 

 

 

Goals 

 When leaving the room, if light is left on and the user does 

not return within 10 minutes, it will turn the lights off 

 When the user leaves the house or when he sleeps all 

devices go from standby mode to OFF. When he returns 

(or wakes up) they will go back to StandBy mode. 

Determine sleep if in bedroom for > 1 hrs (this excludes 

devices in bedroom).  

 If the user forgets the thermostat on when he leaves the 

house it will turn it off. 

 Communicate with other GOLEM agents to gather 

information regarding which device is consuming 

electricity at a given time, the duration of the consumption 

and the location of the device within the smart home. This 

information will be used to update the agents view of the 

system (variables describing the smart home device 

statuses). This view if the system is used by policies 1, 2 

and 3. 

 Inform User of actions. UI showing presence at any time 

and potential Actions taken. 

 Record actions and time of actions. 

 

Sensors 

 

 

 This agent is equipped with 6 presence agent sensors (one 
for every room). 

 A sensor that receives the current time of the real world. 
This will be useful for the calculations of how long 
something has been on etc. 
 

Sensors that will not be used for the Avatar relationship: 

 Message Listener. It is a listener for messages  from other 
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agents within the MAS. 

 

 

Actuators 

 

Actuators that will be used in the UA: 

 6 power on-off actuators to control the lights.  

 3 ON/OFF/Standby actuators for the blu-ray player 
(media centre), sound system and TV. The standby is 
achieved by an off followed by an on (when he comes back 
home).  

 2 ON/OFF actuators for the dishwasher and the washing 
machine. When the washing is done it should be turned 
off and not remain on until someone comes and turns it 
off. This is achieved using a timer. 

 
 
Actuators that will not be used in the UA: 

 Message Sender, sends messages to other agents within 
GOLEM. 

 

 

C-3  

Simulation Values and Costs: 

 

 

 

 

 

 

 

 

Figure C-0-1. Calculation of electricity consumption and related costs for a device. 

EC = (tmsec / 3600) * (itemWattage / 1000)   

EC is the electricity consumption in kwh (kilowatt per hour). 

tmsec the amount time that the light or device has been running in seconds divided by 3600 so we can get 

the hours. 

itemWattage is the watt specification of the device divided by 1000 to get the kw that the device consumes. 

 

And: 

Cost = EC * (CostKWpH * / 100) 

Cost is the cost of the electricity that has been consumed so far by the particular device.                      

EC is the electricity Consumption                                           

CostKWpH is the cost in p of 1kw per one hour divided by 100 so we can get the cost in GBP. 
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C-4 

A description of the activities that are recognized and the UAs’ reactions to 

them: 

a) If no motion activity is sensed by the camera sensor, the agent will control 

the light actuators in a way that the house appears to be habited to an 

external observer. In other words, it will switch them on and off regularly.  

b) If we position a toy-person inside the house, the agent will recognize the 

movement activity as sensed from the camera sensor and it will react to it by 

using the light actuator to turn the light on and the speaker actuator to 

request a password.  

c) It will then use the keyboard sensor to receive the password. 

d)  If the password is incorrect or if a timeout expired before entering it, the 

following actions will be performed: i) the UA will use the speaker actuator 

to sound an alarm while also playing a pre-recorded message to discourage 

the intruder from remaining in the premises, ii) it will use the camera sensor 

to acquire a photo of the intruder and send it to the user and the “police” via 

the email actuator.  

e) Alternatively, if the keyboard activity is recognized as a successful input of 

the correct password, the UA will use the speaker actuator to welcome the 

toy-person and it will use the light actuators to perform light control 

management based on the toy-persons’ location within the miniature house. 

We notice that to create useful rules, we typically need to create complex 

activity recognition while taking into account an order of precedence regarding 

which rule will apply its actions when two or more rules are satisfied. For 

example to determine whether the toy-person is an intruder we would need to 

have already recognized both the movement activity and the wrong password 

activity leading to the deterring actions of d). On the other hand, if the 
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movement activity was detected for the first time and no password had been 

requested, the action would have been different (password request action). 

C-5 

The probability function of the “Random Number Generator” component will 

reach to a decision while taking into account of the weight that has been 

attached to the particular event. The weight is an integer between 1 and 100.  

UB is the upper bound indicating the weight for an event: 

  Integer UB, UB ∈ (1, 100) 

 The random variable X has the probability distribution N(1,100): 

X ~ N(1,100)  

N is a discrete uniform distribution where all values from 1 to 100 are equally 

likely to be observed (every one of n values has equal probability 1/100).  If X is 

less than the Upper Bound UB then the event will occur otherwise it will be 

discarded. The equation below describes the logic behind the probability 

function. 

 

Equation 4:  

X < UB? Event Occurs: Event Discarded 

This means that if we attach a larger weight (upper bound) to an event it will be 

more likely for it to happen. The weights are decided by the system developer 

that uses the RoboHome platform. 

The implementation uses the JAVA “Random” class to produce “pseudo-

random” uniformly distributed   integer values. (For more information, see the 

Random class documentation [122]). 

 

C-6 

UB is the upper bound for the duration of the particular event: 
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Integer UB 

 LB is the lower bound for the particular event: 

  Integer LB, LB < UB 

The random variable D has the probability distribution N(LB, UB): 

Equation 5:  

D ~ N(LB, UB)  

N is a discrete uniform distribution where all values from LB to UB are equally 

likely to be observed (every one of n values has equal probability 1 / (UB-LB). 

The D variable is the returned duration for the particular event. 

The implementation uses the JAVA “Random” class to produce “pseudo-

random” uniformly distributed   integer values. (For more information, see the 

Random class documentation [122]). 



 229 

APPENDIX D 

D-1 

The following table shows the numbers of agents, avatars and interactors that 

are being served by eVATAR as they increase in time during the execution of 

the test that was illustrated in Figure 7-1.  

 

Time in seconds Connections & Threads Agents Avatars Interactors 

60 2 1 1 2 

6120 62 2 2 62 

12180 122 3 3 122 

18240 182 4 4 182 

24300 242 5 5 242 

30360 302 6 6 302 

36420 362 7 7 362 

42480 422 8 8 422 

48540 482 9 9 482 

54600 542 10 10 542 

60660 602 11 11 602 

66720 662 12 12 662 

72780 722 13 13 722 

78840 782 14 14 782 

84900 842 15 15 842 
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