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Abstract 
Field measurements of the Hemispherical-Conical Reflectance Factor (HCRF) 

of Arctic snow-covered tundra were carried out using the GonioRAdiometric 

Spectrometer System (GRASS); over the viewing angles 0° to 50°, for the 

wavelength range 400 nm to 1300 nm. The HCRF measurements agreed well 

between sites where the snowpack was smooth and snow depth was greater 

than 40 cm, with a relative standard deviation of less than 10 % for backward 

and near nadir viewing angles. The site with the largest roughness elements 

had no forward peak and had a strong asymmetry in the HCRF with respect to 

the solar principal plane. The Conical-Conical Reflectance Factor (CCRF) of 

laboratory-generated sea ice was measured for the viewing angles 0° to 60°, for 

the wavelength range 410 nm to 730 nm. The CCRF of sea ice and the 

averaged HCRF of snow had forward scattering peaks, and an anisotropy that 

was strongly wavelength dependent; with the relative strength of the forward 

peak typically increasing with wavelength. The radiative-transfer model, 

PlanarRad, was able to reproduce the CCRF of the sea ice with a root-mean-

squared-error (RMSE) of less than 9 %, with differences in the reflectance 

factors of typically less than 0.05. The change in the hemispherical reflectance 

of Spectralon over the 19 °C phase transition of PTFE was calculated by 

measuring the change in the output flux from a temperature-controlled 

Spectralon integrating sphere at 633 nm. The relative change in hemispherical 

reflectance was calculated as 0.09 ± 0.02 %, and the change in output flux was 

1.82 ± 0.21 %. The change in the hemispherical reflectance of Spectralon is 

small, but the effect is amplified for integrating spheres; thus the influence of the 

phase transition on PTFE based integrating spheres should be considered for 

operating temperatures near to the 19 °C PTFE phase transition temperature.  
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Chapter 1  

Introduction 

1.1 Aims of this study 

The thesis aims to investigate the bidirectional reflectance (BRDF) of snow and 

sea ice through the use of ground-based field and laboratory methods. There 

are 3 core areas of focus within the thesis; (1) the characterization of the 

bidirectional reflectance of Arctic snow covered tundra at large solar zenith 

angles using the GonioRAdiometric Spectrometer System (GRASS) (Ball et al., 

2015); (2) the characterization of the bidirectional reflectance of laboratory 

generated sea ice, using a specially designed laboratory goniometer and the 

Royal Holloway sea ice simulator; and (3) an investigation into the temperature 

effects on PTFE reflectors used as reference standards for reflectance (Ball et 

al., 2013). The overarching aim of the study is to contribute to a better 

understanding of the bidirectional reflectance of the cryosphere and the 

methodologies used to determine these properties, through a combination of 

field, laboratory and modeling studies.   
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1.2 The cryosphere, solar radiation and climate 

The Earth’s polar regions experience extreme cold temperatures owing to their 

distance from the equator, these regions are collectively know as the 

cryosphere; derived from the greek ‘krios’, meaning cold. In the Northern 

Hemisphere, snow covered area varies from approximately 4 million km2 in 

August to around 45 million km2 in January (Warner et al., 2009; Rees, 2006). 

While sea ice cover varies from around 8 million km2 in September to around 

15 million km2 in March (Rees, 2006). At its maximum extent, snow and sea ice 

typically covers about 30 % of the total global land surface area, and 4 % of 

the total sea surface area respectively. Snow cover area and sea ice extent are 

highly variable seasonally and annually (Dye, 2002), and both are in long term 

decline (Stroeve et al., 2007; Comiso et al., 2008; Groisman et al., 1994).  

 

Owing to the spatial extent of the cryosphere and its high reflectivity of short 

wave incident solar radiation its albedo is an important parameter in Earth 

energy budget calculations and global climate models (Qu and Hall, 2005; 

Flanner et al., 2011). The broadband albedo is the proportion of incident energy 

reflected from a surface integrated over all directions and over the solar 

spectrum, or more precisely, the hemispherical and wavelength integrated 

reflectance. The albedo of snow can be in excess of 0.9 at UV and visible 

wavelengths (Grenfell et al., 1994), which is approximately a factor of ten 

greater than that for open ocean, and a factor of 5 greater than that of bare 

ground (Weller and Holmgren, 1974).  Mean cryospheric radiative forcing in the 

Northern Hemisphere was estimated by Flanner et al. (2011) as –4.6 W m-2 to –

2.2 W m-2, with a peak in May of about –9.0 ± 2.7 W m-2. The presence of light 

absorbing impurities in snow and sea ice reduces the albedo of the cryosphere 

(Hansen and Nazarenko, 2004; Warren and Wiscombe, 1985), as does a thinner 
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snowpack (Wiscombe and Warren, 1980)  and the decreasing proportion of 

multiyear  sea ice (Perovich and Polashenski, 2012). Reduction in the albedo of 

the cryosphere leads to increased absorption of solar radiation and positive 

radiative forcing, which results in a positive feedback mechanism, whereby 

warming – as a result of decreased albedo – leads to a further reduction in 

albedo (Curry and Schramm, 1995; Hall, 2004; Box et al., 2012; Perovich et al., 

2008). Cryospheric albedo feedback is likely to have contributed to the 

dramatic rise in Arctic near-surface air temperatures observed in recent 

decades (Screen and Simmonds, 2010).  

 

It is becoming increasingly important to accurately monitor the surface 

radiation balance of the cryosphere to: (a) provide realistic inputs into global 

climate and snowmelt runoff models, as surface melting and ice discharge 

rates from glaciers continues to increase (Rignot et al., 2008; Velicogna, 2009); 

and (b) detect anthropogenic effects and feedback processes on surface 

albedo given a background of natural variability (Fox et al., 2011).  

1.3 Remote sensing of cryospheric albedo 

Passive remote sensing by spaceborne radiometers such as the Landsat 

Enhanced Thematic Mapper (ETM+), the Moderate Resolution Imaging 

Spectroradiometer (MODIS) and the Visible Infrared Imaging Radiometer Suite 

(VIIRS) offer the unique ability to monitor the albedo of vast inaccessible regions 

of the Earth – such as the cryosphere – at unprecedented spatial and temporal 

resolution. Daily global surface reflectance products are widely available for 

MODIS, VIIRS and ASTER, at a spatial resolution of 500 m, 375 m and 15 m 

respectively. Landsat ETM+ provides surface reflectance products with 16-day 

repeat cycles at 30 m resolution. 
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1.4  Derivation of albedo from satellite radiometers  

A large number of studies have derived cryospheric surface radiation conditions 

through passive remote sensing by spaceborne radiometers (Hall et al., 1992; 

Dozier, 1984; Painter et al., 2009; Schaaf et al., 2002b; Zhonghai Jin and 

Simpson, 2000; Stroeve et al., 1997; Stroeve et al., 2006; Lindsay and 

Rothrock, 1994; Wright et al., 2014; Wanner et al., 1997; Masek et al., 2006; 

Box et al., 2012). Early studies of snow reflectance were able to derive the at-

satellite, or planetary reflectance, by assuming the reflected radiance was equal 

in all directions (i.e. the target was a Lambertian reflector) (e.g. Koelemeijer et 

al., 1993; Hall et al., 1992; Hall et al., 1990; Dozier, 1984). The calculation 

required knowledge of the at-sensor radiance, and the amount of radiation 

incident at the top of the atmosphere, which was calculated from the known 

properties of solar radiation and the distance from the Sun to the Earth; the 

planetary reflectance is given by (Rees, 2006): 

 ρ p =
πL

Es cos(θ s )
 Eq. 1.1 

where L  is the radiance measured by the sensor, Es  is the solar 

exoatmospheric irradiance and θ s  is the solar zenith angle.  By integrating  

and  over the solar spectrum (approximately 300 nm to 2500 nm), 

becomes the broadband planetary albedo (König et al., 2001).  

 

The vast majority of satellite sensors measure radiance in narrow spectral 

bands, thus a variety of approaches have been developed to convert 

narrowband to broadband radiance (Knap et al., 1999; Li and Leighton, 1992; 

Hall et al., 1989; Choudhury and C Chang, 1979; Song and Gao, 1999). The at-

surface broadband albedo can then be derived by accounting for atmospheric 

L

Es ρ p
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attenuation, which is achieved through the use of atmospheric radiative-transfer 

code such as DISORT (Stamnes et al., 1988), 6SV1 (Kotchenova et al., 2006), 

or MODTRAN (Berk et al., 1999).  

 

The assumption of a Lambertian reflector in Eq. 1.1 is invalid for snow and sea 

ice, which scatter incident radiation strongly in the forward direction (Perovich, 

1996; Arnold et al., 2002; Kuhn, 1985; Warren, 1982). The extent of the 

reflectance anisotropy is dependent on the wavelength and incidence angle of 

the incoming solar radiation (Painter, 2004; Bourgeois et al., 2006), and the 

snow physical properties such as grain size, grain shape, density, liquid water 

content, impurity content and surface roughness (Peltoniemi et al., 2005; 

Warren et al., 1998). Solar incidence angles vary according to the time of day, 

season, latitude and the orbital characteristics of the satellite. Satellite sensor 

viewing angles vary according to the swath width and for sensors with specialist 

off-nadir viewing capabilities (e.g. MISR and POLDER). As a result, the radiance 

recorded by the satellite sensor is a function of the viewing angle and solar 

incidence angle. It has been shown that invoking the Lambertian assumption (as 

in Eq. 1.1) can easily result in errors of several percent in the albedo product 

(Knap and Reijmer, 1998; Zhonghai Jin and Simpson, 2000; Jin and Simpson, 

2001; Zhonghai Jin and Simpson, 1999), which is incompatible with uncertainty 

requirements for Earth climate studies (Fox et al., 2011). High accuracy 

derivation of the at-surface broadband albedo requires knowledge of the angular 

distribution of reflected radiation and its wavelength dependence, which is 

quantified by the Bidirectional Reflectance Distribution Function (BRDF) 

(Nicodemus et al., 1977).  
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1.5 BRDF and albedo 

The function that describes the angular distribution of reflected radiation is the 

Bidirectional Reflectance Distribution Function (BRDF). The BRDF describes the 

intrinsic reflectance properties of a surface, or the irradiance incident from one 

direction to its contribution to the reflected radiance in another direction 

(Nicodemus et al., 1977), and is given by, 

  Eq. 1.2 

where is the differential radiance reflected into the azimuth angle φr , and 

zenith angle θr , for a differential irradiance Ei  incident on the surface from the 

azimuth direction φi , and zenith direction θi , λ  is the wavelength. The angles 

and quantities used to define the BRDF are illustrated in Figure 1.1. 

 
Figure 1.1. Angles and quantities required to define the BRDF: Ei is the irradiance from 
the azimuth direction θi, and the zenith direction φi, Lr is the measured radiance in the 
azimuth direction θr, and the zenith direction φr. From Ball et al. (2015).  

When integrated over all reflected and incident angles in the upward 

hemisphere and over a given wavelength range, the BRDF gives the proportion 

of energy reflected from the surface, or its albedo. Many radiative-transfer 

computer codes can be used to calculate the BRDF and the albedo of snow or 

BRDFλ =
dLr (θi ,φi;θr ,φr;λ)
dEi (θi ,φi;λ)

[sr−1]

Lr
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sea ice (Painter, 2004; Mobley et al. 1998). For example, the discrete-ordinates 

radiative-transfer model (DISORT) (Stamnes et al. 1988) has been used to 

calculate the BRDF of snow and applied to correct satellite data for anisotropic 

reflectance in order to derive the surface albedo (Stroeve et al., 2006; Klein and 

Stroeve, 2002; Painter, 2004; Nolin et al., 1994). The MODIS BRDF/albedo 

product is based on a semi-empirical BRDF model and multi-date radiances to 

provide surface albedo products every 16 days (Schaaf et al., 2002a; Strahler 

and Muller, 1999). Hence, with knowledge of the angular distribution of reflected 

radiation – quantified by the BRDF – the albedo can be calculated; but critically, 

the accuracy of the albedo product is ultimately dependent on the accuracy of 

the BRDF model used. The characterization of the BRDF of natural surfaces for 

the validation of BRDF models has thus become a crucial aspect of remote 

sensing research in recent decades. 

1.6  Radiometric concepts and quantities  

Given that the BRDF (Eq. 1.2) is a ratio of infinitesimal quantities, it cannot be 

measured directly. Extension of the BRDF concept to a field or laboratory setup 

requires consideration of the physical constraints of the experiment setup. A 

consideration not always adhered to in the literature, which has led to many 

examples of ambiguous usage of terminology, as identified by Schaepman-

Strub et al. (2006).   To aid in the comparison between theoretical and 

measured quantities a brief overview of radiometric concepts and quantities and 

the nomenclature – as used in this study – is presented here. A detailed 

theoretical framework for reflectance quantities was first given by Nicodemus et 

al. (1977), but the terminology has since been updated and adapted for the 

optical remote sensing case by Martonchik et al. (2000) and Schaepman-Strub 

et al. (2006).  
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1.6.1 Geometric concepts in radiometry 

Fundamental radiometric quantities are based on geometric concepts. Those 

most relevant to the measurements made in this study are introduced in this 

section. 

1.6.1.1 Plane and solid angle 

The concept of plane angle can be extended to three dimensions in order to 

describe how much of a given field of view is taken up by an object. Plane angle 

is defined as the length of an arc l  divided by its radius r : 

  Eq. 1.3 

The angular measure of a full circle is  radians. Solid angle ω  equals the 

ratio of the spherical area A  on the surface of a sphere to the square of the 

radius r : 

  Eq. 1.4 

where ω  is the solid angle. A hemisphere has a solid angle of  steradians 

given that the area of a sphere is .  Figure 1.2 illustrates a patch of 

differential area  on the surface of a sphere.  

 
Figure 1.2. Projection of area onto a sphere 

θ = l
r
[rad]

2π

ω = A
r2
[sr]

2π

4πr2

dA
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The differential spherical area  on the surface of the sphere is given by: 

  Eq. 1.5 

where  is the angle between the surface normal and the area projected on the 

sphere,  and  are the angular increments in zenith and azimuth 

respectively, and r  is the radius. Combining Eq. 1.4 and Eq. 1.5 gives the 

differential solid angle : 

  Eq. 1.6 

The solid angle  is a function of  as the great circles (lines of constant 

azimuth) converge at the poles of the sphere as shown in Figure 1.2. Integration 

of θ  and φ  over the solid angle determines the value of the solid angle:  

 ω = sinθ dθ dφ
θ
∫

φ
∫  Eq. 1.7 

1.6.1.2 Projected area and project solid angle 

Projected area is the area observed when the surface is tilted with respect to 

viewing direction. A surface tilted away from the plane perpendicular to the 

viewing direction will emit less energy towards the observer, or receive less 

energy from the observer, than if it were perpendicular to the viewing direction. 

As a result, the projected area decreases with the cosine of the viewing angle θ  

as shown by Figure 1.3.  

dA

dA = (r sin(θ )dφ)(rdθ )

θ

dθ dφ

dω

dω = (r sin(θ )dφ)(rdθ )
r2

= sinθdθdφ

dω sin(θ )
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Figure 1.3. Representation of projected area 

The projected area  is given by the cosine of the angle between the normal 

and the line of sight, the differential form is: 

  Eq. 1.8 

where  is the true geometric area and  is the angle of inclination between 

the surface normal and the viewing direction. Integration over the surface area 

leads to : 

  Eq. 1.9 

 

Similar to projected area, the projected solid angle is the solid angle ω  

weighted by the cosine of the angle between the surface normal and the viewing 

direction. The projected solid angle is defined as the solid angle projected onto 

the plane at the base of the hemisphere (Palmer, 2010): 

 dΩ = dω cosθ  Eq. 1.10 

where ω  is the solid angle, and θ  is the angle between the surface normal and 

the viewing direction. The surface area on the unit sphere in Figure 1.2 will have 

a smaller projected solid angle for regions of solid angle nearer to the equator, 

as viewed from a flat surface at the base of the hemisphere. A sphere subtends 

Ap

dAp = cos(θ )dA

A θ

Ap

Ap = cos(θ )dA
A
∫



Chapter 1: Introduction 

     32 

2π  steradians of projected solid angle, and a hemisphere subtends π  

steradians of projected solid angle.  

1.6.2 Radiometric units 

Radiometry is the measurement of optical radiation, and the relevant units 

(given in Table 1.1) relate to power, energy and the geometric characteristics of 

the measurement.  

Symbols Description Units 

A  Surface area [m2] 

Φ  Radiant flux (power) [W] 

E  Irradiance [W m-2] 

I  Radiant intensity [W sr-1] 

L  Radiance [W m-2 sr-1] 

M  Radiant exitance [W m-2] 
ρ  Reflectance [dimensionless] 

R  Reflectance factor [dimensionless] 

θ  Zenith angle [rad] 

φ  Azimuth angle [rad] 

ω  Solid angle [sr] 

Ω  Projected solid angle [sr] 

λ  Wavelength [nm] 

Table 1.1. Units used to define quantities in radiometry and optical remote sensing 

Units that relate solely to the optical properties of a medium are known as the 

inherent optical properties (IOPs) (Mobley, 1994), a list of IOPs relevant to this 

study is given in Table 1.2. 

Symbols Description Units 

A  Absorptance [dimensionless] 

 Transmittance [dimensionless] 

 Scatterance [dimensionless] 

a  Absorption coefficient [m-1] 

b  Scattering coefficient [m-1] 

c  Extinction coefficient [m-1] 

T
S
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α  Albedo [dimensionless] 

 Single scattering albedo [dimensionless] 
 Scattering angle [rad] 

βvol  Volume scattering function [m-1 sr-1] 

 Scattering phase function [sr-1] 

k  Imaginary index of refraction [dimensionless] 

n  Real index of refraction [dimensionless] 

Table 1.2. Terms, symbols and units used to describe the inherent optical properties of 
a medium. Adapted from Mobley (1994) 

1.6.2.1 Energy and radiant flux  

Radiant energy Q  is measured in joules (J), whereas radiant flux Φ , or power, 

is measured in watts, which is energy per unit time. Radiant flux can be thought 

of as a derivative of energy: dQ / dt , or the rate of increase of energy over an 

interval of time dt .  

1.6.2.2 Radiance 

Radiance is the elemental quantity of radiometry; it gives an indication of the 

spatial distribution of power in terms of area and direction and is defined as the 

power Φ  per unit area A , and per unit projected solid angle Ω  (Palmer, 2010): 

  L = lim
ΔAs ,Δω→0

ΔΦ
ΔAcosθΔω

⎛
⎝⎜

⎞
⎠⎟ =

d 2Φ
dAcosθdω

= d 2Φ
dAdΩ

 Eq. 1.11 

 

where ω  is the solid angle and θ  is the angle of inclination between the surface 

normal and the viewing direction.  Radiance is a useful quantity because it can 

be used to calculate how much power will be received by an optical system 

viewing a surface from a particular angle of view.  

ω 0

ψ

β pf
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1.6.2.3 Irradiance and radiant exitance 

Irradiance is the radiant flux (power) arriving at a surface from all directions and 

radiant exitance is the radiant flux leaving a surface from all directions. As 

illustrated in Figure 1.4 irradiance  is defined as the power per unit area 

incident from all directions in a hemisphere onto a surface that coincides with 

the base of that hemisphere:  

 E = dΦ
dA

 Eq. 1.12 

where Φ  is the power incident on the surface, and A  is the area of the surface. 

Similarly, the radiant exitance, , is the power per unit area leaving a surface 

into the upward hemisphere.  

 
Figure 1.4. Representation of the radiometric quantities irradiance and radiant exitance 

1.6.2.4 Relationship between radiance and radiant exitance 

Radiant exitance can be calculated from the radiance reflected from a surface 

by integrating the radiance over the projected solid angle of the upward facing 

hemisphere. Given that the hemisphere subtends π  steradians of projected 

solid angle, the radiant exitance M  is 

 M = LdΩ
π
∫  Eq. 1.13 

If the radiance L  is constant with direction (i.e. the surface is a Lambertian 

reflector) then integrating dΩ  over the hemisphere equals π . Thus, the radiant 

E

M
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exitance is the product of the radiance reflected by the surface and π   (Palmer, 

2010):  

 M = πL  Eq. 1.14 

1.6.2.5 Lambertian BRDF 

A Lambertian surface reflects radiance equally into all directions. Its BRDF is 

simply:  

 BRDFlamb (θi ,φi;θr ,φr ) =
ρ
π

 Eq. 1.15 

where  ρ  is the reflectivity of the surface. Lambertian surfaces do not exist in 

nature, but good approximations are matte paper, except at grazing incidence 

angles where the specular component becomes much more dominant in the 

reflected radiance distribution.  

1.6.2.6 Radiant intensity 

Radiant intensity I , sometimes referred to as intensity, is the power emitted per 

unit solid angle in a specified direction: 

 I = dΦ
dω

 Eq. 1.16 

where Φ  is the radiant flux and ω  is the solid angle.  Intensity can be derived 

from the radiance reflected by a surface in a particular direction by integrating 

over the area of the surface: 

 I = LdA
A
∫  Eq. 1.17 

Likewise radiant flux can be found by integrating over the solid angle of the 

detector: 
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 Φ = I dω
ω
∫  Eq. 1.18 

Given that a sphere subtends a solid angle of 4π  steradians, an isotropic point 

source emits a radiant flux a factor of 4π  larger than the radiant intensity.  

1.6.2.7 Lamberts cosine law 

Lambert’s cosine law states that the radiant intensity from a flat surface is 

reduced by the cosine of the observation angle. For the special case of a 

Lambertian surface, the radiance is independent of view angle because the 

observed area that the detector samples is increased by the cosine of the 

observation angle.  

1.6.2.8 Reflectance  

Reflectance, or reflectivity, is a general term referring to how much radiation is 

reflected from a surface, given the conservation of energy its value must be 

between 0 and 1. To add precision to its definition the word “reflectance” should 

be proceeded by two adjectives, one that describes the position of the light 

source, and one that describes the detector (Mobley, 2010). For example, 

Direction-hemispherical reflectance describes the proportion of light reflected 

from a particular direction into the entire hemisphere. Whereas hemispherical-

directional reflectance describes the proportion of light reflected from the entire 

hemisphere into a particular direction (Schaepman-Strub et al., 2006). The 

various reflectance quantities relevant to this study are defined in the following 

sections.   
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1.6.2.9 Bihemispherical reflectance (albedo) 

The bihemispherical reflectance, generally called albedo, is used to describe the 

proportion of radiant flux reflected by a surface into the entire hemisphere, to the 

radiant flux incident on a surface from the entire hemisphere. Bihemispherical 

reflectance is thus the ratio of radiant exitance to irradiance. Following the law of 

energy conversation, the bihemispherical reflectance must be between 0 and 1.  

1.6.2.10 Reflectance factors 

Measuring the directional reflectance properties of a surface usually involves 

measuring the reflectance factor. A reflectance factor is the ratio of radiant flux 

reflected by a surface to that reflected into the same beam geometery for a 

given wavelength range by a lossless Lambertian reflector, irradiated under the 

same conditions. A Spectralon panel is commonly used to approximate a 

lossless Lambertain reflector as it exhibits near Lambertian reflectance over the 

UV-VIS-NIR region of the spectrum (350 nm to 1700 nm) and is chemically inert 

making it suitable for field use (Springsteen, 1999; Weidner and Hsia, 1981). 

Reflectance factors can reach values greater than 1, especially for strongly 

forward scattering surfaces such as snow and sea ice (Painter, 2004; Bourgeois 

et al., 2006).  

 

The bidirectional reflectance factor (BRF) is commonly used to describe the 

proportion of reflected radiant flux as a function of illumination and viewing angle 

(Schaepman-Strub et al., 2006): 

  Eq. 1.19 

where Φr  is the radiant flux reflected in to the zenith angle θr  and azimuth 

angle φr , for the incident zenith angle θi  and the incident azimuth angle φi , Φr
id  

BRF(λ) = dΦr (θi ,φi;θr ,φr;λ)
dΦr

id (θi ,φi;λ)
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is the radiant flux reflected by a lossless Lambertian reflector.  Given that a 

Lambertian surface reflects the same radiance in all directions the view zenith 

and azimuth angles are omitted from the denominator in Eq. 1.19. The BRDF 

can be obtained from the BRF by dividing the BRF by π (Schaepman-Strub et 

al., 2006). 

 

The hemispherical directional reflectance factor (HDRF) is similar in definition to 

the BRF, but includes illumination from the entire hemisphere:  

  Eq. 1.20 

where is the radiance reflected into the viewing azimuth φr, and viewing zenith 

θr, for a given radiance Lrid  reflected by a lossless Lambertian reflector into the 

same beam geometry under ambient illumination conditions with a solar azimuth 

, and solar zenith ,  is the wavelength. 

1.6.2.11 Measurable directional reflectance factors  

From the strict physical point of view, the mathematical concepts of BRDF, BRF 

and HDRF can only be approximated by measurements as sensors subtend a 

finite field of view (FOV), which has to be large enough for measurable amounts 

of radiant flux to be detected (Nicodemus et al., 1977). As a result, measurable 

quantities of reflectance are either conical or hemispherical in geometrical 

configuration rather than directional (Schaepman-Strub et al., 2006; Nicodemus 

et al., 1977). Further, it is not possible to achieve purely directional illumination 

under field conditions as solar irradiance consists of both a direct term (non-

scattered) and a diffuse term (scattered by clouds, aerosols, gases and the 

surrounding terrain) (Lyapustin and Privette, 1999). As a result, Schaepman 

Strub et al. (2006) presented measurable quantities applied to the remote 

HDRF(λ) = Lr (θi,φi, 2π;θr,φr;λ)
Lr
id (θi,φi, 2π;λ)

Lr

φi θi λ
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sensing case that describe the angular distribution of reflected radiation from a 

surface, these quantities are presented in Figure 1.5.  

 
Figure 1.5. Measurable directional reflectance quantities used to approximate the 
bidirectional reflectance distribution function (BRDF) of a surface  

The surface area on the unit sphere taken up by the end of each cone in Figure 

1.5 represents the solid angle subtended by the light source and the detector. It 

is common in the literature to read that the BRDF, BRF or HDRF was 

‘measured’ when an author is describing a physical experiment or 

measurement, in which case it should be assumed that the actual quantity being 

referred to is the biconical reflectance factor (CCRF), or the hemispherical-

conical reflectance factor (HCRF). The degree to which the CCRF or HCRF 

measurement resembles the directional quantity (BRDF, BRF, HDRF) will 

depend on geometrical configuration of the experiment setup, and more 

specifically, the range of angles the detector and light source integrate over. The 

CCRF will better approximate the BRDF if: (a) the light source is well collimated 

and subtends a small solid angle through which the source emits radiation; and 

(b) the sensor subtends a small solid angle through which it is sensitive to 

radiation (i.e. the sensor has a small instantaneous field of view (IFOV). In 

addition, the range of angles the sensor integrates over is also dependent on 

the ground instantaneous field of view (GIFOV), or the size of the foreoptic 

footprint on the target surface, as shown in Figure 1.6.  
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Figure 1.6. Viewing angles associated with the sensors field of view (FOV).  is the 
sensors half angle FOV,  is the viewing angle central to the sensors FOV,  is 
the maximum viewing angle in the sensors FOV,   is the minimum viewing angle in 
the sensors FOV 

The CCRF is usually the measurable quantity obtained through laboratory 

studies of reflectance, and is defined as (Schaepman-Strub et al., 2006): 

  Eq. 1.21 

where fr (θi ,φi;θr ,φr;λ)  is the spectral BRDF, L is the radiance, φ , θ  define the 

azimuth and zenith angles central to the cone respectively, Ω  is the projected 

solid angle of the cone and ω  is the solid angle of the cone,  is the 

wavelength, while the subscripts i  and r  define the incident or reflected 

radiation respectively.  

 

For measurements that are performed under ambient sky illumination the 

incident irradiance originates from the entire hemisphere, in which case the 

extent to which the measurement resembles BRDF will also depend on the 

fraction of diffuse irradiance, which has strong wavelength dependence and 

causes HCRF measurements to be less representative of the BRDF at shorter 

wavelengths (Li and Zhou, 2004).  For field measurements made under ambient 

sky illumination the incident cone has a solid angle of 2π , thus the measurable 

β
θr θrmax

θrmin

CCRFλ =
fr (θi ,φi;θr ,φr;λ)Li (θi ,φi;λ)dΩi dΩr

ω i

∫
ω r

∫
(Ωr /π ) Li (θi

ω i

∫ ,φi;λ)dΩi

λ
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quantity is most accurately described as the hemispherical-conical reflectance 

factor (Schaepman-Strub et al., 2006): 

  Eq. 1.22 

The CCRF and HCRF are integrated quantities over a range of angles and can 

only provide an approximation of BRDF or BRF, thus BRDF and BRF remain the 

most useful quantities from a modeling perspective. A detailed discussion of 

reflectance quantities in optical remote sensing – including their mathematical 

derivation – is given by Schaepman-Strub et al. (2006). 

 

To aid in the comparison of directional reflectance measurements it is often 

useful to quantify the extent of the reflectance anisotropy in the distribution of 

reflected radiation using a single value. The extent of the anisotropy can be 

quantified by the anisotropy index, ANIX (Bourgeois et al., 2006): 

 ANIX(λ) = HCRFmax (λ)
HCRFmin (λ)

 Eq. 1.23 

Note that the HCRF term in Eq. 1.23 can be replaced by any directional 

reflectance quantity (i.e. CCRF, HDRF, BRDF or BRF).  

1.7 Previous field and laboratory studies of snow and sea ice 
directional reflectance 

There has been considerable effort to characterize the angular distribution of 

light reflected by snow empirically to assist in the development and 

parameterization of snow BRDF models (Painter, 2004; Bourgeois et al., 2006; 

Peltoniemi et al., 2005; Kuhn, 1985; Hall et al., 1992; Hudson et al., 2006; Aoki 

and Aoki, 2000; Li and Zhou, 2004; Dumont et al., 2010). Very a few studies 

have made ground based measurements of bare sea ice HCRF or CCRF 

HCRFλ =
fr (θi ,φi;θr ,φr;λ)Li (θi ,φi;λ)dΩi dΩr

2π
∫

ω r

∫
(Ωr /π ) Li (θi

2π
∫ ,φi;λ)dΩi
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(Perovich, 1994; Schlosser, 1988). This section summarizes the techniques 

used in previous field and laboratory studies of snow and sea ice BRDF. A list of 

previous field and laboratory studies of snow and sea ice BRDF is given in 

Table 1.3, a review of previous field studies is given in Section 1.7.1 and review 

of previous laboratory studies is given in Section 1.7.3.  

 
Table 1.3. Previous field and laboratory measurements of snow and sea ice BRDF 

Author Type of study Quantity 
measured

Spectral 
range (nm)

Spectral 
resolution 
(nm)

View zenith 
angles (°)

View azimuth 
angles (°)

Incident 
angles (°)

O’Brien and 
Munis [1975] 

Snow 
(laboratory) CCRF 600 – 2500 0.3 – 3.0 5, 30 0 0, 5

Kuhn [1985] Snow (field) HCRF 450, 514, 
750, 1000 15 – 25 60 – 87 by 10 ± 60 61, 67

Steffen [1987] Snow (field) HCRF 500 – 600 single band 45, 60, 75 0 – 345 by 15 28 – 76

Schlosser 
[1988]

Sea ice 
(laboratory) CCRF 400 – 1350 broadband 61 – 73 0 – 60 by 10 61 – 68

Dozier et al. 
[1988] Snow (field) HCRF 368 – 1100 5 – 10 0 – 75 by 15 0 – 180 by 45 21 – 58

Perovich 
[1994] Sea ice (field) HCRF 400 – 1000 8 0 – 60 by 30 0 – 330 by 30 60 – 70

Grenfell et al. 
[1994]

Snow (field) 
(tower) HCRF 900 0 – 75 by 15 0 – 360 by 15 75

Leroux et al. 
[1998a] Snow (field) HCRF 450, 650, 

850, 1650 100 0 – 80 by 10 0, 90, 180, 270 48 – 63

Warren et al. 
[1998]

Snow (field) 
(tower) HCRF 600, 660, 

900 10 22.5 – 82.5 by 
15 0 – 210 by 15 67–90

Aoki et al. 
[2000] Snow (field) HCRF 350 – 2500 3 < 1000, 

10 > 1000 0 – 80 by 10 0 – 337.5 by 
22.5 54 – 57

Painter and 
Dozier [2004] Snow (field) HCRF 350 – 2500 3 < 1000, 

10 > 1000 0–80 by 10 0 – 350 by 10 51 – 47

Li and Zhou 
[2004]

Snow covered 
sea ice (field) HCRF 350 – 1050 1.4 10 – 80 by 10 0 – 180 by 10 65, 85

Peltoniemi et 
al. [2005] Snow (field) HCRF, 

CCRF 390 – 1070 4 0 – 75 55 – 72

Hudson et al. 
[2006]

Snow, (field) 
(tower) HCRF 350 – 2400 3 – 30 22.5 – 82.5 by 

15 0 – 345 by 15 51 – 87

Bourgeois et 
al. [2006] Snow (field) HCRF 350 – 1050 3 0 – 85 by 15 0 – 360 by 15 49 – 85

Dumont et al. 
[2010]

Snow 
(laboratory) CCRF 5000 – 2600 0.2 – 0.6 0 – 80 0, 45, 90, 135, 

180 0, 30, 60, 70

Kuchiki et al. 
[2011] Snow (field) HCFC 350 – 2500 0 – 60 by 15

0, 45, 180, 225, 
90, 270, 135, 
315

52.5 – 52.9
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1.7.1 Review of field studies of snow BRDF 

Middleton and Mungall (1952) were among the first to make HCRF 

measurements of snow using a portable field goniometer, their study showed 

evidence of a specular reflection that was dependent on the snow type and the 

angle of incidence. Dirmhirn and Eaton (1975) observed the anisotropic nature 

of snow reflectance and identified a forward scattering peak using a single 

broadband measurement spanning the wavelength range 200 nm to 4500 nm. 

Warren (1982) reviewed previous measurements of snow reflectance and 

reported that snow reflectance was not isotropic, it was rather a function of 3-

angles: the source zenith angle θi , the view zenith angle θr , and the relative 

azimuth angle φi −φr .  

 

Kuhn (1985) presented the first detailed measurements of snow HCRF for 

different snow types. A few years later Steffen (1987) recorded the HCRF over a 

range of solar incident angles for snow with varying snow grain size. Dozier et 

al. (1988) determined through a combination of radiative-transfer modeling and 

field measurements that the strength of forward scattering increased with 

wavelength. Possible effects of longitudinal roughness features (sastrugi) on the 

BRDF of snow were recognised by Grenfell (1994) who measured the HCRF of 

snow from a 23 m tower in Antarctica. Four years later, Warren et al. (1998) 

carried out experiments from the same tower as Grenfell (1994) and specifically 

investigated the effect of sastrugi on the BRDF of snow, the authors concluded 

that the effects of the sastrugi were mainly restricted to large viewing angles for 

wavelengths up to 900 nm.  
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Leroux et al. (1998) investigated the influence of snow grain shape and size on 

the HCRF, as well as the polarization of light reflected by snow. In the study by 

Leroux et al. (1998) model simulations based on the assumption of spherical 

snow grains were not able to reproduce field measurements of HCRF for all 

view angles, the authors showed better agreement between the model and field 

results when hexagonal particles were used in the model (Leroux et al., 1998).  

Aoki et al. (2000) studied the effect of snow grain size and impurities on the 

BRDF of snow and compared the results with two radiative-transfer models 

(Aoki and Aoki, 2000). Li and Zhou (2004) also compared field measurements 

with radiative-transfer simulations. The field measurements by Li and Zhou 

(2004) were performed under large solar zenith angles and BRF and HDRF 

radiative-transfer simulations were made using in-situ snow physical data as 

inputs to model. The authors found that the HDRF simulations were within 

± 10 % of the field HCRF measurements for view angles < 45° and agreed 

better than the BRF simulations.  

 

Several studies have since reported HCRF measurements investigating the 

influence of solar zenith angle and various snow properties on the BRDF of 

snow, the snow properties investigated include grain size and shape, wetness, 

impurity content, density and depth. Published in 2004, experiments by Painter 

and Dozier (2004) involved the measurement of HCRF at high spectral 

resolution using an automated goniometer, the authors compared the field 

measurements with the radiative-transfer model DISORT (Stamnes et al., 1988). 

Peltoniemi et al. 2005 measured the HCRF of snow at various locations in 

Finland and observed a dependence on snow grain shape, snow wetness and 

density. Bourgeois et al. (2006) collected HCRF measurements over a wide 

range of solar zenith angles (49° to 85°) on the Greenland ice sheet, the 
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measurements showed the strongest anisotropy for smooth surfaces and for 

large solar zenith angles. Hudson et al. (2006) made a comprehensive set of 

HCRF measurements over a 96 different solar zenith angles from 51° to 87° 

over a wavelength range 350 nm to 2400 nm at high spectral resolution from a 

32 m tower at Dome C in Antarctica (Hudson et al., 2006). The snow surface at 

Dome C was smoother and the roughness elements were more randomized 

than for snow surfaces previously measured from other towers in Antarctica. 

The measurements by Hudson et al. (2006) showed a decrease in anisotropy at 

shorter wavelengths, the authors indicate that their measurements of HCRF 

were not representative of the BRDF of snow for wavelengths less than 900 nm 

because of atmospheric Rayleigh scattering. Kuchiki et al. (2011) studied the 

effect of sastrugi on snow BRDF in detail by measuring the HCRF over artificial 

linear ridges of snow (Kuchiki et al., 2011). The study reported differences of up 

to ± 50 % in the HCRF measurements when compared to the HCRF for a flat 

snow surface. A Monte Carlo radiative-transfer model was able to reproduce the 

field measurements using artificial ridges and for previous measurements of 

natural sastrugi made at the South Pole by Warren et al. (1998).  

1.7.2 Review of field studies of sea ice BRDF 

To the author’s knowledge, very few studies in the literature have reported 

ground based HCRF measurements of bare sea ice. Perovich (1994) reported 

HCRF measurements for first year sea ice over a wavelength range of 400 nm 

to 1000 nm for 3 different viewing zenith angles (0°, 30° and 60°) for 360° of 

azimuth angles at 30° intervals. The measurements were obtained using a 1° 

FOV foreoptic at solar zenith angles between 60° and 70° for 5 distinct surface 

types: (1) ice covered by dry snow, (2) ice covered by dry snow with a glazed 

surface (3) bare ice (4) blue ice, and (5) melt pond. The measurements 
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indicated the HCRF was weakly azimuthally dependent at 30° viewing azimuth 

angles. A strong specular speak was observed at 0° azimuth and 60° zenith for 

all ice types.  The anisotropy in the HCRF was greatest for bare ice and glazed 

snow surfaces, for bare ice there was a 3-fold increase in the HCRF from the 

backward to the forward direction at 60° zenith angle in the solar principal plane 

(Perovich, 1994). Li and Zhou (2004) carried out HCRF measurements on two 

snow covered second year ice floes in the Ross Sea, Antarctica. The 

measurements were obtained with a 26 cm and 36 cm thick snowpack under 

66° and 85° solar zenith angles respectively. Viewing zenith angles were 

sampled over the range 10° to 80° degrees at 10° intervals for 0° to 180° in 

azimuth at 10° intervals, with 15° and 2° FOV foreoptics. The measurements 

were compared with a multilayered plane-parallel radiative-transfer model. 

Simulated HDRF agreed to within ±10 % for viewing zenith angles less than 45° 

for the lateral sides of the viewing hemisphere (Li and Zhou, 2004). Both 

modeling and measurements revealed the strong forward scattering nature of 

snow and sea ice, and the dependence of the BRDF on solar zenith angle. 

 

A quantitative comparison of field BRDF studies in Table 3 is difficult because 

the studies provide measurements of HCRF and CCRF which by definition, are 

different physical quantities and not directly comparable. For example, HCRF 

and CCRF are dependent on the sensor IFOV and GIFOV. In addition, HCRF is 

dependent on the atmospheric conditions and the surrounding terrain at the time 

of the measurement. Laboratory BRDF studies with a narrow sensor FOV and 

well collimated source potentially offer a major advantage over field-based 

studies because the diffuse component of irradiance can almost be completely 

eliminated.  
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1.7.3 Review of laboratory studies of snow and sea ice BRDF 

A practical way to study sea ice is through laboratory experiments that allow 

control of environmental conditions, and which reduce the hazards and costs 

associated with studying sea ice in the field. Several large scale facilities have 

been created to simulate sea ice in the laboratory, including: the United States 

Cold Regions Research and Engineering Laboratory (CRREL); the Arctic 

environment test basin in Germany; the Aalto University ice tank in Finland; and 

the sea ice environmental research facility in Canada. The majority of large-

scale simulators have been designed to study the mechanical behavior, 

structural interactions and the biology and chemistry of sea ice. Few laboratory 

facilities have been designed to measure radiation reflected by sea ice. Perovich 

and Grenfell (1981) studied the optical properties of young sea ice by growing 

ice at different temperatures and different salinities in a 1 m diameter cylindrical 

tank, for the wavelength range 400 nm to 1000 nm. Marks (2014) studied the 

effect of black carbon on light penetration on sea ice generated using the Royal 

Holloway Sea Ice Simulator.  

 

Fewer studies have reported laboratory CCRF measurements of snow or sea 

ice.  Schlosser (1988) measured a broadband radiance reflected from 

laboratory-generated sea ice using a photometer and a slide projector as an 

artificial light source. The results showed a forward scattering peak in the 

specular direction that was less developed for thicker ice and for colder ice (– 

27° C). The authors attributed the decrease in anisotropy for colder and thicker 

ice to an increase in scattering caused by a greater number of air bubbles, brine 

inclusions and precipitated salts per unit volume.  
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Combining observed BRDF with polarization measurements may be an effective 

method for estimating the physically properties of ice, such as air bubbles and 

brine inclusions, through inverse models of ice radiative-transfer. As such, a 

number of studies have investigated the polarization of light reflected by sea ice 

(Perovich and Gow, 1996; Sun et al., 2013; Perovich, 1998; Miller et al., 1997). 

Sun et al. (2013) conducted a laboratory study that measured the spectral 

distribution (350 – 2500 nm) of the degree of linear polarization for bubble-free 

sea ice and lake ice with air bubbles at the nadir and specular directions only. 

The study found that polarization was greatest at larger incident angles and was 

inversely, but not linearly, proportional to reflectance, with bubbles and brine 

pockets also contributing inversely to linear polarization.   

 

Dumont et al. (2010) measured the CCRF of 4 natural snow samples in a cold 

room at – 10 °C over the wavelength range 500 nm to 2600 nm for a wide range 

of incident and viewing angles. The measurements by Dumont et al. (2010) are 

a close approximation of BRDF as the detector has a narrow FOV (2.05° half 

angle) and the light source is well collimated and subtends a small solid angle.  

1.7.4 Comparison of field and laboratory studies  

Laboratory experiments are not affected by atmospheric conditions such as 

aerosols, cloud cover, changing sun angle, or environmental effects such as 

wind, or changing temperatures. In addition, during a laboratory study the 

operator has full control over the position of the light source, whereas the angle 

of the incident radiation during a field campaign is dependent on the time of year 

and the location of the field study. Control over the angles of incidence makes it 

easier to take repeated measurements on the same surface, which allows for a 

better assessment of the measurement precision.  Given that it is very difficult to 
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obtain reliable measurements of radiance from multiple angles simultaneously, it 

is very useful to have a stable illumination source during the acquisition of 

HCRF or CCRF. Irradiance in a laboratory study can be stabilized or the output 

can be monitored, whereas under field conditions irradiance can vary as a result 

of changes in atmospheric conditions, or due to the movement of the sun in the 

sky. Ability to control the fraction of diffuse irradiance is a major advantage in a 

laboratory study, as completely eliminating the diffuse irradiance under natural 

conditions is not possible. It is also problematic to measure the fraction of 

diffuse irradiance in the field.  Some field studies have estimated the fraction of 

diffuse irradiance by obscuring the direct portion of irradiance from the target 

surfacing using a screen (Peltoniemi et al., 2005), however, given that 

atmospheric aerosols are strongly forward scattering a significant portion of 

diffuse irradiance follows a path close to the original solar path (Lyapustin and 

Privette, 1999), meaning that much of diffuse irradiance is also obscured by the 

screen (Schaepman-Strub et al., 2006). In the laboratory diffuse irradiance can 

be significantly reduced and almost eliminated through the use of blackout 

materials that absorb the scattered light.  

  

However, there are several disadvantages to laboratory BRDF studies. Creating 

an artificial light source that is well collimated, subtends a small solid angle and 

also provides sufficient intensity to provide acceptable signal to noise levels 

offers considerable challenges, all of which cannot be fully overcome. Hence 

laboratory irradiance is usually heterogeneous and not well collimated. In 

addition, given the proximity of the light source to the target area, temperature 

changes and heating of the sample may lead to changes in the BRDF 

characteristics of the sample during the acquisition. During a laboratory study 

the sample is not in-situ and is limited to relatively small dimensions, which may 
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result in a CCRF that is unrepresentative of the BRDF of the sample in situ, or 

under natural irradiance. Sandmeier et al. (1998) and Sandmeier and Strahler 

(2000) give a detailed discussion of the methodologies used for laboratory 

BRDF studies and identify common sources of uncertainty.   

1.8 Interaction of light with matter 

In order to understand how light is reflected from a medium the absorption and 

scattering properties of that medium need to be considered. The absorption and 

scattering properties of a medium are described by its inherent optical 

properties (IOPs), these properties are intrinsic to the medium, and therefore 

independent of the ambient light field under which any measurement of 

reflectance is made (Mobley, 1994).   

1.8.1 Absorption transmission and scattering  

When light interacts with a surface it can be absorbed, transmitted or scattered.  

Absorptance A  is the fraction of incident radiant flux that is absorbed within the 

medium: 

 A(λ) = Φa (λ)
Φ i (λ)

 Eq. 1.24 

where Φα  is the radiant flux absorbed, Φ i  is the incident radiant flux, and λ  is 

the wavelength. Transmittance T  is the fraction of incident radiant flux that 

passes through the medium: 

  Eq. 1.25 

where Φτ is the radiant flux transmitted. Scatterance S  is the fraction of incident 

radiant flux that is scattered out of the unidirectional beam into all directions: 

T (λ) = Φτ (λ)
Φ i (λ)
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  Eq. 1.26 

where Φ s is the radiant flux scattered. Scattered photons may undergo multiple 

scattering inside the medium before eventually becoming reflected, transmitted 

or absorbed. If a photon exits through the top layer of the medium it is reflected 

and contributes to the surface BRDF or albedo, if the photon exits beneath the 

medium it is transmitted and contributes to the diffuse transmittance. By the 

conservation of energy the sum of the absorptance, transmittance and 

scatterance is unity, or 

 A(λ)+T (λ)+ S(λ) = 1  Eq. 1.27 

The absorption coefficient  describes the extinction of light per unit distance in 

the medium due to absorption by the medium and is given by (Mobley, 1994): 

 a(λ) = dA(λ)
dr

 Eq. 1.28 

where A  is the absorptance and r  is the thickness of the medium.   Likewise, 

the scattering coefficient, b , describes the extinction of light per unit distance in 

the medium due to scattering (Mobley, 1994): 

  Eq. 1.29 

The extinction coefficient c  (often known as the attenuation coefficient) is the 

sum of the scattering and absorption coefficients:  

  Eq. 1.30 

The extinction coefficient can be thought of as the fraction of incident radiation 

removed from a unidirectional beam per unit length in the medium.  

 

S(λ) = Φ s (λ)
Φ i (λ)

a

b(λ) = dS(λ)
dr

c(λ) = a(λ)+ b(λ)
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It is useful to quantify the proportion of radiant flux that is initially scattered in the 

medium, this is given by a quantity known as the single-scattering albedo ( ), 

which is the ratio of the scattering coefficient to the extinction coefficient:  

  Eq. 1.31 

For mediums that are strongly scattering and weakly absorbing, such as snow 

and sea ice, the single scattering albedo is near unity. The single scattering 

albedo is also the probability that a photon will be scattered in any given 

direction, rather than absorbed.  

1.8.2 Penetration depth and transmission 

The product of the extinction coefficient c  and the thickness of the medium z  is 

known as the optical depth:  

  Eq. 1.32 

Each nondimensional unit of optical depth τ   corresponds to a reduction in 

irradiance by 1 e , or ~ 37% of the initial value. The transmittance is related to 

optical depth as follows: 

  
Eq. 1.33 

The e-folding depth ε  gives a measure of light penetration into the medium, and 

is the length of the path where the incident irradiance has been reduced to 1 e  

(~ 37 %) of its previous value: 

  Eq. 1.34 

ω0

ω0 (λ) =
b(λ)
c(λ)

τ (λ) = c(λ) z

T

T = e−τ

ε(λ) = 1
c(λ)
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1.8.3 Complex refractive index 

The fundamental optical property of a pure bulk material is its complex refractive 

index, which describes the interactions of radiation with a homogenous media in 

a single parameter (Petty, 2006): 

  Eq. 1.35 

The real part of the complex refractive index, , determines the phase speed of 

radiation in the medium relative to the speed of light in a vacuum. As radiation 

enters a medium it is the change in phase speed that gives rise to reflection and 

refraction, thus controls the scattering properties of the medium. The 

imaginary part of the index, , determines the absorption properties of the 

medium, when  is nonzero, absorption of radiation occurs within the medium. 

The absorption coefficient a  is related to  as follows (Petty, 2006):  

 a(λ ) = 4πni (λ )
λ

 Eq. 1.36 

where  is the wavelength in a vacuum. The real and imaginary parts of the 

complex index of refraction for ice, as given by Warren and Brandt (2008), are 

presented as a function of wavelength in Figure 1.7.  The imaginary part of the 

index of refraction of ice is very small in the visible band, but increases more 

than 6 orders of magnitude over the wavelength range 400 nm to 1800 nm 

(Warren and Brandt, 2008). Whereas the real part of the complex index of 

refraction of ice is near constant over the same wavelength range, varying less 

than 0.04.  

N = nr + nii

nr

nr

ni

ni

ni

λ
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Figure 1.7. Real, , and imaginary, , parts of the complex index of refraction of ice 
(data from Warren and Brandt, 2008) 

Another useful quantity that can be derived from  of a medium is the 

penetration depth D , which is the reciprocal of the absorption coefficient (Petty, 

2006), and describes extinction owing to absorption in the medium only:   

 D(λ ) = λ
4πni

 Eq. 1.37 

The penetration depth D  is a function  and thus is strongly wavelength 

dependent for ice. D  has been calculated for bubble-free pure ice using Eq. 

1.37 and is presented in Figure 1.8.  

nr ni

ni

ni
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Figure 1.8. Penetration depth of radiation in pure ice with no bubbles 

1.8.4 Scattering phase function 

Scattered photons may be scattered into a different direction relative to the initial 

trajectory. The scattering phase function describes the angular distribution of 

light scattered by particles in a medium, or the probability density of scattering 

occurring through a specific angle. The scattering angle, ψ , describes the 

azimuth direction into which light is scattered.  If the medium can be considered 

isotropic (i.e. the influence on light is the same in all directions at a given point) 

and the light is unpolarized, then the scattering angle is azimuthally symmetric 

and thus its value – in units of radians – lies within the interval 0 ≤ψ ≤ π . The 

angular scatterance per unit distance and solid angle, is given by (Mobley, 

1994): 
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  Eq. 1.38 

where dω  is the solid angle centered on the scattering angle, ψ , through 

which the scattered light travels.  Given that the scattered radiant flux is equal to 

the scattered radiant intensity, Is (ψ ,λ) , multiplied by the solid angle through 

which the scattered light travels, Φ s (ψ ,λ) = Is (ψ ,λ) dω , and the incident 

radiant flux is equal to the incident irradiance, Ei (λ) , multiplied by the area that 

the radiant flux falls onto, Φ i (λ) = Ei (λ) dA , and noting that dV = dr dA  (dV is 

the volume of the medium that is illuminated by the incident beam), then the 

scattered radiant intensity per unit incident irradiance and volume of the medium 

(the volume scattering phase function, βvol (ψ ,λ) ) is (Mobley, 1994): 

  Eq. 1.39 

Integrating βvol (ψ ,λ)  over all directions (solid angles) gives the total scatter 

radiant flux per unit incident irradiance and unit volume of the medium, or the 

scattering coefficient b . The scattering phase function is defined as the ratio of 

the volume scattering phase function to the scattering coefficient (Mobley, 

1994): 

  Eq. 1.40 

Averaging over all scattering directions gives the asymmetry parameter, g , a 

convenient measure of the shape of the phase function (Mobley, 1994): 

  Eq. 1.41 

If the scattering phase function β pf  is large for a small scattering angle ψ  then 

g  is near 1 (i.e. the particles are strongly forward scattering), g  is near -1 if the 

scattering phase function is large for a large scattering angle (i.e. the particles 

βvol (ψ ,λ) =
Φs (ψ ,λ)

Φi (λ) dr dω

βvol (ψ ,λ) =
Is (ψ ,λ)
Ei (λ) dV

β pf (ψ ,λ) =
βvol (ψ ,λ)
b(λ)

g = 2π β pf
0

π

∫ (λ)cos(ψ )sin(ψ )dψ
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are strongly backward scattering). If the scattering phase function is symmetric 

over the forward and backward scattering directions then g  is 0 (i.e. the 

particles scatter radiation isotropically).  

 

Under the assumption that the scattering particles in the medium are spherical 

and imbedded in a infinite, uniform, non absorbing media, it is possible to 

reproduce an observed volume scattering phase function with Mie scattering 

calculations (Mie, 1908), the methodology for which is described in detail in 

Petty (2006). It is often convenient to have an analytic formula that 

approximates the shape of a phase function, such as the Henyey-Greenstein 

phase function (Mobley, 1994): 

  Eq. 1.42 

The g  parameter, defined in Eq. 1.40, can be adjusted to control the relative 

amounts of forward and backward scattering. The Henyey-Greenstein phase 

function for 3 different values of g  has been calculated using equation Eq. 1.42 

and has been plotted in Figure 1.9. 

β HG (g;ψ ) =
1
4π

1− g2

(1+ g2 − 2gcosψ )3/2
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Figure 1.9. Henyey-Greenstein phase function with scattering angle for 3 different 
values of the asymmetry parameter (g) 

1.9 Optical properties of snow and sea ice 

In order to model the transfer of radiation in a medium a quantitative 

understanding of the optical properties of the medium are required. An 

introduction to the inherent physical and optical properties of snow and sea ice 

is given in this section.  

1.9.1 Physical properties of snow 

Snow is formed by solid precipitation of ice crystals around condensation nuclei 

such as dust particles in the atmosphere. Ice crystals grow into snowflakes as 

water vapor freezes onto the primary crystal. Snow can form as a variety of 

crystal shapes depending on the temperature and the humidity of the air 
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(LaChapelle, 1969). After falling snow crystals are broken by the wind and 

undergo metamorphism causing the crystal to tend to a more spherical shape. 

Snow on the ground primarily consists of grains of ice with air and sometimes 

water in the pore spaces. Newly fallen snow has a fine grain size and a low 

density, metamorphism and sintering tends to increases the grain size and 

density as the snowpack ages (LaChapelle, 1969). Average grain radii in the top 

20 cm of snow is typically in the range 20 µm to 100 µm for new snow; 100 µm 

to 300 µm for fine grained older snow; and 1000 µm to 1500 µm for older snow 

near melting point (Wiscombe and Warren, 1980). 

1.9.2 Absorption of light by snow 

Snow is weakly absorbing of light at visible wavelengths. Snow is mostly 

composed of ice crystals in a matrix of air, and thus the dominant absorber in a 

snowpack – with zero impurities – is ice. The absorption coefficient of pure ice 

can be determined from the imaginary part of the complex index of fraction of 

ice using Eq. 1.36. The absorption coefficient of pure ice was calculated using 

the imaginary part of the complex index of fraction for pure ice measured by 

Warren and Brandt (2008), and is presented in Figure 1.10 for a wavelength 

range 400 nm to 800 nm. Absorption of visible radiation by ice is small, but has 

very strong wavelength dependence, spanning nearly 3 orders of magnitude 

between 400 nm and 750 nm.  
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Figure 1.10. Absorption coefficients calculated for pure ice using the imaginary part of 
the complex index of refraction for pure ice. Data from Warren and Brandt (2008) 

1.9.3 Scattering of light by snow 

Snow is strongly scattering of radiation at visible wavelengths. A photon that 

penetrates the surface of the snowpack may undergo multiple scattering events 

between ice grains, with little absorption in the top layers, particularly at shorter 

wavelengths. The photons are often scattered back into the atmosphere from 

the top layers of the snowpack, giving the snow a white appearance to the 

human eye. Owing to large size of the snow grains compared with the 

wavelength of light, scattering in snow is usually assumed to be independent of 

wavelength in the visible range (Wiscombe and Warren, 1980). Snow radiative-

transfer models often assume that snow grains are spherical in shape 
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(Wiscombe and Warren, 1980). Although snow grains are not spherical, 

Wiscombe and Warren (1980) maintained that the spherical assumption 

provided good estimates of albedo provided the correct grain size is chosen in 

the model.  More recent studies have shown departure from a spherical shape 

can strongly affect the single scattering albedo and phase function of snow, 

which in turn, can strongly influence albedo, light penetration and BRDF (Aoki 

and Aoki, 2000; Dumont et al., 2010; Grenfell et al., 2005; Picard et al., 2009).  

1.9.4 Snow albedo 

Wiscombe and Warren (1980) introduced an analytical model for spectral 

albedo of snow albedo based upon the delta-Eddington approximation and Mie 

theory for the scattering by individual snow grains. The model covers the solar 

spectrum (300 nm to 5000 nm) and calculates snow albedo as a function of 

snow grain size, solar zenith angle, ratio of diffuse to direct irradiance, snow 

depth and the albedo of the underlying surface. The albedo of snow is shown to 

be sensitive to snow thickness and impurities at visible wavelengths, and to the 

effective grain size at near infrared wavelengths. Increased absorption at longer 

wavelengths occurs because a larger grain size results in a longer path length 

of light through each grain of ice (Wiscombe and Warren, 1980). Snow albedo 

as a function of wavelength and snow depth was calculated by Warren (2013) 

and is presented in Figure 1.11. The snow depth is expressed as the snow 

water equivalent (SWE) (in units of centimeters) and provides a measure of 

water contained within the snowpack. A snowpack with density 300 kg m-3 and a 

depth of 30 cm has an SWE of 9 cm.    
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Figure 1.11. Spectral albedo of pure snow over a black surface for a variety of snow 
depths expressed in snow liquid water equivalent (SWE). Data from Warren (2013) 

1.9.5 Physical properties of sea ice  

Sea ice is formed from frozen ocean water. At the microscopic scale sea ice 

consists of an ice matrix with inclusions of brine and air. As seawater freezes 

the salts are rejected from the ice lattice. As a result, the ice grows as platelets 

with pockets of brine trapped in between. The size of the ice platelets depends 

on the growth rate of the ice, and they are typically 1 mm across (Perovich, 

2003).  The brine pockets have an elongated shape with the major axis usually 

orientated vertically (Perovich and Gow, 1996).  Perovich and Gow (1996) 

characterized the size distribution of brine and air inclusions in sea ice and 

found that the size distributions fitted a lognormal distribution with a correlation 

coefficient greater than 0.99. Brine inclusion dimensions in the study by 
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Perovich and Gow (1996) were typically 0.1 mm across, and tenths of a 

millimeter to millimeters long. Air bubbles were found to be more circular, and 

were much larger than brine pockets, having a major axis length of the order of 

millimeters. Sea ice can exhibit considerable vertical variability in the physical 

and optical properties owing to differences in temperature, salinity, brine volume 

and air volume (Weeks, 2010). In addition, as sea ice ages brine drainage from 

the upper layers can cause the proportion of air bubbles in the upper layers to 

increase. The relative proportions of brine and air in sea ice can be calculated 

with knowledge of the sea ice temperature, salinity and density using empirical 

relationships derived by Cox and Weeks (1983). The equations are governed by 

the equilibrium curve of the sea ice phase diagram. The relationship between 

brine volume vb , salinity S  and temperature T  is as follows (Cox and Weeks, 

1982):  

 vb = S 0.0532 − 4.919
T

⎛
⎝⎜

⎞
⎠⎟  Eq. 1.43 

As shown in Eq. 1.43 brine volume is sensitive to temperature. Brine volumes 

for sea ice can vary greatly, from 2 % to 40 % (Perovich and Gow, 1996). As 

sea ice warms the mean size of brine pockets increases as the individual brine 

pockets coalesce (Perovich and Gow, 1996).  Precipitation of salts occurs in sea 

ice if temperatures are cold enough. Mirabilite (Na2SO410H2O) precipitates in 

sea ice at –8.2°C and hydrohalite (NaCl212H2O) precipitates at –22.9°C 

(Perovich, 2003).  

1.9.6 Absorption of light by sea ice 

Sea ice is primarily composed of pure ice, brine, air bubbles and precipitated 

salts. Thus the bulk absorption coefficient a  can be described by the volume 
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weighted sum of the absorption coefficients for each of the constituent 

components (Light, 2000): 

 a(λ) = ai (λ)vi + ag (λ)vg + as (λ)vs  Eq. 1.44 

where the subscripts (i,g, s)  correspond to the absorption coefficients for pure 

ice, air, and precipitated salt crystals respectively.  v  is the volume fraction of 

each component in the sea ice. Absorption by brine can be estimated by a 

spectral absorption coefficient representative of natural Arctic waters (Smith and 

Baker, 1981).  Absorption by air is negligible and absorption by precipitated 

salts is thought to be small relative to absorption by pure ice or brine (Light, 

2000), so it is assumed that ag = 0  and as = 0 . Absorption coefficients for clear 

Arctic waters were measured by Smith and Baker (1981) and scaled by Light 

(2000) to correspond with attenuation measurements made at 490 nm beneath 

Arctic sea ice. The absorption coefficients for natural Arctic seawater given by 

Light (2000) and pure ice given by Warren and Brandt (2008) are presented in 

Figure 1.12. Absorption coefficients for clear Arctic water show a very similar 

spectral shape and magnitude to that of pure ice. Since the primary constituent 

of sea ice is fresh ice, absorption in sea ice is dominated by pure ice, especially 

for sea ice at low temperatures or low salinity, with a smaller brine volume 

fraction. 
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Figure 1.12. Absorption coefficients for pure ice and clear Arctic seawater. Data from 
Warren and Brandt (2008) and Light (2000) 

1.9.7 Scattering of light by sea ice  

The intricate internal structure of brine inclusions and air bubbles in an ice 

matrix makes sea ice a strongly scattering medium. The relative scattering 

strength of the inclusions depends on the difference in their real indices of 

refraction n  to that of ice. Pure ice has an n  of ~ 1.31 at visible wavelengths 

(Warren and Brandt, 2008), whereas air has an n  of ~ 1. The index of refraction 

of brine was measured by Maykut and Light (1995) over a temperature range –

2 °C to –32 °C, corresponding to a range of salinities from 35 PSU to 240 PSU. 

The measurements of n  made by Maykut and Light (1995) varied between 1.34 

and 1.40 over the range of temperatures, and had weak wavelength 
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dependence at visible wavelengths. Air bubbles have a greater difference 

(~ 0.31) in n  than brine channels (~ 0.03 to ~ 0.09) at visible wavelengths, and 

thus are stronger scatters of light compared to brine inclusions in sea ice. At 

lower temperatures precipitation of solid salts can greatly increase scattering 

(Perovich and Grenfell, 1981). 

 

Owing to the large amount of scattering in sea ice it is difficult to directly and 

accurately measure scattering coefficients and phase functions. In addition, 

scattering in sea ice is not simply a function of the brine and air volume 

fractions, but is also dependent on how the brine is distributed within the ice 

matrix, for example, 100 small inclusions with the same volume fraction will 

scatter light different compared to a single large inclusion. Measured scattering 

coefficients typically have values greater than 10 m-1 for warm sea ice, and 

greater than 200 m-1 for sea ice with hydrohalite or abundant air bubbles 

(Perovich, 1996; Maykut, 1978). Mobley (1998b) calculated scattering 

coefficients in first year Arctic sea ice for a range of brine pocket and air bubble 

size distributions as 175 m-1 for sea ice with few bubbles, and 250 m-1 for sea 

ice with many bubbles. Observational and modeling studies have shown that the 

phase function for sea ice is strongly forward peaked (Light, 2000), and at least 

a factor of 50 greater than sideward or backward scattering (Perovich, 1996). 

Mobley (1998b) determined the phase function asymmetry parameter g  for first 

year Arctic sea ice from Mie scattering calculations based on size distributions 

of air bubbles and brine channels. The Mie calculations by Mobley (1998b) 

yielded values ranging from g = 0.96  for sea ice with many bubbles, to 

g = 0.99  for sea ice with few bubbles. Small differences in n  combined with the 

large differences in the size of the inclusions with the wavelength of light results 
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in scattering that is dominated by diffraction (Mobley 1998b). As the difference 

in n  is smaller for brine channels than for air bubbles, the phase function for 

brine channels in the Mie calculations by Mobley (1998b) was more strongly 

forward scattering for brine channels ( g = 0.99 ) than for air bubbles ( g = 0.86 ), 

despite air bubbles being larger than brine channels. Given the weak 

wavelength dependence of the real index of refraction for ice, and owing to the 

large size of brine and air inclusions compared to the wavelength of incident 

radiation, the scattering coefficients are often assumed to be constant with 

wavelength (Grenfell, 1983; Perovich, 2003).  

1.9.8 Sea ice albedo 

At a spatial scale comparable to a footprint of a satellite sensor sea ice exhibits 

extensive horizontal variability in albedo as a result of melt ponds and snow 

cover. Arctic seasonal sea ice was observed by Perovich (2012) to undergo an 

albedo evolution with seven phases; involving a decrease in albedo with the 

onset of melting in the summer, and a change in ice cover from snow covered 

ice to bare ice, or from frozen ponds, to melting ice, to ponded ice. Ponding of 

water on sea ice reduces the albedo by filling air voids with water, albedos of 

ponded water are characterized by a maximum in the 400 nm to 500 nm 

wavelength range owing to the transparency of water at shorter wavelengths 

(Perovich, 1996). The albedo of multiyear sea ice is typical 0.1 greater than the 

albedo of seasonal sea ice, owing to a higher bubble fraction in its upper layers 

making multiyear sea ice a more efficient scatterer of radiation (Perovich and 

Polashenski, 2012). In addition, multiyear sea ice undergoes a slower transition 

from snow-covered ice to bare ice, thus maintaining its higher albedo for longer.  
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In winter multiyear Arctic sea ice is typically covered by few tens of centimeters 

of snow (Weeks, 2010). Despite the presence snow cover, the albedo of the 

underlying sea ice remains an important consideration at ultraviolet and visible 

wavelengths owing to light penetration in snow (Marks and King, 2013).  Warren 

(2013) used updated optical constants for ice (Warren and Brandt, 2008) to 

show that the albedo of pure snow is sensitive to the underlying surface at 

ultraviolet and visible wavelengths for a snowpack thinner than ~ 1 m. 

Observations by Perovich (2012) for Arctic multiyear sea ice indicate that much 

of the snow cover has melted by late June, with all the snow melting by August 

resulting in large areas of exposed bare sea ice.  

1.9.9 Impurities in snow and sea ice 

Scattering in snow and sea ice is generally so strong that absorption has little 

impact on albedo. However, the presence of impurities such as black carbon 

can increase absorption and thus greatly reduce albedo. Just 10 ng g-1 of black 

carbon (BC) in snow has been shown to cause a 1 % change in its albedo 

(Clarke and Noone, 1985; Hansen and Nazarenko, 2004; Warren and 

Wiscombe, 1985; Marks and King, 2013), which can increase the grain size of 

snow crystals in the snowpack and trigger an earlier spring melt (Flanner et al., 

2007), further enhancing ice-albedo feedback. Flanner et al. (2007) estimated 

human induced radiative forcing by the deposition of black carbon on snow 

cover as +0.054 W m-2 globally. Predominant sources are the incomplete 

combustion of fossil fuels and biomass burning (Bond et al., 2013). Median 

concentrations of black carbon in surface snow in the industrial northeast of 

China have been measured as 1220 ng g-1 of black carbon per gram of snow 

(Wang et al., 2013), with concentrations up to 88 ng g-1 in Scandinavia and up to 
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14 ng g-1 in Svalbard (Forsström et al., 2013). Typical values in the study by 

Forsström et al. (2013) for Svalbard were in the range 11 ng g-1 to 14 ng g-1. 

1.10 Radiative-transfer modeling  

The radiative-transfer model PlanarRad (Hedley, 2008) was used in this study to 

calculate the BRDF of laboratory generated sea ice. A brief introduction to 

radiative-transfer modeling is therefore given in this section, along with an 

introduction to PlanarRad.  

1.10.1 Calculating extinction over a finite path  

Extinction of radiation over a finite path in a homogenous absorbing medium can 

calculated using the exponential decay relationship, or Beer’s law (Petty, 2006): 

  Eq. 1.45 

where  is the irradiance at depth ,  is the irradiance at the surface and  

is the extinction coefficient. Eq. 1.45 assumes that; (1) irradiance is isotropic; (2) 

the medium has infinite thickness; and (3) there are no contributions to 

irradiance at depth owing to multiple scattering. A more detailed treatment of 

radiative transfer in a multiple scattering medium is given by the radiative-

transfer equation (RTE).  

1.10.2 Deriving the equation of radiative-transfer 

With knowledge of the inherent optical properties of a medium and the ambient 

illumination conditions, the BRDF of a medium can be calculated using 

radiative-transfer theory. The radiative-transfer equation (RTE) expresses 

conservation of energy written for a collimated beam of radiance travelling 

through an absorbing, scattering and emitting medium (Mobley, 1994). The 

Ez (λ) = Ei (λ) e
−c(λ )z

Ez z Ei c
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processes affecting a beam travelling through a medium such as snow or sea 

ice has been discussed in the preceding sections. These processes are 

presented formally in the context of radiative-transfer equation, and are 

illustrated in Figure 1.13. 

 
Figure 1.13. Processes that affect a single beam of radiance with wavelength  as it 
propagates over a distance  within a volume . Adapted from Mobley (2010) 

The change in radiance owing to absorption over a distance Δr  can be 

described as follows (Mobley, 2010): 

  Eq. 1.46 

where a  is the absorption coefficient defined in Eq. 1.28 in Section 1.8.1 

rewritten in terms of the change in radiance ΔL  rather than the change in 

absorptance ΔA . Similarly, the change in radiance owing to scattering is given 

by: 

  Eq. 1.47 

where b  is the scattering coefficient defined in Eq. 1.29 in Section 1.8.1. The 

right hand sides of Eq. 1.45 and Eq. 1.46 require a negative sign because 

radiance decreases along the path Δr . 

λ
Δr ΔV

ΔL(r + Δr,θ ,φ,λ)
Δr

= −a(r,λ)L(r,θ ,φ,λ)

ΔL(r + Δr,θ ,φ,λ)
Δr

= −b(r,λ)L(r,θ ,φ,λ)
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Gain of photons into the beam direction (θ ,φ)  from another direction can be 

calculated with knowledge of the incident radiance L( ′θ , ′φ ,λ) , the solid angle of 

the incident beam Δω ( ′θ , ′φ ) , and the volume scattering phase function βvol  

defined in Section 1.8.4:  

        

 

Eq. 1.48 

The sum of scattering from all directions into the beam direction (θ ,φ)  is given 

by integrating the right hand side of the Eq. 1.47 over all directions: 

 
 

Eq. 1.49 

Radiance created along the path Δr  in direction (θ ,φ)  at wavelength λ  by 

emission or inelastic scattering (absorbed photons that are emitted at a different 

wavelength) is given by the source function: 

  Eq. 1.50 

Summing the various contributions to changes in L  over the path Δr  (right 

hand sides of Eq. 1.46 Eq. 1.47 Eq. 1.49 and Eq. 1.50) and taking the 

conceptual limit of Δr→ 0  gives the time-independent, monochromatic 

radiative-transfer equation written as the change in radiance with distance along 

a given beam direction (Mobley, 2010): 

 

dL(r,θ ,φ,λ)
dr

= −[a(r,λ)+ b(r,λ)]L(r,θ ,φ,λ)  

  + L( ′θ , ′φ ,λ)βvol ( ′θ , ′φ →θ ,φ
0

π

∫
0

2π

∫ ;λ)Δω ( ′θ , ′φ )  

          + S(r,θ ,φ,λ)            [W m−3sr−1nm−1]  

Eq. 1.51 

 

Eq. 1.51 considers only unpolarized light, which gives sufficiently accurate 

solutions for most applications (Mobley, 2010). Particularly when multiple 

ΔL(r + Δr,θ ,φ,λ)
Δr

=

L( ′θ , ′φ ,λ)βvol ( ′θ , ′φ →θ ,φ,λ)Δω ( ′θ , ′φ )

ΔL(r + Δr,θ ,φ,λ)
Δr

=

L( ′θ , ′φ ,λ)βvol ( ′θ , ′φ →θ ,φ
0

π

∫
0

2π

∫ ;λ)Δω ( ′θ , ′φ )

ΔL(r + Δr,θ ,φ,λ)
Δr

= S(r,θ ,φ,λ)
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scattering in the medium is significant and the scattering particles are much 

larger than the wavelength of light. Scattering by larger particles induces less 

polarization, and multiple scattering tends to depolarize radiance (Mobley, 

2010).  

1.10.3 Solution methods 

The radiative-transfer equation (RTE) defined in Eq. 1.51 is a linear 

integrodifferential equation  – containing an integral and a derivative of a 

unknown radiance – and is difficult to solve for given IOPs and boundary 

conditions (Mobley, 2010). An exact analytical solution to the RTE can only be 

achieved under simplifying assumptions such as with no scattering. For 

situations where scattering is a dominant process – such as during the transfer 

of visible radiation in snow or sea ice – approximate analytical or numerical 

solutions must be used to obtain sufficiently accurate solutions. Three common 

methods for solving radiative-transfer with multiple scattering are: (1) the 

invariant embedding method; (2) the discrete ordinates method; and (3) Monte 

Carlo methods. 

1.10.3.1 Quad averaging 

Radiative-transfer models often compute a quad-averaged radiance by 

directionally discretizes the RTE into a grid of quadrilateral regions. Each region 

is bounded by lines of constant θ  andφ , plus two polar caps (Mobley et al., 

1993). The quad averaged radiance LQ  can be defined as (Mobley et al., 1993): 

 LQ = 1
ωQ

L(θ ,φ)dθ dφ
θ ,φ∫∫  Eq. 1.52 

where (θ ,φ)  are the zenith angle azimuth angles respectively within each quad 

Q , and ωQ  is the solid angle of each quad.  Quad averaged radiances can be 
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physically interpreted as the average radiance over a set of directions (θ ,φ)  

constrained within the quadrilateral region. Figure 1.14 shows the partitioning of 

quads over a hemisphere – as used in the radiative transfer model PlanarRad – 

projected onto a 2-D grid.  

 
Figure 1.14. Partition of the hemisphere into a grid of quadrilateral regions as used in 
the radiative transfer model PlanarRad. The regions are separated by 15° degree 
intervals in azimuth angle and 10° intervals in zenith angle. Quads that extend over the 
equator (between 85° 95° zenith angle) are not shown 

1.10.3.2 Invariant imbedded method 

The invariant imbedded method applies integration of radiance over a set of 

directions defined by a grid of quadrilateral regions called quads, defined in 

Section 1.10.3.1. Integration over all directions is replaced by summation over 

all quads and the phase function is replaced by a quad averaged quantity. The 

equations for the RTE are transformed into a set of Riccati differential equations 

for which finding a solution for the radiance distribution is an analytical process 

(Mobley, 1989). The model is therefore computationally efficient and the 

computation time is a linear function of depth. The IOPs of the medium can be 
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varied arbitrarily with depth, and the bottom boundary can be either an infinitely 

thick homogenous layer, or an opaque boundary with a specified BRDF.  

1.10.3.3 Discrete ordinates method 

The Discrete-Ordinates method for calculating Radiative-Transfer (DISORT) 

solves the RTE directly without applying the quad averaging method defined in 

Section 1.10.3.1. The radiance is expanded into a Fourier cosine series and the 

phase function is expanded into a series of 2N Legendre polynomials (Stamnes 

et al., 1988;Chandrasekhar, 1960). The method models the medium as a stack 

of homogenous layers; hence the method is slow if many layers are needed to 

resolve depth-dependent IOPs. The ‘discrete ordinates’ refers to the discrete 

angles at which the radiation is computed, which can be specified arbitrarily. 

BRDF at the lower boundary can be specified, and intensities can be returned 

for any angle and optical depth.  

1.10.3.4 Monte Carlo methods 

Probabilistic or Monte Carlo methods mimic how nature absorbs and scatters 

photons and can solve time-dependent 3-D problems with arbitrary geometry. 

Monte Carlo techniques use probability theory and random number generators 

to simulate the fate of large numbers of photons propagating through a medium. 

Averages of large numbers of simulated photons called ‘ensembles’ give 

statistical estimates for the radiance distribution with for a medium with given 

IOPs. Although Monte Carlo methods are generally computationally inefficient, 

they are very widely used because they are conceptually simple, easy to 

program and can be used to solve complex geometric problems. The output 

from a 2-D Monte Carlo radiative-transfer model – based on a method outlined 

by Mobley (1994) – was used to generate random paths for 100 photons with 
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varying values of the asymmetry parameter (g). The random paths of each 

photon given a medium with an optical depth of 60 and a single scattering 

albedo of 0.99 are plotted in Figure 1.15.  

 
Figure 1.15. Example random paths of 100 photons in a plane parallel scattering and 
absorbing medium for 3-different values of the asymmetry parameter (g). In each 
simulation the single scattering albedo was 0.99 and the optical depth was 60 
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The MATLAB code for the 2-D Monte Carlo radiative-transfer model used to 

produce the output in Figure 1.15 is given in Appendix 1. 

1.10.3.5 Plane parallel approximation 

The radiative-transfer models discussed in the preceding section assume that 

the medium is infinite in horizontal extent, and that there are no horizontal 

variations of IOPs or boundary conditions.  The assumption drastically simplifies 

the geometry, allowing powerful analytical techniques to be implemented, while 

still representing a usefully realistic model of nature (Mobley, 1994).  

1.10.4 Overview of PlanarRad radiative transfer model  

PlanarRad was designed to model radiation in homogenous scattering and 

absorbing media and is based on an algorithm described by Mobley (1994) and 

adapted by Hedley (2008). PlanarRad computes quad averaged radiances for a 

homogenous slab of media, hence there is no horizontal or vertical variation in 

the IOPs. PlanarRad uses the invariant imbedded method – described in 

Section 1.10.2.2 – to solve the radiative-transfer equation, so is computationally 

efficient. The model accepts arbitrary incident radiances, phase functions, 

extinction and absorption coefficients, refractive indices for inside and outside 

the medium, finite depth bottom boundaries with variable properties, and rough 

surfaces. The directional discretization used by PlanarRad splits each 

hemisphere into 9 by 24 quads of constant zenith and azimuth angle, plus an 

end cap, as is illustrated in Figure 15. Output from the model includes the 

radiance distribution leaving the medium as a function of depth and direction. 

PlanarRad is similar to the commercial radiative-transfer software Hydrolight 

(Mobley, 1998) and has been validated against it (Hedley, 2008). A schematic 
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representation of the variables considered by the PlanarRad program are given 

in Figure 1.16. 

 

 
Figure 1.16. Schematic of PlanarRad input variables. Arrows represent the direction of 
incident and reflected rays on the upper boundary 

1.11 Outline of this study 

The thesis incorporates field, laboratory and modeling studies of the directional 

reflectance of snow and sea ice, and investigates the validity of the 

methodologies used to obtain these measurements.  

 

Chapter 2 focuses on the spring 2013 field campaign to Ny-Alesund, Svalbard, 

to investigate the bidirectional reflectance of windblown snow covered tundra at 

large solar zenith angles. The study involved 3-weeks of fieldwork culminating in 

the BRDF characterization of 6-sites under clear skies with different scales of 

surface roughness elements. The HCRF measurements were supported with 
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ancillary snow measurements including: snow grain size, density, depth, 

temperature, maximum black carbon, and surface roughness; with ancillary sky 

measurements including: diffuse to direct irradiance, aerosol optical thickness, 

and all-sky camera imagery. The fieldwork involved the use of the 

GonioRAdiometric Spectrometer System (GRASS) and the HCRF was sampled 

over the viewing zenith angles 0° to 50° at 10° intervals, and over 360° in 

azimuth angles at 30° intervals. The study reports the observations and 

explores the impact of large solar zenith angles and surface roughness on the 

HCRF measurements.  

 

Chapter 3 investigates the bidirectional reflectance of laboratory generated sea 

ice using a specially design laboratory goniometer and the Royal Holloway sea 

ice simulator. The study reports the first CCRF measurements of laboratory 

generated sea ice and the associated methodology and instrumentation that 

were developed in order to undertake the measurements. The chapter reports 

two laboratory measurements of simulated sea ice CCRF for different ice 

thicknesses under the same illumination conditions. The BRDF of the laboratory 

generated sea ice was compared to the results from a plane-parallel radiative 

transfer model PlanarRad. Input parameters such as absorption coefficients, 

phase functions and surface roughness were obtained from the physical 

properties of the laboratory generated sea ice where possible.  

 

Chapter 4 involves an investigation into the temperature effects on the 

reflectance of Spectralon: a commonly used reference standard for reflectance 

in field and laboratory BRDF studies. Spectralon reference panels are calibrated 

for their inherent non-Lambertian and non-lossless reflectance at room 

temperature. The study addresses concerns over the presence of a material 
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phase transition at 19 °C in polytetrafluroethylene (PTFE) (Ylianttila and 

Schreder, 2005; McKenzie et al., 2005), PTFE is the most widely used material 

used to produce reference standards for reflectance. The work assesses the 

potential impact of the phase transition on field and laboratory studies of 

reflectance.  

 

Chapter 5 summarises the key findings from each of the 3 core areas of 

research, provides concluding remarks relevant to the complete thesis, and 

makes recommendations for future research.  
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Chapter 2  

Bidirectional reflectance of windblown 
Arctic snow 

2.1 Abstract  

Measurements of the hemispherical-conical reflectance factor (HCRF) of 

windblown Arctic snow were made for six sites near to the international research 

base in Ny-Ålesund, Svalbard. The measurements were carried out under large 

solar zenith angles (79° to 85°) using the GonioRAdiometric Spectrometer 

System (GRASS). Reflected radiance was measured over the viewing angles 0° 

to 50°, and azimuth angles 0° to 360°, for the wavelength range 400 nm to 

1700 nm. The HCRF measurements generally agreed well between different 

sites for viewing angles near nadir and in backward direction for sites where the 

snowpack was smooth and snow depth was greater than 40 cm, with a relative 

standard deviation of less than 10 %. The averaged HCRF showed good 

symmetry with respect to the solar principal plane and exhibited a forward 

scattering peak that was strongly wavelength dependent, with greater than a 
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factor of 2 increase in the anisotropy index over the wavelength range 400 nm to 

1300 nm. The angular dependence to the reflected distribution had minimal 

influence for viewing angles less than 15° in the backward viewing direction for 

the averaged sites, and agreed well with another study of snow HCRF for 

infrared wavelengths, but showed differences of up to 0.24 in the HCRF for 

visible wavelengths, which was attributed to large mass ratios of black carbon 

measured in the snowpack. Maximum mass ratios of the black carbon were 

measured for each field site in the top 10 cm of the snow pack and were found 

to be large compared to background levels for Svalbard, with values in the 

range 90 ng g-1 to 299 ng g-1. The site that had the largest roughness elements 

showed the strongest anisotropy in the HCRF, a large reduction in forward 

scattering, and a strong asymmetry with respect to the solar principal plane. An 

improved pointing accuracy, a larger footprint area, and improved 

characterization of grain size in the surface layer was required to fully 

understand the effects of macroscale surface roughness. 

2.2 Aims of the study 

The study aims to provide systematic hyperspectral HCRF measurements of 

Arctic snow-covered tundra for a range of snow surface types at large solar 

zenith angles. Previous studies have characterized the HCRF of snow (e.g. 

Painter, 2004; Bourgeois et al., 2006; Kuhn, 1985; Hall et al., 1992; Hudson et 

al., 2006; Warren et al., 1998; Peltoniemi et al., 2005; Marks et al., 2015; Hakala 

et al., 2014), but few studies have obtained systematic measurements of snow 

HCRF at large solar zenith angles for a variety of snow surface types. In order to 

explain the differences in the HCRF measurements between sites, this study 

also aims to acquire ancillary sky and snow measurements including: light 

absorbing impurities in the snowpack, snow density, snow grain size, snow 
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surface roughness; and atmospheric properties such as the ratio of the direct to 

diffuse irradiance for each field site.  

2.3 Introduction 

Surface albedo is the bihemispherical reflectance, or the ratio of reflected 

radiant flux to the incident radiant flux of hemispherical angular extent 

(Schaepman-Strub et al., 2006). As a critical component in the Earth’s radiation 

budget, the albedo defines the proportion of solar radiation absorbed, and 

reflected, over a large part of the Earth’s surface (Qu and Hall, 2005; Flanner et 

al., 2011). The albedo of snow is dependent on its absorption and scattering 

properties and is strongly influenced by light absorbing impurities in the 

snowpack such as black carbon (Clarke and Noone, 1985; Hansen and 

Nazarenko, 2004; Doherty et al., 2010; Grenfell et al., 2002). Snow is primarily 

composed of ice crystals in a matrix of air, and as a result, has a strong 

wavelength dependence to its albedo, which can be in excess of 0.9 for UV and 

visible wavelengths (Grenfell et al., 1994). Earth observing satellite sensors 

have the ability to monitor the albedo of snow over remote and inaccessible 

regions such as the Arctic at high spatial and temporal resolution (Stroeve et al., 

2005; Painter et al., 2009; Schaaf et al., 2002). However, space-borne sensors 

subtend only a discrete angle to the target surface and the directional 

reflectance of snow is not isotropic (Kuhn, 1985; Hall et al., 1992). Furthermore, 

the reflectance of snow depends on the wavelength of the reflected radiation, 

and the majority of satellite sensors measure radiance over a limited number of 

spectral bands. Consequently, satellite sensors require knowledge of the 

spectrally-resolved bidirectional reflectance (BRDF) of the target surface to 

accurately derive surface properties such as surface albedo through the use of 

albedo/BRDF retrieval algorithms for snow (Jin and Simpson, 2001; Strahler and 
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Muller, 1999). The accuracy to which satellite sensors are able to derive snow 

properties is dependent on the accuracy of the BRDF model. To better build, 

test and validate these models, hyperspectral, ground-based, bidirectional 

reflectance data are required. Several previous field studies have measured the 

Hemispherical-Conical Reflectance Factor (HCRF) of snow (e.g. Painter, 2004; 

Bourgeois et al., 2006; Kuhn, 1985; Hall et al., 1992; Hudson et al., 2006; 

Warren et al., 1998; Peltoniemi et al., 2005; Marks et al., 2015; Hakala et al., 

2014). However, few studies have obtained measurements over rough 

windblown snow, or at very large solar zenith angles (greater than 80°); where 

satellite albedo retrieval algorithms are least reliable (Stroeve et al., 2005; Liu et 

al., 2009), and where snow surface roughness has the greatest effect on the 

bidirectional reflectance (Warren et al., 1998; Miesch et al., 2002). In addition, it 

has been shown that failure to account for snow surface roughness at large 

solar zenith angles in BRDF models can lead to order of magnitude errors in the 

derivation of snow surface properties (Kuchiki et al., 2011). Hence more 

systematic measurements of snow bidirectional reflectance for large solar zenith 

angles, and for a wider variety of snow surface types are required (Peltoniemi et 

al., 2005). 

 

The bidirectional reflectance distribution function (BRDF) describes intrinsic 

reflectance properties of a surface, or the relationship between the incident light 

from a particular direction to the light reflected by the surface into a particular 

direction (Nicodemus et al., 1977).  By definition, the BRDF is a ratio of 

infinitesimal quantities and cannot be measured directly as all field 

spectrometers have a finite field-of-view (FOV) (Milton et al., 2009; Schaepman-

Strub et al., 2006). In addition, solar irradiance consists of both a direct term 

(non-scattered), and a diffuse term (scattered by clouds, aerosols, gases and 
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the surrounding terrain), the relative proportion of which, is wavelength 

dependent (Lyapustin and Privette, 1999; Grenfell et al., 1994). As a result, the 

measurable quantity in the field is the hemispherical-conical reflectance factor 

(HCRF) (Schaepman-Strub et al., 2006).  

 

The investigation described here measured the HCRF of windblown Arctic snow 

covered tundra at 6 sites under relatively clear sky conditions with minimal cirrus 

cloud cover. The HCRF measurements were made using the GonioRAdiometric 

Spectrometer System (GRASS) (Pegrum-Browning et al., 2008) during a three-

week field campaign in Ny-Ålesund, Svalbard in Spring 2013. The goniometer's 

configuration allowed for an angular resolution of 10° in viewing angle and 

approximately 30° in azimuth angle, covering the angular range of 0° to 50° in 

zenith angles, and 0° to 360° in azimuth angles. 

 

The work carried out in this thesis chapter has been published in the peer-

reviewed journal: IEEE Transaction on Geoscience and Remote Sensing 

(TGRS), by Ball et al. (2015). The coauthors (A.A. Marks, P.D. Green, 

A. MacArthur, M. Maturilli, N.P. Fox and M.D. King) provided advice and 

guidance to the first author of the publication (C.P. Ball) on various aspects of 

the work in a supervisory fashion. A.A. Marks provided assistance with field 

measurements in Svalbard.  

2.4 Methodology 

The methodology will be divided into separate descriptions of the site, the 

goniometer, laboratory testing of the goniometer, the field measurements, and 

the data reduction and processing procedures. 
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2.4.1 Experiment site  

Measurements of HCRF were carried out along two transects near to the 

international research base in Ny-Ålesund (78° 55ʹN, 11° 56ʹ E) in Svalbard 

between the 19th of March and the 1st of April 2013. The transects were 100 m in 

length and were located on two areas of undisturbed snow covered tundra 

approximately 0.25 km east, and 2.90 km northwest of the Ny-Ålesund research 

base. The individual sites were systematically located at approximately 10 m 

intervals along each transect. The number of field measurements acquired was 

dependent on the number of clear sky days over the 3-week period. In total, 9 

HCRF acquisitions were carried out along the eastern transect, and 2 HCRF 

acquisitions were carried out along the western transect, although 5 of these 

acquisitions were later omitted owing to instability in downwelling irradiance.   A 

photograph of the Ny-Ålesund research base is given in Figure 2.1. 

 
Figure 2.1. Photograph of the Ny-Ålesund research base in March 2013 

2.4.2 Instrumentation: GonioRAdiometric Spectrometer System (GRASS) 

The GonioRAdiometric Spectrometer System (GRASS) was used to measure 

the HCRF of the snow at each site during the field campaign.   
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2.4.2.1 Goniometer background 

GRASS was first developed at the UK National Physical Laboratory (NPL) by 

Pegrum-Browning et al. (2008) in collaboration with the UK Natural Environment 

Research Council Field Spectroscopy Facility (NERC FSF) to measure the 

hemispherical conical reflectance (HCRF) of natural surfaces. The instrument 

was field-tested during the international comparison carried out in Tuz Gölü, 

Turkey, in August 2010, by the Committee on Earth Observing Satellites 

(CEOS). Since the field campaign in Turkey the instrument has undergone 

modifications undertaken by NERC FSF, which enabled the GRASS system to 

operate with just 16-foreoptics located on 3-arms. The instrument has since 

been used to measure the HCRF of snow at Dome C, Antarctica in 2011 (Marks 

et al., 2015).  

2.4.2.2 Goniometer design 

The goniometer was designed to be lightweight, quickly assembled in remote 

situations, robust, and easily transportable (Pegrum-Browning et al., 2008; 

Pegrum et al., 2006). The goniometer consists of a series of vertical arms that 

form a hemispherical structure above the target surface. A schematic of the 

goniometer’s frame is given in Figure 2.2.  
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Figure 2.2. Schematic of the goniometer’s frame showing the relative position of each of 
the goniometer’s arms (labeled A to G) and the approximate size of the sampling area 
(from Ball et al. 2015) 

Fifteen foreoptics are mounted on three of the arms and one foreoptic is located 

at the nadir viewing position (θv = 0 ) at the top of the structure. Each foreoptic 

was separated by 10° in viewing angle and approximately 30° in azimuth angle, 

the maximum viewing angle was 50° for the configuration used in this study. A 

maximum view angle of 50° was chosen as previous field measurements by 

Marks (2015) showed that viewing angles in excess of 60° could be affected by 

reflections from the goniometer’s base ring.   

 

The radius of the circular base of the structure was 2 m, as was the distance 

between each foreoptic and the goniometer’s centre point on the target surface. 

The goniometer arms were designed so that they can be manually rotated on 

the circular base of the structure to capture reflected radiance over the full 

upward facing hemisphere. Three rotations of approximately 90° enabled the 

arms holding the foreoptics to sample reflected radiance through 360° of 
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azimuth at approximately 30° intervals.  A photograph GRASS undergoing 

construction in the field is given in Figure 2.3. 

 
Figure 2.3. Construction of the goniometer’s frame at the field site 

Each of the goniometer's foreoptics consists of an 8° (full angle) collimating lens 

coupled by optical fibre to a multiplexer that gives a single output to a dual-field-

of-view Visible to ShortWave Infrared Spectroradiometer (V-SWIR). A Labview 

program controlled the operation of the multiplexer and the spectrometer, which 

allowed the system to step through the optical input for each of the 16 foreoptics 

individually. Once a measurement of radiances had been recorded for all 

foreoptics in the first quarter of a hemisphere, the arms were rotated by 

approximately 90° and the foreoptics were used to measure radiances reflected 

into the subsequent quarter of the hemisphere. The process was repeated until 

radiances were acquired across the entire upward facing hemisphere at the 

desired angular resolution. An integrating cosine irradiance collector was 

attached to the top of the goniometer’s frame and coupled to V-SWIR via a 

second input for a near-simultaneous measurement of downwelling irradiance. 

The HCRF acquisition over a full hemisphere took around 60-minutes.  A 
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photograph of the GRASS system during the field campaign is given in Figure 

2.4. 

 
Figure 2.4. The GonioRAdiometric Spectrometer System (GRASS) with 15-foreoptics 
mounted on 3-arms and one foreoptic positioned in the nadir view position. The 
spectrometer, multiplexer and laptop are situated in the sled (left) and the all-sky camera 
is mounted and leveled on a tripod (out of view) (from Ball et al. 2015) 

2.4.2.3 V-SWIR spectrometer 

The V-SWIR spectrometer consists of two spectrometers, an Ocean Optics USB 

2000+ and a B&WTek sol 1.7, allowing for measurements over the wavelength 

range 400 nm to 1700 nm at 1 nm sampling interval. V-SWIR consists of a 

beam splitter to spilt the input light between the two spectrometers, and a 

motorized mirror, which acts as an optical switch between the two inputs, 

allowing reflected radiance and downwelling irradiance to be measured near 

simultaneously (separated by less than 2 seconds). The V-SWIR 

spectroradiometer was controlled by a Panasonic Toughbook laptop. 

Radiometric calibration of V-SWIR was carried out at NERC FSF prior to its use 

in the field using an integrating sphere source and a standard FEL lamp. 
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2.4.3 GRASS laboratory testing and repeatability 

Prior to its use in the field, the GRASS system underwent laboratory testing to 

assess the instrument's mechanical optical stability and pointing accuracy. 

2.4.3.1 Mechanical stability of optical system 

The repeatability of the measurement setup upon rotating the goniometer’s arms 

was tested in the laboratory at Royal Holloway University of London (RHUL). 

The 3-arms were rotated on the circular base through 8-rotations (each of 

approximately 90°), and radiances were recorded by the spectrometer for each 

foreoptic for each rotation while viewing an intensity stabilized integrating 

sphere source. The integrating sphere source consisted of a tungsten halogen 

lamp, with a regulated and stabilized power supply, coupled to a Spectralon 

integrating sphere. The integrating sphere exit port surround was designed so 

that each foreoptic located in the same position in the integrating sphere, 

ensuring that the distance between the exit port aperture and the collimating 

lens was the same for each replicate measurement.   The exit port of the 

integrating sphere was designed to snuggly surround each foreoptic to avoid 

any extraneous light contributing to the measurement.  The relative standard 

deviation of the radiances recorded by the spectrometer between 450 nm and 

1600 nm for all foreoptics and respective fibres over 8-replicate measurements 

(excluding data from a single damaged fibre) was less than 5 % ( ) and was 

typically 2 %. There was minimal wavelength dependence to the relative 

standard deviation in the replicate measurements, although wavelengths greater 

than 1650 nm had a relative increase in the standard deviation by up to a factor 

of 6, which was the result of poor signal to noise at the detection limit of the 

spectrometer. The relative standard deviation of the 8-replicate measurements 

is given in Figure 2.5 as function of wavelength.  

1σ
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Figure 2.5. Relative standard deviation (RSD) of the replicate foreoptic measurements 
upon rotation of the goniometer’s frame 

Foreoptic 1.4 had the greatest variance, with a relative standard deviation of 

11 %, which increased to a maximum of 18.9 % at 405 nm. The instability in the 

radiances recorded by the foreoptic 1.4 was the result of a damaged fibre, which 

was not used during field campaign. In order to test for damaged fibres during 

the field campaign, measurements of radiance were made for each foreoptic 

while viewing an intensity stabilised integrating sphere source at the end of each 

HCRF acquisition at each field site. The relative standard deviations for the 

radiances recorded by each foreoptic during the field campaign are presented in 

Figure 2.6, and were less than 30 % for all foreoptics, and were typically 15 %. 

Given that the transmission efficiencies were expected to change between sites 

owing to movement and reassembly of the structure, the results do not indicate 
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damage to any particular fibre. The variability in transmission efficiencies of the 

fibres at each site was accounted for by applying an intercalibration factor as 

described in Section 2.4.4.2. 

 
Figure 2.6. Relative standard deviation of foreoptics while viewing a stabilised 
integrating sphere source at each field site during the field campaign 

2.4.3.2 Pointing accuracy and foreoptic footprint overlap 

The footprint overlap was assessed by measuring the pointing accuracy of the 

goniometer in a dark laboratory at RHUL. The spectrometer and multiplexer 

were disconnected from the 6 foreoptics on the middle arm of the goniometer 

and a diode laser was shone back down each optical fibre and foreoptic to 

illuminate an area of white linoleum flooring that corresponds to the area of the 

foreoptic footprint or ground instantaneous field of view (GIFOV).  The centre 

point of the footprint was recorded by tracing the major and minor axes of the 

illuminated area. The position of the footprint centre points were recorded for the 
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same viewing angles as used in the field study (0° to 50°), and for 4 different 

azimuth positions (0°, 90°, 180°, 270°), totaling 24 different viewing positions. 

The size and shape of the footprint was calculated with the knowledge of the 

foreoptics FOV (8° full angle), and the approximate distance to the goniometer’s 

centre point (2 m). The footprints and centre points for the 24 view positions are 

plotted in Figure 2.7.  

 
Figure 2.7. Overlap of foreoptic footprints at 6 different zenith positions ( ) 
and at 4 different azimuth positions ( ) (from Ball et al. 2015) 

The maximum distance of the foreoptic footprint centre from the goniometer 

centre was found to be 20.49 cm; implying a pointing accuracy of roughly 

± 20 cm, and an approximate sample area size of 0.4 m2, which is not sampled 

fully or equally. At 50° viewing angle, the footprint had a major axis diameter of 

47 cm, and at the nadir view position the footprint was circular and had a 

diameter of 28 cm. Given the relatively large footprint the pointing accuracy was 

θr = 0°− 50°
φr = 0°− 270°
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considered satisfactory for sites where the snow surface was homogeneous. 

The impact of the imperfect footprint overlap for sites that were considered 

heterogeneous, owing to the presence of roughness elements, is discussed in 

Section 2.4.5.2. 

2.4.4 Field measurements 

This section describes the HCRF measurements and the ancillary sky and snow 

measurements that were carried out at each of the field sites.  

2.4.4.1 HCRF acquisition 

The HCRF of the snow surface at each site was measured using the GRASS 

system. Reflected radiance was recorded for each quarter of the hemisphere by 

the V-SWIR spectrometer. The arms holding the sixteen foreoptics were 

manually rotated on the instruments base ring through each quarter of the 

hemisphere and the azimuthal position of the arms was recorded. A typical set-

up showing the position of each of the foreoptics over the hemisphere is given in 

Figure 2.8. The large diameter of goniometer’s base ring (4 m) compared to the 

diameter of the sampling area (0.8 m), combined with the ability to manually 

adjust the azimuthal positioning of the arms, allowed the goniometer’s arms to 

be manually positioned so that there is was no shadowing of the sampling area 

during the HCRF acquisition. Consequently, the foreoptics do not always 

measure radiance at equal intervals in azimuth angle (as seen in Figure 2.8), 

and no measurement could be taken in the backward direction in the solar 

principal plane. The distance between the base of arms A and B in Figure 3 is 

60°, or 1 m.  
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Figure 2.8. Typical sampling positions of the GRASS foreoptics and the approximate 
size of the sampled area. The sunlight intersects the plot at the 180° index (from Ball et 
al. 2015) 

The radiance reflected by a calibrated Spectralon reference panel placed on the 

snow surface at the end of each HCRF acquisition was measured using V-SWIR 

and the foreoptic at the nadir viewing position.  An integration time of 2-seconds 

was necessary to achieve the required signal-to-noise ratio for V-SWIR, 

resulting in a typical total measurement time of approxmately 60-minutes for a 

complete measurement of one target. 

2.4.4.2 Foreoptic intercalibration 

Foreoptics and fibres were intercalibrated at each field site at the end of each 

HCRF acquisition to account for their respective transmission efficiencies. 

Variability in radiances were recorded as a function of wavelength for each 

individual foreoptic while viewing a stabilized integrating sphere source 

described in Section 2.4.3.1. Intercalibration correction factors were calculated 



Chapter 2: Bidirectional reflectance of windblown Arctic snow 

     104 

by normalizing the radiance for each of the 15-foreoptics, to the radiance 

recorded by the foreoptic at the nadir viewing position as follows:  

  Eq. 2.1 

where  is the intercalibration correction factor for the foreoptic , 

 is the radiance recorded by the spectrometer while viewing the 

intensity stabilized integrating sphere source with the nadir foreoptic.  is 

the radiance recorded by the spectrometer while viewing the stable integrating 

sphere source with the foreoptic .   

2.4.4.3 Spectralon reference panel 

The HCRF is defined as the ratio of radiance reflected by the target surface into 

a particular direction to that reflected by a lossless Lambertian reflector under 

ambient illumination. A Spectralon panel viewed from nadir ( ) and 

positioned on the snow surface at the end of the measurement sequence was 

used to approximate a lossless Lambertian reflector. The Spectralon panel was 

calibrated at the National Physical Laboratory (NPL), using the National 

Reference Reflectometer (NRR) (Williams, 1999; Chunnilall et al., 2003) for the 

solar and view geometries used in the field to account for the departure of our 

panel from a lossless Lambertain reflector (Sandmeier et al., 1998). The 

calibration yielded a reflectance correction factor  for the wavelength range 

400 nm to 1000 nm, which is defined as the ratio of the radiance reflected by the 

Spectralon panel in a given direction θ, to that of a lossless Lambertian reflector 

identically irradiated (Williams, 1999): 

  Eq. 2.2 

where  is the measured ratio of reflected power to incident power, is the 

Cf (λ) =
LIS , f =nadir (λ)
LIS , f (λ)

,

Cf λ( ) f

LIS , f =nadir (λ)

LIS, f λ( )

f

θr = 0°

β

β = R(2s d)2

cos(θ )
,

R s
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distance between the sample surface and the detectors aperture and is the 

diameter of the aperture. The reflectance correction factors  for the 

Spectralon panel as a function of incidence angle are given in Figure 2.9. 

 
Figure 2.9. Reflectance correction factors for the Spectralon panel used with GRASS. 
Reflectance correction factors made by other researchers for different Spectralon panels 
are given for comparison. Uncertainty bars are given to 2 standard deviations   

The reflectance correction factors as a function of wavelength for the Spectralon 

panel used with GRASS are given in Figure 2.10. 
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Figure 2.10. Reflectance correction factors as a function of wavelength for the 
Spectralon panel used with GRASS. Uncertainty bars are given to 2 standard deviations 
of the averaged measurements 

The spectrally averaged value of  (0.88) was used, since the wavelength 

dependency over the range 400 nm to 1000 nm was found to be less 

than 0.5 %. Correction factors were assumed to be valid up to 1700 nm as the 

wavelength dependency of the hemispherical reflectance of Spectralon (the 

average of 7 panels), presented by Jackson et al. (1992), was less than 1 % 

over the wavelength range 1000 nm to 1700 nm. 

 

The reflectance correction factor is measured with an incident beam angle of 0° 

zenith angle and a viewing angle of 80°. To obtain the approximate 

configuration used in the field the directions were exchanged by applying the 
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Helmholtz reciprocity principal (Clarke and Parry, 1985). The reflectance 

characteristics of the Spectralon panel were assumed to be rotationally 

symmetric to nadir (Sandmeier et al., 1998). Given that a Lambertian surface 

has a constant radiance independent of view angle, the radiance measured from 

nadir was applied to all other foreoptics when calculating the HCRF. The 

radiance reflected by the Spectralon panel was subject to correction by the 

intercalibration correction factor, , derived in Section 2.4.4.2, when 

applied to each of the individual foreoptics. Temperature differences between 

ambient laboratory and field conditions were considered unlikely to significantly 

affect the reflectance of the Spectralon reference standard (Ball et al., 2013). 

2.4.4.4 Calculating the HCRF 

The HCRF is calculated here as follows: 

 

 

            
Eq. 2.3 

where is the foreoptic intercalibration correction factor defined in Section 

2.4.4.2 and  is the reflectance correction factor for the Spectralon reference 

panel defined in Section 2.4.4.3. The measured HCRF function was then 

projected onto a 2-D grid and linearly interpolated using a Delaunay triangle-

based method (de Berg et al., 2008). 

 

The extent of anisotropy in the HCRF over all viewing angles can be described 

using the anisotropy index, ANIX, defined in Chapter 1 as the following: 

  Eq. 2.4 

Cf λ( )

HCRF(θi ,φi ,2π;θr ,φr ;λ ) =

Lr (θi ,φi ,2π;θr ,φr ;λ )
Lr,Spectralon (θi ,φi ,2π;λ )

C f (λ )β

Cf λ( )

β

ANIX(λ) = HCRFmax (λ)
HCRFmin (λ)
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2.4.4.5 Ancillary sky measurements 

During the HCRF acquisition ancillary measurements were made in order to 

characterize the sky conditions. All-sky camera imagery was acquired at 1-

minute intervals using a Nikon Coolpix E4500 digital camera and fish-eye lens. 

Broadband shortwave global and diffuse radiation (200 nm to 4000 nm) is 

measured at 1-minute intervals near to the field site at the AWIPEV research 

station using a Kipp & Zonen CMP22 pyranometer, as part of the Baseline 

Surface Radiation Network (BSRN).  Measurements of aerosol optical thickness 

(AOT) were made at the field site using a handheld Microtops II sunphotometer 

(Morys et al., 2001) at approximately 15-minute intervals during each HCRF 

acquisition. The sunphotometer had five filters centered at 440 nm, 675 nm, 

870 nm, 936 nm and 1020 nm with a full-width half-maxima of 10 nm and full 

field of view of 2.5°. The results of the sunphotometer measurements for each 6 

sites are given in Table 2.1. 

  
Table 2.1. Average aerosol optical thicknesses during the HCRF acquisitions  

2.4.4.6 Analysis of snowpack 

At each site snow pits were sampled at 5 cm depth intervals to obtain 

measurements of snow depth, temperature and grain size. The scale of the 

surface roughness at each site was estimated by measuring the height (the 

vertical distance between the trough and the peak) and the wavelength (the 

horizontal distance between two peaks) of the roughness elements. The 

440 nm 675 nm 870 nm 936 nm 1020 nm
S1 0.16 0.11 0.08 0.08 0.09
S4 0.17 0.12 0.09 0.1 0.1
S2 0.1 0.08 0.05 0.06 0.06
S3 0.14 0.13 0.09 0.1 0.11
S6 0.11 0.08 0.05 0.06 0.07
S5 0.19 0.12 0.08 0.09 0.1

Average aerosol optical thickness (%)Site ID
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snowpack was heavily reworked and regular structures were difficult to identify, 

thus a range of heights and wavelengths were recorded. The ranges are 

presented in Table 2.2, and are typical over the sampling area and 

characteristic of the area surrounding the measurement.  Grain size was 

recorded according to the international classification for seasonal snow on the 

ground (Fierz et al., 2009) using a hand lens and crystal card. Snowpack 

density was measured in the top 10 cm, other than at S3, where snow was 

sampled from the top 9 cm owing to thin snow cover. The snow samples were 

collected by pressing three 240 ml wide-mouth PTFE sample jars downwards 

into the top of the snow surface and measuring the mass of snow samples. A 

list of the HCRF acquisition sites and the snow pit data are presented in Table 

2.2. 

 
Table 2.2. List of the HCRF acquisitions and snow pit data. Grain size and temperature 
has been averaged for the top 10 cm of the snowpack. The uncertainty in the density 
and maximum black carbon measurements is calculated as one standard deviation of 
the replicate measurements. Adapted from Ball et al. (2015) 

Photographs of the snow surface at the time of the HCRF acquisition are given 

in Figure 2.11. 

Site ID Date of 
acquisition

Average 
solar zenith 

angle (°)

Grain size 
(mm)

Density 
(kg m-3)

Tempera-
ture (°C)

Total snow 
depth (cm)

Roughness scale: 
height/ wavelength 

(cm)

Max concentration of 
black carbon (ng g-1)

S1 20/03/13 85 1 322 ± 13 -14.2 57 < 1 / < 1 299 ± 72

S2 21/03/13 84 0.5 308 ± 23 -4.9 26 1 to 2 / 5 to 20 130 ± 31

S3 24/03/13 80 1.5 316 ± 10 -4.6 9 1 to 6 / 5 to 30 102 ± 24

S4 20/03/13 81 1 324 ± 21 -11 41 < 1 / < 1 238 ± 57

S5 01/04/13 79 1.5 272 ± 46 -10.8 49 < 1 / < 1 92 ± 22

S6 25/03/13 81 1 303 ± 22 -4.2 14 < 1 / < 1 192 ± 46
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Figure 2.11. Photographs of the snow surface at each of the field sites 

2.4.4.7 Light absorbing impurities 

An upper limit on the mass ratio of black carbon in the top 10 cm of the 

snowpack was determined for each site by spectrophotometric analysis of filters 

following the methodology described in this section.  

2.4.4.7.1 Collection of snow samples for filtration  

Snow samples for measuring the maximum mass ratio of black carbon in snow 

were collected from each snow pit by pressing a 240 ml wide-mouth PTFE 

sample jar horizontally into the top 10 cm of the snowpack. The PTFE jars were 

filled and emptied 3 times before taking the sample that was used for filtration. 

The operator faced upwind while collecting samples and wore dust free 

disposable rubber over gloves.  
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2.4.4.7.2 Filtration  

Snow samples were transported to the laboratory in Ny-Ålesund where 1500 ml 

of melted snow was filtered through a 0.4 µm Nucleopore membrane filter within 

a few hours of collecting each sample. Filtration of the meltwater was carried out 

according to the methodology described by Doherty et al. (2010). All apparatus 

was rinsed with distilled water prior to use and the filtration was performed 

inside an inflatable polyethylene glove bag to prevent contamination from 

airborne particles in the laboratory. The meltwater was passed through the filter 

using a hand-pump to create a partial vacuum and the filtered meltwater was 

discarded, the process of filtration typically took around 10 minutes for each 

1500 ml sample of melted snow. The filter papers were sealed in airtight bags 

and wrapped in foil for transportation to the laboratory at RHUL where the 

spectrophotometric analysis was carried out. A photograph of the filtration 

apparatus and glove bag is given in Figure 2.12. 
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Figure 2.12. Photograph of filtration equipment in an inflatable polyethylene glove bag 

2.4.4.7.3 Field reference filters 

Prior to the field campaign in Svalbard a set of reference filters were loaded with 

different quantities of black carbon. A stock solution of 1600 ml of water and 

400 ml of isopropanol was mixed with 1 g of commercially available Cabot 

(M120) black carbon, which was as close as possible match to the Monarch-71 

soot used in the seminal study by Clarke and Noone (1985) (Reay, 2013).   The 

stock solution was placed within an ultra-sonic bath for 1-hour to fully saturate 

the solution with black carbon particles. The stock solution was then filtered 

through 2 µm and a 0.8 µm Nucleopore membrane filters using the method 

outlined in Section 2.4.4.7.2. Filtering of the stock solution by the 2 µm and the 

0.8 µm filters consecutively produced a particle size distribution that was 

representative of atmospheric black carbon (Clarke and Noone, 1985; Grenfell 
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et al., 2011). The concentration of black carbon in the filtered stock solution was 

obtained by evaporating 1500 ml of the filtered stock solution in three 500 ml 

beakers in an oven set at 80 °C over a period of several hours. The beakers 

were weighed before and after evaporation, ensuring that the beakers were at 

approximately the same temperature when weighed. The beakers were covered 

with and set on clean foil when not inside the oven to prevent contamination by 

airborne particles in the laboratory. The difference in the beaker weights after 

evaporation of 500 ml of stock solution was used to estimate the mass of black 

carbon in solution as follows: 

  Eq. 2.5 

where  is the concentration of black carbon in the filtered stock solution,   

is the weight of the beaker prior to evaporation of the filtered stock solution,  

is the weight of the beaker after evaporation of the filtered stock solution, and  

is the volume of the filtered stock solution.  The differences in the weights of the 

3 beakers after evaporation of the filtered stock solution are given in Table 2.3.  

 
Table 2.3. Differences in beakers weights after evaporating 500 ml of filtered stock 
solution 

Sbc =
Wb −Wa

V

Sbc

Beaker ID Wb - Wa (g)

A 0.014

B 0.010

C 0.006

Average 0.010

Standard deviation 0.004

Relative standard 
deviation 40%

Filter ID
Dilution 
factor 

Concentration 
(g/ml)

Mass on filter 
(g)

Mass ratio  
(ng/g)

Uncertainty 
(±)

1_250/0 1 1.99E-05 2.48E-03 1655.56 662.22

2_125/2 2 9.93E-06 1.24E-03 827.78 331.11

3_125/3 3 6.62E-06 8.28E-04 551.85 220.74

4_125/4 4 4.97E-06 6.21E-04 413.89 165.56

5_125/6 6 3.31E-06 4.14E-04 275.93 110.37

6_125/8 8 2.48E-06 3.10E-04 206.94 82.78

7_125/12 12 1.66E-06 2.07E-04 137.96 55.19

8_125/16 16 1.24E-06 1.55E-04 103.47 41.39

9_125/24 24 8.28E-07 1.03E-04 68.98 27.59

Site ID Est. 1 (ng/g) Est. 2 (ng/g) Average  (ng/g)
S1 200 100 150
S2 100 100 100
S3 100 100 100
S4 200 100 150
S5 200 400 300
S6 300 300 300
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The average difference in weight was used from Table 2.3 and the 

concentration of black carbon in the filtered stock solution was calculated as 

1.99 ± 0.80 x10-5 g ml-1. The filtered solution was progressively diluted with pure 

water to obtain a range of solutions with different mass ratios of black carbon. 

Each solution was filtered through a 0.4 µm Nucleopore membrane filter and the 

mass of black carbon retained on the filter was calculated as the product of the 

concentration of the filtered solution and the volume filtered. Visual inspection of 

the filtrate indicated that all black carbon was retained on the filter.  The dilution 

factor for each solution of black carbon and the resulting mass of black carbon 

retained on the reference filter for each solution is given in Table 2.4. 

 
Table 2.4. Field reference filters with black carbon loading after filtering 125 ml of black 
carbon solution. Mass ratios are calculated per 1500 g of snow.   Uncertainties are 
calculated as one standard deviation of the averaged black carbon concentration of the 
filtered stock solution 

The reference filters were used in the field to enable a visual estimate of 

maximum black carbon mass ratio in the snowpack. The filter paper was air-

dried inside a petri dish in the laboratory upon filtering meltwater from the field 

sites. Once dry, the field filters were visually compared with the field reference 

filters to find the best match between the sets of filters, and an estimate for 

Filter ID 
Dilution 
factor 

Concentration 
(g/ml) 

Mass on filter 
(g) 

Mass ratio  
(ng/g) 

Uncertainty 
(± ng/g) 

1_250/0 1 1.99 x10-5 2.48 x10-3 1656 662 

2_125/2 2 9.93 x10-6 1.24 x10-3 828 331 

3_125/3 3 6.62 x10-6 8.28 x10-4 552 221 

4_125/4 4 4.97 x10-6 6.21 x10-4 414 166 

5_125/6 6 3.31 x10-6 4.14 x10-4 276 110 

6_125/8 8 2.48 x10-6 3.10 x10-4 207 83 

7_125/12 12 1.66 x10-6 2.07 x10-4 138 55 

8_125/16 16 1.24 x10-6 1.55 x10-4 103 41 

9_125/24 24 8.28 x10-7 1.03 x10-4 69 28 
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maximum black carbon ratio for the snow at each site was made. The visual 

comparison was made with both sets of filters placed on a white diffusing 

background under ambient illumination conditions in the laboratory. Two 

different people made the visual comparison under the same lighting conditions. 

Photographs of the field reference filters are given in Figure 2.13, and the visual 

estimates of the black carbon mass ratios at each site are presented in Table 

2.5. 

 
Figure 2.13. Photograph of field reference filters used to estimate the maximum black 
carbon mass ratios in snow at the field sites 
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Table 2.5. Visual estimates of black carbon maximum mass ratios for field filters at sites 
S1 to S6. Visual estimates are rounded to the nearest 100 ng g-1 

The appearance of the filters can vary depending on the ambient lighting 

conditions, particularly under non-isotropic illumination (Grenfell et al., 2011) 

(see Figure 2.13). It was not possible to fully control lighting conditions in the 

field-based laboratory, and as a consequence visual estimates made relative to 

the set of field reference filters are uncertain. Additional uncertainties include 

personal biases and difficulties ignoring colour. The field filters were often a 

brownish colour owing to presence of dust or soil and the field reference filters 

were grey.   Grenfell et al. (2011) estimated the uncertainty in the maximum 

black carbon mass ratio using the visual comparison technique as 

approximately a factor of 2.   

2.4.4.7.4 Spectrophotometry 

In order to obtain a quantitative estimate of the maximum black carbon mass 

ratios in the snowpack at the field sites an integrating sandwich spectrometer 

(ISSW) was used in the laboratory at Royal Holloway University of London, 

following the technique given by Grenfell et al. (2011). The technique was 

initially developed and tested by Clarke and Noone (1982), and involves the use 

of two highly scattering diffusers that surround the black carbon loaded filter 

producing an isotropic light field around the sample. Multiple scattering between 

the two diffusers results in attenuation of incident light that is primarily due to 

Beaker ID Wb - Wa (g)

A 0.014

B 0.010

C 0.006

Average 0.010

Standard deviation 0.004

Relative standard deviation 40%

Filter ID Dilution factor BC (g/ml) Mass on filter (g) Mass ratio  (ng/g)

1_250/0 1 1.99E-05 2.48E-03 1655.56

2_125/2 2 9.93E-06 1.24E-03 827.78

3_125/3 3 6.62E-06 8.28E-04 551.85

4_125/4 4 4.97E-06 6.21E-04 413.89

5_125/6 6 3.31E-06 4.14E-04 275.93

6_125/8 8 2.48E-06 3.10E-04 206.94

7_125/12 12 1.66E-06 2.07E-04 137.96

8_125/16 16 1.24E-06 1.55E-04 103.47

9_125/24 24 8.28E-07 1.03E-04 68.98

Site ID Est. 1 (ng/g) Est. 2 (ng/g) Average  (ng/g)

S1 200 100 150

S2 100 100 100

S3 100 100 100

S4 200 100 150

S5 200 400 300

S6 300 300 300
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absorption, with very little loss owing to scattering. The system consists of an 

intensity stabilized quartz-halogen lamp light source that transmits light into a 

Spectralon integrating sphere producing a diffuse radiation field at the output 

port of the sphere.  At the exit port of the integrating sphere diffuse light is 

transmitted through the sample filter, which is sandwiched between two 20 mm 

sapphire windows. A highly reflective quartz fibre filter acts as a diffuser on the 

upper side of the sandwich.  The radiation between the upper quartz fibre filter 

and the integrating sphere undergoes multiple reflections through the sample 

filter, enhancing the absorption signal (Grenfell et al., 2011). Radiation 

transmitted through the upper quartz diffuser is transmitted to an Ocean Optics 

USB 2000+ spectrometer and the spectrum is recorded on a Panasonic 

Toughbook laptop via a USB connection. The absorption by black carbon is 

calculated by comparing the attenuation of the black carbon loaded filters with 

that of a blank filter.  A schematic of the ISSW is present in Figure 2.14. 
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Figure 2.14. Schematic of the integrating sandwich spectrometer (ISSW) used to 
measure maximum mass ratios of black carbon in snow at the field sites  

A photograph of the ISSW in the laboratory at Royal Holloway University of 

London is given in Figure 2.15. 
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Figure 2.15. Photograph of the integrating sandwich spectrometer (ISSW) at Royal 
Holloway University of London 

In order to derive the mass of black carbon from the attenuation of radiation by 

the filter a set of calibration filters were required (Grenfell et al., 2011). The 

calibration filters were loaded with known masses of black carbon following the 

technique described in Section 2.4.4.7.3 using commercially produced Cabot 

(M120) black carbon. The difference in the weights of the beakers after 

evaporation of the filtered stock solution for the calibration filters is given in 

Table 2.6. The mass ratio of black carbon in the filtered stock solution is the 

mass in solution divided by the volume evaporated (400 ml), and was 4.61 x10-5 
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±1.12 x10-5 g ml-1 for the filtered stock solution for the black carbon calibration 

filters.  

 
Table 2.6. Differences in beakers weights after evaporating 400 ml of filter stock 
solution 

The stock solution was diluted by the dilution factors given in Table 2.7. The 

mass ratios were calculated for reference, on the basis that 1500 ml of 

meltwater had been filtered. The uncertainty in the mass ratio was calculated 

from one standard deviation of the mass of black carbon in the filtered stock 

solution.  

 
Table 2.7. Calibration filters with black carbon loading after filtering 100 ml of black 
carbon solution. Mass ratios are calculated per 1500 g of snow.   Uncertainties are 
calculated as one standard deviation of the averaged black carbon concentration of the 
filtered stock solution 

Beaker ID Wb - Wa (g)

A 0.019

B 0.023

C 0.014

Average 0.018

Standard deviation 0.004

Relative standard 
deviation 24%

Filter ID
Dilution 
factor 

Concentration 
(g/ml)

Mass on filter 
(g)

Mass ratio  
(ng/g)

Uncertainty 
(±)

A_100/10 10 4.61E-06 4.61E+05 307.22 73.73

B_100/20 20 2.30E-06 2.30E+05 153.61 36.87

C_100/40 40 1.15E-06 1.15E+05 76.81 18.43

D_100/80 80 5.76E-07 5.76E+04 38.40 9.22

E_100/160 160 2.88E-07 2.88E+04 19.20 4.61

F_100/320 320 1.44E-07 1.44E+04 9.60 2.30

G_100/640 640 7.20E-08 7.20E+03 4.80 1.15

H_100/1280 1280 3.60E-08 3.60E+03 2.40 0.58

 

Filter ID 
Dilution 
factor 

Concentration 
(g/ml) 

Mass on filter 
(ng) 

Filter loading 
(µg/cm2) 

Mass ratio  
(ng/g) 

Uncertainty 
(± ng/g) 

A_100/10 10 4.61 x10-6 4.61 x105 36.7 307 74 

B_100/20 20 2.30 x10-6 2.30 x105 18.3 154 37 

C_100/40 40 1.15 x10-6 1.15 x105 9.2 77 18 

D_100/80 80 5.76 x10-7 5.76 x104 4.6 38 9 

E_100/160 160 2.88 x10-7 2.88 x104 2.3 19 5 

F_100/320 320 1.44 x10-7 1.44 x104 1.1 10 2 

G_100/640 640 7.20 x10-8 7.20 x103 0.6 5 1 

H_100/1280 1280 3.60 x10-8 3.60 x103 0.3 2 1 
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Spectra were recorded for light transmitted by the ISSW for each calibration 

filter I(λ)  and for a blank filter I0 (λ) . The average of 3 spectra was taken, 

each with an integration time of 0.6 seconds. The filter paper was rotated by 

approximately 90° between each measurement and the sapphire windows were 

cleaned with methanol prior to placing the filter onto the sapphire window. The 

order of transmittance measurements for each calibration filter was semi-

random. Dark measurements were taken by inserting a black screen between 

the lamp and the integrating sphere, and where subtracted from the measured 

spectrum during post processing. The light transmitted by the black carbon 

loaded filter was compared to the light transmitted by a blank filter, and the 

relative attenuation χλ  is expressed as: 

  Eq. 2.6 

where  is the intensity measured by the spectrometer for the calibration 

filter and  is the intensity measured by the spectrometer for the blank filter. 

 

The measurement system required calibration filters with different black carbon 

loadings because the attenuation as a function of black carbon loading is not 

exponential (i.e. attenuation does not follow the Beer Lambert Law) (Grenfell et 

al., 2011).  The calibration curve presented in Figure 2.17 and gives the relative 

attenuation as a function of black carbon loading on the filter papers at 675 nm, 

and is the average of two sets of measurements. The black carbon loading was 

calculated per unit of filtered area on the filters, which was approximately 

13 cm2. A third-order polynomial was fitted to the calibration curve in order to 

convert the relative attenuation to the maximum black carbon loading for the 

χλ ≡ − ln I(λ )
I0 (λ )

⎛
⎝⎜

⎞
⎠⎟

I(λ )

I0 (λ )
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field filters. The maximum black carbon loading was converted to the maximum 

mass ratio of black carbon in snow by applying the following relationship: 

  Eq. 2.7 

 where   is the maximum mass ratio of black carbon,  is the black carbon 

loading on the filter,  is the area on the filter and  is the mass of snow or 

meltwater filtered.  

 

The relative attenuation as the function of wavelength for the 7 calibration filters 

is given in Figure 2.16. 

 
Figure 2.16. Relative attenuation as a function of wavelength for the 7 calibration filters 
with different loadings of black carbon. The black carbon loading on the filters is given in 
units of µg cm-2 

Cmax =
L A
M

Cmax L

A M
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Given that black carbon absorbs light strongly across visible wavelengths there 

is effectively no wavelength dependence to the relative attenuation. The 

calibration curve for the integrating sandwich spectrometer is given in Figure 

2.17. 

 
Figure 2.17. Calibration curve for the integrating sandwich spectrometer at a 
wavelength of 675 nm. The uncertainty bars are two standard deviations of the replicate 
measurements  

Relative attenuation as a function of wavelength is presented for each site in 

Figure 2.18 to Figure 2.23. The black carbon loading on each field filter was 

calculated using the calibration curve given in Figure 2.17 and the relative 

attenuation averaged for the band 665 nm to 685 nm for each site. Uncertainty 

in the black carbon loadings was calculated as one standard deviation of the 
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replicate measurements of the black carbon concentration in the filtered stock 

solution.  

 
Figure 2.18. Relative attenuation with wavelength for the field filter at site S1 

The maximum mass ratio of black carbon for S1 was 299 ± 72 ng g-1, giving S1 

the greatest maximum mass ratio of black carbon of the 6 sites studied. S1 is 

the closest site to the Ny-Alesund research base (approximately 127 m) and the 

level is much greater than typical black carbon mass ratios for Svalbard, which 

are in the range 11 ng g-1 to 22 ng g-1 (Forsström et al., 2013; Clarke and 

Noone, 1985; Doherty et al., 2010).  There is a strong wavelength dependence 

to the attenuation of light for the S1 filter, with a greater than a factor of 2 

decrease between 400 nm and 650 nm, which is the result of absorption by 

impurities other than black carbon. These impurities are likely to be a 

combination of soil, dust or HULIS (humic like substances). France et al. (2012) 

and Reay (2013) carried out measurements on Arctic snow and detected a 

similar spectral shape for absorption. France et al. (2012) found that the 

absorption cross section was explained by the presence of HULIS in the snow 

pack, which absorbs light more strongly at shorter wavelengths. In addition, 

Doherty et al. (2010) calculated that 20 % to 50 % of the light absorbing 
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impurities in Arctic snow was by non-black carbon constituents. As such, the 

measurements of maximum black carbon were made for the wavelength band 

centered at 675 nm, where absorption by HULIS is weaker. However, it should 

be noted that the measurements provide only the maximum mass ratio of black 

carbon in the snow pack, with unknown concentrations of other absorbers 

possibly contributing towards the measured attenuation.     

 

The maximum mass ratio of black carbon for S2 was 130 ± 31 ng g-1. The 

relative attenuation as a function of wavelength for the filter at S2 is given in 

Figure 2.19 and had wavelength dependence with a fractional decrease in 

relative attenuation of 65 % between 400 and 675 nm. S2 was approximately 

161 m from the Ny-Ålesund research base.  

 
Figure 2.19. Relative attenuation with wavelength for the field filter at site S2 

The maximum mass ratio of black carbon for S3 was 102 ± 24 ng g-1. The 

relative attenuation as a function of wavelength for the filter at S3 is given in 

Figure 2.20 and had wavelength dependence with a fractional decrease in 

relative attenuation of 45 % between 400 nm and 675 nm. S3 was 

approximately 184 m from the Ny-Ålesund research base.  
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Figure 2.20. Relative attenuation with wavelength for the field filter at site S3 

The maximum mass ratio of black carbon for S4 was 238 ± 57 ng g-1. The 

relative attenuation as a function of wavelength for the filter at S4 is given in 

Figure 2.21 and had wavelength dependence with a fractional decrease in 

relative attenuation of 41 % between 400 nm and 675 nm. S4 was the second 

nearest field site to the Ny-Ålesund research base (approximately 138 m) and 

had the second greatest maximum mass ratio of black carbon. 

 
Figure 2.21. Relative attenuation with wavelength for the field filter at site S4 
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The maximum mass ratio of black carbon was lowest for S5, which had a 

maximum mass ratio of 92 ± 22 ng g-1. The relative attenuation as a function of 

wavelength for the filter at S5 is given in Figure 2.22 and had wavelength 

dependence with a fractional decrease in relative attenuation of 37 % between 

400 nm and 675 nm. S5 was approximately 3115 m from the Ny-Ålesund 

research base, and was the only field site from the second transect located to 

the northwest of the Ny-Ålesund. 

 
Figure 2.22. Relative attenuation with wavelength for the field filter at site S5 

The maximum mass ratio of black carbon for S6 was 192 ± 46 ng g-1. The 

relative attenuation as a function of wavelength for the filter at S6 is given in 

Figure 2.23 and had wavelength dependence with a fractional decrease in 

relative attenuation of 48 % between 400 nm and 675 nm. S6 was 

approximately 193 m from the Ny-Ålesund research base. 
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Figure 2.23. Relative attenuation with wavelength for the field filter at site S6 

The upper limit on the concentration of black carbon in the snowpack at each 

site was found to be large when compared with typical values in Svalbard 

(Doherty et al., 2010; Forsström et al., 2013; Clarke and Noone, 1985), which is 

caused by the proximity of the field sites to the Ny-Ålesund research station and 

the use of diesel generators for power and snow machines. There was 

wavelength dependence to absorption by the snow at all sites, with fractional 

decreases in attenuation of typically 40 % between 400 nm and 675 nm, which 

was related to absorption by non-black carbon impurities. Generally, the 

measured maximum black carbon ratios decreased with distance from the Ny-

Ålesund research base, having a weak negative correlation coefficient of -0.51 

p = 0.3( )  for the 6 sites measured. S1, which was nearest to the research base, 

had a maximum mass ratio of 299 ± 72 ng g-1, compared to a maximum mass 

ratio of 92 ± 22 ng g-1 at S5, which was the furthest site from the research 

station.  
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The estimates of maximum black carbon concentration in the snowpack made 

using the visual comparison method (described in Section 2.4.4.7.3) agreed to 

within a factor of 3 with the measurements made using the ISSW.  Differences 

between the maximum black carbon concentration in the snowpack derived 

using each method was greatest for site S5, which was located furthest from the 

Ny-Ålesund research base. The differences were within a factor of 2 for S1, S2, 

S3, S4 and S6, which is inline with the uncertainty in the visual comparison 

technique estimated by Grenfell et al. (2011). The field filters had a brownish 

appearance owing to presence of dust or soil in the snowpack, which increased 

the uncertainty in our visual comparison estimates owing to difficulties ignoring 

colour when conducting the visual comparison of the field filters with the 

reference filters.  

2.4.5 Data processing and reduction procedures 

In total, 11 HCRF acquisitions were performed at 11 sites, but only 6 were 

retained for analysis. The data processing and reduction procedures are 

described in this section.   

2.4.5.1 Diffuse and direct sky irradiance 

Even under clear sky conditions the HCRF does not equal the BRDF of the 

surface due to the presence of diffuse irradiance (Lyapustin and Privette, 1999; 

Grenfell et al., 1994). The long atmospheric path length of light for large solar 

zenith angles results in increased scattering, especially in the Rayleigh 

scattering dominated wavelength region (400 nm to 800 nm), making it 

impossible to measure the HCRF at these angles without a high proportion of 

diffuse irradiance being present. In order to maximize the portion of direct 

irradiance a number of the acquisitions were omitted on inspection of the 
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downwelling direct irradiance, which was recorded simultaneously at the 

AWIPEV research station in Ny-Ålesund. In total, 11 HCRF acquisitions were 

obtained at sites along both transects, the downwelling broadband direct 

irradiance over the wavelength range 200 nm to 4000 nm recorded by the 

AWIPEV pyranometer during each acquisition is presented in Figure 2.24 to 

Figure 2.31. 

 

 
Figure 2.24. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 19th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisition A 

 

 
Figure 2.25. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 20th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisitions B, C and D 
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Figure 2.26. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 21th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisitions E and F 

 

 
Figure 2.27. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 23rd of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisition G 
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Figure 2.28. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 24th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisition H 

 

 
Figure 2.29. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 25th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisition I 
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Figure 2.30. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 30th of March 2013. The vertical lines correspond with the HCRF acquisition start 
and end times for acquisition J 

 

 
Figure 2.31. Downwelling direct irradiance recorded by the AWIPEV pyranometer on 
the 1st of March 2013. The vertical lines correspond with the HCRF acquisition start and 
end times for acquisition K 

The HCRF acquisitions are labeled A to K in Figure 2.24 to Figure 2.31, the 

vertical bars in each figure give the start and end times for each acquisition. 

Acquisition A, D, F, G and J were omitted based on visual inspection owing to 

instability in the direct portion of irradiance. Acquisitions B, C, E, H, I and K were 

retained for analysis and are presented in this chapter. Sites S1, S2, S3, S4, S5 

and S6 in Table 2.2 correspond with acquisitions B, E, H, C, K and I 

respectively.  Sky conditions during each acquisition were also recorded using 
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Nikon Coolpix E4500 digital camera and fish-eye lens. On visual inspection of 

the imagery, only sites that showed clear sky conditions with no cumulus cloud 

and minimal visible cirrus cloud cover during the HCRF acquisition were 

retained for analysis. The ratio of broadband diffuse irradiance to global 

irradiance (200 nm to 3600 nm) was recorded by a Kipp & Zonen CMP22 

pyranometer at AWIPEV research station and was on average less than 0.5 for 

the remaining sites (S1 to S6) during each the HCRF acquisition. 

2.4.5.2 Spatial resolution and surface roughness 

Surface roughness of the target surface is an important parameter in the 

measurement of HCRF (Warren et al., 1998; Leroux and Fily, 1998), to take a 

representative measurement typical surface roughness elements, such as 

sastrugi and ripples, needed to be sampled. To test whether the footprint size 

and the goniometer’s pointing accuracy were sufficient to sample a 

representative number of roughness elements, the ratio of shaded to sunlit 

areas within a circular footprint of 0.28 m diameter (the size of the footprint used 

in the field measurements) was compared to the ratio of shaded to sunlit areas 

for a footprint with a 1 m diameter. The size and shape of the shadows were 

computed for a 1.5 m2 grid according to the solar geometry and the height          

( ) and wavelength ( ) of the roughness elements observed at the sites 

S2 and S3, by taking the middle value for each range (for site S2  and 

, for site S3  ). For simplicity, the roughness 

elements were assumed to be regularly spaced linear ridges with vertical walls, 

as in Leroux and Fily (1998). The ratio of shaded to sunlit areas for each 

footprint size was calculated and averaged for 100 different positions around the 

centre of the grid by varying the x and y coordinates of the footprint centre point 

sash sasλ

sash = 1.5

sasλ = 12.5 sash = 3.5 sasλ = 17.5
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by up to ± 20 cm using a random number generator, in order to resemble the 

pointing accuracy of the goniometer. The distribution of shadows on the grid and 

position of the sensors footprint for 9 of the 100 simulations is given for the 

roughness element at S3 in Figure 2.32.  

 
Figure 2.32. Simulated shadowed to sunlit areas at S3 for 9 of the 100 different 
foreoptic footprint positions with a footprint radius of 0.14 m 

The relative difference between the averaged ratio of shaded to sunlit areas with 

a footprint diameter of 0.28 m, and a footprint diameter of 1 m was 18.5 % for 

S3. The relative standard deviation of the averaged ratio with a 0.28 m diameter 

footprint was 24.5 % for S3; indicating that a footprint size of 0.28 m in diameter 

was probably sufficient to obtain a representative sample of shaded to sunlit 
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area at S3, although errors in excess of 49 % (2 standard deviations from the 

mean) owing to positioning of the sensor footprint could not be eliminated. The 

ratio of shaded to sunlit areas for all 100 simulations are presented as a function 

of sensor footprint radius in Figure 2.33. 

 
Figure 2.33. Ratio of shaded to sunlit areas within the sensor footprint as a function of 
sensor footprint radius for 100 different sensor positions at S3 

Variance in the ratio of shaded to sunlit areas in Figure 2.33 generally 

decreases with the radius of the sensors footprint, but owing to the simplified 

geometry used in the model there a number of footprint radii which produce a 

smaller variance despite a smaller footprint radius. For example, for a footprint 

radii of 0.11 m, 0.2 m, 0.28 m, 0.37 m and 0.46 m, the shaded to sunlit area 

ratio is consistently around 1.3 for all simulations despite different footprint 
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locations. These footprint radii happen to be large enough to span across an 

equal integer number of shaded and sunlit strips, hence the ratio within the 

circular footprint becomes independent of position.  The simulated distribution of 

shaded to sunlit areas for the S2 roughness elements are given in Figure 2.34. 

 
Figure 2.34. Simulated shadowed to sunlit areas at S2 for 9 of the 100 different 
foreoptic footprint positions with a footprint radius of 0.14 m 

The relative difference between the averaged ratio of shaded to sunlit areas with 

a footprint diameter of 0.28 m, and a footprint diameter of 1 m was 2.3 % for S3. 

The relative standard deviation of the averaged ratio with a 0.28 m diameter 

footprint was 2.6 % for S3; indicating that a footprint size of 0.28 m in diameter 

was sufficient to obtain a representative sample of shaded to sunlit areas at S2. 
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The ratio of shaded to sunlit areas for all 100 simulations for the S2 roughness 

elements are presented as a function of sensor footprint radius in Figure 2.35. 

 
Figure 2.35. Ratio of shaded to sunlit areas within the sensor footprint as a function of 
sensor footprint radius for 100 different sensor positions at S2 

The model grossly oversimplifies the geometry of the roughness elements and 

was intended to provide an approximation of the scale of the error introduced as 

a result of the footprint size relative to the size of the roughness elements. Given 

the irregular distribution and size of the roughness elements at S2 and S3 the 

possibility of any foreoptic capturing an unrepresentative sample that causes 

errors in excess of what is estimated above could not be eliminated without an 

improved characterization of the roughness elements geometry, and thus the 

sites were omitted from the final analysis, but are retained in the discussion 

section. The MATLAB code used to model the roughness elements and 
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generate Figure 2.32, Figure 2.33, Figure 2.34, and Figure 2.35 is given in 

Appendix 2. 

2.4.5.3 Change in solar zenith and azimuth angles 

The measurement time for a single HCRF acquisition was typically 60-minutes, 

which for the measurement location and time of year corresponds to a change 

of approximately 3° in solar zenith and approximately 16° in solar azimuth angle. 

To avoid geometric perturbations in the HCRF distribution due to changes in 

solar azimuth angle the actual solar azimuth angle was determined for each 

radiance measurement during the HCRF acquisition. The solar azimuthal offset 

since the start of the measurement sequence for each radiance measurement 

was calculated and a correction was then applied to the distribution in post 

processing.  The correction is not valid for heterogeneous sites with roughness 

elements, as such, no correction for changes in solar azimuth were applied for 

S2 and S3. To account for the change in global irradiance during a 

measurement owing to the change in the solar zenith angle, a correction 

determined from the quotient of the radiance recorded by each foreoptic and the 

global irradiance recorded near-simultaneously (less than 2 seconds) by an 

integrating cosine irradiance collector positioned on top of the GRASS frame 

was applied. 

2.5 Experiment results 

The HCRF was acquired using GRASS at 11 sites during the field campaign. 

Five of the 11 sites were omitted due to the presence of cumulus or cirrus   

cloud, which was detected by instability in the ratio of direct to diffuse irradiance 

recorded at the AWIPEV research station during the acquisitions.  Bivariate and 

contoured polar plots of the HCRF over the upward facing hemisphere for the 
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remaining sites, S1 to S6, are presented in the following sections.  The polar 

plots are the HCRF projected onto a 2-D surface and linearly interpolated using 

a Delaunay triangle based method (de Berg et al., 2008); the distance from the 

center of the plots correspond with the viewing zenith angle, and rotation about 

the center of the plots corresponds to azimuth angle; the contour intervals are 

set to 0.1 and the color scale is consistent for all plots. The anisotropy in the 

HCRF for each site is quantified by the anisotropy index (ANIX), which was 

defined as the ratio of the maximum to the minimum HCRF values over the 

hemisphere. Data was omitted in the wavelength band 920 nm to 970 nm and 

beyond 1350 nm owing to poor signal to noise.    

2.5.1 Site 1 (S1)  

Polar plots of the HCRF are presented for S1 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.36 to Figure 2.38. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.39, and the 

anisotropy index (ANIX) is given as a function of wavelength in Figure 2.40. 
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Figure 2.36. HCRF of snow at S1 for a wavelength of 500 nm 

 
Figure 2.37. HCRF of snow at S1 for a wavelength of 900 nm 

S1 HCRF: λ =500 nm, ANIX =1.24
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Figure 2.38. HCRF of snow at S1 for a wavelength of 1300 nm 

S1 HCRF: λ =1300 nm, ANIX =4.36
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Figure 2.39. HCRF as a function of viewing angle in the solar principal plane at S1 

The HCRF generally decreased with wavelength for all viewing angles to a 

minimum value of 0.1 at 1268 nm, although the rate of decrease with 

wavelength is smaller for viewing angles in the forward scattering peak.  There 

was minimal angular dependence to the HCRF over the hemisphere for all 

wavelengths less than 800 nm, with ANIX values typically less than 1.3. 

However, the angular dependence to the HCRF strongly increased with 

wavelength. The anisotropy index (ANIX) increased from 1.2 at 400 nm to a 

maximum of 6.4 at 1270 nm. The increase in anisotropy was the result of 

smaller HCRF values for viewing angles outside of the forward peak. Despite 

the increase in anisotropy for wavelengths greater than 800 nm, minimal 

angular dependence to the HCRF persisted for viewing angles less than 20°, 
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and for viewing angles in the backward direction. The maximum HCRF value 

over the hemisphere for all wavelengths was 1.2 at 1127 nm. 

 
Figure 2.40. Anisotropy index (ANIX) as a function of wavelength at S1 

2.5.2 Site 2 (S2) 

Polar plots of the HCRF are presented for S2 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.41 to Figure 2.43. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.44, and the 

anisotropy index is given as a function of wavelength in Figure 2.45. S2 had 

small surface roughness elements; a photograph of the roughness elements is 

given in Figure 2.15, and estimates of the scale of the roughness elements are 

given in Table 2.2. 
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Figure 2.41. HCRF of snow at S2 for a wavelength of 500 nm 

 
Figure 2.42. HCRF of snow at S2 for a wavelength of 900 nm 

S2 HCRF: λ =500 nm, ANIX =1.17
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Figure 2.43. HCRF of snow at S2 for a wavelength of 1300 nm 

S2 HCRF: λ =1300 nm, ANIX =2.45
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Figure 2.44. HCRF as a function of viewing angle in the solar principal plane at S2 

S2 had a weak angular dependence to the HCRF for wavelengths less than 

800 nm, with typical ANIX values of around 1.2. As was observed for S1, there 

was strong wavelength dependence to the HCRF values at S2, with the HCRF 

for viewing angles outside of the forward peak generally decreasing with 

wavelength at a faster rate than for viewing angles inside the forward scattering 

peak. The anisotropy index (ANIX) at S2 increased with wavelength to a 

maximum of 2.9 at 1272 nm. The forward scattering peak became evident in the 

HCRF distribution for wavelengths greater than 800 nm, and increased in 

strength to a maximum value of 1.1 at 1120 nm. While the strength of the 

forward peak increased with wavelength, the HCRF for all other viewing angles 

generally decreased with wavelength. Despite a decrease in the maximum 
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HCRF value over the hemisphere beyond 1120 nm, the anisotropy in the 

distribution continued to increase with wavelength, and peaked around 

1270 nm. The minimum HCRF over the hemisphere at S2 was 0.3 at 1269 nm, 

which was 0.2 greater than the minimum at S1. S2 had a thinner snow cover 

than at S1, and had small-scale roughness elements.  

 
Figure 2.45. Anisotropy index (ANIX) as a function of wavelength at S2 

2.5.3 Site 3 (S3) 

Polar plots of the HCRF are presented for S3 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.46 to Figure 2.48. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.49, and the 

anisotropy index is given as a function of wavelength in Figure 2.50. S3 had the 

largest surface roughness elements, a photograph of the roughness elements is 
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given in Figure 2.15, and estimates of the scale of the roughness elements are 

given in Table 2.2. 

 
Figure 2.46. HCRF of snow at S3 for a wavelength of 500 nm 

 
Figure 2.47. HCRF of snow at S3 for a wavelength of 900 nm 

S3 HCRF: λ =500 nm, ANIX =1.43

 

 

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

10°
20°

30°
40°

50°

H
C

R
F

H
C

R
F

<<< backward scattering | forward scattering >>>   

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S3 HCRF: λ =900 nm, ANIX =1.79

 

 

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

10°
20°

30°
40°

50°

H
C

R
F

H
C

R
F

<<< backward scattering | forward scattering >>>   

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Chapter 2: Bidirectional reflectance of windblown Arctic snow 

     150 

 
Figure 2.48. HCRF of snow at S3 for a wavelength of 1300 nm 

S3 HCRF: λ =1300 nm, ANIX =2.86
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Figure 2.49. HCRF as a function of viewing angle in the solar principal plane at S3 

There was no evidence of a forward scattering peak within ± 30° azimuth angle 

of the 180° degree index over the full wavelength range at S3. There was 

minimal angular dependence to the HCRF in the solar principal plane, but 

considerable angular dependence to the HCRF outside of the solar principal 

plane, with the ANIX value increasing with wavelength to a maximum of 2.8 at 

1264 nm. Given that the anisotropy was observed outside of the principal plane, 

the reflected distribution was highly asymmetric, with differences of up to 28 % 

of the mean HCRF value on either side of the principal plane. Similarly to S1 

and S2, the HCRF generally decreased with wavelength and the anisotropy 

generally increased with wavelength. Despite having a much thinner snowpack 

than the other sites the HCRF values at S3 were generally greater, with a 
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minimum HCRF value over the hemisphere for all wavelengths of 0.4 at 

1273 nm. The maximum HCRF value over the hemisphere for all wavelengths 

was 1.4 at 1154 nm. 

 
Figure 2.50. Anisotropy index (ANIX) as a function of wavelength at S3 

2.5.4 Site 4 (S4) 

Polar plots of the HCRF are presented for S4 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.51 to Figure 2.53. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.39, and the 

anisotropy index is given as a function of wavelength in Figure 2.40. 
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Figure 2.51. HCRF of snow at S4 for a wavelength of 500 nm 

 
Figure 2.52. HCRF of snow at S4 for a wavelength of 900 nm 

S4 HCRF: λ =500 nm, ANIX =1.22
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Figure 2.53. HCRF of snow at S4 for a wavelength of 1300 nm 

 

S4 HCRF: λ =1300 nm, ANIX =3.65
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Figure 2.54. HCRF as a function of viewing angle in the solar principal plane at S4 

There was no evidence of a forward scattering peak in the solar principal plane 

for S4, despite no roughness elements being present. The forward peak 

appears to be offset from the specular direction of 180° and is present at the 

120° and 240° azimuthal indices. Similarly to S1, S2, and S3, the HCRF 

distribution showed strong wavelength dependence, with an increase in the 

ANIX value with wavelength to a maximum of 5.3 at 1264 nm. The maximum 

HCRF value over the hemisphere was 1.2 at 917 nm, and the minimum was 0.1 

at 1264 nm. HCRF generally decreased with wavelength, and the anisotropy 

index (ANIX) generally increased with wavelength, with a peak around 1260 nm. 

Similarly to S1 and S2, there was minimal angular dependence to the HCRF for 

all wavelengths less than 800 nm, with ANIX values typically less than 1.4. 
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Figure 2.55. Anisotropy index (ANIX) as a function of wavelength at S4 

2.5.5 Site 5 (S5) 

Polar plots of the HCRF are presented for S5 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.56 to Figure 2.58. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.59, and the 

anisotropy index is given as a function of wavelength in Figure 2.60. 
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Figure 2.56. HCRF of snow at S5 for a wavelength of 500 nm 

 
Figure 2.57. HCRF of snow at S5 for a wavelength of 900 nm 

S5 HCRF: λ =500 nm, ANIX =1.26

 

 

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

10°
20°

30°
40°

50°

H
C

R
F

H
C

R
F

<<< backward scattering | forward scattering >>>   

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

S5 HCRF: λ =900 nm, ANIX =1.57

 

 

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

10°
20°

30°
40°

50°

H
C

R
F

H
C

R
F

<<< backward scattering | forward scattering >>>   

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1



Chapter 2: Bidirectional reflectance of windblown Arctic snow 

     158 

 
Figure 2.58. HCRF of snow at S5 for a wavelength of 1300 nm 

S5 HCRF: λ =1300 nm, ANIX =3.68
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Figure 2.59. HCRF as a function of viewing angle in the solar principal plane at S5 

The HCRF over the hemisphere at S5 has a forward scattering peak that was 

strongest at the 150° azimuthal index, and the anisotropy to the HCRF 

distribution was strongly wavelength dependent. S5 had the deepest snowpack 

and its maximum HCRF value of 1.6 had a wavelength of 400 nm, compared to 

917 nm for S4 (which had the second deepest snowpack), 1154 nm for S3, 

1120 nm for S2, and 1127 nm for S1. The angular dependence to the HCRF 

was minimal for wavelengths below 700 nm, with ANIX values typically around 

1.3. The ANIX value generally increased with wavelength to a maximum value 

of 5 at 1267 nm. The ANIX values as a function of wavelength indicates that the 

strength of the peak – relative to viewing angles outside of the peak – was 
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strongly wavelength dependent. The minimum HCRF value over the hemisphere 

for the full wavelength range was 0.11 at 1267 nm. 

 
Figure 2.60. Anisotropy index (ANIX) as a function of wavelength at S5 

2.5.6 Site 6 (S6) 

Polar plots of the HCRF are presented for S6 for the wavelengths 500 nm, 

900 nm and 1300 nm in Figure 2.61 to Figure 2.63. The HCRF as a function of 

viewing angle in the solar principal plane is given in Figure 2.64, and the 

anisotropy index is given as a function of wavelength in Figure 2.65. 
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Figure 2.61. HCRF of snow at S6 for a wavelength of 500 nm 

 
Figure 2.62. HCRF of snow at S6 for a wavelength of 900 nm 

S6 HCRF: λ =500 nm, ANIX =1.46
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Figure 2.63. HCRF of snow at S6 for a wavelength of 1300 nm 

 

S6 HCRF: λ =1300 nm, ANIX =3.48
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Figure 2.64. HCRF as a function of viewing angle in the solar principal plane at S6 

Similarly to S4, S6 shows no forward scattering peak in the solar principal plane, 

despite having no roughness elements. However, there was a forward peak in 

the reflected distribution at the 120° azimuthal index, which has a maximum 

HCRF value of 1.2 at 400 nm. The greatest HCRF value for all viewing angles 

and wavelengths was 1.2 at 400 nm despite a snowpack thickness of only 

14 cm, although lake ice was observed underneath the snowpack at S6.  HCRF 

generally decreased with wavelength and the anisotropy increased with 

wavelength, with a maximum ANIX value of 4.5 at 1264 nm. The wavelength for 

the peak in anisotropy at S6 was similar to S5, S4, S3, S2 and S1, which all 

have a peak in anisotropy in the 1264 nm to 1272 nm wavelength range. The 

wavelength range for the peak anisotropy generally corresponds with the 
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wavelength range in which the minimum HCRF values over the hemisphere are 

found.  There was a general decrease in reflectance with wavelength for S6 – as 

was observed for all other sites – with a minimum HCRF value was 0.1 at 1264 

nm at S6.  

 
Figure 2.65. Anisotropy index (ANIX) as a function of wavelength at S6 

2.5.7 Averaged HCRF 

For sites which had a snow depth greater than 40 cm and the snow surface was 

smooth (S1, S4, S5) the HCRF was averaged and is presented in the form of 

polar plots for wavelengths 500 nm, 900 nm and 1300 nm in Figure 2.66 to 

Figure 2.68. The averaged HCRF as a function of viewing zenith angle in the 

solar principal plane is given in Figure 2.69. The averaged HCRF is presented 

as a function of wavelengths for viewing angles in the forward directions is given 

400 500 600 700 800 900 1000 1100 1200 1300
0

1

2

3

4

5

6

7

Wavelength / nm

AN
IX



Chapter 2: Bidirectional reflectance of windblown Arctic snow 

     165 

in Figure 2.70. The averaged HCRF in Figure 2.70 is compared to 

measurements made by Painter and Dozier (2004) (dashed lines), who used a 

similar methodology to measure HCRF of snow near the Mammoth Lakes, 

California, for solar zenith angles 47° to 51°. 

 
Figure 2.66. Average HCRF of S1, S4 and S5 for a wavelength of 500 nm 

Averaged HCRF: λ =500 nm, ANIX =1.12
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Figure 2.67. Average HCRF of S1, S4 and S5 for a wavelength of 900 nm 

 
Figure 2.68. Average HCRF of S1, S4 and S5 for a wavelength of 1300 nm 

Averaged HCRF: λ =900 nm, ANIX =1.31
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Figure 2.69. Averaged HCRF as a function of viewing angle in the solar principal plane. 
Uncertainty bars are one standard deviation of the averaged measurements. 
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Figure 2.70. Averaged HCRF as a function of wavelength for different viewing angles in 
the solar principal plane in the forward direction. Two regions of low signal to noise at 
1400 nm and at 900 nm have been removed.  The solid line is the averaged HCRF 
measurement and the solid pale color represents one standard deviation from the mean, 
the dashed lines are the HCRF of snow in California recorded by Painter and Dozier 
(2004) with a solar zenith angle of 47°. 

The relative standard deviation in the HCRF for the averaged sites (S1, S4, S5) 

was less than 10 % for viewing angles outside of the forward scattering peak, 

implying good agreement in the measurements at sites where the snowpack 

was thick and the snow surface was smooth. Although there was considerably 

more variation for viewing angles in the forward scattering peak, with a 

maximum relative standard deviation of 54 % at 1300 nm. The standard 

deviation of the averaged sites in solar principal plane was 0.17 at 1300 nm for 

a view angle of 45° compared to 0.01 at 1300nm at the nadir viewing angle 
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Anisotropy in the solar principal plane for the averaged sites was minimal for 

wavelengths shorter than 700 nm, but strongly increased with wavelength.  For 

example, at 1300 nm, the HCRF increased from 0.22 ± 0.01 at the nadir view 

position, to 0.42 ± 0.17 at 45° in the forward direction in the solar principal 

plane, whereas at 700 nm there was no detectable increase in the HCRF over 

the same viewing angle range.  Anisotropy for the averaged sites increased with 

wavelength, from a minimum of 1.1 at 400 nm to a maximum of 2.4 at 1260 nm. 

The HCRF spectra for different view angles in the solar principal plane is given 

in Figure 2.70 and is compared with measurements made by Painter and Dozier 

(2004) (Painter, 2004) (dashed lines). For the wavelength range 800 nm to 

1300 nm the spectra agree well with Painter and Dozier’s measurements, but 

were up to 0.24 lower for wavelengths less than 800 nm for the same viewing 

angles. 

2.6 Discussion 

The discussion section is spilt into separate sections discussing the HCRF for 

the individual sites, the averaged HCRF, and the averaged HCRF compared to 

measurements by Painter and Dozier (2004).   

2.6.1 Individual sites 

There was considerable variability between sites in the HCRF over the 

hemisphere. The differences are in part due to variability in the snow surface 

roughness elements, snow depth, grain size, concentration of light absorbing 

impurities, and the reflectivity of the underlying surface; all of which are known 

to affect the HCRF of snow (Peltoniemi et al., 2005; Painter, 2004; Bourgeois et 

al., 2006).  There were, however, some key similarities between the sites: (1) 

HCRF generally decreased with wavelength to a minimum around 1260 nm to 
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1270 nm (2) anisotropy generally increased with wavelength to a maximum 

around 1260 nm to 1270 nm. HCRF values for sites that had a smooth snow 

surface and a thicker snowpack agreed more closely, with an average relative 

standard deviation of 14 % over the hemisphere for S1, S4 and S5.  

 

S3, which had the largest roughness elements, was most strongly asymmetric 

with respect to the solar principal plane, with differences of up to 28 % of the 

mean HCRF value, and had no clearly defined forward scattering peak, implying 

that the roughness elements at S3 reduced scattering in the forward direction. 

Both sites that exhibited surface elements (S3 and S2) showed increased HCRF 

values at larger wavelengths, despite a thinner snowpack compared to the 

averaged sites. For example, the average HCRF value for all viewing angles at 

S3 was 0.6 at a wavelength of 1300 nm, compared to 0.3 at 1300 nm for 

averaged sites (S1, S4 and S5). S2, which exhibits some small-scale roughness 

elements, showed an increase in the average HCRF of all viewing angles of 0.2 

at 1300 nm compared to the average of S1, S4 and S5. There are two 

explanations for the increase in HCRF in the infrared region of the spectrum at 

S2 and S3, either a difference in grain size in the surface layer, or a change in 

the effective solar zenith angle as a result of the surface roughness elements 

(Wiscombe and Warren, 1980). The data available does not indicate what is the 

dominant cause for the observed effect at sites S2 and S3, because grain size 

was not recorded in the surface layer, and because of possible errors introduced 

as a result of the limited footprint size and imperfect overlap as discussed in 

Section 2.4.5.2. However, the roughness elements observed at S2 and S3 

highlight the potential influence of surface roughness on the HCRF, and the 

importance of sampling surface roughness in order to obtain a representative 

HCRF, especially at large solar zenith angles.  
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2.6.2 Averaged sites 

The HCRF for the averaged sites had improved symmetry over the solar 

principal plane. The averaging process reduced errors caused by localized 

undulations of the snowpack and the imperfect footprint overlap discussed in 

Section 2.4.5.2. The angular effects on the HCRF are strongest in the forward 

scattering direction for the averaged sites, and have considerably less influence 

for viewing angles less than 30°, particularly the in backward viewing direction. 

For example, for viewing angles less than 30° in the backward direction, the 

anisotropy index (ANIX) is 1.3 at 1300 nm and 1.1 at 1100 nm, for viewing 

angles less than 15° over the wavelength range 400 nm to 1300 nm the ANIX is 

less than 1.1. The increase in anisotropy in the HCRF with wavelength for snow 

has been observed in previous studies for different solar zenith angles (e.g. 

Painter, 2004; Bourgeois et al., 2006; Hudson et al., 2006), and is the 

consequence of increasing absorption of radiation with wavelength, which 

results in a shorter penetration depth into the snowpack and reduced scattering 

(Warren, 1982). Greater anisotropy in the HCRF with wavelength is also 

influenced by the smaller proportion of incident diffuse irradiance at longer 

wavelengths, caused by a reduction in Rayleigh scattering (Lyapustin and 

Privette, 1999; Grenfell et al., 1994). 

2.6.3 Comparison with other snow HCRF measurements 

For wavelengths greater than 800 nm, the averaged HCRF measurements 

agree well with Painter and Dozier’s (2004) measurements of snow HCRF, but 

were up to 0.24 lower for wavelengths less than 800 nm. The smaller HCRF 

values measured in Ny-Alesund for wavelengths in the visible band is the result 

of absorption by impurities in the snowpack, given that the maximum mass ratio 

of black carbon was found to be large at our sites when compared with typical 
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values in Svalbard. The large maximum mass ratio of black carbon in snow is 

the result of the proximity of the field sites to the Ny-Ålesund research base, and 

has been reported in other studies at the same location (e.g. France et al., 

2011). Black carbon has the effect of reducing the reflectance for visible 

wavelengths, but not in the near infrared (Warren, 2013), and explains the 

flattened spectra for the visible range compared to the measurements by Painter 

and Dozier (2004). The difference between the HCRF value at nadir and at 50° 

viewing angle becomes smaller as the wavelength decreases from 700 nm to 

500 nm, whereas the difference between Painter and Dozier’s measurements 

(the dashed lines in Figure 2.70) remains constant over this range. The 

decrease in HCRF with wavelength is related to non-black carbon impurities in 

the snowpack, such as humic material, which is known to absorb light more 

strongly at shorter wavelengths (France et al., 2012). The HCRF at 50° viewing 

angle for wavelengths greater than 1480 nm was much larger than that 

recorded by Painter and Dozier (2004), which is explained by the larger solar 

zenith angle and the shorter radiation penetration depths at longer wavelengths, 

as under larger solar zenith angles there is an increased probability that a 

photon will exit the snowpack before it is absorbed. 

2.6.4 Implications for current state-of-the-art 

Accurate surface albedo measurements of the Arctic from space are needed to 

measure changes in the radiation budget of the Arctic and improve forecasts 

made by global climate models (Fox et al., 2011; Pistone, 2014). The MODIS 

BRDF/albedo algorithm is used to derive surface albedo (Strahler et al., 1999) 

and has recently been validated over the Greenland ice sheet with an RMSE of 

3.3 % for the shortwave product, using only high-quality retrievals (Wright, 

2014). BRDF/albedo retrieval algorithms are known to become increasingly 
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unreliable under large solar zenith angles (Stroeve et al., 2005; Schaaf et al., 

2002), which are common to the Arctic region, especially in the spring when 

negative radiative forcing in the Arctic is strongest (Flanner et al., 2011). In 

addition, at large solar zenith angles the effects of snow surface roughness on 

the HCRF are greatest (Warren et al. 1998), and snow HCRF is most 

anisotropic (Dumont et al., 2010; Bourgeois et al, 2006; Hudson et al. 2006). 

Despite this, very few field measurements are available for snow at large solar 

zenith angles which can be used to assist in the development and validation of 

BRDF models for snow, ultimately improving satellite sensor retrievals at large 

solar zenith angles.  

 

The systematic sampling of snow surfaces at the field sites in Svalbard in this 

study demonstrate the variability of the snow surfaces roughness for windblown 

Arctic snow, and the impact of snow surface roughness on the HCRF at large 

solar zenith angles. Snow surface roughness decreased the strength of the 

forward scattering peak and caused the HCRF to become highly asymmetric 

over the solar principal plane. In order to improve the accuracy of satellite 

derived measurements of albedo for observations acquired at large solar zenith 

angles, the effects of surface roughness should be fully considered in the BRDF 

model. Not including snow surface roughness in the BRDF model has previously 

been shown to result in order of magnitude errors in the retrieval of snow grain 

size (Kuchiki et al., 2011). In addition, the study highlights the importance of 

considering the sensor footprint size relative to the size of the surface 

roughness elements. There was considerable uncertainty in the field 

measurements at sites with heterogeneous surfaces, owing to the limited size of 

the footprint area, and the imperfect footprint overlap for different viewing 

angles.  
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2.7 Conclusion 

The HCRF of Arctic snow was measured at large solar zenith angles (79° to 

85°) for six sites near to the international research base in Ny-Ålesund, Svalbard 

in Spring 2013. The measurements were made over the viewing angles 0° to 

50°, and azimuth angles 0° to 360° using the goniometric system GRASS. The 

HCRF measurements agreed well between sites where the snow surface was 

smooth and snow depth was greater than 40 cm, with a relative standard 

deviation of less than 10 % for backward and near nadir viewing angles. The 

averaged HCRF showed good symmetry with respect to the solar principal 

plane, and exhibited a forward scattering peak that was strongly wavelength 

dependent, with a greater than a factor of 2 increase in the anisotropy index 

over the wavelength range 400 nm to 1300 nm. The angular effects on the 

HCRF had minimal influence for viewing angles less than 15° in the backward 

viewing direction for the averaged sites, with an anisotropy index of less than 

1.1 over the wavelength range 400 nm to 1300. The averaged sites agreed well 

with another study of snow HCRF at a different location for infrared 

wavelengths, but showed differences of up to 0.24 in the HCRF for the visible 

wavelength range, owing to light absorbing impurities in the snowpack. The 

mass ratio of black carbon in the top 10 cm of snow was measured at each site 

and was found to be in the range 90 ng g-1 to 299 ng g-1, which was large 

compared to background levels for Svalbard, and was the result of the proximity 

of the field sites to the Ny-Alesund research base. The site with the largest 

roughness elements showed no forward peak and the strongest asymmetry 

over the solar principal plane, with differences in the mean HCRF value of up to 

28 %. An improved pointing accuracy and a larger footprint area is required to 

reduce sampling errors related to the heterogeneous surface and to provide a 
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full explanation for the observed effect of macroscale surface roughness. In 

addition, an improved characterization of grain size in the upper surface layer is 

required to rule out potential effects of snow grain size in the infrared region of 

the spectrum. The measurements show the potential influence of snow surface 

roughness on the HCRF at large solar zenith angles, and highlight the 

importance of sampling multiple surface types to obtain measurements of HCRF 

that are representative at the larger spatial scale. 
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Chapter 3  

Bidirectional reflectance of laboratory- 
generated sea ice 

3.1 Abstract 

Knowledge of the spectrally resolved bidirectional reflectance of sea ice is 

required in order to derive the albedo of sea ice from satellite sensor 

measurements of radiance. Radiative-transfer models, such as PlanarRad, can 

be used to convert measured radiance in a particular direction to albedo, but the 

accuracy of the derived albedo depends on the accuracy of the radiative-

transfer model itself. The study presented here characterizes the bidirectional 

reflectance, or the biconical reflectance factor (CCRF), of laboratory-generated 

sea ice over the wavelength range 400 nm to 740 nm, for viewing zenith angles 

0° to 60° at 15° intervals, and for viewing azimuth angles 0° to 360° at 30° 

intervals. Two acquisitions of the CCRF of laboratory-generated sea ice were 

carried out for ice with different thicknesses: M1, which had a thickness of 

23 cm and M2, which had a thickness of 28 cm. The CCRF of the laboratory 
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generated sea ice had a strong forward scattering peak, which was greatest in 

the specular direction of 60° viewing zenith angle, and increased up to a 

maximum reflectance factor of 1.63 at 510 nm. The reflectance factors over the 

hemisphere had an anisotropy that was strongly wavelength dependent, with a 

maximum anisotropy index (ANIX) of 4.9 at 730 nm. The reflectance factors 

were relatively constant for viewing angles in the backward direction and for 

viewing angles less than 15° in the forward direction over the wavelength range 

400 nm to 740 nm. The relative change in reflectance owing to a 5 cm increase 

in sea ice thickness was around 4 % for wavelengths between 450 nm and 

690 nm, but the reflectance decreased by up to 3.2 % for wavelengths greater 

than 690 nm, owing to increased absorption of light at longer wavelengths. The 

wavelength dependence of the reflectance of sea ice was dominated by the 

absorption coefficient of sea ice, but the reflectance at the lower boundary (the 

bottom of the sea ice tank) was shown to influence the reflectance at the 

surface. The measured CCRF for the M1 and M2 measurements were 

compared with the results from the radiative-transfer model, PlanarRad. The 

radiative-transfer model was able to reproduce the general shape and the 

wavelength dependence of the bidirectional reflectance over the hemisphere, 

with differences in the reflectance factors between the modeled and measured 

results of typically less than 0.05, and with a coefficient of variation of the root-

mean-square deviation (RMSE) of less than 9 % over all wavelengths, for both 

the M1 and M2 CCRF acquisitions. The surface roughness elements were not 

fully characterized during individual M1 and M2 CCRF acquisitions, and as a 

result the surface roughness parameters in the model was adjusted within a 

realistic range to obtain a fit between the measured and modeled reflectance 

factors. All other model input parameters apart from the ice thickness and the 

sea ice absorption coefficient were held constant for both CCRF acquisitions. A 
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HULIS absorber had to be added to the modeled bidirectional reflectance for the 

M2 acquisition, in order to obtain a fit within the measured uncertainty for 

wavelengths below 490 nm, owing to the growth of algae in the batch of 

seawater used for the M2 CCRF acquisition.  

3.2 Aims of the study 

The aim of this study was to characterize the bidirectional reflectance of 

laboratory-generated sea ice; in order to test the agreement between the 

laboratory-measured bidirectional reflectance and the bidirectional reflectance 

calculated using the radiative-transfer model, PlanarRad. Demonstrating that 

PlanarRad can reproduce laboratory sea ice bidirectional reflectance will enable 

the model to be used in a predictive capacity. The study aims to: (1) grow sea 

ice in the laboratory that is representative of first year Arctic sea ice; (2) design 

and construct a goniometer and spectrometer system and conduct 

measurements of radiance reflected from the sea ice for multiple viewing 

angles; and (3) obtain physical properties of the sea ice including ice thickness, 

temperature with depth, and surface roughness, in order to model the observed 

bidirectional reflectance. The overarching aim of this study was to compare the 

laboratory results to those calculated using the radiative-transfer model.       

3.3 Introduction 

Arctic sea ice cover extends seasonally up to 15 million km2 (Rees, 2006), which 

is  approximately 4 % of the sea surface area globally, although there is 

considerable inter-annual variability (Walsh and Chapman, 2001). The 

interaction of solar radiation with sea ice is important in studies of the Earth’s 

energy budget, as sea ice, and especially snow-covered sea ice, is strongly 

reflective of incident shortwave solar radiation (Grenfell et al., 1994; Perovich, 
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1996; Wiscombe and Warren, 1980). Flanner et al. (2011) estimated the mean 

annual radiative forcing of Arctic sea ice on the Earth’s energy budget at the top 

of the atmosphere as -1.2 W m-2, which is about 40 % of the total mean annual 

cryospheric radiative forcing (Flanner et al., 2007).  

 

In winter, prior to the melt season, Arctic sea ice is usually covered by a few 

tens of centimeters of snow (Weeks, 2010), and its albedo is primarily a function 

of the optical properties of the snow (Perovich, 2002). However, the underlying 

sea ice strongly influences the albedo of Arctic sea ice during the summer melt 

season (Perovich, 1999)  and during the autumn freeze-up, before snow 

accumulates on the ice (Perovich and Polashenski, 2012). In addition, despite 

accounting for a relatively small percentage of ice cover, thin, bare ice transmits 

large amounts of energy to the ocean (Maykut, 1978). With the lengthening of 

the summer melt season (Markus et al., 2009), and the increasing proportion of 

first-year sea ice in the Arctic (Maslanik et al., 2011; Comiso, 2012), the 

reflectance of bare sea ice is becoming an increasingly important term in energy 

budget calculations of the Arctic upper ocean. In addition, despite the presence 

of snow cover in winter, the albedo of snow-covered sea ice is influenced by the 

underlying ice at ultraviolet and visible wavelengths, owing to the deep 

penetration of light through the snowpack (Marks and King, 2013; Warren, 

2013).  

 

Sea ice is a translucent medium, and on the microscopic scale it exhibits a 

complex internal structure of air bubbles, brine channels and precipitated salts 

in a matrix of frozen water (Perovich, 2003). The interface between air and ice is 

not usually an idealized planar boundary, but rather an irregular surface, caused 

by the formation of ice clumps or frost flowers of varying scales (Perovich and 
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Richter Menge, 1994; Martin et al., 1995). As a result, the angular distribution of 

radiation reflected by sea ice is neither purely specular nor diffuse, but rather a 

combination of specular and Lambertian-like features, the extent to which is 

dependent on the physical and optical properties of the ice. The empirical 

characterization of the angular distribution of light reflected from sea ice is 

critical for: (a) the interpretation of satellite sensor radiances that are measured 

at discrete angles over a limited number of spectral bands (Lindsay and 

Rothrock, 1994; Zhonghai Jin and Simpson, 2000); and (b) as a boundary 

condition in Arctic upper ocean and atmospheric radiative-transfer models.  

 

The quantity that describes the angular distribution of reflected radiation as a 

function of incidence and viewing angle is the Bidirectional Reflectance 

Distribution Function (BRDF) (Nicodemus et al., 1977). The BRDF is a ratio of 

infinitesimal quantities but it can be approximated closely by field measurements 

of the Hemispherical Conical Reflectance Factor (HCRF), or laboratory 

measurements of the biconical (Conical-Conical) Reflectance Factor (CCRF) 

(Schaepman-Strub et al., 2006). There has been considerable effort to 

characterize the bidirectional reflectance distribution function (BRDF) of snow in 

the field (Kuhn, 1985; Hall et al., 1992; Aoki and Aoki, 2000; Li and Zhou, 2004; 

Painter, 2004; Peltoniemi et al., 2005; Hudson et al., 2006) and in the laboratory 

(Dumont et al., 2010), but very few studies have attempted to characterize the 

BRDF of sea ice (Perovich, 1994; Schlosser, 1988; Arnold et al., 2002), 

particularly at high spectral resolution for a full range of viewing and illumination 

angles.  

 

In this study, a methodology was developed to characterize the BRDF of first 

year sea ice generated in the laboratory. Sea ice was generated in a 2000L tank 
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and stored in a cold room at a temperature of –15 °C. Artificial seawater (Tropic 

Marine) was heated from below and cooled from above in order to simulate 

ocean conditions. Measurements of the CCRF of sea ice were taken for a 

wavelength range of 400 nm to 740 nm, for viewing angles 0° to 60° at 15° 

intervals, and azimuth angles 0° to 360° at 30° intervals. A specially designed 

goniometer – the Sea Ice Laboratory Goniometer (SILG) – was used to 

undertake the multi-angular measurements of radiance for two different ice 

thicknesses. The laboratory measurements were compared with the BRDF 

calculated using the plane-parallel radiative-transfer model, PlanarRad (Hedley, 

2008), using input parameters derived from the physical properties of the sea 

ice where possible. 

3.4 Methodology 

The methodology is divided in 3 main sections describing: (1) the generation of 

laboratory sea ice using the Royal Holloway Sea Ice Simulator; (2) a description 

of the sea ice laboratory goniometer and the artificial illumination source; and (3) 

sensitivity testing of the plane-parallel radiative-transfer model PlanarRad.  

3.4.1 Sea ice simulator 

Measurements of CCRF were made on sea ice generated using the sea ice 

simulator at Royal Holloway University of London. Professor Martin King 

originally developed the sea ice simulator at Royal Holloway. It was Marks 

(2014) that assisted in the development of a prototype simulator, and the design 

and construction of a second-generation tank, which she used to investigate the 

effect of black carbon on albedo and light penetration in sea ice. An overview of 

the design and the relevant details of the simulator are provided in this section, 
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a detailed description of the design and initial testing of the prototype apparatus 

is given by Marks (2014).  

3.4.1.1 Cold store 

A Daikin cold store shown in Figure 3.1 was used to simulate polar 

temperatures. The container had stainless steel walls, aluminum flooring and 

ceiling. The internal dimensions are 12.0 m in length, 2.6 m in height and 2.3 m 

in width. Air temperature inside the container can be regulated to –25 °C 

through a vapor compression cycle. Refrigerant fluid evaporates while circulated 

in coils at the rear wall of the container, resulting in cooling of the air inside the 

container. The vapor is then compressed and condensed outside of the unit, 

causing the release of latent heat from the system. A pressure release valve 

then lowers the boiling point of the refrigerant fluid causing it to evaporate as it 

circulates back through the evaporating coils inside the container.   
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Figure 3.1. Daiken cold store used to simulate polar temperatures 

A fan that blows cold air along ridges at the base of the container circulates the 

air inside. The temperature of the return air is monitored and a processor 

activates the compressor once the temperature drops 1 °C below the setpoint. 

The refrigeration system results in a small degree of instability in the air 

temperature inside the container near to the ice tank, as shown in Figure 3.2. 
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Figure 3.2. Air temperature measured inside the cold store near to the sea ice tank. The 
average temperature over the 50 minute period was –15.5 °C 

The average temperature in Figure 3.2 was –15.5°C, the maximum temperature 

was –11.9 °C, and the minimum was –17.6 °C, implying an instability in the air 

temperature near to ice tank of approximately ± 3 °C, which wasn’t considered 

sufficient to disrupt ice growth. Owing to the presence of heat produced by 

components in the container an average air temperature of ~ –15 °C at the ice 

tank was obtained with a setpoint on the containers computer of –18 °C.  

3.4.1.2 Sea ice tank  

Sea ice was grown in a polyethylene cylindrical tank, which was 1.3 m tall and 

had a diameter of 1.4 m. A cylindrical design was chosen to avoid stress 

concentration on the tank walls, and reduce the risk of rupturing the tank during 

ice growth. The tank was held within a custom-made ‘Unistrut’ frame, which 

provided additional structural support and held in place multiple layers of 

neoprene and expanded foam insulation. The sea ice tank and objects within 

the tank were chosen to be plastic to avoid corrosion and were white or 

translucent in order to give a diffuse reflection at the boundaries of the tank.  

 

In order to simulate realistic ocean conditions the simulated seawater inside the 

tank needed to be heated from below and cooled from above (Weeks, 2010). To 
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achieve these conditions and prevent water freezing at the base of the tank, the 

temperature of the seawater at the bottom of the tank was regulated at around –

1 °C using a chiller/heater unit and a closed loop network of pipes (Figure 3.3 

photo [a]).  A NESLAB Merlin M150 chiller unit was used to pump a 50:50 mix of 

glycol and water through the closed loop system, the chiller unit is shown in 

Figure 3.3 in the bottom right of photo [c].  

 
Figure 3.3. Sea ice simulator and the components used to circulate and filter the 
seawater. External enclosure is in the left of photo [c] and the chiller unit is in the bottom 
right of photo [c] 
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In addition, the sides and bottom edges of the tank were well insulated. The 

innermost layer of insulation was a 1 cm thick layer of black neoprene, which 

was held flush against the outside of the tank. Followed by a 10 cm air gap, 

followed by a 5 cm layer of polystyrene insulation, which was held flush against 

an outer shell of plywood. Gaps between the plywood boards were filled with 

silicon sealant to reduce airflow through the layers of insulation. The tank was 

positioned on top of wooden pallets filled with foam insulation to raise the tank 

well above the aluminum floor of the container. The neoprene layer, polystyrene 

insulation and plywood shell surrounding the ice tank are presented in Figure 

3.4.  

 
Figure 3.4. Insulation surrounding the ice tank. Neoprene inner layer (center of photo 
[a]), polystyrene insulation (right of photo [a]; and middle of photo [b]); and plywood shell 
(left of photo [a]; and right of photo [b]) 

The seawater in the ice tank was continuously circulated through a network of 

pipes housed within a separate external enclosure (left of photo [c] in Figure 3.3) 

to prevent the temperature stratification of the seawater. An Iwaki MD-40RZ 

magnetic drive pump was used to circulate seawater from the tank around the 

enclosure at a flow rate of ~ 10 L min-1. In addition, the enclosure housed a 

10 µm particulate filter, a 5 µm particulate filter and a UV sterilizer that was used 

to removed contaminants and limit algae growth in the seawater solution. Taps 

in the enclosure could be turned on or off in order to direct seawater through the 
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filtration equipment. During the CCRF measurements seawater was not directed 

via the filters, but was directed back to the tank from the pump in the external 

enclosure. The enclosure was insulated with an outer layer of expanded foam 

(‘Celotex’) as shown in photo [c] in Figure 3.5. Air temperature inside the 

enclosure was kept above zero using two thermostatically controlled 200W 

‘frost’ heaters. The individual transfer pipes were insulated with foam and the 

temperature of the seawater in the transfer pipes was kept above freezing 

temperature using heat trace cable as shown in photo [d] in Figure 3.5.  

 
Figure 3.5. Thermocouples attached to nylon rod [a] and connected to a thermocouple 
switch box [b]. External enclosure insulated in ‘Celotex’ [c] and transfer pipes with heat 
trace cables insulated in foam [d] 

To monitor the temperature profile in the ice tank 30 type T thermocouples were 

held at regularly spaced depth intervals of 4 cm along a 1.5 m long nylon rod 

shown in photo [a] in Figure 3.5. The bottom thermocouple was 12.5 cm from 

the base of the tank and is shown in situ in photo [b] in Figure 3.3 on the right 
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side of the photograph. Each thermocouple was wired to a thermocouple switch 

box (photo [b] in Figure 3.5). The thermocouple switch box was connected to a 

4-channel thermocouple datalogger and a laptop PC, which were stored in an 

insulated box. The laptop PC was connected via a remote desktop connection to 

a computer outside of the cold store so that readings could be taken without 

removing the datalogger from the temperature controlled box, ensuring that the 

cold junction remained in its recommended operating temperature range above 

0 °C. Temperature profiles of the sea ice were measured by manually 

connecting a single channel from the thermocouple datalogger to each socket 

on the switch box with a thermocouple transfer cable. A reading from the 

datalogger at each depth was recorded using a PC outside the cold store via a 

remote desktop connection. 

3.4.1.3 Cleaning the sea ice tank     

Prior to generating the sea ice, the tank and the circulatory system were cleaned 

with 4 L of domestic thin bleach that was free from fragrance and detergent, and 

which was diluted with 50 L of tap water. The solution was flushed through the 

system with fresh tap water over a 4-hour time period. The tank was emptied 

and rinsed 5 times by filling the tank with 30 L of fresh tap water and draining 

the tank completely. A lid was fitted over the tank when the simulator was not in 

use to prevent contamination by airborne particles. Domestic thin bleach 

(NaClO) was chosen as the disinfectant as it is decays to water, sodium and 

chloride ions, so any residue that remained after rinsing did not affect sea ice 

growth. 
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3.4.1.4 Ocean water 

Ocean water was simulated by mixing the medical grade synthetic sea salt 

‘Tropic Marine’ with tapwater. It was not possible to use distilled water owing to 

the quantity of seawater required. Atkinson and Bingman (1997) analyzed 35 

chemical parameters in a solution of ‘Tropic Marine’ sea salt and found major 

cations and anions of the solution to be within 10 % of that for seawater. Marks 

(2014) showed that there was a negligible difference in the salinity of solutions 

made with pure water, or with tap water. In addition, Tropic Marine contains no 

nitrates or phosphates, which may otherwise encourage growth of algae in the 

seawater solution. Approximately 68 kg of ‘Tropic Marine’ sea salt was required 

to produce a solution with salinity representative of Arctic ocean salinity, which 

has an average salinity of around 31 to 32 practical salinity units (PSU) (Boyer 

et al., 2013).  The synthetic sea salt was added to approximately 2000 L of tap 

water and was stirred until dissolved. The resulting salinity was measured using 

a Fisher Scientific seawater refractometer as 31 PSU. 

3.4.1.5 Estimating ice thickness 

Temperature-depth profiles of the ice tank were taken during sea ice growth. Ice 

thickness was estimated by plotting the temperature profile and finding the 

depth at which the sea ice transitioned to seawater. The transition point was 

characterized by a straightening of the temperature curve with depth as 

illustrated in Figure 3.6. The ice thickness derived from the temperature 

measurements agreed well with ice thickness measurements made by drilling 

through the ice. 
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Figure 3.6. Temperature profiles of laboratory generated sea ice with different 
thicknesses 

The uncertainty in the ice thickness measurements was ± 4 cm because of the 

spacing of the thermocouples along the thermocouple rod was 4 cm.  

3.4.1.6 Sea ice surface roughness 

During sea ice growth, brine rejection and the clumping of ice crystals caused 

small-scale (up to ~ 4 mm peak to peak height) roughness elements to develop 

on the surface of the ice, as shown in Figure 3.7.  
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Figure 3.7 Surface roughness elements caused by brine rejection and clumping of ice 
crystals on the sea ice surface 

The development of ice protrusions on first year sea ice has been observed in 

previous studies and they are thought to serve as nucleation sites for the 

development of frost flowers (Perovich and Richter Menge, 1994; Martin et al., 

1995).  To represent the surface roughness elements in the BRDF radiative 

transfer model, a Monte Carlo ray-tracing method was applied following an 

approach given by Mobley (1994), which is introduced in Section 3.4.4.1.2. 

3.4.2 Sea ice laboratory goniometer 

The Sea Ice Laboratory Goniometer (SILG) was specifically designed to 

measure the CCRF of laboratory sea ice generated with the Royal Holloway sea 

ice simulator. Goniometers are instruments that measure angles, many such 

instruments have been designed to characterize the BRDF in the field (Schopfer 

et al., 2008; Painter et al., 2003; Bourgeois et al., 2006b; Pegrum et al., 2006) 

and in the laboratory (Dangel et al., 2003; Brissaud et al., 2004). This section 

provides details of the SILG goniometer used for the CCRF experiments 

presented in this study.  
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3.4.2.1 Goniometer specifications  

The diameter of the goniometer’s base ring was 77 cm, which was the largest 

possible size that allowed for full movement of the goniometer arm when 

positioned on the ice surface. The base ring was constructed from steel and had 

8 PTFE feet with adjustable extension of up to 3 cm allowing leveling of the 

goniometer on an uneven ice surface. A small carriage was designed to carry 

the aluminium arm of the goniometer full circumference around the base ring, 

allowing the carriage to be manually positioned at any azimuth angle relative to 

the target surface in the centre of the base ring.  Wheels connected to the base 

of the carriage operated a set of gears that measured the azimuthal position of 

the carriage by distance travelled around the base ring, and digital readout was 

given.  The arm of the goniometer was made from two straight sections of 

aluminium fixed at right angles and supported by an aluminium brace as shown 

in Figure 3.8. The vertical section of the arm was fixed to a cylinder, which was 

attached to the underside of the carriage. The cylinder was held within a 

mechanism that allowed the cylinder and aluminium arm to pivot through ± 80° 

in the plane perpendicular to the target surface.  The pivot mechanism included 

a clamp that is operated manually and enables the arm to be fixed at a chosen 

zenith angle. An electronic tilt sensor was fixed to the to the top of the vertical 

arm which gave a digital readout of the current zenith angle to ± 0.1°.  The 

horizontal section of the goniometer’s arm extended to the centre point of the 

goniometer’s base ring where a mounting bracket for the foreoptic and laser 

pointer was located. The foreoptic was positioned exactly over the centre of the 

goniometer’s base ring to ensure adequate pointing accuracy. Distance between 

foreoptic and sea ice surface was measured as 48 cm prior to the CCRF 
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experiments.  The goniometer was covered in matt black neoprene skin where 

possible to reduce the effects of stray reflectance. 

 
Figure 3.8. Schematic of the sea ice laboratory goniometer (SILG) used to obtain CCRF 
measurements. The carriage can be rotated to obtain any viewing azimuth angle in the 
horizontal plane, while the aluminum arm can be rotated to obtain zenith angles 0° to 
± 80°. The arm is held in position by a clamp mechanism on the carriage (not shown)  

A straight arm design was chosen primarily for easier construction and lower 

cost, but a straight arm design also offers the following advantages over an arc 

shaped design: (1) shadowing effects are reduced when taking measurements 

in the backward direction in the solar principal plane; and (2) the straight arms 

provide a rigid frame making it easier to obtain a better pointing accuracy.  

3.4.2.2 Spectrometer  

The foreoptic mounted on the goniometer’s arm was connected to an UV-VIS 

Ocean Optics USB2000+ spectrometer via fibre optic cable. The spectrometer 

had a 2048-element CCD-array detector, with a spectral resolution of 0.34 nm 
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(full width at half maximum), and a spectral range of 180 nm to 880 nm. A 

wavelength calibration was performed for the spectrometer using a mercury-

argon ‘Pen-Ray’ lamp. A correction for dark current was made by subtracting the 

average signal between 200 nm to 250 nm from the total signal at each 

wavelength interval for each measurement. There was no light in the laboratory 

in the wavelength range 200 nm to 250 nm. The spectrometer was mounted on 

the arm of the goniometer during the CCRF acquisition and connected to a 

Panasonic Toughbook laptop via a USB connection.  A photograph of the 

goniometer on the sea ice is given in Figure 3.9. 

 
Figure 3.9. Photograph of the sea ice laboratory goniometer (SILG) used to measure 
the CCRF of simulated sea ice  
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3.4.2.3 Sensor ground field of view and pointing accuracy 

To ensure that the foreoptic pointed directly towards the centre of the base ring 

a laser pointer was temporarily inserted into the foreoptic mount. With the 

goniometer’s arm at the nadir viewing position the laser pointer illuminated a 

spot near to the centre of the base ring as shown in Figure 3.10. The illuminated 

spot was traced on a white piece of paper while the carriage was rotated 

through 360° of azimuth. The procedure was repeated and the mount was 

translated until the illuminated spot moved within a circle of less than 2 cm 

diameter. Thus the goniometer had a pointing accuracy at the nadir viewing 

position of approximately ± 2 cm.  

 
Figure 3.10. The foreoptic mount was aligned to the centre of the base ring of the 
goniometer by replacing foreotpic with a laser pointer    
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The goniometer’s foreoptic had a full angle Field Of View (FOV) of 8°, which 

corresponded to a footprint diameter at nadir of approximately 7 cm.  For zenith 

angles greater than 0° the shape of footprint was not circular, but was quasi-

elliptical. As the foreoptic was rotated through the zenith arc the shape of the 

footprint becomes more elongated. The footprint area, or Ground Instantaneous 

Field Of View (GIFOV), can with calculated with knowledge of the sensors FOV 

and the distance from the sensor to the surface. The GIFOVs for zenith angles 

0° to 75° were calculated for an FOV of 8° and a distance between the sensor 

and the surface of 48 cm, the footprints and associated areas are presented in 

Figure 3.11. 

 
Figure 3.11. Foreoptic GIFOV with viewing zenith angle  

The pivot point of the goniometer was approximately 3 cm from the ice surface 

during the CCRF measurements. As a consequence, the pointing accuracy of 

the goniometer decreased by up to 11 cm for viewing zenith angles at 75°. The 

offset in the x-coordinate in the GIFOV was calculated as a function of viewing 

zenith angle as follows:  
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 x1 − x2 = β tan(θr )  
Eq. 3.1 

where is the offset in the  coordinate,  is the viewing zenith angle, 

and   is the  of the distance between the pivot and the ice surface.  

 

Owing to the imperfect footprint overlap, a circle centred on the goniometer’s 

centre point with a diameter of 62 cm characterized the maximum area sampled. 

All measurements taken with a viewing angle less than, or equal to 60°, were 

within a circular area with a diameter of 30 cm. The poor pointing accuracy at 

large viewing angles was considered acceptable because: (1) the footprint area 

remained within the goniometer base ring for all viewing angles; (2) the sea ice 

was considered homogenous over the area sampled; and (3) a correction was 

applied to account for heterogeneity in the intensity of the lamp footprint over the 

sampling area, as described in Section 3.4.2.8. The assumption of homogeneity 

over the sensors footprint was considered valid given the size of the footprint 

area relative to the size of the sea ice roughness elements, brine inclusions and 

air bubbles.  

3.4.2.4 Spectralon reference panel 

A Spectralon panel, which approximates a lossless Lambertian reflector 

(Sandmeier et al., 1998), was used as a reference standard for reflectance 

during the CCRF measurements. For each measurement of radiance reflected 

by sea ice, a measurement of radiance reflected into the nadir viewing direction 

by the Spectralon panel was taken quasi-simultaneously (less than 60 seconds) 

under identical illumination conditions. The panel was mounted on a Perspex 

stand that had 3 adjustable feet in order to avoid disturbing the ice surface while 

taking a reference measurement.  To correct for the inherent non-lossless and 

x1 − x2 x θr

β
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non-Lambertian properties of the reference panel, a calibration was performed 

at the National Physical Laboratory (NPL) using the technique described in 

Chapter 2 Section 3.4.3. The calibration yielded a series of reflectance 

correction factors  for incidence angles 0° to 80° over a wavelength range of 

409 nm to 1001 nm. The correction factors are presented as a function of 

incidence angle at 600 nm in Figure 3.12. 

 
Figure 3.12. Reflectance correction factors at 600 nm as a function of incidence angle 
for the Spectralon reference standard 

CCRF measurements where performed under an illumination incidence angle of 

60°, which corresponds with a reflectance correction factor of 0.969 ± 
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0.003.  Reflectance correction factors are given as a function of wavelength for 

an incident angle of 60° in Figure 3.13. 

 
Figure 3.13. Reflectance correction factors as a function of wavelength for an incidence 
angle of 60° for the Spectralon reference standard 

There was no wavelength dependence detectable above the level of uncertainty 

for the Spectralon reflectance correction factors. As such, a broadband 

correction factor of 0.97 was applied to all measurements.  

3.4.2.5 Light source  

Accurate characterization of the BRDF requires a light source that is well 

collimated and subtends a small solid angle (as viewed from the target surface) 

(Schaepman-Strub et al., 2006). In addition, irradiance from the light source 
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should be homogenous over the target surface sampled (Dangel et al., 2003; 

Sandmeier et al., 1998). These conditions are rarely fully satisfied for laboratory 

experiments without collimating mirrors or lenses (Sandmeier and Strahler, 

2000), especially for experiments that require large amounts of optical power 

over a large area. A large illuminated area was required because the absorption 

coefficient of sea ice is weak, and multiple scattering causes incident light to 

travel a relatively long distance in the medium before it is absorbed, meaning 

that light incident from outside the foreoptic footprint may contribute to the 

reflected flux inside the foreoptic footprint. In order to achieve a relatively 

homogenous irradiance over a large sampling area an array of six 500W 

tungsten halogen lamps were used at the expense of confining the irradiance to 

a narrow beam. The lamps were mounted on a reinforced plywood board in 3 

banks of 3 covering an area of 55.5 cm x 46.5 cm. To achieve an incidence 

angle of 60° the lamp mounting board was tilted 30° from the normal to 

sampling area surface, which results in an incidence angle of 60° as is 

illustrated in Figure 3.14.  

 
Figure 3.14. The angle of tilt of the lamp mounting board  was used to calculate 
the incidence angle at the centre of the sampling area. The incidence angle is given by 

 

θlamp

θi = 90 −θlamp
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Once the mounting board was set to the correct amount of tilt the centre point of 

the lamp array was aligned with the centre point of the sampling area using a 

laser pointer attached to base the lamp mounting board. The height of the lamp 

array was adjusted until the illuminated spot matched the correct position on the 

ice surface, taking into account the offset of the laser pointer mounting position 

from the centre point on the lamp array.  Once the lamps were set up with the 

correct incidence angle the distance between the lamp array centre point and 

the sampling area centre point was measured as 140 cm. A photograph of the 

laser pointer attached to the base of the lamp mounting board is shown in 

Figure 3.15. 

 
Figure 3.15. Laser pointer attached to the base of the lamp mounting board  

3.4.2.6 Light collimator 

In order to improve the collimation of incident light a set of baffles were designed 

to reduce the divergence of the incident beam.  A sheet of aluminium 
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honeycomb mesh was held within an aluminium frame 71 cm wide and 61 cm 

tall. The holes within the honeycomb structure had a diameter of 0.64 cm and 

the thickness of the mesh was 2 cm. In total, two sheets of aluminium mesh 

were constructed and a mounting bracket was fitted to the front of the lamp 

array. The mounting bracket was large enough for both aluminum sheets to be 

used simultaneously. In order to estimate the effectiveness of the baffles the 

beam divergence  was approximated using the relationship given in Figure 

3.16 and Eq. 3.2. 

 
Figure 3.16. Method used to calculate divergence of light exiting the beam collimator  

The beam divergence is given by: 

  Eq. 3.2 

where  is the beam divergence exiting the collimator,  is the maximum 

diameter of the collimators holes and  is the length of the holes. The beam 

divergence for a mesh with a hole diameter of 0.64 cm and a thickness of 2 cm 

was 17.7°.  A photograph of the aluminium mesh is given in Figure 3.17.  

θdiv

θdiv = tan
−1(d / L)

θdiv d

L
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Figure 3.17. Baffle made of aluminium mesh in a honeycomb structure 

 
A decrease in the divergence of the beam was evident when projecting a cross 

section of the beam onto a black wooden board. Photographs of the projected 

cross section are given in Figure 3.18. 

 
Figure 3.18. Projection of the beam cross-section with no baffles fitted (left), one baffle 
fitted (middle) and two baffles fitted (right). The beam cross sections have been 
highlighted with white bars   
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3.4.2.7 Characterization of the lamp footprint 

Sampling different areas of the target surface is unavoidable when conducting 

CCRF measurements for reasons explained in Section 3.4.2.3. Given that the 

sampling area is not sampled equally or fully by the foreoptic for different 

angular configurations, irradiance over the sampling area needs to be 

characterized and a correction should be applied given a heterogeneous 

illumination footprint (Sandmeier et al., 1998).  To characterize the lamp 

footprint the intensity of light reflected from a Spectralon panel was measured 

over a gridded area within the lamp footprint. The gridded area was 40 cm by 

40 cm and the sampling points where positioned at 10 cm intervals in the x and 

y directions. A schematic of the sampling points on the grid is given in Figure 

3.19. 

 
Figure 3.19. Schematic of the sampling grid used to characterize the footprint of the 
lamp array 

The gridded area in Figure 3.19 was drawn onto a 2m by 2m plywood board and 

the board was leveled on a bench. The lamp array was set up following the 
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procedure given in Section 3.4.2.5 in order to obtain an incident angle of 60° in 

the centre of the grid. The arm of the goniometer was used to point the 8° FOV 

foreoptic (full angle) at sampling points on the grid. A Spectralon reference 

panel was used as the target surface and its centre was aligned to each 

sampling point during the measurement. The goniometer’s arm was leveled 

manually so that the foreoptic viewed the centre of the Spectralon panel from 

nadir. During each measurement the foreoptic had a footprint diameter of 

approximately 7 cm on the surface of the Spectralon panel. The intensity of the 

radiation reflected by the Spectralon panel was recorded using an Ocean Optics 

USB2000+ spectrometer for each sampling point on the grid. The stability of the 

output from the lamp array was monitored simultaneously by recording the 

intensity of radiation reflected from another Spectralon panel positioned in the 

lamp footprint, and viewed by a fibre optic cable coupled to a PTFE diffuser and 

a second Ocean Optics USB2000+ spectrometer.  The experiment was 

conducted outside in an open space during the night, to reduce the effect of the 

diffuse light and light reflected off the laboratory walls. The experiment was 

repeated with no baffles, one baffle, and two baffles, in order to assess the 

effect of the baffles on the footprint of the lamp array. A photograph of the 

experiment set up is given in Figure 3.20.  
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Figure 3.20. Experiment to characterize the footprint of the lamp array  

In order to assess the reproducibility of the results, the process of characterizing 

the lamp array for the 3 different baffle configurations was repeated 3-times, 

each on a different day and for the same sampling grid. The intensities 

measured were averaged and normalized to average intensity recorded at the 

centre of the grid. Contour plots of the averaged normalized intensities and the 

standard deviation  of the 3 replicate measurements for each baffle 

configuration were produced from the respective matrices.  Contour plots for 

each baffle configurations are given in Figure 3.21 to Figure 3.26 for a 

wavelength of 600 nm.    

(1σ )
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Figure 3.21. Lamp array intensity distribution with zero baffles. Intensity is normalized to 
the intensity measured at the centre of the grid 

 

Figure 3.22. Filled contour plot of the standard deviation  of the 3 replicate 
measurements with zero baffles 
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Figure 3.23. Lamp array intensity distribution with one baffle. Intensity is normalized to 
the intensity measured at the centre of the grid 

 
Figure 3.24. Filled contour plot of the standard deviation  of the 3 replicate 
measurements with one baffle 
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Figure 3.25. Lamp array intensity distribution with two baffles. Intensity is normalized to 
the intensity measured at the centre of the grid 

 

Figure 3.26. Filled contour plot of the standard deviation  of the 3 replicate 
measurements with two baffles 

0.7 0.7

0.8

0.8 0.8

0.8

0.9

0.9 0.9

0.9

1

1 1

1

1.1

1.1 1.1

1.11.2

1.2

1.2

Distance (cm)

D
is

ta
nc

e 
(c

m
)

Baffles: 2

 

 

0 10 20 30 40
0

10

20

30

40

N
or

m
al

is
ed

 in
te

ns
ity

0.7

0.8

0.9

1

1.1

1.2

0.01
0.01

0.01

0.
01

0.01

0.02
0.02

0.02

0.
02

0.
02

0.02 0.02
0.

03

0.03

0.
03 0.0

3
0.

03

0.03

0.04

0.04

0.
04 0.0
4

0.05
0.05

0.
05

0.06

0.06

0.06

0.07

0.07
0.08

Distance (cm)

D
is

ta
nc

e 
(c

m
)

Baffles: 2

 

 

0 10 20 30 40
0

10

20

30

40

St
an

da
rd

 d
ev

ia
tio

n 
(1
σ

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

(1σ )



Chapter 3: Bidirectional reflectance of laboratory-generated sea ice 

     215 

The monitored intensity of the lamp footprint during one series of measurements 

is presented in Figure 3.27. 

 
Figure 3.27. Lamp stability recorded using a separate spectrometer and Spectralon 
panel. Results are normalized to the intensity at the start of each experiment  

The mean normalized intensity across the grid was 0.019 from unity for zero 

baffles and was 0.020 from unity with one baffle, but was 0.040 from unity with 

two baffles. Indicating that footprint uniformity was marginally more homogenous 
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when zero baffles were used. Using one baffle produced a much more 

homogenous footprint compared to using two baffles. The decrease in the 

uniformity of the lamp footprint when using baffles was probably the result of 

decreased incident light intensity and a narrowing of the incident beam. Given a 

narrower beam of reduced intensity the intensity of the footprint is likely to drop 

off faster for a given distance from the centre of the footprint compared to the 

configuration with no baffles, which gives a more even intensity over a larger 

area. In addition, the contoured plots of the standard deviation of the averaged 

measurement indicate that the set up with zero baffles is more easily 

reproduced. The average standard deviation within the gridded area was 0.02 

with zero baffles, 0.02 for one baffle, and 0.04 for two baffles. The standard 

deviation of the points in the middle of the grid (i.e. 10 ≤ x ≤ 30 , 10 ≤ y ≤ 30 ) 

was on average 0.008 for zero baffles, 0.0187 for one baffle and 0.0251 for two 

baffles. Indicating that the footprint is more reproducible in the area central to 

the footprint when zero baffles were used. Improved reproducibility of the 

footprint with zero baffles may be related to the alignment of the baffles during 

the set up of the lamp array, as the baffles were not in exactly the same position 

for each measurement. For the reasons examined above, zero baffles were 

used for the CCRF measurements reported in this study and a correction was 

made for non-uniformity of the lamp footprint, as described in Section 3.4.2.8.  

3.4.2.8 Correction for non-uniformity of lamp footprint  

The area of the foreoptic footprint for each viewing zenith angle (i.e. the 

foreoptic GIFOV) during the CCRF measurements was determined as described 

in Section 3.4.2.3. The calculations were performed with a FOV of 8° and the 

distance from the foreoptic to the ice surface of 48 cm. In order to account for 

the 3 cm difference in the height of the pivot point of the goniometer arm relative 
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to the height of the ice surface, the position of the GIFOV for each viewing 

zenith angle was adjusted by calculating an offset using equation Eq. 3.1.  The 

raised position of pivot point resulted in an offset in the GIFOV of up to 11 cm for 

viewing zenith angles of 75°. GIFOVs were then calculated for all viewing 

azimuth angles by rotating the GIFOV for each viewing zenith angle about the  

axis at  intervals (30°). The following transformation was applied to 

calculate the coordinates of the rotated GIFOV: 

  Eq. 3.3 

  Eq. 3.4 

where  and  are the transformed coordinates and  is the angle of rotation 

about the  axis. Intensity distribution corrections factors were calculated for 

each GIFOV by linearly interpolating the lamp intensity distribution over a 400 

by 400 pixel grid and overlaying the GIFOV for each viewing angle, as shown in 

Figure 3.28. At 75° viewing zenith angle the GIFOV was found to extend outside 

of the sampling grid for the lamp intensity footprint, and thus could not be 

included in the correction.  

z

π 6

′x = cos(α )x + sin(α )y

′y = −sin(α )x + cos(α )y

′x ′y α

z
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Figure 3.28. Ground instantaneous field of view (GIFOV) for each viewing angle 
overlying the intensity distribution of the lamp footprint. Axes give the distance form the 
centre of the lamp footprint, which corresponds with the centre of the goniometer’s base 
ring. Viewing zenith angles of 75° are not plotted as these extend outside of the 
sampling grid for the lamp intensity footprint   

An algorithm was developed to sum the intensities of all the pixels within each 

GIFOV; the intensity correction factors  were calculated as follows: 

 Icf (θr;φr ) =
Iθr=0∑

I θr;φr( )∑  Eq. 3.5 

where Iθr=0  is the normalized intensity for each pixel within the GIFOV at a 

zenith view angle of 0°.  is the normalized intensity for each pixel within 

the GIFOV at a viewing zenith angle  and viewing azimuth angle . Intensity 

correction factors as a function of rotation about the  axis for a wavelength of 

600 nm are plotted in Figure 3.29. 

Icf (θr;φr )

I(θr;φr )

θr φr

z
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Figure 3.29. Intensity distribution correction factors with viewing angle. A rotation angle 
of 0° corresponds to a foreoptic viewing position from the easterly direction in Figure 
3.28. A rotation angle of 90° corresponds with a foreoptic viewing position from the 
northerly direction in Figure 3.28.  

The maximum correction factor was 1.07 at a viewing zenith angle of 60° and 

for a rotation of 90° in azimuth, which corresponds to the GIFOV that extends 

furthest in the southerly direction in Figure 3.28. The minimum correction factor 

was 0.92 at the viewing zenith angle of 60° and for a rotation of 270° in azimuth, 

which corresponds to the GIFOV that extends furthest in the northerly direction 

in Figure 3.28. The shape of the function observed in in Figure 3.29 is expected 

given the pattern of banded intensity observed in the lamp footprint. The 

wavelength dependence to the intensity correction factors was typically less 

than 2 %, so the correction factors calculated at 600 nm were applied to all 
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wavelengths. Correction factors were applied to the CCRF measurements at all 

wavelengths by multiplying the intensity recorded at each viewing angle by the 

respective correction factor. 

3.4.2.9 Variation in source incidence angle  

Owing to the relatively short distance between the lamps and the target surface 

each point on the target surface was illuminated from a slightly different 

direction. Variation in incident angle was assessed by calculating the maximum 

and minimum incidence angles from the centre point of the lamp array.  The 

angles of interest are shown schematically in Figure 3.30. 

 
Figure 3.30. Change in incidence angle within the sampling area 

The maximum sampling area  was circular and had a maximum diameter of 

44 cm as calculated in Section 3.4.2.3. Using the Law of Cosines lengths  

and  can be calculated:  

 d4 = d3
2 + 1

2 d2( )2 − 2d3d2 cos 1
2π +θi( )  Eq. 3.6 

 d5 = 1
2 d2( )2 + d3 2 − d2d3 cos 1

2π +θi( )  Eq. 3.7 

d2

d4

d5
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The minimum distance to a target point in the sampling area  was 138 cm 

and the maximum distance  was 159 cm. The minimum and maximum 

incident angles within  were calculated as 59° and 64° respectively given the 

following relationships given using the Law of Sines: 

  Eq. 3.8 

  Eq. 3.9 

So the nominal illumination angle of 60° varied between 55° and 64° owing to 

size of the lamp array.  

3.4.2.10 Lamp array solid angle  

The sampling area receives incoming light through a solid angle that is 

proportional to the size of the lamp array and distance from the point on the 

target surface, as illustrated by Figure 3.31.  

  
Figure 3.31. Cone angle of the light source as viewed from the centre of the sampling 
area 

The half angle of the light cone 12ω  was calculated at the centre of the sampling 

area as 9.7°, and is given by: 

d2

d4

d2

d4
sin(θi + 1

2π )
= d3
sin( 12π −θimax )

d5
sin( 12π −θi )

= d3
sin( 12π +θimin )
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        Eq. 3.10 

3.4.2.11 Diffuse irradiance 

Blackout curtains were fitted to a canopy above the sea ice tank and were 

draped along the sides of the canopy to reduce reflections from the walls of the 

container. During the CCRF acquisition the experiment operators were 

positioned behind a blackout curtain in order to reduce the effect of diffuse 

irradiance.   

3.4.3 CCRF acquisitions 

In total, two CCRF acquisitions were carried out. A single acquisition involved 

the measurement of the CCRF at 15° intervals in viewing zenith angle for 30° 

intervals in viewing azimuth angle. The first acquisition, M1, was carried out on 

the 7th of February 2014, for which the ice thickness was estimated using 

temperature profile data as 22 cm thick. Prior to the second acquisition on the 

17th of February 2014, 75 L of seawater that was previously removed from the 

original solution was added on top of the existing sea ice, thus increasing the 

thickness of the ice to approximately 27 cm for the second acquisition. The 

seawater removed from the original solution was stored in 15 L containers in a 

dark and cold room prior to adding it to the lower layer of sea ice used for the 

M1 acquisition. The upper layer of seawater was left to freeze over a period of 

24 hours prior to carrying out the M2 acquisition. Given that the height of the sea 

ice relative to the base of the tank increased upon adding the second layer, the 

lamps had to be realigned as described in 3.4.2.5.  

1
2ω = sin−1

1
2 d1
d6

⎛
⎝⎜

⎞
⎠⎟
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3.4.3.1 Calculating the CCRF 

The CCRF was calculated as follows:  

        Eq. 3.11 

where  is the radiance reflected by the sea ice surface, 

 is the radiance reflected by the Spectralon reference panel, 

 is the intensity correction factor defined in Section 3.4.2.8, and  is 

the reflectance correction factor for the Spectralon panel defined in Section 

3.4.2.4. The measured CCRF function was projected onto a 2D grid and is 

presented as a linear interpolation of the angles sampled using a Delaunay 

triangle-based method (de Berg et al., 2008). 

3.4.4 PlanarRad radiative transfer model 

PlanarRad is a program designed to model radiative-transfer in a homogenous, 

absorbing and scattering media (Hedley, 2008). PlanarRad uses the invariant 

imbedded method to solve the radiative-transfer equation (Mobley, 1989), which 

involves the directional discretization of the reflected radiance distribution into a 

grid of quadrilaterial regions, or ‘quads’ on the surface of the unit sphere. The 

quadrilaterial regions are separated by 15° in azimuth and 10° in zenith angle, 

and the model calculates the averaged reflected radiance for each quad as 

described in Section 1.10.3.1.  

 

Realistic inherent optical properties (IOPs) for laboratory-generated sea ice 

were used as inputs into the PlanarRad model in order to simulate the reflected 

radiance distribution in terms of the quad-averaged BRDF. The quad-averaged 

BRDF was converted to the bidirectional reflectance factor (BRF) by multiplying 

CCRF(θi ,φi;θr ,φr;λ) =
Lr (θi ,φi;θr ,φr;λ)
Lr ,Spectralon (θi ,φi;λ)

Icf (θr ,φr )Rcf

Lr (θi ,φi;θr ,φr;λ)

Lr ,Spectralon (θi ,φi;λ)

Icf (θr ,φr ) Rcf
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the BRDF by  (Schaepman-Strub et al., 2006), enabling a comparison 

between the model output and the laboratory-measured quantity (CCRF). An 

overview of the radiative-transfer model PlanarRad is given in Chapter 1, in 

Section 1.10.4. Results from a detailed sensitivity study of the PlanarRad 

radiative-transfer model are presented in this section.  

3.4.4.1 Model input parameters 

The model input variables were determined from physical measurements of the 

laboratory-generated sea ice where possible. The middle value from a range of 

realistic values cited from the literature was used for input variables that could 

not be determined by measurements. A list of the model input parameters, their 

sources, and their associated ranges are given in Table 3.1.  

π
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Table 3.1. List of PlanarRad input parameters. Default values are the best estimate of a 
measured variable, or the middle value over a realistic range obtained from the literature   

3.4.4.1.1 Incidence angle 

Experiments were performed with a source incident angle of 60° from the 

surface normal. The incidence angle was measured from the centre of the lamp 

array to the centre of the sampling area as described in Section 3.4.2.5.   

Input parameters Default value* Variable source Variable range Range justification

Band centres 410 nm to 730 nm at 
20 nm intervals n/a none n/a

Band widths 20 nm n/a none n/a

Incident zenith 
angle 60° Measured in this study 59° to 64° 

Variation in incident angle 
over the sampling area 
(Section 4.3.2.9)

Incident azimuth 
angle 0° Measured in this study none n/a

Refractive index of 
pure ice matrix 1.311 Measured by Warren and 

Brandt (2008) 1.307 to 1.315 ± 1 standard deviation of the 
wavelength averaged value

Refractive index of 
air 1 n/a none n/a

Surface roughness 
parameter 0.11 Measured in this study 0.05 to 0.17 ± 1 standard deviation of the 

averaged value

Absorption 
coefficient Given in Figure 34

Measured by Warren and 
Brandt (2008) for pure 
ice; and Smith and Baker 
(1981) for brine

Calculated for brine 
volume fractions of 
0.02, 0.06 and 0.4

Range of realistic brine 
volume fractions for sea ice 
given by Perovich (1996)

Scattering 
coefficient 210 m-1 Calculated by Mobley 

(1998)
175 m-1 to 250 m-1 
(Mobley,  1998)

Range of realistic values for 
first year Arctic sea ice given 
by Mobley (1998)

Asymmetry 
parameter 0.93 Calculated by Mobley 

(1998)
0.86 to 0.99 
(Mobley, 1998)

Range of values for first year 
Arctic sea ice given by 
Mobley (1998). Used to 
calculate HG phase function.

Ice thickness M1 = 22, M2 = 32 Measured in this study ± 4 cm Maximum uncertainty in ice 
thickness measurements 

Lower boundary 
albedo Given in Figure 35 Measured by Marks 

(2014) ± 10 %
Estimated uncertainty in 
measurements by Marks 
(2014)

* Input variables that are wavelength dependent are presented graphically in separate figures
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3.4.4.1.2 Surface roughness parameter 

The surface roughness parameter (hsd) is the standard deviation of the vertex 

heights of a cosine wave fitted to the measured amplitude and wavelength of the 

sea ice roughness elements. In order to characterize the slope statistics of the 

sea ice surface the amplitude and wavelength of the roughness elements were 

measured along a 15 cm transect in a photograph of the sea ice surface given 

in Figure 3.32, the PTFE disc was used a reference for scale. 

 
Figure 3.32. Photograph of sea ice surface elements and the position of the 15 cm 
transect used to determine the slope statistics  

In total, 8 surface roughness elements were identified along the transect and the 

average ratio of amplitude to wavelength for each roughness element was 0.16 

± 0.08. The amplitude and wavelength of the individual roughness elements are 

given in Table 3.2. 
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Table 3.2 Slope statistics measured for sea ice surface roughness elements 

In order to calculate the surface roughness parameter for input into PlanarRad, 

100 vertices were plotted along a cosine wave at equal intervals; the cosine 

wave had a ratio of amplitude to wavelength of 0.16 ± 0.08. The standard 

deviation of the amplitude of the vertices was calculated as 0.11 ± 0.06 mm. The 

uncertainty in the surface roughness parameter was propagated from the 

uncertainty of 0.08 in the measured ratio, by re-plotting the vertices along a 

cosine wave with a ratio of amplitude to wavelength of 0.08 and 0.24, and 

recalculating the standard deviation of the amplitude of the vertices.  

3.4.4.1.3 Surface roughness model 

The surface roughness model constructs an ensemble of 2000 simulated 

surfaces, each consisting of sloping congruent isosceles triangular facets known 

as triads. Surface realizations are constructed from the slope statistics obtained 

for the real surface roughness elements (i.e. the standard deviation of the 

amplitude of the vertices), as described in Section 3.4.4.1.2. Thus the model is 

able to reproduce the real surface to the extent that the slope statistics of the 

 

Peak-to-peak 
height (mm) 

Amplitude 
(mm) 

Wavelength 
(mm) Ratio 

2.4 1.2 18.1 0.07 

3.3 1.6 6.6 0.25 

3.3 1.6 5.1 0.32 

2.8 1.4 9.7 0.14 

2.5 1.3 6.9 0.18 

2.1 1.1 7.3 0.15 

2.7 1.3 19.5 0.07 

1.35 0.7 7.4 0.09 

 
Average: 0.16 

 
Standard deviation: 0.08 
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simulated surface are identical to the slope statistics of the real surface (Mobley, 

1994). An accurate statistical description of transmission and reflection across 

the interface was obtained by simulating the interaction of a single ray with 

thousands of different surface realizations and calculating the average reflected 

or transmitted power.  The slopes of the triads in the model were determined 

from the height of 3 vertices, the height of each vertex was determined using a 

random number generator and a normal probability density function with a 

standard deviation of 0.11 and a mean of 0 cm. Three examples of the 

simulated surface realization are given in Figure 3.33, and a histogram of the 

vertex elevations for each surface is given in Figure 3.34.  
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Figure 3.33. Three example constructs of a surface realization, each generated from 
162 congruent isosceles triangles, or ‘triads’. Each of the 3 surface realizations has 
identical slope statistics 
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Figure 3.34. Histograms of vertex heights plotted in Figure 3.33 

3.4.4.1.4 Surface roughness and ray tracing  

In order to calculate the reflectance and transmittance for each surface 

realization a simulated parent ray is incident at a point on the interface. The 

incident parent ray produces two daughter rays: a refracted ray and a reflected 
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ray. The path of all daughter rays across the domain of each surface realization 

is calculated while tracking the rays associated power. With knowledge of the 

orientation of the triad and incidence angle  the angle of reflection or 

refraction can be calculated. Given that the surface of the triad is smooth 

relative to the wavelength of light, the angle of reflection equals the angle of 

incidence, and lies in the same plane, but on the opposite side to . The angle 

of refraction of the incident ray can be calculated using Snell’s law: 

  Eq. 3.12 

where  and  are the real indices of refraction of the first and second 

medium respectively,  is the angle of the transmitted ray and  is the angle 

of the incident ray. The incident parent ray has incident power . As the 

ray interacts with the surface some of the power is transferred to the reflected 

ray and some is transferred to the transmitted ray. To determine the fraction of 

the reflected power, Fresnel’s formula was applied: 

  Eq. 3.13 

where  is the Fresnel reflectance factor. The reflected power is obtained 

simply by multiplying the Fresnel reflectance factor by the incident power .  

Given the conversation of energy, the transmitted power is then .  

 

Refracted daughter rays occasionally interact with the interface from below, 

emerging from a denser medium into a less dense medium. Under these 

circumstances the critical angle  defines the threshold for total internal 

reflection of a ray within the denser medium: 

θi

θi

sin(θt )
n1

= sin(θi )
n2

n1 n2

θt θi

Φ i = 1

r(θi ) =
1
2

sin(θi −θt )
sin(θi +θt )
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⎣
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⎤

⎦
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+ tan(θi −θt )
sin(θi +θt )
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  Eq. 3.14 

where  is the real index of refraction for ice, which has minimal wavelength 

dependence and was averaged over the wavelength range 400 nm to 740 nm. 

Ray paths were calculated until each daughter ray emerged from the domain 

either above the interface (contributing to reflection), or below the interface 

(contributing to transmission). The power of each emerging ray was added to an 

accumulating sum for reflectance and transmittance functions. For a sufficiently 

large number of simulations using different surface realizations, the ratio of 

reflected to incident power will approach a limit, the limit is the desired 

reflectance (Mobley, 1994). The process of ray tracing is repeated for 2000 

surface realizations with the same angle of incidence for the parent ray. The 

average reflectance and transmittance was calculated to give an acceptably 

accurate estimate of reflectance and transmittance over the surface.  

3.4.4.1.5 Absorption coefficient 

An absorption coefficient for sea ice was calculated by applying Eq. 1.44 from 

Chapter 1. The volume fraction of brine was estimated from measurements of 

temperature and salinity obtained by coring of sea ice generated using the 

Royal Holloway sea ice simulator by Marks (2014). Measurements were 

obtained for sea ice generated using the same methodology as in this study, 

and thus the brine volume fraction measured by Marks (2014) is considered 

representative of brine volume fraction for the sea ice generated in this study. 

The study by Marks (2014) reports a brine volume fraction that is a function of 

depth. Given the sea ice was modeled as a homogenous layer with depth 

independent IOPs, the brine volume fraction was averaged and yielded a value 

of 6 %, which was used in Eq. 1.44 to calculate the absorption coefficient for 

θ ' = sin−1(1 / n2 ) ≈ 48°

n2
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sea ice. The spectral absorption coefficients over a realistic range of brine 

volume fractions from 0.02 to 0.4 (Perovich, 1996) were calculated and are 

given in Figure 3.35. 

 
Figure 3.35. Absorption coefficients for laboratory-generated sea ice with brine volume 
fractions ranging from 0.02 to 0.4 

3.4.4.1.6 Refractive index  

The real index of refraction of the ice matrix was 1.311 ± 0.004. The value was 

determined by averaging the refractive index of pure ice over the wavelength 

range 400 nm to 740 nm using data from Warren and Brandt (2008). The 

refractive index outside the medium had a value equal to that of air, which is 

unity. The refractive index of brine was not considered in the model because (a) 

the brine content was small (6 %) and (b) absorption coefficients for brine and 

ice were very similar, as shown in Figure 3.35.  
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3.4.4.1.7 Phase function and scattering coefficients 

The phase function and scattering coefficients for Arctic first year sea ice were 

estimated by Mobley (1998) with Mie calculations for sea ice with a similar brine 

volume fraction (5.5%). The calculations were performed using the indices of 

refraction for ice and brine, and particle size distributions for sea ice inclusions 

over a range of realistic conditions. The study by Mobley (1998) reported 

scattering coefficients ranging between 175 m-1 and 250 m-1 and asymmetry 

parameters ranging between 0.86 (for air bubbles) and 0.99 (for brine 

inclusions) (Mobley et al., 1998), which is consistent with estimates from 

previous studies (Perovich, 2003). It was not possible to determine the 

scattering coefficient and phase function empirically, so the middle value in each 

range given by Mobley (1998) was used as the default input variable in this 

study.  

3.4.4.1.8 Lower boundary reflectance 

The nadir reflectance of base of the tank (i.e. the lower boundary in the 

modeling study) was measured by Marks (2014) when the tank contained 

seawater and no sea ice. The nadir reflectance of the lower boundary measured 

by Marks (2014) is presented as a function of wavelength in Figure 3.36. The 

directional reflectance at the base of the polyethylene tank was assumed to be 

Lambertian and thus the measured nadir reflectance is numerically equal to the 

bihemispherical reflectance.  
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Figure 3.36. Reflectance of the lower boundary. Data from Marks (2014) 

3.4.4.1.9 Ice thickness 

Ice thickness was estimated from the temperature profile of the laboratory 

generated sea ice using the method described in Section 3.4.1.5. The ice 

thickness for the measurement M1 (22 cm ± 4 cm) was used as the input value 

during the model sensitivity study. The thickness of ice during the M1 

measurement was used in the sensitivity study because it was the thinnest ice 
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3.4.4.2 Model sensitivity study  

A sensitivity study was performed over the range of values presented in Table 

3.1 by calculating the distribution of reflected radiance (quad-averaged BRF) 

while varying each parameter independently between its minimum and 

maximum value. The study was carried out in order to: (a) develop a better 

understanding of the relationships between input and output variables in the 

model; (b) identify sensitive parameters given a set of fixed boundary 

conditions; and (c) test the robustness of the results given uncertainty in the 

model inputs.  

3.4.4.2.1 Lower boundary reflectance 

The quad-averaged BRF was calculated using PlanarRad for a lower boundary 

with a bihemispherical reflectance (BHR) given in Figure 3.36 ± 10 %. All other 

input variables were held constant at the respective default values given in 

Table 3.1. Bivariate plots of the BRF in solar principal plane, the BRF at the 

nadir-viewing angle as a function of wavelength, and the anisotropy index 

(ANIX) as a function of wavelength are given in Figure 3.37, Figure 3.38 and 

Figure 3.39.  
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Figure 3.37. BRF in the solar principal plane at 610 nm for the lower boundary 
reflectance (lbr) given in Figure 3.36 ± 10 % 

 
Figure 3.38. Nadir BRF as a function for wavelength for the lower boundary reflectance 
(lbr) given in Figure 3.36 ± 10 % 
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Figure 3.39. Anisotropy index (ANIX) as a function of wavelength for the lower 
boundary reflectance (lbr) given in Figure 3.36 ± 10 % 

Increasing the bihemispherical reflectance (BHR) of the lower boundary by 10 % 

resulted in an increase of less than 0.5 % in the BRF for all viewing angles in 

the solar principal plane at 610 nm, and the maximum increase in the BRF was 

outside of the forward scattering peak. A near equivalent decrease (within 
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the lower boundary. The wavelength dependence is the combined effect of the 

absorption coefficient (which varies strongly with wavelength) and the spectral 

reflectance of the lower boundary. The ANIX value (which quantifies the 

anisotropy in the BRF over the hemisphere) decreased by less than 1 % over all 

wavelengths for a 10 % increase in the BHR, which is explained by the increase 

in the BRF outside of the forward peak.   

3.4.4.2.2 Ice thickness 

The quad-averaged BRF was calculated for an ice thickness of 18 cm, 22 cm 

and 26 cm, while holding all other input variables at their respective default 

values. Bivariate plots of the BRF in the solar principal plane, the BRF at the 

nadir-viewing angle, and the anisotropy index (ANIX) as a function of 

wavelength are given in Figure 3.40, Figure 3.41 and Figure 3.42. 

 
Figure 3.40. BRF in the solar principal plane at 610 nm for an ice thickness (thi) of 
26 cm, 22 cm and 18 cm 
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Figure 3.41. Nadir BRF as a function for wavelength for an ice thickness (thi) of 26 cm, 
22 cm and 18 cm 

 
Figure 3.42. Anisotropy index (ANIX) as a function of wavelength for an ice thickness 
(thi) of 26 cm, 22 cm and 18 cm 
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Increasing the thickness of the sea ice by 4 cm resulted in an increase of up to 

5.2 % in the BRF in the solar principal plane, with the greatest increase for 

viewing angles outside of the forward scattering peak. Decreasing the thickness 

of the sea ice by 4 cm resulted in a decrease of up to 6.9 % in the BRF in the 

solar principal plane, with the largest decrease outside of the forward scattering 

peak. Increasing the thickness of the sea ice by 4 cm resulted in an increase in 

the BRF that was greatest at shorter wavelengths. For example, the increase in 

the BRF with a 4 cm increase in thickness is 7.3 % at 410 nm for the nadir-

viewing angle, compared to an increase of 3.0 % at 730 nm.  The wavelength 

dependence is the combined result of the increased scattering and reduced 

influence of the lower boundary reflectivity on the BRF with increasing ice 

thickness. Flattening of the BRF function over the hemisphere with increasing 

thickness and its wavelength dependence is evident in the spectral ANIX 

values, which decreased by 5 % at 410 nm compared to 2 % at 730 nm, given a 

4 cm increase in thickness. The BRF is less anisotropic with thicker ice as the 

average number of scattering events a photon undergoes increases, which in 

turn generates a more diffuse reflection. The response to changes in thickness 

depends on the original thickness, and is likely to be amplified for thinner ice.   

3.4.4.2.3 Absorption coefficient 

The quad-averaged BRF was calculated using PlanarRad for the spectral 

absorption coefficients given in Figure 3.35 for brine volume fractions of 

,  and . All other input variables were held constant 

at the respective default values given in Table 3.1. Bivariate plots of the BRF in 

the solar principal plane, the BRF as a function of wavelength at the nadir-

viewing angle, and the anisotropy index (ANIX) as a function of wavelength, are 

given in Figure 3.45, Figure 3.44 and Figure 3.43. 

vb = 0.02 vb = 0.06 vb = 0.4
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Figure 3.43. BRF in the solar principal plane at 710 nm for 3 different spectral 
absorption coefficients given in Figure 3.35 

 
Figure 3.44. Nadir BRF as a function for wavelength for 3 different spectral absorption 
coefficients given in Figure 3.35 
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Figure 3.45. Anisotropy index (ANIX) as a function of wavelength for 3 different spectral 
absorption coefficients given in Figure 3.35 
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magnitude stronger, and thus penetration depths are much shorter, and the BRF 

is more sensitive to changes in the absorption coefficients of the sea ice relative 

to the reflectivity of the lower boundary. Increased absorption at longer 

wavelengths owing to a larger brine volume fraction resulted in an increase in 

the anisotropy index (ANIX) of up to 12.6 % at 730 nm.  

3.4.4.2.4 Scattering coefficient 

The quad-averaged BRF was calculated using PlanarRad for the scattering 

coefficients 175 m-1, 210 m-1 and 250 m-1 All other input variables were held 

constant at the respective default values given in Table 3.1. Bivariate plots of 

the BRF in the solar principal plane, the BRF as a function of wavelength at the 

nadir-viewing angle, and the anisotropy index (ANIX) as a function of 

wavelength are given in Figure 3.46, Figure 3.47 and Figure 3.48. 

 
Figure 3.46. BRF in the solar principal plane at 610 nm for 3 different scattering 
coefficients of 175 m-1, 210 m-1 and 250 m-1 
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Figure 3.47. Nadir BRF as a function for wavelength for 3 different scattering 
coefficients of 175 m-1, 210 m-1 and 250 m-1 

 
Figure 3.48. Anisotropy index (ANIX) as a function of wavelength for 3 different 
scattering coefficients of 175 m-1, 210 m-1 and 250 m-1 
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An increase in the scattering coefficient of 40 m-1 resulted in an increase in the 

BRF in the solar principal plane of up to 7 %, with the greatest increase outside 

of the forward scattering peak. A decrease in the scattering coefficient of 40 m-1 

resulted in a decrease in the BRF in the solar principal plane of up to 8 %, with 

the greatest decrease outside of the forward scattering peak. As a result, the 

anisotropy index (ANIX) decreased by up to 7 % for an increase in the scattering 

coefficient, and increased by up to 9 % for a decrease of 40 m-1 in the scattering 

coefficient. Indicating that the anisotropy in the BRF over the hemisphere is 

inversely proportional to the scattering coefficient, which makes intuitive sense, 

because a larger scattering coefficient increases the average number of 

scattering events in the medium, which in turn produces a more diffuse 

reflection. 

 

There was a small (less than 3 %) wavelength dependence to the change in the 

nadir BRF owing to increased scattering. For example, the BRF at the nadir-

viewing angle increased by 7.6 % at 410 nm, compared to an increase of 9.0 % 

at 730 nm. A similar, but smaller (less than 1.5 %) wavelength dependence was 

observed for a decrease in scattering of the same amount. Given a uniformly 

increased scattering coefficient across all wavelengths, slightly more (2 %) light 

was reflected from the medium at larger wavelengths. The wavelength 

dependence is probably associated with stronger attenuation of the light by the 

lower boundary for shorter wavelengths. Light is attenuated more strongly by the 

lower boundary at shorter wavelengths because absorption is weaker and more 

light penetrates through the entire slab of sea ice, as a result, a uniform 

increase in scattering with wavelength had slightly less impact at shorter 

wavelengths.  
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3.4.4.2.5 Phase function 

The quad-averaged BRF was calculated for 3 different values of the asymmetry 

parameter ,  and . The asymmetry parameter was 

used to generate Henyey-Greenstein scattering phase functions, which were 

used to calculate the quad-averaged BRF using PlanarRad. All other input 

variables were held constant at the respective default values given in Table 3.1. 

Bivariate plots of the BRF in the solar principal plane, the BRF as a function of 

wavelength at the nadir-viewing angle, and the anisotropy index (ANIX) as a 

function of wavelength are given in Figure 3.49, Figure 3.50 and Figure 3.51. 

 
Figure 3.49. BRF in the solar principal plane at 610 nm for 3 different values of the 
asymmetry parameter g = 0.86, g = 0.93 and g = 0.99 

g = 0.86 g = 0.93 g = 0.99
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Figure 3.50. Nadir BRF as a function for wavelength for 3 different values of the 
asymmetry parameter g = 0.86, g = 0.93 and g = 0.99 
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Figure 3.51. Anisotropy index (ANIX) as a function of wavelength for 3 different values 
of the asymmetry parameter g = 0.86, g = 0.93 and g = 0.99 

An increase in the asymmetry parameter ( ) of 0.06 resulted in a decrease in 
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boundary on the spectral BRF was less when  was decreased, with the BRF 

at nadir showing an increase of 23.7 % at 550 nm, compared to an increase of 

34 % at 730 nm.  

 

Both the BRF as a function of wavelength and as a function over the 

hemisphere appear to be strongly sensitive to the phase function. Increasing the 

 parameter strongly increased the anisotropy of the BRF function over the 

hemisphere. With the greatest increase in the ANIX value of 326.6 % at 730 nm, 

199.6 % at 410 nm and a minimum increase of 96.8 % at 550 nm. The minimum 

increase in anisotropy corresponds with the wavelength for which the reflectivity 

of the lower boundary is strongest. Indicating that increased reflectivity of the 

lower boundary has a diffusing effect on the reflected radiance distribution, and 

has stronger influence when a more strongly forward scattering phase function 

is used in the calculations.  Such a large increase in anisotropy given a stronger 

forward scattering phase function makes intuitive sense because photons will 

typically be required to undergo more scattering events before it is scattered out 

of the forward trajectory, producing a less diffuse reflection overall. In addition, 

owing to the greater tendency for a photon to be scattered into the forward 

direction given a increased value of , more photons will on average penetrate 

deeper into the medium and will reach the lower boundary, and thus the spectral 

reflectivity of the lower boundary will have more influence on the BRF, as is 

evident by the shape of the bottom curve in Figure 3.50. 

3.4.4.2.6 Surface roughness 

The quad-averaged BRF was calculated for 3 different values of the surface 

roughness parameter (hsd). The surface roughness parameter was defined as 

the standard deviation of the vertex heights of a cosine wave fitted to the 

g

g
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measured amplitude and wavelength of roughness elements, as described in 

Section 3.4.1.6. The range of hsd values used in the sensitivity analysis were 

calculated from the measured ratio of amplitude to wavelength of 0.16 ± 1 , 

which correspond to a peak-to-peak amplitude for the roughness elements of 

1.4 mm, 3.2 mm and 4.8 mm. The standard deviation of vertex heights in the 3 

cosine waves used were: mm, mm and mm. 

All other input variables were held constant at the respective default values 

given in Table 3.1. Bivariate plots of the BRF in the solar principal plane, the 

BRF as a function of wavelength at the nadir-viewing angle, and the anisotropy 

index (ANIX) as a function of wavelength are given in Figure 3.52, Figure 3.53 

and Figure 3.54. 

 
Figure 3.52. BRF in the solar principal plane at 610 nm for 3 different values of the 
surface roughness parameter (hsd) of 0.05 mm, 0.11 mm, 0.17 mm 

σ
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Figure 3.53. Nadir BRF as a function for wavelength for 3 different values of the surface 
roughness parameter (hsd) of 0.05 mm, 0.11 mm, 0.17 mm 

 
Figure 3.54. Anisotropy index (ANIX) as a function of wavelength for 3 different values 
of the surface roughness parameter (hsd) of 0.05 mm, 0.11 mm, 0.17 mm 
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Increasing the average height of the surface roughness elements (analogous to 

the ) results in a decrease in the BRF in the forward scattering direction in 

the solar principal plane of up to 32.6 % at 70° zenith angle at 610 nm, and an 

increase in the BRF in the backward direction of up to 14.2 % at 80° zenith 

angle, with a small change (less than 5 %) for viewing zenith angles within 30° 

of nadir. Decreasing the average height of the surface roughness elements 

moves the position of the forward scattering peak closer to the angle of specular 

reflection (60°) and decreases the BRF in the backward direction by up to 

13.5 % at 80°.  An increase or decrease in the  value had a very small (less 

than 1 %) impact on the nadir BRF for all wavelengths. An increase in the  

strongly decreased the ANIX value by up to 36.4 % at 730 nm, and showed a 

small wavelength dependence of less than 2 %, with a decrease in the ANIX 

value of 34.6 % at 410 nm for the same increase in the . Decreasing the 

 resulted in an increase in the ANIX value of around 6 %, which was 

effectively constant with wavelength. The observed decrease in the ANIX values 

with increasing surface roughness was the result of a broadening and flattening 

of the forward scattering peak. Which occurs because of an increasingly large 

number of photons that are not reflected directly into the specular direction, but 

rather are scattered into a wider range of angles owing to the uneven surface. 

The broadening and flattening of forward scattering peak is evident when the 

BRF is plotted as a function over the hemisphere in the form of a polar plot 

given in Figure 3.55 (for an  of 0.05 mm) and in Figure 3.56 (for an of 

0.17 mm). 
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Figure 3.55. BRF at 610 nm with an hsd of 0.05 mm 

 
Figure 3.56. BRF at 610 nm with an hsd of 0.17 mm 
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The MATLAB code for processing and plotting the output from the PlanarRad 

radiative-transfer model ‘report.txt’ file is given in Appendix 3. 

3.4.4.2.7 Sensitivity study summary 

Given the default input variables and the associated ranges listed in Table 3.1, 

the anisotropy in the BRF over the hemisphere (quantified by the ANIX) is most 

sensitive to changes in the scattering phase function asymmetry parameter, 

which increases the ANIX by up to 326.6 % at 730 nm. The relative strength of 

forward scattering determines the likelihood of a photon penetrating deeper into 

the sea ice, and for a larger asymmetry parameter, increases the probability that 

the sea ice or the lower boundary absorbs the photon, which reduces the 

proportion of diffuse reflectance at the surface, increasing the ANIX value. The 

shape of BRF function over the hemisphere is also sensitive to the surface 

roughness parameter (hsd), particularly for large viewing zenith angles. For 

example, a decrease in the hsd of 0.06 mm resulted in a decrease of 50.1 % in 

the BRF at 80° in the forward scattering direction in the solar principal plane. 

The hsd appears to strongly influence the position, shape and size of the 

forward scattering peak, whereas the scattering phase function appears to 

primarily influence the shape of the BRF function over the hemisphere by 

changing the proportion of diffusely reflected light. A reduction in the asymmetry 

parameter of the scattering phase function primarily reduces the ANIX values by 

increasing the BRF for viewing angles outside of the forward peak, rather than 

by decreasing the BRF within the forward peak. In general, the BRF at viewing 

angles outside of the forward scattering peak are more sensitive to changes in 

the sea ice IOPs than the BRF in the forward peak itself, which makes sense 

given that a large proportion of photons scattered in the specular direction do 

not enter the medium, but are reflected at the interface. The hsd is therefore the 
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only parameter that significantly affects the magnitude and shape of the forward 

peak without strongly affecting the magnitude of the BRF for viewing angles 

near to nadir.  Other parameters such as the ice thickness, scattering 

coefficients, and absorption coefficients generally vary the ANIX value by less 

than 10 %.  

 

BRF at the nadir viewing position was most sensitive to the scattering phase 

function asymmetry parameter for all wavelengths, which decreased the BRF at 

the nadir viewing position by up to 81.5 % at 730 nm. Varying the ice thickness, 

scattering coefficients and absorption coefficients changed the BRF at nadir by 

less than 15 % for all wavelengths, while the varying the lower boundary 

reflectance resulted in a change to the nadir BRF of less than 1 % over all 

wavelengths. The wavelength dependence to the BRF appears to be strongly 

affected by an increase in the scattering phase function asymmetry parameter, 

owing to increased penetration depth at shorter wavelengths, which causes the 

reflectance of the lower boundary to impact more strongly on the spectral BRF. 

Varying the absorption coefficient changed the nadir BRF by up to 12.4 % at 

730 nm, but changed the nadir BRF less than 1 % for wavelengths less than 

650 nm.  

3.5 Experiment results 

The sea ice CCRF is presented for the two laboratory CCRF acquisitions: M1 

and M2, which were conducted on the 7th and 17th of February 2014 

respectively. M1 was performed with a sea ice thickness of 22 cm, and M2 was 

performed using the same batch of laboratory-generated sea ice, but with an 

increased thickness of 27 cm. Both acquisitions were performed under the same 

illumination conditions with an incident angle of 60°.   
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The input parameters for the ice thickness and surface roughness used in the 

modeling study were based on physical measurements of laboratory-generated 

sea ice. Ranges of realistic values for the scattering coefficient, phase function, 

extinction coefficient, absorption coefficient and refractive index were obtained 

from the literature and are given in Table 3.1. The middle value from each range 

was used as the input into the model. In order to the fit the model to the 

observed CCRF the scattering coefficient was adjusted over the range of 

realistic values. A scattering coefficient of 190 m-1 was found to provide the best 

fit between the observed CRCF for the M1 acquisition and the PlanarRad model 

simulation. To improve the fit of the model at viewing angles around the forward 

scattering peak the surface roughness parameter was adjusted within ±1 

standard deviation of the measured surface roughness scale for laboratory-

generated sea ice. The thickness of the sea ice in the model was increased by 

5 cm to account for the thicker laboratory-generated sea ice used for the M2 

acquisition. Identical values for the input parameters were used to model the M2 

acquisition, excluding the surface roughness parameter and the ice thickness, 

which were varied as described above.  

 

An accurate characterization of the surface roughness scale was not obtained 

for the M1 or M2 acquisitions so the surface roughness parameter was adjusted 

within a range of realistic values to improve the fit between the measured and 

the modeled data for the M1 and the M2 acquisitions.  The range of realistic 

values for the surface roughness parameter was acquired by measuring the 

wavelength and amplitude of roughness elements of laboratory-generated sea 

ice as described in Section 3.4.4.1.2. The roughness elements that were 

measured were generated for a different batch of laboratory sea ice, but the sea 
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ice was grown using the same methodology and the roughness elements were 

considered characteristic of the roughness elements in the M1 and M2 

acquisitions.  

 

A summary of the input parameters used to model the M1 and M2 acquisitions 

are given in Table 3.3.  

 
Table 3.3. List of PlanarRad input parameters used to model the M1 and M2 CCRF 
acquisitions 

The following sections present the measured CCRF and modeled quad-

averaged BRF for all viewing angles over the upward facing hemisphere in the 

form of polar plots for the M1 and M2 acquisitions. As explained in Chapter 1, 

the BRF is not a measurable quantity and thus measured reflectance factors are 

reported as CCRF. However, the CCRF provides a close approximation of the 

BRF, and is numerically equivalent to the BRF assuming the BRDF is isotropic 

over the solid angle subtended by the detector (Bourgeois et al., 2006a). In 

Input parameters Value for M1 Value for M2 

Incident zenith 60° 60° 

Incident azimuth 0° 0° 

Refractive index of pure 
ice matrix 1.31 1.31 

Refractive index of air 1 1 

Surface roughness 
parameter 0.16 0.11 

Absorption coefficient Given in Figure 3.35 Given in Figure 3.35 

Scattering coefficient 190 m-1 190 m-1 

Phase function 0.93 0.93 

Ice thickness 22 cm 27 cm 

Lower boundary albedo Given in Figure 3.36 Given in Figure 3.36 
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order to further improve the comparability between the measured and modeled 

quantities the CCRF was converted to the quad-averaged CCRF. Quad-

averaged CCRF was calculated by linearly interpolating the CCRF over the 

hemisphere using a Delaunay triangle-based method (de Berg et al., 2008), and 

by taking the average value within each quad. Throughout this section the more 

general term ‘reflectance factor’ is used to refer to either the BRF or CCRF 

measurements. The polar plots are a 2-D projection of each quad in the upward 

facing hemisphere, the colour of each quad corresponds to the average value of 

the CCRF or BRF in that quad. The polar plots have a maximum viewing angle 

of 60° central to each quad, which was limited by the maximum viewing angle of 

the laboratory goniometer. The difference between the quad-average BRF and 

CCRF was calculated and plotted in the form of a polar plots for the M1 and M2 

acquisitions. The root mean square error (RMSE) is the average of the 

differences in the quad-averaged reflectance factors and was calculated as 

follows: 

 
       

Eq. 3.15 

where  is the number of quads. 

The coefficient of variation of the RMSE  was calculated by 

normalizing the RMSE to the mean BRF: 

  Eq. 3.16 

where  is the mean BRF value over the hemisphere. 

 

The CV(RMSE) is plotted in the following sections as a function of wavelength in 

the form of a bivariate plots. The BRF and CCRF in the solar principal plane, 

and as a function of wavelength, are given in the form of bivariate plots for the 

RMSE =
(BRF −CCRF)2

i=0

n

∑
n

n

CV(RMSE)

CV(RMSE) = RMSE
R

R
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M1 and M2 acquisitions. The ANIX value describes the extent of the anisotropy 

in the reflectance factors over the hemisphere, and is defined as the ratio of the 

maximum reflectance factor to the minimum reflectance factor over the 

hemisphere. The ANIX values for the M1 and M2 acquisition are given as a 

function of wavelength in the form of bivariate plots in the following sections.  

The BRF and CCRF presented in this section are band-averaged quantities; 

each of the bands have a width of 20 nm, and are centered at wavelengths of 

410 nm, 510 nm, 610 nm and 710 nm. 

3.5.1 M1 acquisition  

The M1 CCRF acquisition was carried out with a sea ice thickness of 22 cm. 

Modeled and measured reflectance factors for the M1 acquisition are presented 

in this section.  

3.5.1.1 M1: CCRF and BRF over the hemisphere  

Quad-averaged measured and modeled reflectance factors for the M1 

acquisition for wavelength bands 410 nm, 510 nm, 610 nm and 710 nm are 

given in Figure 3.57 to Figure 3.68. The absolute difference in the quad-

averaged modeled and measured values are given in Figure 3.59, Figure 3.62, 

Figure 3.65, and Figure 3.68 for the wavelengths bands 410 nm, 510 nm, 

610 nm and 710 nm.  
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Figure 3.57. Quad-averaged CCRF measurements (M1) of laboratory generated sea ice 
with 22 cm thickness at 410 nm 

 
Figure 3.58. Quad-averaged modeled BRF of laboratory generated sea ice with 22 cm 
thickness at 410 nm 

 SIS CCRF (M1):  λ = 410 nm, ANIX = 2.46
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Figure 3.59. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 410 nm 

 
Figure 3.60. Quad-averaged CCRF measurements (M1) of laboratory generated sea ice 
with 22 cm thickness at 510 nm 

 

 Modelled BRF − SIS CCRF (M1),  λ = 410 nm
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Figure 3.61. Quad-averaged modeled BRF of laboratory generated sea ice with 22 cm 
thickness at 510 nm 

 
Figure 3.62. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 510 nm 

  Modelled BRF:  λ = 510 nm, ANIX = 2.27

 

 

<<< backward scattering | forward scattering >>>   

BR
F

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

15°
30°

45°
60°

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

 Modelled BRF − SIS CCRF (M1),  λ = 510 nm

 

 

<<< backward scattering | forward scattering >>>   

Ab
so

lu
te

 d
iff

er
en

ce

180°

150°

120°
090°

060°

030°

000°

330°

300°

270°
240°

210°

15°
30°

45°
60°

−0.15

−0.1

−0.05

0

0.05

0.1

0.15



Chapter 3: Bidirectional reflectance of laboratory-generated sea ice 

     264 

 
Figure 3.63. Quad-averaged CCRF measurements (M1) of laboratory generated sea ice 
with 22 cm thickness at 610 nm 

 
Figure 3.64. Quad-averaged modeled BRF of laboratory generated sea ice with 22 cm 
thickness at 610 nm 

 SIS CCRF (M1):  λ = 610 nm, ANIX = 2.41
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Figure 3.65. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 610 nm 

 
Figure 3.66. Quad-averaged CCRF measurements (M1) of laboratory generated sea ice 
with 22 cm thickness at 710 nm 

 

 Modelled BRF − SIS CCRF (M1),  λ = 610 nm
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Figure 3.67. Quad-averaged modeled BRF of laboratory generated sea ice with 22 cm 
thickness at 710 nm 

 
Figure 3.68. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 710 nm 

  Modelled BRF:  λ = 710 nm, ANIX = 2.81
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The measured and modeled reflectance factors show a strong forward 

scattering peak, which is strongest in the specular direction of 60° zenith angle 

and 180° azimuth angle. The reflectance factor for the quad centered at 60° 

zenith angle and 180° azimuth angle was greatest at 510 nm, and had a value 

of 1.21 for the measured CCRF, and a value of 1.20 for the modeled BRF. The 

forward peak was weakest at 710 nm with a reflectance factor value of 1.04 for 

both the measured CCRF and modeled BRF. Despite the forward peak being 

weakest at longer wavelengths, both measured and modeled reflectance factors 

have an ANIX values that increase with wavelength up to a maximum value of 

2.9 at 730 nm. In general, the angular dependence to the reflectance factors 

over the hemisphere is minimal for viewing angles in the backward direction and 

for viewing angles less than 15° in the forward direction for both the measured 

and modeled reflectance factors over the wavelength range measured. The 

laboratory measured reflectance factors are near symmetric over the solar 

principal plane, whereas the modeled reflectance factors are perfectly 

symmetric. The measured and modeled reflectance factors for sea ice generally 

agree very well for most of the quads, with absolute differences typically around 

± 0.02. The maximum difference between and measured and modeled 

reflectance factors was 0.12 for the quad centered at the viewing angle of 60° 

and an azimuth angle of 210° for a wavelength of 530 nm. The averaged 

difference between the quads was quantified by the CV(RMSE) and was 

typically around 5 %, and showed a negligible wavelength dependence of less 

than 1 % for the M1 acquisition. The maximum CV(RMSE) for the M1 

acquisition was 5.4 % at 550 nm.  
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3.5.1.2 M1: reflectance factors at the nadir view angle with wavelength 

Nadir reflectance of the laboratory generated sea ice as a function of 

wavelength is given in Figure 3.69 along with the output from the PlanarRad 

radiative transfer model.  The uncertainty bars of the laboratory measurements 

are 2 standard deviations of 4 replicate measurements of the sea ice surface 

taken at different times during the CCRF acquisition. 

 
Figure 3.69. Measured and modeled nadir reflectance factors with wavelength for sea 
ice with thickness of 22 cm. Uncertainty bars are given to 2 standard deviations of the 
replicate nadir measurements 

The nadir reflectivity of the sea ice decreased with wavelength for the 

wavelength range 490 nm to 730 nm by approximately 0.18, but increased with 

wavelength from 410 nm to 490 nm by approximately 0.02. Despite a smaller 

absorption coefficient at 410 nm the model reproduced the general shape of the 
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nadir reflectance spectra, but with a slight difference in the peak of reflectivity, 

which was 530 nm for the model and 490 nm for the measured results, the 

minor differences between the modeled and measured nadir reflectance factors 

were well within the uncertainty of the laboratory measurements and was 

typically less than 0.02. 

3.5.1.3 M1: reflectance factors in the solar principal plane 

Measured and modeled reflectance factors in the solar principal plane for the 

M1 acquisition are presented in Figure 3.70. 

 
Figure 3.70. Measured and modeled reflectance factors in the solar principal plane of 
sea ice with a thickness of 22 cm 

The measured reflectance factors for the M1 acquisition increased by 0.64 over 

the viewing angle range 0° to 60° zenith in the forward direction in the solar 
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principal plane. The modeled reflectance factors show a very similar shape to 

the measured reflectance curve, and are typically within 0.02 of the measured 

values in the solar principal plane. The increase in the modeled reflectance 

factor was 0.66 from 0° to 60° zenith angle in the forward direction.  Both the 

measured and modeled results show negligible angular dependence in the solar 

principal plane for viewing angles 0° to 60° in the backward direction.    

3.5.1.4 M1: CV(RMSE) with wavelength 

The coefficient of variation of the RMSE between the measured and modeled 

reflectance factors is presented in Figure 3.71. 

 

Figure 3.71. Coefficient of variation of the root mean squared error (RMSE) between the 
measured and modeled reflectance factors as a function of wavelength 
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The CV(RMSE) was typically 5 % for the M1 acquisition, and was greatest at 

550 nm, but has a wavelength dependence of less than ± 0.5 %.  

3.5.1.5 M1: anisotropy index (ANIX) with wavelength 

Anisotropy in the reflectance factors over the hemisphere was quantified by the 

ANIX value, and is given as the function of wavelength in Figure 3.72 for both 

the measured and modeled quantities.    

 
Figure 3.72. Anistropy index (ANIX) as a function of wavelength for the measured and 
modeled reflectance factors for 22 cm thick laboratory generated sea ice 
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values decreased from 410 nm to 510 nm and increased to a maximum of 2.94 

at 730 nm. The model reproduced the same general shape to the ANIX curve, 

but had an ANIX value that was 0.13 lower than the measured ANIX value at 

410 nm, indicating that the model underestimated the anisotropy in the sea ice 

reflectance more strongly at shorter wavelengths. The model closely matched 

the measured ANIX values for longer wavelengths, and had a maximum ANIX 

value of 2.93 at 730 nm, which is within 0.01 of the measured value.  

3.5.2 M2 acquisition 

The M2 CCRF acquisition was carried out with same batch of sea ice as the M1 

acquisition, but 75L of seawater was added on top of the M1 sea ice layer 

increasing its thickness for the M2 acquisition by 5 cm. Modeled and measured 

reflectance factors for M2 acquisition are presented in this section.  

3.5.2.1 M2: CCRF and BRF over the hemisphere 

 
Figure 3.73. Quad-averaged CCRF measurements (M2) of laboratory generated sea ice 
with 27 cm thickness at 410 nm 

 SIS CCRF (M2):  λ = 410 nm, ANIX = 3.61
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Figure 3.74. Quad-averaged modeled BRF of laboratory generated sea ice with 27 cm 
thickness at 410 nm 

 
Figure 3.75. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 410 nm 

 

  Modelled BRF:  λ = 410 nm, ANIX = 3
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Figure 3.76. Quad-averaged CCRF measurements (M2) of laboratory generated sea ice 
with 27 cm thickness at 510 nm 

 
Figure 3.77. Quad-averaged modeled BRF of laboratory generated sea ice with 27 cm 
thickness at 510 nm 

 

 SIS CCRF (M2):  λ = 510 nm, ANIX = 3.61
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Figure 3.78. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 510 nm 

 
Figure 3.79. Quad-averaged CCRF measurements (M2) of laboratory generated sea ice 
with 27 cm thickness at 610 nm 

 

 Modelled BRF − SIS CCRF (M2),  λ = 510 nm
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Figure 3.80. Quad-averaged modeled BRF of laboratory generated sea ice with 27 cm 
thickness at 610 nm 

 
Figure 3.81. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 610 nm 

 

  Modelled BRF:  λ = 610 nm, ANIX = 3.16
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Figure 3.82. Quad-averaged CCRF measurements (M2) of laboratory generated sea ice 
with 27 cm thickness at 710 nm 

 
Figure 3.83. Quad-averaged modeled BRF of laboratory generated sea ice with 27 cm 
thickness at 710 nm 

 

 SIS CCRF (M2):  λ = 710 nm, ANIX = 4.59
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  Modelled BRF:  λ = 710 nm, ANIX = 3.87
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Figure 3.84. Absolute differences in modeled and measured sea ice reflectance factors 
at a wavelength of 710 nm 

The M2 measured and modeled reflectance factors show a strong forward 

scattering peak and the shape over the hemisphere was similar to the M1 

acquisition, with the greatest reflectance factor at the same viewing angle as the 

M1 measurement (60° zenith angle and 180° azimuth angle). However, the M2 

measurement had a much stronger forward scattering peak with a maximum of 

1.63 at 510 nm, compared to a reflectance factor of 1.20 for the M1 

measurement at 510 nm. The stronger forward peak in the M2 measurement is 

evident in the ANIX values, which increased to a maximum of 4.59 at 710 nm, 

compared to maximum of 2.80 for the M1 acquisition at 710 nm. Despite the 

increase in anisotropy with wavelength the forward peak was weakest at 

710 nm in the M2 acquisition, with a reflectance factor of 1.45 for the measured 

CCRF and 1.49 for the modeled BRF. Indicating that both the M1 and M2 

acquisitions generally had the same wavelength dependence to the anisotropy 

and the strength of the forward peak. Angular dependence to the reflectance 

 Modelled BRF − SIS CCRF (M2),  λ = 710 nm
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factors over the hemisphere for the M2 acquisition also generally followed the 

same pattern as observed for the M1 acquisition, with minimal effects for 

viewing angles in the backward direction and for viewing angles less than 15° in 

the forward direction for both the measured and modeled reflectance factors. 

The laboratory measured reflectance factors are near symmetric over the solar 

principal plane for the M2 acquisition, whereas the modeled reflectance factors 

are perfectly symmetric, as was observed for the M1 acquisition.  

 

The measured and modeled reflectance factors for the M2 acquisition generally 

agree well for wavelengths equal or greater than 490 nm, but show much 

greater differences below 490 nm, an effect that was not observed in the M1 

acquisition. The absolute differences between the modeled and measured 

reflectance factors over the hemisphere for the M2 acquisition were typically 

around ± 0.03, with a CV(RMSE) of around 7.5 %, which is a small increase of 

approximately 2.5 % in the CV(RMSE) observed for the M1 measurements. 

However, the differences between the modeled and the measured reflectance 

factors were much greater at wavelengths below 490 nm for the M2 acquisition 

over all viewing angles, with a CV(RMSE) of up to 12.3 % for a wavelength of 

410 nm. The maximum difference between the measured and the modeled 

results was 0.18 at 410 nm for the M2 acquisition. The quad with the maximum 

difference had a viewing angle in the solar principal plane of 40° zenith angle 

and 180° azimuth angle. 

3.5.2.2 M2: reflectance factors at the nadir view angle with wavelength 

Nadir reflectance of the laboratory-generated sea ice as a function of 

wavelength is given for the M2 acquisition in Figure 3.85.   
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Figure 3.85. Measured and modeled nadir reflectance factors with wavelength for sea 
ice with thickness of 27 cm. Uncertainty bars are given to 2 standard deviations of the 
replicate nadir measurements 

The modeled nadir reflectance factors are reproduced by the model to within the 

uncertainty of the laboratory measurements for wavelengths equal or greater 

than 470 nm, but differences between the model and the measured nadir 

reflectance factors is slightly greater than it was for the M1 acquisition, with the 
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0.04 for the M2 acquisition, and around 0.01 for the M1 acquisition.  The 

modeled and measured reflectance factors decrease with wavelength for 

wavelengths greater than 510 nm and increase with wavelength between 

410 nm and 510 nm, indicating that the model reproduces the general shape of 

the nadir reflectance curve for the M2 measurement. However, there is a much 
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greater difference of approximately 0.06 between the measured and modeled 

values at 410 nm, where the measured reflectance factors are reduced relative 

to the modeled values and cause the modeled values to fall outside the range of 

uncertainty in the laboratory measurements.    

3.5.2.3 M2: reflectance factors in the solar principal plane 

Measured and modeled reflectance factors in the solar principal plane for the 

M2 acquisition are presented in Figure 3.86. 

 
Figure 3.86. Measured and modeled reflectance factors in the solar principal plane of 
sea ice with a thickness of 27 cm 

The measured reflectance factors for the M2 acquisition increased by 1.06 over 

the viewing angle range 0° to 60° zenith in the forward direction in the solar 

principal plane. The modeled reflectance factors show a similar shape to the 
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measured reflectance curve, and were typically within 0.05 of the measured 

values in the solar principal plane. The increase in the modeled reflectance 

factors was 1.09 over the viewing angle range 0° to 60° zenith angle in the 

forward direction.  Both the measured and modeled results show a relatively 

weak angular dependence in the solar principal plane for viewing angles 0° to 

60° in the backward direction, although the measure values show a slight 

decrease of around 0.05 for a viewing angle of 50° in the backward direction.    

3.5.2.4 M2: CV(RMSE) with wavelength 

The CV(RMSE) for the M2 acquisition is presented in Figure 3.87. 

 
Figure 3.87. Coefficient of variation of the root mean squared error (RMSE) between the 
measured and modeled reflectance factors as a function of wavelength 
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The CV(RMSE) for the M2 acquisition was typically around 7.5 % for 

wavelengths equal or greater than 490 nm, which is approximately 2.5 % 

greater than for the M1 acquisition. The CV(RMSE) increased inversely with 

wavelength for wavelengths below 490 nm to a maximum value of 12.3 % at 

410 nm, indicating that agreement between the model and the measurements 

decreased inversely with wavelength for wavelengths below 490 nm. 

3.5.2.5 M2: anisotropy index (ANIX) with wavelength (M2) 

The ANIX value is given as the function of wavelength in Figure 3.88 for both 

the measured and modeled quantities for the M2 acquisition.    

 
Figure 3.88. Anistropy index (ANIX) as a function of wavelength for the measured and 
modeled reflectance factors for 27 cm thick laboratory generated sea ice. 
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As was observed for the M1 acquisition, the anisotropy is weaker at shorter 

wavelengths for the M2 acquisition, and increases with wavelength strongly 

beyond 550 nm. The ANIX values for the M2 acquisition are approximately a 

factor of 1.7 greater than the M1 acquisition at 730 nm. The greatest ANIX value 

for the M1 measurement was 2.9 at 730 nm, compared to 4.9 for the M2 

measurement at 730 nm. The model reproduced the same general shape to the 

ANIX curve for the M2 acquisition, but had an ANIX value that was typically 0.7 

lower than the measured ANIX values. 

3.6 Discussion 

The CCRF of the laboratory-generated sea ice was strongly forward scattering 

for both the M1 acquisition and the M2 acquisition. The thicker laboratory-

generated sea ice exhibited greater reflectivity, with the nadir reflectance 

increasing by approximately 3.8 % at 510 nm, and the forward scattering peak 

increasing by nearly 40 % at 510 nm. The increased strength of the forward 

peak with ice thickness is unexpected because thicker ice will generally 

increase the number of scattering events an average photon will undergo, which 

will increase the diffusely reflected portion of reflected radiation, relative to the 

portion of specularly reflected radiation. But rather the opposite was observed 

when comparing the M1 and M2 acquisitions, with a substantial increase in 

reflectance anisotropy for the thicker ice sea for the M2 acquisition. The effect is 

explained by a difference in the surface roughness scale parameter between the 

M1 and M2 acquisitions. An agreement with the model output that was within 

the uncertainty of the M2 measurement was obtained by decreasing the surface 

roughness scale parameter by 31 %, while keeping all the other parameters 

constant.  As discussed in Section 3.4.4.2, the strength of the forward scattering 

peak is very sensitive to the scale of the surface roughness elements, while the 
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nadir reflectance is relatively insensitive to changes in the scale of the surface 

roughness elements. Interestingly, there was also a decrease in reflectance of 

up to 7.9 % in backward scattering direction for the M2 measurement, for the 

viewing angle of 50° in the solar principal plane. Given a decrease in surface 

roughness scale for the M2 acquisition, a decrease in backward scattering is 

expected, and is evident in the results.   

 

The nadir reflectance of the laboratory-generated sea ice decreased with 

wavelength, for wavelengths beyond 510 nm for both the M1 and M2 

acquisition, but increased from 410 nm to 510 nm for both acquisitions. There is 

a strong negative correlation between absorption and reflectance, with a 

correlation coefficient of -0.99 for the nadir reflectance and sea ice absorption 

coefficients for the M1 acquisition; and a correlation coefficient of -0.97 for the 

M2 acquisition; indicating that the reflectance spectrum is strongly influenced by 

the absorption spectrum for sea ice, which increases nearly 3 orders of 

magnitude over the wavelength range 410 nm to 730 nm. However, absorption 

coefficients by sea ice strongly increased between 410 nm and 510 nm, but the 

nadir reflectance also increased over this wavelength range for both the M1 and 

M2 acquisitions. The observation is explained by the influence of the lower 

boundary, which increases in hemispherical reflectance by approximately a 

factor of 3 over the wavelength range 410 nm to 510 nm, resulting in greater 

absorption of radiation at shorter wavelengths. A positive correlation of 0.71 for 

the M1 measurement, and 0.79 for the M2 measurement, was observed 

between the lower boundary reflectance and the nadir reflectance of the 

laboratory-generated sea ice for the wavelength range 410 nm to 730 nm; 

suggesting that the lower boundary influences the reflectance of the laboratory-

generated sea ice. In addition, the sensitivity tests in Section 3.4.4.2 indicated 
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that the lower boundary reflectance influences the reflectance factors of the 

laboratory generated sea ice over the whole wavelength range studied, but the 

influence was approximately an order of magnitude less at 730 nm compared to 

the influence of the lower boundary at 410 nm.     

 

The reflectance of the laboratory-generated sea ice typically increased with 

thickness, with a 3.8 % increase in the nadir reflectance at 510 nm for a 5 cm 

increase in thickness. The increase in reflectivity is probably the net result of an 

increased numbered of scattering events in the medium, which causes a greater 

number of photons to be scattered back towards the upper boundary.  However, 

the change in reflectivity with thickness had wavelength dependence, and was 

negative at 730 nm and at 410 nm. A decrease in nadir reflectance of 3.2 % was 

observed at 730 nm for a 5 cm increase in the thickness of the ice, which is 

probably the net result of increased absorption by the sea ice, which is more 

than an order of magnitude greater at 730 nm compared to 510 nm; indicating 

that increased absorption by sea ice – owing to the thicker ice layer – is a more 

dominant process affecting reflectivity for longer wavelengths than the increased 

proportion of photons scattered back towards the surface. The reason for a 

decrease of 2.6 % in nadir reflectivity with increased thickness at 410 nm is less 

obvious, because at this wavelength absorption is much weaker and the thicker 

ice was expected to reduce the amount of radiation absorbed by the lower 

boundary, resulting in an overall increase in reflectance at the surface; but 

rather the opposite effect was observed for wavelengths below 490 nm. The 

observed effect is explained by light absorbing impurities in the 5 cm layer of 

sea ice that was added for the M2 acquisition in order to increase the ice 

thickness. Algae has a similar absorption spectrum to humic-like substances 

(HULIS), having a absorption spectrum that strongly increases inversely with 
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wavelength for wavelengths below 510 nm (France et al., 2012). An absorption 

spectrum for HULIS given by France et al. (2012) was combined with the 

absorption spectrum for sea ice in order to test whether the observed increase 

in absorption at shorter wavelengths could be explained by the presence of 

algae in the sea ice for the M2 acquisition.  The model simulation was run for a 

range of realistic concentrations of HULIS within the sea ice; the absorption 

coefficients for sea ice with a mass ratio of HULIS of 1.5 µg g-1, 0.5 µg g-1 and 

0 µg g-1 were calculated and the results from the PlanarRad radiative-transfer 

model are given in Figure 3.89. 

 
Figure 3.89 Nadir reflectance factors as a function of wavelength with varying mass 
ratios of HULIS in sea ice 
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A concentration of 0.7 µg g-1 of HULIS was found to be sufficient to reduce the 

absorption at wavelengths below 510 nm so that the modeled reflectance 

factors were well within the uncertainty of the measured reflectance factors, the 

results of the simulation with HULIS are given in Figure 3.90, Figure 3.91 and 

Figure 3.92.  

 
Figure 3.90. Nadir reflectance factors as a function of wavelength for the M2 acquisition 
when modeled using an absorption spectrum combined for sea ice and HULIS.  
Uncertainty bars are given to 2 standard deviations of the replicate nadir measurements 

The CV(RMSE) for the M2 acquisition and the model simulation was calculated 

when the HULIS absorber was used in the model and is presented in Figure 

3.91.  
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Figure 3.91 Coefficient of variation of the root mean squared error (RMSE) between the 
measured and modeled reflectance factors when a HULIS absorber was used in the 
model 

When the absorption spectrum for HULIS was combined with that of sea ice, the 

CV(RMSE) for the M2 acquisition was reduced from 12.5 % to less than 7 % for 

wavelengths below 510 nm, indicating that absorption by HULIS can account for 

the larger differences between the modeled and measured reflectance factors at 

shorter wavelengths for all viewing angles in the upward facing hemisphere for 

the M2 acquisition. The ANIX values as a function of wavelength when the 

HULIS absorber was used in the model is presented in Figure 3.92. 
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Figure 3.92 Anistropy index (ANIX) as a function of wavelength for the measured and 
modeled reflectance factors when a HULIS absorber is added to the model 

Anisotropy of the sea ice with wavelength is positively correlated with absorption 

for wavelengths beyond 500 nm for both the M1 and M2 acquisitions, with 

anisotropy increasing most strongly beyond 550 nm. There was an increase in 

anisotropy with wavelength despite an overall decrease in the strength of the 

forward scattering peak for both the M1 and M2 acquisitions; indicating that the 

portion of diffusely reflected light decreases at a faster rate than the portion of 

specularly reflected light as the wavelength of incident light increases. The 

observation can be explained by enhanced absorption of photons by the sea ice 

owing to multiple scatting. The majority of photons reflected into the specular 

direction will undergo fewer extinction events as they generally penetrate less 
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deeply into the sea ice, whereas diffusely reflected photons tend to penetrate 

much deeper and will undergo many more extinction and scattering events. 

Thus, as absorption increases with wavelength, the diffusely reflected photons 

have a greater probability of absorption compared to photons reflected into the 

specular direction. A similar explanation is given by Warren and Wiscombe 

(1980) for increasing anisotropy for the directional reflectance of snow with 

wavelength.  

 

There is a slight increase in anisotropy for wavelengths less than 500 nm for 

both the modeled and measured M1 and M2 acquisitions, the negative 

correlation with wavelength is stronger for the M1 acquisition. The effect is 

explained by absorption by the lower boundary, which has greatest reflectivity 

around 550 nm. The lower boundary is a Lambertian reflector and acts as a 

diffuser for light that reaches the base of the tank. The reflectance of the lower 

boundary was measured and decreases in hemispherical reflectance by more 

than a factor of 3 between 500 nm and 410 nm, thus its influence as a diffuser 

also decreases inversely with wavelengths below 550 nm. As a result, the 

anisotropy at the surface is slightly greater at 410 nm compared to 500 nm. It 

follows, that the effect is weaker for thicker ice, as is observed in the ANIX 

values for the M2 acquisition for the same wavelength range.  

 

Overall, there was generally very good agreement between the modeled and 

measured reflectance factors over the hemisphere, with a CV(RMSE) of less 

than 6 % for all wavelengths for the M1 measurement, and a CV(RMSE) of less 

than 13 % for the M2 measurement for all wavelengths, which decreases to less 

than 9 % after accounting for absorption by HULIS in the model. In addition to 

changing the absorption coefficient of sea ice for wavelengths shorter than 
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550 nm, the surface roughness parameter also had to be adjusted to obtain a fit 

between the model output and the measured reflectance factors, but all other 

input parameters apart from the ice thickness were held constant; indicating that 

the asymmetry parameter, g, could be calculated through model inversion if the 

surface roughness parameter, hsd, was known.   

 

The modeled reflectance factors were perfectly symmetric over the solar 

principal plane, but there was some asymmetry in the measured CCRF for both 

the M1 and the M2 measurement. The small amount of asymmetry in the 

measured results is likely to be the combined effect of errors related to the 

contribution of diffuse irradiance, shadowing of the sampling area by the 

goniometer’s arm, and irregularly shaped roughness elements that were not 

azimuthally symmetric.  

 

The reflectance factors of the laboratory-generated sea ice were measured for 

only a single incidence angle of 60°. To further test the agreement between the 

model and the measured reflectance factors, the CCRF measurements need to 

be carried out over a wide range of incidence angles. The PlanarRad radiative-

transfer model has the potential to be used in a predictive capacity upon further 

testing of the agreement between the model and the laboratory measurements. 

In addition, with an improved characterization of the scale of surface roughness 

elements for each CCRF acquisition, the measured CCRF could be used in 

conjunction with the PlanarRad radiative-transfer model to derive the optical 

properties of the sea ice such as the asymmetry parameter, g, through model 

inversion. 
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3.6.1 Implications for current state-of-the-art 

Increased absorption of solar radiation by the Arctic Ocean owing to decreased 

albedo and the resulting amplification of global warming (ice-albedo feedback) 

has been widely hypothesized and is of critical importance for forecasting global 

climate change (Serreze et al., 2011; Flanner et al., 2011; Perovich, 2007; 

Winton, 2006; Curry et al., 1995). In recent years, radiometers aboard Earth 

observing satellites such as MODIS, AVHRR and CERES have enabled 

measurements of the surface radiation budget of the Arctic over large spatial 

and temporal resolution. These observations have enabled the verification of the 

hypothesized ice-albedo feedback through direct observations of the Arctic 

(Pistone et al., 2014; Kato et al., 2006; Wang et al., 2005). Derivation of surface 

albedo through the use of BRDF/albedo retrieval algorithms has thus become 

an essential tool to detect change in the Earth's radiation budget. For example, 

Pistone et al. (2014) recently estimated though the use of satellite sensor data 

from the period 1979 to 2011 a decrease in Arctic planetary albedo of 0.04, 

which is equivalent to a forcing 25% as large as the forcing owing to the change 

in the CO2, for the same period. In order to ensure high accuracy estimates of 

surface albedo from satellite sensors, it is critical that the radiative-transfer 

models used in the derivation of these properties are validated (Jin and 

Simpson, 2001); failure to include important parameters such as surface 

roughness in these models has been shown to result in order of magnitude 

errors in the derivation of surface properties (Kuchiki et al., 2011). Development 

of ground-based laboratory techniques for the validation of radiative-transfer 

models, such as the methodology described in this study, offer the unique 

opportunity to test the accuracy of satellite sensor BRDF/albedo retrieval 

algorithms and radiative-transfer models under controlled and repeatable 
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conditions. Repeatable results cannot be achieved under field conditions owing 

to variability in atmospheric conditions, the movement of the sun in the sky and 

diffuse irradiance reflected from the surrounding terrain. This study 

demonstrates a new method for generating laboratory sea ice and 

characterizing its bidirectional reflectance under controlled laboratory conditions 

at high spectral resolution. The results were compared with the radiative-transfer 

model PlanarRad, which was able to reproduce the measured CCRF of sea ice 

with an RMSE of less than 9 %. The distribution of reflected radiation was 

particularly sensitive to the surface roughness scale and the surface roughness 

parameter had to be adjusted within a realistic range to obtain a fit for both sets 

of CCRF measurements. Going forward, further development of the techniques 

described in this study will enable the validation of radiative-transfer models 

used for the derivation of surface albedo from satellite sensors; assisting in the 

development of BRDF models for sea ice, and increasing the accuracy of 

satellite sensor measurements of surface albedo in the Arctic, which is critical 

for verifying the effects of a warming Arctic through direct observation on a large 

spatial scale, and ultimately improving forecasts of global climate change.  

3.7 Conclusion 

CCRF acquisitions of laboratory generated sea ice had a strong forward 

scattering peak that was greatest in the specular direction of 60° viewing zenith 

angle, and which increased up to a maximum reflectance factor of 1.63 at 

510 nm. The reflectance factors over the hemisphere had an anisotropy that 

was strongly wavelength dependent, with a maximum ratio of maximum to 

minimum reflectance factors of 4.9 at 730 nm. The anisotropy in the CCRF was 

greatest at longer wavelengths, despite a weakening of the forward scattering 

peak with wavelength; indicating that the diffuse component to the reflectance 
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decreased more strongly with wavelength. Angular effects on the reflected 

distribution were minimal for viewing angles in the backward direction and for 

viewing angles less than 15° in the forward direction for both the measured and 

modeled reflectance factors, for both the M1 and M2 acquisitions. 

 

An increase in sea ice thickness of 5 cm resulted in a small increase of around 

4 % reflectance for wavelengths between 450 nm and 690 nm, but decreased 

the reflectance for wavelengths greater than 690 nm by up to 3.2 %, owing to 

increased absorption at longer wavelengths. The wavelength dependence to the 

reflectance of sea ice was dominated by the absorption coefficient of sea ice, 

but the reflectance of the lower boundary was shown to influence the reflectance 

at the surface. The hemispherical reflectance of the lower boundary influenced 

the reflectance of the ice in both the measured and the modeled results, and 

caused a decrease in anisotropy at the wavelengths for which the lower 

boundary was most reflective, but had an order of magnitude less influence at 

730 nm than at 410 nm, owing to the reduced penetration depth of radiation at 

longer wavelengths.  

 

The reflectance factors over the hemisphere were modeled with the radiative 

transfer model PlanarRad, and the input parameters were determined from the 

literature and physical measurements of the laboratory generated-sea ice where 

possible. In order to obtain a fit within the uncertainty of the CCRF 

measurements, the surface roughness parameter had to be adjusted within a 

realistic range for both the M1 and M2 acquisitions. The modeled reflectance 

factors generally agreed well with the measured CCRF once the surface 

roughness parameter was adjusted, having a coefficient of variation of the 

RMSE of less than 6 % over all wavelengths for the M1 acquisition, and less 
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than 9 % for the M2 acquisition, when a HULIS absorber was included in the 

model. The model was able to reproduce the general shape of the CCRF over 

the hemisphere and its wavelength dependence, with differences in the 

reflectance factors typically less than 0.05.  
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Chapter 4  

Effect of the phase transition at 19°C 
on PTFE Spectralon reference 
standards for reflectance 

4.1 Abstract 

Sintered polytetrafluroethylene (PTFE) is strongly reflective and is widely used 

as a reference standard and as an optical diffuser in remote sensing, radiometry 

and spectroscopy. PTFE has a room temperature phase transition at 19 °C, the 

effect of the phase transition was investigated on: (a) the transmittance of 

Spectralon diffusers, and (b) the reflectance of Spectralon reference standards 

(Ball et al., 2013). There was considerable uncertainty in the transmittance 

measurements owing to the measurement technique used, and a change in 

transmittance was not detected above the level of uncertainty in the 

measurements over the temperature range 12.5 °C to 20 °C. However, the 

average of 16 repeat measurements showed a change of around 1.6 % at 

350 nm, and 1.3 % at 600 nm. The measured and averaged change in 
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transmittance agreed well with similar experiments by McKenzie et al. (2005) 

and Ylianttila and Schreder (2005), both of whom attribute the measured change 

in transmittance to the PTFE phase transition at 19 °C. The relative change 

reflectance over the phase transition temperature was determined for a 

wavelength of 633 nm by measuring the change in output flux from a Spectralon 

integrating sphere. The measured change in output flux from the integrating 

sphere was 1.82 ± 0.21 %, which corresponds with a small change of 0.09 ± 

0.02 % in the total hemispherical reflectance of Spectralon. For the majority of 

users, this very small change measured in total hemispherical reflectance is 

unlikely to impact significantly the accuracy of PTFE flat panel reflectors used as 

reference standards. However, owing to the multiple reflections that occur inside 

an integrating sphere cavity the effect is multiplied, and remedial action should 

be applied, either via a mathematical correction or though temperature 

stabilisation of the integrating sphere when high accuracy measurements of flux, 

irradiance or radiance are required from PTFE based integrating spheres at 

temperatures close to the phase transition at 19 °C. 

4.2 Aims of the study 

Initially the investigation aims to confirm the impact of the phase transition on 

the transmittance of PTFE diffusers, first reported by Yliantilla and Schreder 

(2005) and McKenzie et al. (2005). However, the overarching aim was to 

quantify the potential impact of the phase transition on the reflectance of PTFE 

reference standards for reflectance, which are widely used in remote sensing, 

radiometry and spectroscopy. A Spectralon PTFE reference standard was used 

for the measurements presented in Chapter 2 and Chapter 3. The 

measurements were conducted at ambient temperatures below the phase 

transition temperature, but the panel was calibrated at a temperature above the 
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phase transition temperature, as a result, the investigation described here has 

potentially important implications for the wider results presented in this thesis.   

4.3 Introduction 

Sintered polytetrafluoroethylene (PTFE), which is also known under the trade 

names Spectralon from Labsphere, and OP.DI.MA from Gigahertz-Optik, is 

widely used in terrestrial remote sensing, spectroscopy and radiometry as a 

primary reference standard for reflectance (e.g. Xiong and Barnes, 2006; 

Bourgeois et al., 2006; France et al., 2011; Sandmeier and Itten, 1999; Susaki 

et al., 2004; Negi and Kokhanovsky, 2011). PTFE is also used in integrating 

spheres for the spatial integration of irradiance (e.g. Perovich, 2002; Tschudi et 

al., 2008) and as a uniform radiance source for the calibration of remote sensing 

systems (e.g. Pegrum et al., 2004). PTFE has wide application in the remote 

sensing community because it exhibits approximately Lambertian reflectance 

over the UV-VIS-NIR region of the spectrum, it is chemically inert, washable and 

extremely hydrophobic (Springsteen, 1999; Weidner and Hsia, 1981), making it 

ideal for field use. 

 

As an optical diffuser, the optical transmittance of PTFE has been shown to 

change by up to 3 % between the temperatures of 13 °C and 22 °C (Ylianttila 

and Schreder, 2005). The authors ascribe these changes in transmittance to a 

phase transition that results in a change in the crystalline structure of PTFE at 

19 °C. The phase transition may represent a particular problem because its 

temperature is close to common field operating conditions in temperate 

climates. For example, McKenzie et al. (2005) reported a significant impact on 

the accuracy of measured UV irradiances (~ 2 %) when using PTFE diffusers in 
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the field at ambient temperatures that straddle the phase transition temperature 

at 19 °C.  

 

PTFE is known to undergo phase transitions at both 19 °C and 30 °C (Quinn et 

al., 1951; Kirby, 1956; Clark, 1999). Studies involving X-ray diffraction have 

shown that these phase transitions result from an uncoiling of the helical 

structure of fluorine atoms around a central carbon backbone (Yamamoto and 

Hara, 1986). In combination, the transitions at 19 °C and 30 °C result in a 

reversible change of ∼ 1 % in the volume of PTFE (Quinn et al., 1951; Kirby, 

1956). The transition at 19 °C accounts for the majority (~ 85 %) of the total 

volumetric change (Quinn et al., 1951).  

 

The reflectance of pressed PTFE is known to depend on its density (Weidner 

and Hsia, 1981), and given the widespread use of PTFE as a reference 

standard for reflectance, the observed changes in transmittance of visible light 

(McKenzie et al., 2005; Ylianttila and Schreder, 2005) and the known structural 

changes at 19 °C (Quinn et al., 1951; Kirby, 1956; Yamamoto and Hara, 1986; 

Clark, 1999) it is pertinent to assess whether the phase transition affects the 

reflectance of PTFE. The investigation described here used a temperature 

controlled sintered PTFE (Spectralon) integrating sphere, making use of the 

amplifying nature of the multiple internal reflections in the sphere cavity to study 

the signal produced by a change in reflectance of the PTFE coating with 

temperature. A Spectralon integrating sphere was used because sintered PTFE 

is more widely used in integrating spheres and as flat panel reflectors. Pressed 

PTFE and sintered PTFE exhibit slightly different properties in reflectance (Tsai 

et al., 2008), although they are based on the same raw material. 
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The work carried out in this thesis chapter has been published in the peer-

reviewed journal: Applied Optics (AO), by Ball et al. (2013). The coauthors (A.P. 

Levick, E.R. Wooliams, P.D. Green, M.R. Dury, R. Winkler, A.J. Deadman, N.P. 

Fox and M.D. King) provided advice and guidance to the first author of the 

publication (C.P. Ball) on various aspects of the work in a supervisory fashion. 

A.P. Levick provided the derivation for Equation 4.28 and recommended the use 

of an integrating sphere to enhance the sensitivity of the measurement.  

4.4 Methodology 

The methodology will be divided into two main sections, describing the PTFE 

transmittance experiments, and the PTFE reflectance experiments respectively.   

4.4.1 PTFE transmittance experiments 

The transmittance of a 210 µm thick PTFE diffuser was recorded using a Cary 

5000 UV-VIS spectrophotometer over the temperature range -10 °C to 40 °C, 

and the average change in transmittance of the diffuser from the reference 

temperature of 12.5 °C was calculated. The experiments were carried out in a 

temperature-controlled laboratory at the National Physical Laboratory (NPL). 

Two samples of the PTFE diffuser were cut to shape and fitted inside aluminium 

cuvettes, and were held within a multicell block, which regulated the 

temperature of the samples using a water bath during the transmittance 

measurements. Transmittance measurements were made for the wavelength 

range 350 nm to 600 nm at a bandwidth of 5 nm, for the temperature range -

10 °C to 40 °C at 5 °C increments in temperature. Within the area of specific 

interest near to the 19 °C phase transition (between 10 °C and 30 °C) 

increments in temperature were 2.5 °C.  The spectrophotometer was left to 



Chapter 4: Effect of the phase transition at 19°C on Spectralon 

     306 

warm up for an hour before any measurements are carried out. Once the 

multicell block reached the required temperature for each step in temperature, a 

temperature stabilization period of 20 minutes was used to ensure the samples 

reached the same temperature as the multicell block. A metal on silica (MOS) 

filter with no known temperature response was used as a control on 

transmittance throughout the experiment; and an MOS filter with 3 % 

transmittance was used to set the baseline of the spectrophotometer. Dark 

measurements were taken at each temperature step and a dark signal 

correction was applied to the transmittance measurements.  The transmittance 

measurements were repeated 8-times at each temperature step for each 

Spectralon sample, and the average transmittance of both samples was taken. 

A photograph of the Cary 5000 UV-VIS spectrophotometer is given in Figure 

4.1, and a photograph of the multicell block used to regulate the temperature of 

the samples is given in Figure 4.2. 

 
Figure 4.1. Cary 5000 UV-VIS spectrophotometer used for PTFE transmittance 
experiments  
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Figure 4.2. Multicell block used to regulate the temperature of the PTFE samples during 
the PTFE transmittance experiments 

The transmittance of the MOS control filter as a function of temperature is 

presented in Figure 4.3. 
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Figure 4.3. Transmittance of the MOS filter over the temperature range -10° C to 40 °C 

The transmittance of the control filter decreased by up to 42 % from the 

transmittance at 12.5 °C for temperatures below 12.5 °C, which was the result of 

condensation or ice forming on the filter. There was also a decrease of around 

38 % at 10 °C. The transmittance at 10 °C was taken approximately 20 minutes 

after the transmittance at -10 °C, and was affected by droplets of melted ice on 

the filter that had not evaporated. As a result, all transmittance measurements 

made for temperatures below 12.5 °C were omitted from the final analysis. The 

control filter was stable in transmittance to ± 0.5 % for temperatures greater than 

10 °C. 
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4.4.2 PTFE reflectance experiments 

A description of the methodology for the PTFE reflectance measurements is 

given in the following section.  

4.4.2.1 Effective temperature control of PTFE 

PTFE is a poor thermal conductor, and as a result the experiment needed to 

provide a stable ambient air temperature surrounding the PTFE, in order to 

minimize thermal gradients across the PTFE material. Any such thermal 

gradient could affect the results by causing the monitoring thermocouple to 

provide an inaccurate measurement of the temperature of the PTFE at the 

surface, where the measurement of reflectance is made. Initial testing of 

different methodologies to temperature control a flat panel reflector involved 

fixing a block of Spectralon to a copper plate, and temperature controlling the 

copper plate by circulating water from a chiller water bath. To test for thermal 

gradients in the PTFE material, the temperature across the PTFE slab was 

measured using a thermal camera when the temperature of the water bath of 

set to 15 °C and 40 °C, a 30-minute temperature stabilization period between 

each temperature step was used prior to capturing the thermal images. The 

thermal images are given in Figure 4.4 and Figure 4.5.  

 
Figure 4.4 Thermal images of a ~ 1 cm thick PTFE slab on top of copper plate with 
circulating water with a temperature of 15 °C. The colour bars have units of degrees 
Celsius 
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Figure 4.5 Thermal images of a ~ 1 cm thick PTFE slab on top of copper plate with 
circulating water with a temperature of 40 °C. The colour bars have units of degrees 
Celsius   

Visual inspection of the thermal images in Figure 4.4 and Figure 4.5 show 

considerable thermal gradients across the PTFE material. As a result, an 

alternative experiment had to be designed, which involved the use of a thermally 

insulated chamber, and a PTFE integrating sphere, the experiment setup is 

described in detail in Section 4.4.2.2.  

4.4.2.2 Experiment set-up 

The change in total hemispherical reflectance (hereafter referred to as 

reflectance) of PTFE, over the temperature range 14 °C to 28 °C was measured 

relative to the measured reflectance at a reference temperature of 14 °C, using 

a temperature controlled PTFE integrating sphere in a thermally insulated 

chamber. The output flux from the exit port of a temperature controlled PTFE 

integrating sphere was measured with an input flux of stabilised monochromatic 

light. The use of an integrating sphere for this application was apt because the 

calculated flux from the sphere’s exit port is very sensitive to changes in the 

reflectance of the PTFE sphere due to the multiple reflections that occur inside 

the sphere’s cavity. The use of an integrating sphere rather than a flat panel 

reflector also allowed the PTFE to be heated and cooled uniformly because the 
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integrating sphere’s aluminium casing provided good thermal conductance 

around the PTFE material, which was relatively thick (~ 1 cm), and a poor 

thermal conductor, as discussed in Section 4.4.2.1.  

 

The experiment was carried out in a temperature-controlled laboratory at the 

National Physical Laboratory (NPL). The integrating sphere was placed in 

contact with a copper plate inside the thermally insulated chamber, the copper 

plate was temperature controlled by circulating water from a chiller water bath 

as shown in Figure 4.6. The chamber was insulated sufficiently so that the 

ambient air temperature within the chamber was stable to within 0.1 °C (1σ ) 

(tested over a 12-hour period).  

 
Figure 4.6. Schematic of the experiment set-up, from Ball et al. (2013). 

A 5 mW intensity-stabilised HeNe laser with a wavelength of 633 nm was 

directed via a beam splitter into the integrating sphere input port. The flux from 

the exit port of the PTFE integrating sphere was measured using a reflectance 

trap detector over a period of 18 hours as the temperature of the sphere was 

incrementally increased. The light in the trap detector undergoes a total of 5 

internal reflections between 3 Hamamatsu S1337 PN photodiode detectors and 
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the photo-current from all 3 detectors are summed to produce the measured 

output current. The multiple reflections in the trap detector result in almost no 

net reflectance (less than 0.25 %), leading to a response that is relatively 

insensitive to external factors such as ambient humidity (Zalewski and Duda, 

1983). The second beam from the beam splitter was a reference beam, and a 

silicon photodiode detector was used to monitor its intensity. The signal from 

each detector was logged to a PC with an integration time of 5 seconds.  

 

Quinn et al. (1951) found that a minimum of 2 hours was required for PTFE to 

reach a steady state volume after heating through part of the transition 

temperature. For this reason, the temperature of the water bath was 

incremented at 3 hour intervals allowing stabilisation at temperatures of 14 °C, 

17 °C, 21 °C, 24 °C and 28 °C. The temperature of the integrating sphere was 

monitored with a type-T thermocouple attached to the aluminium casing of the 

sphere and the data was logged to the PC. Silica beads were used to reduce 

the humidity within the chamber and to prevent condensation, a problem that 

was identified from the transmittance experiments.  

 

The flux from the integrating sphere’s exit port was corrected for drifts in the 

incident laser radiant power during the experiment by taking the quotient of the 

signal from the trap detector and the signal from the reference beam. A 

correction for the temperature response of the trap detector was not applied 

because the effect was considered negligible (the temperature coefficient at a 

wavelength of 633 nm over the temperature range studied for the Hamamatsu 

silicon photodiode detectors is less than – 0.01 % °C-1). No dark current 

correction was applied to the measurement of exit port flux because the ratio of 

signal to dark current was found to be in excess of 3 ×104 and therefore the 
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temperature sensitivity of the dark current has a negligible uncertainty 

contribution. A photograph of the experiment set-up is given in Figure 4.7. A 

photograph of the inside of the thermally insulated chamber is given in Figure 

4.8, and a schematic is given in Figure 4.6. 

 

 
Figure 4.7. Photograph of the experiment set-up in the laboratory at NPL 
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Figure 4.8. Photograph of the inside of the insulated chamber  

To test that the observed change in output flux was not due to the temperature 

response of the detector, or other factors related to the experiment setup, the 

experiment was repeated by substituting the PTFE integrating sphere with a 

barium sulphate coated integrating sphere (that has no known temperature 

sensitivities over the temperature range studied), which showed no detectable 

change in signal (± 0.03 %) (1σ ) over the temperature range of interest. 

4.4.2.3 Sphere radiance, output flux, thermal expansion and reflectance 

The integrating sphere radiance is the photon flux density per unit solid angle of 

light emitted from the surface of the sphere and is a function of input flux, sphere 

radius, reflectance and port fraction and is given by (Carr, 1997) 

 L = Φi

πAs
ρ

1− ρ 1− f( ) , Eq. 4.1 
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where L  is the integrating sphere radiance, Φ i  is the input flux, As  is the 

surface area of the integrating sphere, ρ  is the reflectance of the PTFE sphere 

and f  is the sphere port fraction. The port fraction is the ratio of the surface 

area of the sphere’s ports to the surface area of the sphere (Carr, 1997). A 

schematic of the integrating sphere is given in Figure 4.9. 

 
Figure 4.9 Schematic of the Spectralon integrating sphere  

The measurement system (given in Figure 4.6, Figure 4.8 and Figure 4.9) has a 

detector mounted externally to the integrating sphere at a short distance from 

the sphere exit port. There are no additional apertures and therefore the PTFE 

integrating sphere exit port and the detector size define the radiometric 

measurement configuration. The radiometric flux onto the detector Φd  is given 

by (Carr, 1997) 

  Eq. 4.2 

Ap  is the area of the exit port, Ωdet−p  is the solid angle subtended by the 

detector from the exit port. Combining Eq. 4.1 and Eq. 2.2 gives 

Φd = ApΩdet−pL
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 Φd = ApΩdet−p
Φi

πAs
ρ

1− ρ 1− f( ) , Eq. 4.3 

The solid angle subtended by the detector , the input flux , and the 

port fraction , in Eq. 4.3, all remain constant with temperature. The sphere 

surface area and the exit port area change with temperature owing to thermal 

expansion of the sphere.  The change in detector signal δΦd  is given by the 

partial differentiation of  with respect to the exit port radius , the sphere 

radius , and the reflectance , which may be written as follows 

 δΦd =
∂Φd

∂rp

⎛

⎝⎜
⎞

⎠⎟
δrp +

∂Φd

∂rs

⎛
⎝⎜

⎞
⎠⎟
δrs +

∂Φd

∂ρ
⎛
⎝⎜

⎞
⎠⎟
δρ

.
 Eq. 4.4 

The partial derivatives in Eq. 4.4 will each be considered in turn to assess their 

contribution to the total change in detector signal, the resulting equation can 

then be used to derive the change in reflectance for a known change in detector 

signal, exit port radius, and sphere radius.  

4.4.2.3.1 Exit port radius 

The relative change in flux onto the detector owing to thermal expansion of the 

exit port is given by the partial differentiation of  in Eq. 4.3 with respect to Ap . 

The exit port area depends on the exit port radius 

 Ap = πrp
2

. 
Eq. 4.5 

Combining Eq. 4.3 with Eq. 4.5 gives 

 Φd = πrp
2Ωdet−p

Φi

πAs
ρ

1− ρ(1− f ) , 
Eq. 4.6 

and partial differentiation of  with respect to rp  yields   

 
δΦd

δ rp
= 2rpk

,
 Eq. 4.7 

where k  is the constants in Eq. 4.6, and is defined as 

Ωdet−p Φ i

f

Φd rp

rs ρ

Φd

Φd
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 k = πΩdet−p
Φi

πAs
ρ

1− ρ(1− f ) ,
 Eq. 4.8 

k  is related to Φd  from Eq. 4.6 as follows 

 Φd = krp
2

. 
Eq. 4.9 

Rearranging Eq. 4.9 for k ,  

 k = Φd

rp
2

,
 Eq. 4.10 

and substitution of Eq. 4.10 into Eq. 4.7 gives 

 
δΦd

δ rp
=
2rpΦd

rp
2 = 2Φd

rp .
 Eq. 4.11 

Dividing through by  in Eq. 4.11 gives  

 
δΦd

δ rpΦd

= 2
rp ,

 Eq. 4.12 

and then multiplying both sides by δ rp  gives 

 
δΦd

Φd

=
2δ rp
rp .

 Eq. 4.13 

Eq. 4.13 is the relative change in flux on the detector owing to a change in exit 

port radius, or exit port surface area. The relative change in flux onto the 

detector  is twice the relative change in the exit port radius rp .  

4.4.2.3.2 Sphere radius 

The relative change in flux onto the detector owing to thermal expansion of the 

PTFE sphere is given by the partial derivative of Φd  in Eq. 4.3 with respect the 

sphere surface area As . The sphere surface area depends on the radius of the 

sphere 

 As = 4πrs
2
. 

Eq. 4.14 

Combing equation Eq. 4.3 and Eq. 4.14,  

Φd

Φd
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 Φd = ApΩdet−p
Φi

π 2 4rs
2

ρ
1− ρ(1− f ) ,

 Eq. 4.15 

and differentiating Eq. 4.15  with respect to rs  yields  

 
δΦd

δ rs
= −2rs

−3q = −2q
rs
3

,
 Eq. 4.16 

where q  is the constants in Eq. 4.3, and is defined as 

 q = ApΩdet−p
Φi

4π 2
ρ

1− ρ(1− f ) ,
 Eq. 4.17 

q is related to Eq. 4.15 as follows  

 Φd =
q
rs
2

.
 Eq. 4.18 

Rearranging Eq. 4.18 for q  

 q = Φdrs
2
, 

Eq. 4.19 

and substituting into Eq. 4.16  

 
δΦd

δ rs
= −2Φdrs

2

rs
3 = −2Φd

rs .
 Eq. 4.20 

Dividing Eq. 4.20 by Φd  gives 

 
δΦd

δ rsΦd

= −2
rs ,

 Eq. 4.21 

and then multiplying by δ rs  gives 

 
δΦd

Φd

= −2δ rs
rs .

 Eq. 4.22 

Eq. 4.22 is the relative change in flux on the detector owing to a change in the 

radius of the integrating sphere, or sphere surface area. The relative change in 

flux onto the detector  is inversely proportional to the change in sphere 

radius rs , and is twice the relative change in the sphere radius. 

Φd
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4.4.2.3.3 Reflectivity of the sphere 

The relative change in flux onto the detector owing to a change in reflectivity of 

the sphere is given by the partial derivative of Φd  in Eq. 4.3 with respect to the 

sphere reflectance ρ  . Using the quotient rule, the derivative of Φd  with respect 

to ρ  is as follows 

 
δΦd

δρ
=
1− ρ 1− f( ) + ρ 1− f( )

1− ρ 1− f( )( )2
= 1
1− ρ 1− f( )( )2 .

 Eq. 4.23 

The differentiation leading to the derivation to Eq. 4.23 is given in Appendix 4.  

 

Dividing Eq. 4.23 by Eq. 4.3 gives 

 
δΦd

δρΦd

=
1− ρ 1− f( )

ρ 1− ρ 1− f( )( )2
= 1
ρ 1− ρ 1− f( )( ) ,

 Eq. 4.24 

and then multiplying Eq. 4.24 by δρ  gives the relative change in flux on to the 

detector owing to a change in reflectance of the sphere, as follows 

 
δΦd

Φd

= δρ
ρ

1
1− ρ 1− f( )( ) .

 Eq. 4.25 

Finally, combing Eq. 4.13, Eq. 4.22, and Eq. 4.25, and substituting into Eq. 4.4 

gives 

 δΦd

Φd

=
2δ rp
rp

− 2δ rs
rs

+ δρ
ρ

1
1− ρ 1− f( )( ) , Eq. 4.26 

which is the total relative change in flux onto the detector owing to a change in 

the reflectivity of the sphere, and thermal expansion of the sphere and its exit 

port. 

 

The port aperture is formed from the PTFE sphere, thus the relative change in 

radius of the port owing to thermal expansion is equivalent to the relative 

change in radius of the sphere (i.e. δ rp rp = δ rs rs ) (assuming isotropic linear 
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expansion) and the first and second terms in Eq. 4.26 cancel, and Eq. 4.26 

simplifies to 

 δΦd

Φd

= δρ
ρ

1
1− ρ 1− f( )( ) , Eq. 4.27 

Therefore, for the experiment described, where the sphere exit port is one of the 

radiance defining apertures, the change in flux with temperature depends solely 

on the change in the reflectivity of the PTFE sphere. Thus the relative change in 

reflectance δρ ρ  can be determined without accurate knowledge of the PTFE 

expansion coefficient or other geometrical information, by rearranging Eq. 4.27 

as follows 

 
δρ
ρ

= δΦd

Φd

1− ρ 1− f( )( )
.
 Eq. 4.28 

Eq. 4.28 gives the relationship between the relative change in reflectance of the 

sphere and the change in the flux onto the detector at the spheres exit port; and 

can be used to calculate the change in reflectivity of the sphere, for a given 

change in flux onto the detector. Eq. 4.28 is an elegant solution to the problem 

of calculating a very small change in the hemispherical reflectivity of a material.  

The multiplicative term, 1 1− ρ 1− f( )( )  in Eq. 4.27 represents the gain in 

sensitivity to reflectance due to the multiple reflections within an integrating 

sphere compared to a flat panel. Given the large reflectivity of PTFE ρ = 0.99( )  

and the small port fraction used here f = 0.04( ) , the sphere multiplier for the 

PTFE used in this experiment, and the magnitude of the enhanced sensitivity, is 

of the order of 20.  

4.4.2.4 System stability 

Prior to undertaking the experiment, the stability of the illumination source was 

measured by monitoring the flux from the PTFE sphere for a 12-hour period at a 
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constant temperature of 14 °C. The results are shown in Figure 4.10 and Figure 

4.11. No change in flux was observed and the relative standard deviation of the 

signal, δΦd Φd , was ~ 5 × 10-4.   

 
Figure 4.10. Relative change in flux over a 12-hour period for the PTFE integrating 
sphere, demonstrating the stability of the measurement set-up 
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Figure 4.11. Temperature over a 12-hour period during the stability test for the PTFE 
integrating sphere 

4.5 Experiment results 

The results section will be divided into sections presenting the results of the 

transmittance experiments and the results of the reflectance experiments 

separately. 

4.5.1 Transmittance experiments 

The averaged transmittance for 16 measurements as a function of temperature 

is given for the PTFE diffuser at 400 nm in Figure 4.12, and at 600 nm in Figure 
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Figure 4.12. Percentage transmittance as a function of temperature for the PTFE 
diffuser at a wavelength of 400 nm. The uncertainty bars are one standard deviation of 
the 16 averaged measurements 
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Figure 4.13. Percentage transmittance as a function of temperature for the PTFE 
diffuser at a wavelength of 600 nm. The uncertainty bars are one standard deviation of 
the 16 averaged measurements 
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an increase of 0.2 % in transmittance at 600 nm. The greatest increase was 
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19 °C PTFE phase transition, where PTFE undergoes a first order phase 
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δT
T

= T −T0
T0 ,

 Eq. 4.29 

where T  is the transmittance and T0  is the transmittance at the reference 

temperature of 12.5 °C. The uncertainty in  was calculated by propagating 

the uncertainty given by one standard deviation of the averaged transmittance 

measurements presented in Figure 4.12 and Figure 4.13. The uncertainty was 

propagated given a function of the form 

 y = x − x0
x0 ,

 Eq. 4.30 

as in Eq. 4.29, and with uncertainty in both x  and x0 . The variables y , x  and 

x0  in Eq. 4.30, are equal to ,  and T0  in Eq. 4.29 respectively. The 

uncertainty in y , or , is given by the error propagation equation 

(Bevington and Robinson, 2003): 

 
 
σ y
2 !σ x

2 ∂y
∂x

⎛
⎝⎜

⎞
⎠⎟
2

+σ x0
2 ∂y

∂x0

⎛
⎝⎜

⎞
⎠⎟

2

,
 Eq. 4.31 

where σ y
2  is the uncertainty in y . Partial differentiation of y  with respect to x  in 

Eq. 4.30 gives 

 
∂y
∂x

= 1
x0 ,

 Eq. 4.32 

and partial differentiation of y  with respect to x0  in Eq. 4.30 gives 

 
∂y
∂x0

= −x
x0
2

.
 Eq. 4.33 

Substitution of Eq. 4.32 and Eq. 4.33 into Eq. 4.31 gives 

 
 
σ y
2 !

σ x
2

x0
2 +

x2σ x0
2

x0
4

.
 Eq. 4.34 

Given that  x ∼ x0 , Eq. 4.34 can be simplified to  

δT T

δT T T

δT T
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σ y
2 !

2σ x
2

x2 ,
 Eq. 4.35 

and thus,  

 
 
σ y !

2σ x

x .
 Eq. 4.36 

The relative change in transmittance as a function of temperature for the 

averaged measurements is given in Figure 4.14 at 400 nm, and in Figure 4.15 

at 600 nm. 

 
Figure 4.14. Relative change in the averaged transmittance of Spectralon as a function 
of temperature  at 400 nm. Uncertainty bars were propagated from one standard 
deviation of the averaged transmittance measurements  
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Figure 4.15. Relative change in the averaged transmittance of Spectralon as a function 
of temperature at 600 nm. Uncertainty bars were propagated from one standard 
deviation of the averaged transmittance measurements  
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the transmittance was greatest at the temperature step 17.5 °C to 20 °C, which 

correlates with the 19 °C phase transition temperature. However, there is low 
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change in transmittance δT T  as a function of wavelength is given in Figure 

4.17.  
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Figure 4.16. Transmittance of Spectralon as a function of wavelength at temperatures 
that straddle the phase transition temperature 
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transmittance is within the uncertainty of the averaged measurements.   
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Figure 4.17. Relative change in transmittance from the reference temperature of 
12.5 °C as a function of wavelength for a temperature of 20 °C 
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Figure 4.18. Relative change in flux from the exit port of the PTFE integrating sphere, 
when the temperature is increased in a stepwise fashion 

 
Figure 4.19. Measured change in temperature of the PTFE integrating sphere 
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Figure 4.20. Relative change in flux from the exit port of the barium sulfate integrating 
sphere, when the temperature is increased in a stepwise fashion 

 
Figure 4.21. Measured change in temperature of the barium sulphate integrating sphere 
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Figure 4.22. Relative change in output flux with temperature for the PTFE sphere and 
the barium sulphate sphere. Uncertainty bars are given to two standard deviations 
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of the total observed magnitude change. The position of greatest change in 

output flux correlates with the position of the 19 °C phase transition, where 

PTFE undergoes a first order phase change (Clark, 1999). The relative change 

in reflectance of the PTFE coating over the temperature range 14 °C to 28 °C 

from the reference temperature at 14 °C has been calculated using Eq. 4.28 and 

is presented in Figure 4.23. 

 

Figure 4.23. Relative change in reflectance with temperature from 14 °C to 28 °C for the 
PTFE sphere and the barium sulfate sphere. Uncertainty bars are two standard 
deviations of the averaged measurements with an additional uncertainty term of 20% 
owing to uncertainty associated with the sphere multiplier 
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change in reflectivity is calculated from the sphere reflectance and the port 

fraction, itself a function of the sphere and port areas. Since these terms are 

only known approximately, a conservative estimate of 20 % is given to the 

uncertainty associated with the sphere multiplier.  

4.6 Discussion  

The discussion section will be divided into separate sections presenting the 

results of the transmittance experiments and the results of the reflectance 

experiments. 

4.6.1 Transmittance experiments 

The experiments showed an increase in transmittance of up to 1.7 % at 350 nm 

between 12.5 °C and 20 °C, corresponding with the position of the phase 

change identified in the literature at 19 °C (McKenzie et al., 2005; Ylianttila and 

Schreder, 2005). The change in transmittance had a small wavelength 

dependence of around 0.3 %. There was however, considerable variance in the 

averaged measurements owing to the combined effect of differences in the 

thickness of the PTFE samples used, the short temperature stabilization period, 

and the small amount of radiation transmitted by the samples. Transmission 

through the filters used in this study was very small (less than 3 %) and as a 

result, the control filter had instability in its transmittance of up to ± 0.5 %, and 

the dark signal was up to 0.45 % of the measured transmittance; indicating that 

the spectrophotometer is close to its limit of detection. As a result, there was 

considerable uncertainty associated with the results while trying to resolve 

differences in transmittance of less than 0.5 %. Averaging multiple 

measurements helped to reduce the variance in the results, and in general, the 

averaged results agreed well with previous studies by McKenzie et al. (2005) 
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and Ylianttila and Schreder (2005), that measured a 2 %, and a 1 % to 3 %, 

increase in transmittance of PTFE diffusers owing to the 19 °C phase change 

respectively.  In order to improve the transmittance experiments in this study, 

thinner samples of PTFE should be used and an improved characterization of 

the thickness of the samples should be undertaken. In future experiments a 

spectrophotometer with an integrating sphere should to used to capture all 

radiation transmitted through the sample.  

4.6.2 Reflectance experiments 

The discussion leading to the derivation of Eq. 4.28 associates all the observed 

change in output flux with the PTFE reflectance, for this particular experimental 

set-up. The use of an integrating sphere increased the sensitivity of the 

measurement set-up by approximately a factor of 20, compared to an 

experiment  monitoring reflected flux from a flat panel.  The temperature at 

which the greatest change in output flux from the PTFE sphere was observed 

corresponds with the position of the phase change identified in the literature at 

19 °C. A control experiment with a barium sulphate sphere has confirmed that 

the output flux changes observed are not a consequence of the experimental 

design.  

 

Eq. 4.28 assumes isotropic linear expansion of the PTFE material, whereby the 

relative change in the sphere and exit port radii as a function of thermal 

expansion are equivalent. The integrating sphere is contained within an 

aluminium box, which could potentially restrict the free expansion of the sphere. 

However, the cancellation of terms in Eq. 4.28 does not require a detailed 

knowledge of the internal strain, only that the forces acting on the sphere are 

isotropic. Through the analysis of the construction of the apparatus (i.e. 
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dismantling of the sphere casing) no realistic mechanism that could produce 

significant anisotropic behavior was apparent. There is, however, some 

temporal smearing of the effect across the temperature range. The temporal 

smearing suggests that the full phase transition is not contained solely in the 

17 °C to 21 °C temperature range, but extends above 21 °C. The rapid flattening 

of the curve beyond 11 hours in Figure 4.18 suggests that there is little effect 

above 24 °C. The observed width of the transition is likely to be widened by 

temperature gradients across the sphere exacerbated by the low thermal 

conductivity of the PTFE material. Further studies could be performed to better 

understand this behavior with measurements over narrower temperature steps 

and longer stabilization periods between these steps. However, the 

observations presented here suggest that researchers using PTFE as a 

reflectance medium anywhere in the 17 °C to 24 °C temperature range should 

consider the effect of the material phase transition, and also consider the likely 

magnitude of any temperature gradients that may exist in the experimental set-

up.  

 

An approximate 1 % change in the density of PTFE across the 19 °C phase 

transition temperature is predicted for pressed PTFE (Quinn et al., 1951; Kirby, 

1956; Clark, 1999), the reflectance of which is known to be dependent on its 

density (Weidner and Hsia, 1981). Given this prior knowledge, a change in 

reflectance of PTFE owing to a change in the density of the PTFE caused by the 

phase transition at 19 °C is a likely explanation for the observed change in 

output flux from the PTFE sphere.   Owing to the amplifying effect of the sphere 

multiplier, a change of 1.82 ± 0.21 % in output flux represents only a small 

change (0.09 ± 0.02 %) in the reflectance of the PTFE sphere.  For the majority 

of applications using a PTFE flat panel reflector as a reference standard, and 
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particularly in field studies, this small change is unlikely to be a significant 

contribution to the uncertainty budget.  

 

The effect on output flux from a PTFE integrating sphere is significantly larger. 

Therefore, neglecting to correct for, or adequately stabilise the temperature 

when operating in this temperature regime, would introduce a significant source 

of error for measurements of flux, irradiance or radiance made from PTFE 

integrating spheres. From Eq. 4.1, the magnitude of the effect observed is 

dependent on the specific dimensions of the integrating sphere. For example, 

the effect will be magnified with decreasing port fraction.  

 

The experiment required a very stable collimated beam, hence a He-Ne laser 

was used, and thus the study presented here investigated the change in 

reflectance at a single wavelength of 633 nm. The reflectance of PTFE across 

the UV-VIS wavelengths is effectively constant, and the temperature-dependent 

phase change is a bulk material mechanism, so a wavelength dependence in 

the temperature induced reflectance change is considered very unlikely. The 

phase transition of PTFE may have a small effect on the bidirectional 

reflectance (BRDF) of the PTFE material. The use of an integrating sphere 

prevents the investigation of this effect. However, investigation of the BRDF 

over the PTFE phase transition may be important for flat panel reflectors, and is 

worthy of investigation. 

 

The phase transition of PTFE at a temperature of 19 °C (with smeared effect to 

a few degrees each side of this temperature) is of particular importance as 

typical operating temperature for both field studies in many temperate zones of 

the planet and laboratory studies. Depending on the configuration, 
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environmental challenges and uncertainty requirements of the measurement the 

optimal strategy will be one of temperature monitoring and application of a 

correction algorithm and/or active temperature stabilisation. To the author's 

knowledge, no other such measurement of the change in reflectivity of PTFE 

over the 19 °C phase transition exist.  

4.7 Conclusion 

A relative change in transmittance of up to 1.7 % was measured for a 210 µm 

thick Spectralon diffuser, confirming the effect of the 19 °C phase change 

identified by McKenzie et al. (2005) and Ylianttila and Schreder (2005) on the 

optical transmittance of PTFE diffusers. The relative change in the reflectance of 

Spectralon over the 19 °C phase change was investigated by controlling the 

temperature of a PTFE integrating sphere and monitoring the output flux from 

the sphere’s exit port. The output flux from the sphere’s exit port at 633 nm over 

the room temperature phase transition of PTFE at 19 °C was measured as 

1.82 ± 0.21 % for a change in temperature from 14 °C to 28 °C. The change in 

flux from the integrating sphere is related to the PTFE phase transition at 19 °C 

as a result of a change in density of the PTFE, and was explained by a small 

change of 0.09 ± 0.02 % in total hemispherical reflectance of the Spectralon 

material. The results from the PTFE reflectance experiment have implications 

for both field and laboratory studies that make use of PTFE as a flat panel 

reflector or within an integrating sphere in room temperature conditions. In 

addition, the magnitude of effect observed is strongly dependent on the 

measurement configuration, and may vary for pressed PTFE. The maximum 

effect of the phase change is observed when PTFE is employed in a multiple 

reflection scenario, such as in an integrating sphere.    
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Chapter 5  

Conclusion of thesis 

5.1 Introduction 

The overarching aim of the thesis was to measure the bidirectional reflectance 

of snow and sea ice in order to improve the understanding of the directional 

reflectance of the cyrosphere, and to improve the methodologies used to 

determine these properties. The thesis focused on 3 core areas of research: (1) 

field measurements of Arctic snow HCRF (2) laboratory measurements of sea 

ice CCRF and (3) temperature effects on PTFE reference standards for 

reflectance. This chapter will summarise the key findings from each of the 3 

core areas of study, provide concluding remarks relevant to the complete thesis, 

and will make recommendations for future research.      

5.2 Individual studies 

Key findings from each of the 3 core areas of research within this thesis are 

presented in this section.   
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5.2.1 Arctic snow HCRF study 

Chapter 2 focused on HCRF measurements of Arctic snow covered tundra, 

undertaken during the Spring 2013 field campaign in Ny-Ålesund, Svalbard. The 

main conclusions from the study are summarized below: 

• The GonioRAdiometric Spectrometer System (GRASS) was tested for 

mechanical accuracy in the laboratory at Royal Holloway University of 

London (RHUL) by tracing the ground instantaneous field of view 

(GIFOV) for 6 of the goniometer’s foreoptics while rotating the arms 

through 3-part rotations of 90° in azimuth. The pointing accuracy of the 

goniometer was found to be ± 20.5 cm, and the circular sampling area 

was approximately 0.4 m2 for the 8° (full angle) foreoptics; the sampling 

area was not sampled fully or equally.   

• Optical stability of the GRASS system upon rotation of the goniometer's 

arms was tested in the laboratory at RHUL. The relative standard 

deviation of the radiances recorded by each of the 16-GRASS 

foreoptics while viewing a stabilised integrating sphere source was less 

than 5 % 1σ( )  for 8 replicate measurements over the wavelength range 

450 nm to 1600 nm, and was typically around 2 %.  

• Snow surfaces at the field sites in Ny-Ålesund showed considerable 

variability in the scale of roughness elements and the snowpack depth, 

with snow depths ranging from 9 cm to 57 cm, and surface roughness 

elements ranging in height from 1 cm to 6 cm, and wavelength (spacing 

between the crests) from 5 cm to 30 cm.  

• The HCRF measurements reflected the variability in the snow surfaces, 

and the site with the largest roughness elements had no forward peak 

and a strong asymmetry over the solar principal plane. However, the 
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HCRF measurements showed good agreement between sites where 

the snow surface was smooth and the snowpack depth was greater 

than 40 cm, with a relative standard deviation of less than 10 % for 

backward and near nadir viewing angles. The averaged HCRF showed 

good symmetry with respect to the solar principal plane, and exhibited 

a forward scattering peak that was strongly wavelength dependent, with 

a greater than a factor of 2 increase in the anisotropy index over the 

wavelength range 400 nm to 1300 nm, for viewing angles 0° to 50°.  

• The averaged sites agreed with similar measurements by Painter and 

Dozier (2004) at a different location for infrared wavelengths, but 

showed differences of up to 0.24 in the HCRF for the visible 

wavelength range. Differences in the HCRF were attributed to large 

mass ratios of black carbon in the snowpack owing to the proximity of 

the field sites to the Ny-Ålesund research base. Mass ratios of up to 

299 ± 72 ng g-1 of black carbon in the top 10 cm of the snowpack were 

recorded at the site closest to the research station, which was much 

larger than typical background levels measured in Svalbard.  

• Given the limited footprint size and the scale of the roughness elements 

there was considerable uncertainty in the measured HCRF at the site 

with the largest roughness elements. The ratio of shaded to sunlit areas 

within the nadir foreoptic footprint was modeled using a Monte Carlo 

method for 100 different viewing positions that were varied according to 

the pointing accuracy of the goniometer. The ratio of sunlit to shaded 

area had a relative standard deviation of 24.5 % for a footprint with 

diameter of 0.28 m; indicating that sampling precision was limited 
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primarily by the size of the footprint area relative to the size of the 

surface roughness elements.  

• An improved pointing accuracy and a larger footprint area was required 

to reduce sampling uncertainty related to the roughness elements and 

to enable a full explanation for the observed effect of macroscale 

surface roughness. In addition, an improved characterization of grain 

size in the upper surface layer is required to rule out potential effects of 

snow grain size in the infrared region of the spectrum. However, the 

measurements show the potential influence of snow surface roughness 

on the HCRF at large solar zenith angles, and highlight the importance 

of sampling multiple surface types to obtain measurements of HCRF 

that are representative at the larger spatial scale. 

Given the logistical and technical challenges associated with conducting the 

HCRF measurements with the GRASS instrument, the short period of time 

available to undertake the measurements, and the very limited budget, the field 

campaign was generally regarded as very successful.   

5.2.2 Sea ice CCRF study 

Chapter 3 focused on the CCRF measurements of sea ice grown in the 

laboratory at RHUL, which were undertaken using a specially designed sea ice 

laboratory goniometer and the Royal Holloway Sea Ice Simulator. The main 

conclusions from the study are summarized below: 

• A methodology was developed to characterize the biconical reflectance 

(CCRF) of laboratory generated sea ice with two different ice 

thicknesses.  The angular distribution of reflected radiance had a strong 

forward scattering peak with a maximum CCRF of 1.63, and showed 

good symmetry over the solar principal plane.  
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• The CCRF had an anisotropy that was strongly wavelength dependent, 

with a maximum anisotropy index of 4.9 at 730 nm. Anisotropy generally 

increased with wavelength despite a weakening of the forward scattering 

peak with wavelength; indicating that the diffuse component of the 

reflectance decreased more strongly with wavelength than the specular 

component.  

• The CCRF between 450 nm and 690 nm increased by up to 4 % for an 

increase in thickness of 5 cm, but the CCRF decreased by up to 3.2 % 

for wavelengths greater than 690 nm, owing to increased absorption at 

longer wavelengths. The wavelength dependence to the CCRF of sea 

ice appeared to be dominated by the absorption coefficient of sea ice, 

but the hemispherical reflectance of the lower boundary influenced the 

CCRF for both the measured and the modeled results. The reflectivity of 

the lower boundary (i.e. the bottom of the tank) had approximately an 

order of magnitude less influence at 730 nm than at 410 nm, owing to 

the reduced penetration depth of radiation at longer wavelengths.  

• The radiative-transfer model was able to reproduce the general shape of 

the CCRF over the hemisphere and its wavelength dependence, with 

differences in the reflectance factors typically less than 0.05. However, in 

order to obtain a fit within the uncertainty of the CCRF measurements 

and the radiative-transfer model the surface roughness parameter had to 

be adjusted within a realistic range of 0.05 mm to 0.17 mm; the surface 

roughness parameter was defined as the standard deviation of vertex 

heights in a cosine wave fitted to the measured amplitude to wavelength 

of the sea ice roughness elements. Upon adjustment of the surface 

roughness parameter the coefficient of variation of the RMSE between 
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the measured and modeled reflectance factors was less than 9 % for 

both acquisitions, although a HULIS absorber had to be included in the 

model for the M2 measurement owing to the growth of algae in the 

seawater. An absorption spectrum for HULIS was obtained from the 

literature (France et al. 2012) and the model was run for a range of 

HULIS mass ratios in the sea ice. A HULIS mass ratio of 0.7 µg g-1 was 

found to reduce the CCRF for wavelengths below 510 nm sufficiently so 

that the modeled reflectance factors were well within the uncertainty of 

the measured reflectance factors. 

5.2.3 Effect of PTFE phase change on transmittance and reflectance 

Chapter 4 focused on an investigation into the 19 °C phase change in PTFE and 

its effect on: (1) the optical transmittance of Spectraon diffusers, and (2) the 

reflectance of Spectralon reference standards for reflectance. The main 

conclusions from the study are summarized below: 

• The relative change in the optical transmittance of a 210 µm thick 

Spectralon diffuser over the PTFE phase transition temperature at 19 °C 

for a wavelength of 350 nm to 600 nm was measured as approximately 

1.6 % at 600 nm and 1.3 % at 350 nm, confirming the effect of the phase 

change identified by McKenzie et al. (2005) and Ylianttila and Schreder 

(2005).  

• The relative change in the reflectance of Spectralon over the 19 °C 

phase change was measured at 633 nm by controlling the temperature 

of a PTFE integrating sphere. The output flux from the sphere’s exit port 

over the phase transition of PTFE at 19 °C was 1.82 ± 0.21 %. The 

change in flux from the integrating sphere is related to the PTFE phase 

transition at 19 °C as a result of a change in density of the PTFE, and 
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was explained by a small change of 0.09 ± 0.02 % in total hemispherical 

reflectance of the Spectralon material.  

• The results indicate that PTFE phase transition does affect the 

reflectance of Spectralon. Consequently, temperature stabilisation or 

monitoring and implementation of a correction algorithm should be 

considered when using PTFE based integrating spheres or flat panel 

reflectors. In addition, the magnitude of effect observed is strongly 

dependent on the measurement configuration, with the maximum effect 

when PTFE is employed in a multiple reflection scenario, such as in an 

integrating sphere.   

5.3 Summary of thesis 

Methodologies were developed to enable the characterization of the 

bidirectional reflectance of snow and sea ice using a field and laboratory 

goniometer respectively. The bidirectional reflectance was strongly forward 

scattering and had strong wavelength dependence to the anisotropy index for 

both snow and sea ice. The bidirectional reflectance of laboratory generated sea 

ice was calculated using the radiative-transfer model PlanarRad, and the 

variation of the RMSE between the measured and modeled reflectance factors 

was less than 9 % for both acquisitions when the scattering coefficient and the 

surface roughness parameter was varied within a realistic range. A HULIS 

absorber was added to the model for the second acquisition in order to obtain a 

fit for wavelengths shorter than 490 nm, owing to growth of algae in the 

laboratory seawater. Both the laboratory and field measurements highlighted the 

influence of surface roughness on the bidirectional reflectance of snow and sea 

ice. The largest snow surface roughness elements caused a strong asymmetry 

over the solar principal plane and a reduction in forward scattering. There was 
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considerable uncertainty in the measurements for snow surface roughness 

owing to the large size of the roughness elements relative to the size of the 

foreoptics footprint; indicating that an accurate characterization of the surface 

roughness effects on the bidirectional reflectance requires careful consideration 

of sampling biases owing to surface heterogeneity. An investigation into the 

reflectance of Spectralon (which was used as a reference standard for 

reflectance) at temperatures below the room temperature phase transition 

showed that the reflectance of Spectralon changed by less than 0.1 % over the 

phase transition at 19 °C. As a result, no correction to the calibration of the 

Spectralon panel at room temperature was required when using the panel at 

polar temperatures.  However, owing to the multiple reflections that occur inside 

an integrating sphere cavity the effect is multiplied, resulting in a change in 

output flux from the sphere of the sphere by 1.82 ± 0.21 % over the phase 

transition.  Hence users of PTFE integrating spheres should consider the effect 

of the PTFE phase transition when high accuracy measurements of flux, 

irradiance or radiance are required from PTFE based integrating spheres at 

temperatures close to the phase transition temperature at 19°C. 

5.4 Recommendations for future research 

In order to improve future research on subjects within this thesis, a number of 

recommendations – based on the outcome of this study – are given: 

• When considering the effects of surface roughness for heavily windblown 

snowpack, an improved characterization of grain size in the upper 

surface layer is required to rule out potential effects of snow grain size 

for infrared wavelengths owing to gravitation sorting. In addition, an 

improved characterization of the geometry of surface roughness 
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elements is required to fully understand the effects of windblown surface 

roughness on snow bidirectional reflectance. 

• When measuring the HCRF of heterogeneous targets the total 

acquisition time of the GRASS instrument should be reduced in order to 

limit geometric perturbations in the reflected distribution associated with 

changes in solar azimuth angle, mainly because a correction cannot be 

implemented for the change in solar azimuth angle for heterogeneous 

targets without detailed knowledge of the surface geometry.   

• An improved consideration of errors related to the leveling of the GRASS 

instrument should be given for future field measurements, especially for 

HCRF acquisitions under large solar zenith angles for rough surfaces.  

• The PlanarRad radiative-transfer model has the potential to be used in a 

predictive capacity to derive sea ice optical properties through model 

inversion. However, the agreement between the model and measured 

bidirectional reflectance needs to be tested over a wider range of 

incidence angles, and an improved characterization of the scale of the 

surface roughness elements needs to be carried out in future 

experiments.   

• Future laboratory CCRF experiments should consider in more detail the 

effect of using a highly non-parallel beam as the illumination source in 

order to estimate the bidirectional reflectance of a surface.  

• The magnitude of the effect of the PTFE phase transition at 19 °C on the 

optical transmittance of PTFE diffusers had a wavelength dependence of 

around 0.3 %. The change in reflectance was calculated for a 

monochromatic wavelength and it was assumed there was no 
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wavelength dependence to change in reflectance; this should be 

confirmed by future experiments.  
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Appendix 1 

A1.1 MATLAB code for Monte Carlo simulation in Figure 1.15 
 
%% 2-D Monte Carlo simulation for calculating multiple scattering in an absorbing 
medium  
 
clear all; close all 
 
%% Input variables: 
n_p = 100; % number of incident photons  
u = 0; % incidence angle from surface normal [°] 
z = 0.30; % medium thickness [m] 
 
k = 250; % extinction coefficient [m-1] 
w = 0.99; % single scattering albedo 
g = 0.95; % asymmetry parameter (controls  proportion of forward and backward 
scattering) 
n_s = 10^3; % maximum number of loop iterations 
 
%% Calculate optical properties:  
tau = k*z; % optical depth  
mu = 1/k; % mean free path  
dir_0 = u*(pi/180); % incident angle [radians] 
t = exp(-tau/cosd(u)); % direct transmittance 
 
pstart_x = zeros(1,n_p); % xcoordiante for all incident photons 
pstart_y = zeros(1,n_p); % ycoordinate for all incident photons 
pstart_x(1,:) = z/100; 
 
%% Generate a probability density for scattering from hg phase function: 
[pf, theta] = hg_pf(g); % builds probability density function 
theta_rad = theta*(pi/180);  
pf = [flip(pf) pf]; 
theta_rad = [flip(theta_rad) , -theta_rad]; 
s_prob = pf./sum(pf); % sums to unity 
 
f1 = figure(1); 
plot(theta_rad, s_prob) % plots probability density 
title('Sattering angle probability density', 'FontSize', 14) 
 
%% Generate a probability density for free path length: 
d_range = 0:mu*0.01:mu*2; 
d_std = mu*0.25; 
df = normpdf(d_range, mu, d_std); % builds probability density function 
d_prob = df./sum(df); % sums to unity 
 
f2 = figure(2); 
plot(d_range, d_prob) % plots probability density 
title('Free path length probability density','FontSize', 14) 
 
%% First extinction event 
timerV = tic; 
% Calculate number of photons absorbed 
r = rand(1,n_p); 
abs_1 = r<(1-w); % logical index 1 == absorbed 
 
% Calculate first scatter direction for all photons 
r = rand(1,n_p); 
[~,dir] = histc(r, cumsum([0, s_prob])); 
dir_1 = theta_rad(1,dir); 
dir_1 = dir_1+dir_0; 
dir_prev(1,:) = dir_1; 
 
f3 = figure(3); 
hist(dir_1,n_p/2) % plots histrograms of scattering angles 
title('Scattering angles [rad]: first extinction event', 'FontSize', 14) 
 
% Calculate first path length (free path) for all photons 
r = rand(1,n_p); 
[~,dist] = histc(r, cumsum([0, d_prob])); 
dist_1 = d_range(1,dist); 
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f4 = figure(4); 
hist(dist_1,n_p/2) % plots histrograms of free paths 
title('Free path lengths [m]: first extinction event', 'FontSize', 14) 
 
% Calculate coordinates of the new photon positions based on their starting 
position, 
% scattered angle and distance traveled. 
p1_x = pstart_x + cos(dir_1).*dist_1; 
p1_y = pstart_y + sin(dir_1).*dist_1; 
n_rho = sum(p1_x(1,:) < 0); % number of reflected photons 
n_t = sum((p1_x(1,:) > z)); 
p1_x(p1_x < 0 | p1_x > z ) = NaN; % Photons that go outside the boundary become 
NaNs 
p1_y(p1_x < 0 | p1_x > z ) = NaN;  
dir_1(abs_1) = NaN; % Absorbed photons become NaNs 
% Plot the new positions and the draw path 
f5 = figure(5); 
scatter(p1_x, p1_y, 'kx') 
title('up <<<<<       Photon paths       >>>>> down', 'FontSize', 16) 
grid on 
for i = 1:n_p 
line([pstart_x p1_x(i)], [pstart_y p1_y(i)], 'Color', 'k') 
end 
 
% Draw boundaries and definie axis limits 
ws_x = [-0.1 0.4]; 
ws_y = [-0.25 0.25]; 
 
line([0,0],[-z*10, z*10], 'LineWidth', 2, 'Color', 'k') % Top surface 
line([z,z],[-z*10, z*10], 'LineWidth', 2, 'Color', 'k') % Bottom surface 
 
xlim(ws_x) 
ylim(ws_y) 
set(gcf, 'Position', [50 50 800 800]) 
hold on 
 
%% Multiple scattering: Calculate n_s extinction events for n_p photons 
% Initialise variables used in loop 
multi_p_x = zeros(n_s+1, n_p); 
multi_p_y = zeros(n_s+1, n_p); 
multi_dir = zeros(n_s+1, n_p); 
multi_dist = zeros(n_s+1, n_p); 
multi_abs = zeros(n_s+1, n_p); 
% Set variables with outcome of the first extinction event 
multi_p_x(1,:) = p1_x; % x coord  
multi_p_y(1,:) = p1_y; % y coord  
multi_dir(1,:) = dir_1; % direction 
multi_dist(1,:) = dist_1; % distance  
multi_abs(1,:) = abs_1; % absorbed 
 
for s = 1:n_s       %%%% Each loop is an extinction event %%%% 
    % Calculate number of photons absorbed 
    r = rand(1,n_p); 
    multi_abs(s+1,:) = r<(1-w); % logical index 1 == absorbed 
    % Calculate scattering angles 
    r = rand(1,n_p); 
    [~,dir_2] = histc(r, cumsum([0, s_prob]));  
    multi_dir(s+1,:) = theta_rad(1,dir_2); 
    multi_dir(s+1,:) = multi_dir(s+1,:)+multi_dir(s,:); 
    % Calculate path lengths 
    r = rand(1,n_p); 
    [~,dist_2] = histc(r, cumsum([0, d_prob])); 
    multi_dist(s+1,:) = d_range(1,dist_2); 
    % Coordinates for the new points 
    multi_p_x(s+1,:) = multi_p_x(s,:) + cos(multi_dir(s+1,:)).*multi_dist(s+1,:); 
    multi_p_y(s+1,:) = multi_p_y(s,:) + sin(multi_dir(s+1,:)).*multi_dist(s+1,:);     
    % Count diffusely reflected and transmitted photons 
    n_rho = [n_rho sum(multi_p_x(s+1,:) < 0)]; 
    n_t = [n_t sum(multi_p_x(s+1,:) > z)]; 
    multi_dir(logical(multi_abs)) = NaN; % Absorbed photons become NaNs 
    % Plot positions for remaining photons  
    for ph = 1:n_p 
    scatter(multi_p_x(s+1, ph), multi_p_y(s+1, ph), 'kx') 
    line([multi_p_x(s, ph) multi_p_x(s+1, ph)], [multi_p_y(s, ph) multi_p_y(s+1, 
ph)], 'Color', 'k') 
    end 
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    % Stop tracking the photons that are scatter outside medium  
    multi_p_x(multi_p_x < 0 | multi_p_x > z ) = NaN;  
    multi_p_y(multi_p_x < 0 | multi_p_x > z ) = NaN;  
    n_ext = sum(sum(multi_p_x>0)); 
    n_rem = n_p - sum(isnan(multi_p_x(s,:))); 
    fprintf('Number of photons remaining: %0.0f \nCumulative number of extinction 
events: %0.0f \n', n_rem, n_ext) 
    disp('-----------------------------------------------') 
    pause(0.01); 
    if sum(isnan(multi_p_x(s,:)))== n_p;  
        n_cyc = s; 
        break; 
    end 
end 
 
n_abs = n_p-sum(n_rho)-sum(n_t); % number of photons absorbed 
elapsed_time = toc(timerV); 
 
disp('----------------Model setup--------------------') 
fprintf('Number of photons: %0.0f \n', n_p) 
fprintf('Initial incidence angle (°): %0.1f \n', u) 
fprintf('Layer thickness (m): %0.1f \n', z) 
 
disp('----------------IOPs--------------------') 
fprintf('Extinction coefficient (m-1): %0.0f \n', k) 
fprintf('Optical depth: %0.2f \n', tau) 
fprintf('Single scattering albedo: %0.2f \n', w) 
fprintf('Asymmetry parameter: %0.2f \n', g) 
 
disp('----------------Output variables--------------------') 
fprintf('Photons absorbed (%%): %0.0f \n', n_abs/n_p*100) 
fprintf('Photons diffusely reflected (%%): %0.0f \n', sum(n_rho)/n_p*100) 
fprintf('Photons diffusely transmitted (%%): %0.0f \n', sum(n_t)/n_p*100) 
fprintf('Photons directly transmitted (%%): %0.0f \n', t) 
fprintf('Total number of extinction events: %0.0f \n', n_ext) 
 
disp('----------------Model info--------------------') 
fprintf('Number of cycles in loop before break: %0.0f \n', n_cyc) 
fprintf('Time taken (min): %0.1f \n', elapsed_time/60) 
 
cd('/Users/chrisball/Desktop') 
hgexport(f5,'MonteCarloOutput.eps') 
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Appendix 2 
 

Bidirectional reflectance of 
windblown Arctic snow  
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A1.1 MATLAB code for modeling sunlit vs. shaded areas 
 
%% Monte Carlo model to calculate ratio of shaded/sunlit area within a randomly 
positioned foreoptic footprint with a view zenith angle of 0° 
 
clear all; close all 
 
%% Input variables 
sun_zen=81; % Sun zenith angle [°] 
sas_h = 0.015; % Sastrugi height [m] 
sas_d = 0.125; % Distance between sastrugi ridges [m] 
sun_sasn_azi = 70; % azimuth angle between sun and sastrugi normal (0 when sas 
are perpendicular to sun direction) 
sensor_r=0.01:0.01:0.50; % footprint radius [m]\ 
sensor_y=(y_max-y_min).*rand(100,1)+y_min; % range of sensor positions (y 
coordinate) 
sensor_x=(x_max-x_min).*rand(100,1)+x_min; % range of sensor positions (x 
coordinate)  
x_min=0.55; 
x_max=0.95; 
y_min=0.555; 
y_max=0.95; 
 
%% Calculate shadowed area vs sunlit areas 
num_sas=1.5/sas_d+1; % number of shadow polygons in the plot 
sh_l = sas_h*tand(sun_zen)*abs(cosd(sun_sasn_azi)); % shadow length 
 
% Calculate coordinates for shadow polygons 
xcoord=[0 0 1.5 1.5]; 
ycoord=[0 0 0 0]; 
poly_ycoords=zeros(length(num_sas),4); 
 
for i=1:num_sas 
poly_ycoords(i,:)= ycoord+sas_d*(i-1); 
end 
 
poly_ycoords(:,1)=poly_ycoords(:,1)+sh_l; 
poly_ycoords(:,4)=poly_ycoords(:,4)+sh_l; 
poly_xcoords=repmat(xcoord,round(num_sas), 1); 
 
%Initialise variables 
sensor_a=zeros(length(sensor_r),1); 
shaded_a=zeros(length(sensor_r),length(sensor_y)); 
sunlit_a=zeros(length(sensor_r),length(sensor_y)); 
ratio=zeros(length(sensor_r),length(sensor_y)); 
diff=zeros(length(sensor_r),1); 
overlap=zeros(1,10); %Shaded area within footprint 
 
for k=1:length(sensor_y) 
 
    for j=1:length(sensor_r) 
     
    close all 
    sensor_a(j,1)= pi*(sensor_r(j))^2; %footprint area 
 
    % Plot shadows 
    f1 = figure(1); 
    hold on 
 
        for i=1:num_sas 
        fill(poly_xcoords(i,:), poly_ycoords(i,:),[0.4 0.4 0.4]) 
        end 
 
    %Plot the sensor footprint 
    N=256; % points in the circle 
    t=(0:N)*2*pi/N; 
    x=sensor_r(j)*cos(t)+sensor_y(k); 
    y=sensor_r(j)*sin(t)+sensor_x(k); 
    plot(x,y,'k','LineStyle', '-'); 
 
        % Calculate overlap/shadowed area viwed by the sensor 
        for i=1:num_sas 
        [xa, 
ya]=polybool('intersection',x,y,poly_xcoords(i,:),poly_ycoords(i,:)); 
        fill(xa,ya,'r') 
        overlap(i)= polyarea(xa,ya); 
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        % pause(0.1) 
        end 
 
    shaded_a(j,k)= sum(overlap); 
    sunlit_a(j,k)= sensor_a(j)-shaded_a(j,k); 
    ratio(j,k)= shaded_a(j,k)/sunlit_a(j,k); 
 
        if j==14 
        xlim([0 1.5]) 
        ylim([0 1.5]) 
        xlabel('distance / m') 
        ylabel('distance / m') 
        set(gca,'LineWidth',1.1) 
        set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
        set(gca, 'FontSize', 11, 'xMinorTick', 'on', 'yMinorTick', 'on') 
        set(f1, 'Position', [2 2 5 5]); 
        title(['loop iteration: ', num2str(k)]) 
        daspect('manual'); 
        daspect([1,1,1]); 
        hold on 
        cd('/Users/chrisball/Documents/PhD Work/Thesis chapters/Chapter 
3/Figures') 
        hgexport(f1, ['SRmodel_00', num2str(k), '.eps']) 
        end 
    end 
% pause(0.1) 
diff(k,1)= (ratio(sensor_r==0.5,k)-
ratio(sensor_r==0.14,k))/ratio(sensor_r==0.5,k)*100; % relative difference in the 
ratio 
% disp(['loop iteration: ', num2str(k)]) 
end 
 
f2 = figure(2); 
plot(sensor_r, ratio) 
xlabel('Sensor footprint radius / m', 'FontSize', 11) 
ylabel('Shaded to sunlit area ratio', 'FontSize', 11)  
xlim([0 0.50]) 
ylim([0 3]) 
set(gca,'XMinorTick', 'on') 
set(gca, 'YMinorTick', 'on') 
set(gca,'LineWidth',1.1) 
set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
set(gca, 'FontSize', 11, 'xMinorTick', 'on', 'yMinorTick', 'on') 
set(f2, 'Position', [2 2 14 14]); 
 
cd('/Users/chrisball/Documents/PhD Work/Thesis chapters/Chapter 3/Figures') 
hgexport(f2, 'SRmodel.eps') 
 
mean_diff=mean(abs(diff)); 
std=std(ratio(sensor_r==0.14,:))/mean(ratio(sensor_r==0.14,:))*100; 
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A3.1 MATLAB code for generating PlanarRad quads 
 
% Converts spherical coordinates of points surrounding each segment/quad in  
% planarrad to cartesian coordiantes and builds polygons that represents the  
% segments/quads in 2D.  
 
% Define the azimuth and zeinth coordinates for the lines separating the 
% segments 
 
azi_interval = 15; % units seprating great circles [degrees] 
zen_interval = 10; % units separating lines of latitude [degrees] 
 
poly_start_azi = 7.5:azi_interval:345; % Azimuth lines at the start of each 
segment 
poly_end_azi = 22.5:15:360; % Azimtuh lines at the end of each segment 
poly_centre_azi = 0:15:345; 
poly_start_zen = 5:zen_interval:75; % Zenith lines at the start of each segment 
poly_end_zen = 15:zen_interval:90; % Zenith lines at the end of the each segment 
poly_centre_zen = 10:10:80; 
 
num_sectors = 360/15; % nunber of sectors in the cirlce 
num_segments_in_sector = length(poly_end_zen); % number of segments in each 
sector 
num_segments_total = num_segments_in_sector*num_sectors; % total number of 
segments 
 
%% Create 3D arrays containing lists of points in spherical coordinates for each 
segment.  
 
% The circle has been spilt into 24 sectors each containing 8 segments/quads 
(polygons).  
% Poly_points_zen and poly_points_azi are 3d arrays containing lists of zenith  
% or azimuth coordinates for each segment (polygon) in each sector of the circle. 
% Each layer in Poly_points_zen and poly_points_azi is a different sector of the 
ciricle.  
% Each row in a layer is a list of coordinates for points that make up a segment 
in that sector.  
 
for i = 1:num_segments_in_sector 
    for k = 1:num_sectors-1 
        poly_points_zen(i,:,k) = 
[flip(poly_start_zen(i):poly_end_zen(i)),repmat(poly_start_zen(i),1,15),... 
            flip(poly_start_zen(i):poly_end_zen(i)), 
repmat(poly_end_zen(i),1,16)]; 
        poly_points_azi(i,:,k) = [repmat(poly_start_azi(k),1, poly_end_zen(i)-
poly_start_zen(i)),... 
            poly_start_azi(k):poly_end_azi(k),repmat(poly_end_azi(k),1, 
poly_end_zen(i)-poly_start_zen(i)+1),... 
            flip(poly_start_azi(k):poly_end_azi(k))]; 
    end 
end 
 
%% Convert from spherical to cartesian coordinates 
r = 0.5; % Define the radius of the circle 
 
% Calculate the distance of each point from nadir 
for i = 1:num_segments_in_sector 
    for k = 1:num_sectors-1 
        d_nadir(i,:,k)=sind(poly_points_zen(i,:,k)).*r; 
    end 
end 
 
% Calculate the x and y coordinates for each point and draw each polygon 
for i = 1:num_segments_in_sector 
    for k = 1:num_sectors-1 
        x_coord(i,:,k) = (cosd(poly_points_azi(i,:,k)).*d_nadir(i,:,k))+0.5; 
        y_coord(i,:,k) = 0.5-(sind(poly_points_azi(i,:,k)).*d_nadir(i,:,k)); 
    end 
end 
 
% Flip sector 12 to fill missing sector 24 
x_coord(:,:,24)=1-x_coord(:,:,12); 
y_coord(:,:,24)=y_coord(:,:,12); 
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A3.2 MATLAB code for plotting from PlanarRad report.txt file 
 
%% Script to plot planarrad output 
 
close all; clear all 
 
%% Run Plot_Segments script to obtain segment polygons 
cd('/Users/chrisball/Documents/PhD Work/BRDF Modelling/PLOT_PlanarRad') 
run('Plot_Segments.m') 
 
%% Request user input and set up input variables 
filename = input('Enter the name of the PlanarRad output folder:', 's'); 
working_dir = strcat('/Users/chrisball/Documents/PhD Work/BRDF 
Modelling/PlanarRad_ouput_thesis/PlanarRad_output_M1andM2/', filename); 
output_dir = '/Users/chrisball/Documents/PhD Work/BRDF 
Modelling/PLOT_PlanarRad/PlannarRad_Plots/PlanarRadPlots_Thesis '; 
num_bands = 17; % number of wavelength bands in plannarad output 
interval = 22; % Specify number of rows between bands in file  
pp_colorbar_min = 0.2; 
pp_colorbar_max = 1.2; 
g_ylimits = [0.2 1.8]; 
g_legend_pos = 'northwest'; 
 
% Move all polygon coordinates to a 2d array  
for k = 1:num_sectors 
    for i = 1:num_segments_in_sector 
        if k > 1 
        p_x_coord(8*(k-1)+i,:) = x_coord(i,:,k); 
        p_y_coord(8*(k-1)+i,:) = y_coord(i,:,k); 
        else 
        p_x_coord(k+(i-1),:) = x_coord(i,:,k); 
        p_y_coord(k+(i-1),:) = y_coord(i,:,k); 
        end 
    end 
end 
 
%% Import, process and segment averaged radiances from PlanarRad report.txt  
cd(working_dir) 
 
% Find row number of "L_a_band 1", "theta_table" and "phi_table" in report.txt 
and import data 
fid=fopen('report.txt','r'); % Open file for reading 
C=textscan(fid, '%s','Delimiter','\n'); % Reads each line as a string 
C=C{:};  
 
% Logical indexing to find matching text 
L_a_band_1=strcmp(C,'L_a band 1'); 
theta_table=strcmp(C,'# Quad solid angle mean point theta table (rows are 
horizontal, columns are vertical):'); 
phi_table=strcmp(C,'# Quad solid angle mean point phi table (rows are horizontal, 
columns are vertical):'); 
 
%Extract row numbers 
index=1:length(C); 
i_band_1=index(L_a_band_1); 
i_theta_table=index(theta_table); 
i_phi_table=index(phi_table); 
 
% Calculate row numbers for all bands based on the interval size and number of 
bands 
i_all_bands=i_band_1:interval:(i_band_1+interval*(num_bands-1));  
 
% Read in upwelling radiances for all 17 bands 
L_up=zeros(9,24,num_bands); 
L_up_nadir=zeros(1,num_bands); 
 
for i=1:length(i_all_bands) 
L_up(:,:,i)=dlmread('report.txt', ',', [i_all_bands(i)+10, 0, i_all_bands(i)+18, 
23]);  
% L_up(4,1,i)=mean([L_up(3,1,i);L_up(5,1,i); L_up(7,2,i); L_up(6,24,i)]); % 
removes specular peak 
L_up_nadir(i)=dlmread('report.txt','\t',[i_all_bands(i)+19, 0, i_all_bands(i)+19, 
0]); 
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end 
 
band_centres=dlmread('report.txt', ',', 'C5..S5'); 
BRDF=L_up; % sr-1 
PlanarRad_BRF=L_up*pi; % unitless, Schaepman-Strub, 2006, Eq. 6 
BRF_nadir = L_up_nadir*pi; 
 
% Import segment averaged zenith angles 
L_up_zenith=dlmread('report.txt', ',', [i_theta_table+10, 0, i_theta_table+18, 
23]); % Reads from file 
L_up_zenith=90-(L_up_zenith-90); % Convert zenith angles from spherical to 
hemispherical 
 
% Import segment averaged azimuth angles 
L_up_azimuth=dlmread('report.txt', ',', [i_phi_table+10, 0, i_phi_table+18, 23]); 
 
% Calculate zenith angle distance from nadir 
r=0.5; 
L_d_nadir=sind(L_up_zenith).*r; 
 
% Calcualte centre position of segment/quad in cartesian coordinates 
L_x_coord=(cosd(L_up_azimuth).*L_d_nadir)+0.5; 
L_y_coord=0.5-(sind(L_up_azimuth).*L_d_nadir); 
 
%% Draw and fill all polygon segments 
 
% Plot segment centres 
% plot(L_x_coord, L_y_coord, 'r*') 
 
% Find the points inside polygons 
L_poly_value= []; 
L_poly_centre_coord = []; 
 
for p = 1:num_segments_total 
    for b = 1:num_bands 
                in = inpolygon(L_x_coord, L_y_coord, p_x_coord(p,:), 
p_y_coord(p,:)); 
                in = repmat(in,1,1,num_bands); 
                L_poly_value(p,:) = PlanarRad_BRF(in);   
    end 
end 
 
%Import NaN row numbers file from SIS output 
cd('/Users/chrisball/Documents/PhD Work/BRDF 
Modelling/PlanarRad_ouput_thesis/PlanarRad_output_M1andM2') 
row_nums = load('nan_row_nums.mat'); 
 
% Delete polygons referenced in row_nums  
PlanarRad_BRF = L_poly_value; % make a copy 
PlanarRad_BRF(row_nums.row_nums,:) = []; 
p_x_coord(row_nums.row_nums,:) = []; 
p_y_coord(row_nums.row_nums,:) = []; 
 
% Calculate ANIX 
for i = 1:num_bands 
PlanarRad_ANIX(i) = max(PlanarRad_BRF(:,i))./min(PlanarRad_BRF(:,i)); 
end 
 
% Get rgb colors  
c_min = pp_colorbar_min; % keep constant if possible, but if not use this:  
% round((min(min(L_poly_value))-0.01)*10)/10; % set minimum value in colorbar 
c_max = pp_colorbar_max; % keep constant if possible, but if not use this:  
% round((max(L_poly_value(L_poly_value<min(L_poly_value(190,:))))+0.01)*10)/10; % 
set max value in colorbar 
L_poly_colors = mat2gray(PlanarRad_BRF,[c_min c_max]); 
for i=1:num_bands 
    L_poly_nadir_color(i) = mat2gray(BRF_nadir(i),[c_min c_max]); 
end 
cm = colormap(jet); 
for i = 1 : length(PlanarRad_BRF) 
    for b = 1:num_bands 
        colorID(i,b) = max(1, sum(L_poly_colors(i,b) > [0:1/length(cm(:,1)):1]));  
        myColor(i,b,:) = cm(colorID(i,b), :); 
    end 
end 
for b = 1:num_bands 
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    colorID_nadir(b) = max(1, sum(L_poly_nadir_color(b) > 
[0:1/length(cm(:,1)):1]));  
    myColor_nadir(b,:) = cm(colorID_nadir(b), :); 
end 
 
%% Plot polgons and fill with colors corresponding to the radiance values and 
ouput to file 
 
cd(output_dir)  
mkdir(filename) % make new directory  
 
% Set coordinates for nadir segment 
ang = 0:0.01:2*pi; 
xp = sind(2.5)*cos(ang)+0.5; 
yp = sind(2.5)*sin(ang)+0.5; 
 
%Set up scattering labelc coordinates and text 
x_scat_label = 0.5; 
y_scat_label = -0.15; 
str_text_scat_label = '<<< backward scattering | forward scattering >>>   '; 
 
% Set up coordinates for azimuth lines 
x=[cosd(0:30:330)*(sind(90)*r)+r;ones(1,12)*r]; 
y=[sind(0:30:330)*(sind(90)*r)+r;ones(1,12)*r]; 
 
%Creat coordinates for azi labels 
    x_text_azi_labels=cosd(0:30:330)*(sind(90)*(r+0.07))+r+0.004; 
    y_text_azi_labels=sind(0:30:330)*(sind(90)*(r+0.07))+r+0.004; 
 
%Creat coordinates for zenith labels 
    x_text_zen_labels=cosd(130)*(sind(15:15:60)*r)+r; 
    y_text_zen_labels=sind(130)*(sind(15:15:60)*r)+r; 
 
% Assign text for azi labels 
    str_text_azi_labels = {'180^{\circ}', '150^{\circ}', '120^{\circ}', 
'090^{\circ}',... 
        '060^{\circ}','030^{\circ}','000^{\circ}','330^{\circ}','300^{\circ}',... 
        '270^{\circ}','240^{\circ}','210^{\circ}'}; 
%Assign text for zen labels 
    str_text_zen_labels = {'15^{\circ}', '30^{\circ}', '45^{\circ}', 
'60^{\circ}'}; 
 
for band = 1:num_bands 
     
    figure(band); 
    xlim([-0.1 1.1]); 
    ylim([-0.1 1.1]); 
    hold on 
 
    for i = 1:length(PlanarRad_BRF) 
        h_polygon = fill(p_x_coord(i,:), p_y_coord(i,:), [myColor(i,band,1) 
myColor(i,band,2) myColor(i,band,3)]); 
        set(h_polygon, 'EdgeColor', 'none') 
        hold on 
    end 
 
    % fill nadir segment 
    fill(xp, yp, myColor_nadir(band,:), 'EdgeColor', 'none') 
 
    % set colorbar and axis  
    cb = colorbar; 
    x1=get(gca,'position'); 
    x_cb=get(cb,'position'); 
    x_cb(3)= x_cb(3)*1; 
    x_cb(4)= x_cb(4)*0.8; 
    x_cb(2) = x_cb(2)*1.75; 
    x_cb(1) = x_cb(1)*1; 
    set(cb,'FontSize',11) 
    caxis([c_min c_max]) 
    set(cb,'position',x_cb) 
    set(gca,'position',x1) 
    set(cb, 'ytick', 0.2:0.1:1.2, 'yticklabel', {'0.2', '0.3', '0.4', '0.5', 
'0.6', '0.7', '0.8', '0.9', '1', '1.1', '1.2'}) 
    hold on 
     
    title(['  Modelled BRF:  ','\lambda = ', int2str(band_centres(band)),' nm, ', 
'ANIX = ' sprintf('%0.3g',PlanarRad_ANIX(band))], 'FontSize', 12) 
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    axis off 
 
    % create label for forward and backward scattering 
    text(x_scat_label, y_scat_label, str_text_scat_label,... 
            'HorizontalAlignment','center','VerticalAlignment', 
'middle','FontSize', 11) 
         
    % create label for colorbar 
    h = text(1.35, 0.5, 'CCRF',... 
            'HorizontalAlignment','center','VerticalAlignment', 
'middle','FontSize', 11); 
    set(h, 'rotation', 90) 
 
    %% Draw lines and labels 
 
    % Draw azimuth angles 
    line(x,y, 'color', [0 0 0],'LineStyle', '--') 
 
    % Draw circles for 15° zenith intervals 
    PlotCircle(r,r,((sind(15))*r),360,'k'); 
    PlotCircle(r,r,((sind(30))*r),360,'k'); 
    PlotCircle(r,r,((sind(45))*r),360,'k'); 
    PlotCircle(r,r,((sind(60))*r),360,'k'); 
    PlotCircle(r,r,((sind(75))*r),360,'k'); 
    PlotCircle_2(r,r,((sind(90))*r),360,'k'); 
 
    % Plot azi labels 
    for i = 1:length(x_text_azi_labels) 
        text(x_text_azi_labels(i), y_text_azi_labels(i), 
str_text_azi_labels(i),... 
            'HorizontalAlignment','center','VerticalAlignment', 
'middle','FontSize', 11) 
    end 
 
    % Plot zen labels 
    for i = 1:length(x_text_zen_labels) 
        text(x_text_zen_labels(i), y_text_zen_labels(i), 
str_text_zen_labels(i),... 
            'HorizontalAlignment','center','VerticalAlignment', 
'middle','FontSize', 11) 
    end 
 
    %% Export figure to .eps 
     
    daspect('manual') 
    daspect([1, 1, 1]) 
    set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
    set(gcf, 'Position', [2 2 12 12]); 
 
 
    cd(output_dir) 
    cd(filename) 
    saveas(gca, 
strcat(filename,'_',int2str(band_centres(band)),'nm','.eps'),'epsc'); 
end 
 
%% Plot BRF spectra 
 
% Generate legend labels 
theta_spp = -80:10:80; 
legend_text = '\theta = '; 
legend_text = repmat(legend_text,length(theta_spp),1); 
for i = 1:length(theta_spp) 
    legend_text_all{i,1} = [legend_text(i,:) int2str(theta_spp(i)) '°']; 
end 
 
% Get values in spp 
poly_row_num_forward = 185:192; % Define row numbers for polygons of interest 
poly_row_num_backward = 89:96; % Define row numbers for polygons of interest 
L_forward = L_poly_value(poly_row_num_forward,:); % Get data 
L_backward = L_poly_value(poly_row_num_backward,:); % Get data 
PlanarRad_L_spp = cat(1,flip(L_backward), BRF_nadir, L_forward); 
 
theta_spp = theta_spp(3:15); 
PlanarRad_L_spp = PlanarRad_L_spp(3:15, :); 
legend_text_all = legend_text_all(3:15,:); 
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%% Plot BRF with wavelength 
 
spp_theta_row_num = [7 10 13]; % row numbers for view angle to plot 
 
figure(num_bands+2) 
plot(band_centres, PlanarRad_L_spp(spp_theta_row_num(1),:), '-ko',... 
    band_centres, PlanarRad_L_spp(spp_theta_row_num(2),:), '-ks',... 
    band_centres, PlanarRad_L_spp(spp_theta_row_num(3),:), '-k^',... 
    'LineWidth', 1.2, 'MarkerSize', 6, 'MarkerFaceColor', 'w',... 
    'MarkerEdgeColor', 'k') 
xlim([410 730]) 
ylim(g_ylimits) 
xlabel('Wavelength / nm', 'FontSize', 11) 
ylabel('BRF', 'FontSize',11) 
legend(legend_text_all(spp_theta_row_num), 'Location', g_legend_pos,'FontSize', 
11) 
set(gca, 'XMinorTick','on', 'YMinorTick','on','FontSize',11,'Linewidth',1.1) 
set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
set(gcf, 'Position', [2 2 14 14]); 
 
cd(output_dir) 
cd(filename) 
saveas(gca, 
strcat('Wvl_',filename,'_',int2str(band_centres(band)),'nm','.eps'),'epsc'); 
 
%% Plot BRF in principle plane 
 
spp_band_row_num = [1 6 11 16]; % row numbers for bands to plot 
 
figure(num_bands+3) 
plot(theta_spp, PlanarRad_L_spp(:,spp_band_row_num(1)),'-ko',theta_spp, 
PlanarRad_L_spp(:,spp_band_row_num(2)),'-ks',... 
    theta_spp, PlanarRad_L_spp(:,spp_band_row_num(3)),'-kd',theta_spp, 
PlanarRad_L_spp(:,spp_band_row_num(4)),'-k^',... 
    'LineWidth', 1.2, 'MarkerSize', 6, 'MarkerFaceColor', 'w', 'MarkerEdgeColor', 
'k') 
for i = 1:length(band_centres) 
    legend_band_centres{i,1} = [int2str(band_centres(i)) ' nm']; 
end 
legend_theta_spp = legend_band_centres(spp_band_row_num); 
ylim(g_ylimits) 
xlim([-60 60]) 
legend(legend_theta_spp, 'Location', g_legend_pos, 'FontSize', 11) 
xlabel('Zenith angle in solar principle plane / °', 'FontSize', 11) 
ylabel('BRF', 'FontSize',11) 
set(gca, 'XMinorTick','on', 'YMinorTick','on', 'FontSize',11, 'Linewidth',1.1) 
set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
set(gcf, 'Position', [2 2 14 14]); 
 
cd(output_dir) 
cd(filename) 
saveas(gca, 
strcat('SPP_',filename,'_',int2str(band_centres(band)),'nm','.eps'),'epsc'); 
 
disp(['Plannarrad output saved: ', output_dir,'/' filename])  
 
%% Plot ANIX 
 
figure(num_bands+4) 
plot(band_centres, PlanarRad_ANIX, '-k','LineWidth', 1.2); 
hold on 
plot(band_centres, PlanarRad_ANIX, 'ok',... 
    'LineWidth', 1.2, 'MarkerSize', 6, 'MarkerFaceColor', 'w', 'MarkerEdgeColor', 
'k'); 
xlabel('Wavelength / nm', 'FontSize', 11) 
ylabel('ANIX', 'FontSize',11) 
xlim([410, 730]) 
set(gca, 'XMinorTick','on', 'YMinorTick','on', 'FontSize',11, 'Linewidth',1.1) 
set(gcf,'PaperPositionMode','auto', 'Units', 'centimeters') 
set(gcf, 'Position', [2 2 14 14]); 
 
cd(output_dir) 
cd(filename) 
saveas(gca, 
strcat('ANIX_',filename,'_',int2str(band_centres(band)),'nm','.eps'),'epsc'); 
 
disp(['Plannarrad output saved: ', output_dir,'/' filename(1:2)])  



Appendix 3: Bidirectional reflectance of laboratory-generated sea ice 

     365 

 
%% Save plot data to structure 
 
cd('/Users/chrisball/Documents/PhD Work/BRDF Modelling/PlanarRad_ouput_thesis') 
 
% Build structure with plot data, taking only wavelengths 410 to 730 (17 
% bands, and only -60 to 60 view angles in spp) 
 
PlanarRad_plot_data.(filename) = struct('hemi_brf', PlanarRad_BRF, 
'hemi_brf_poly_xcoord', p_x_coord, 'hemi_brf_poly_ycoord', p_y_coord,... 
    'nadir_brf_wvl', [band_centres', 
PlanarRad_L_spp(spp_theta_row_num(1),:)'],... 
    'brf_wvl_30fwrd', [band_centres', 
PlanarRad_L_spp(spp_theta_row_num(2),:)'],... 
    'brf_wvl_60fwrd', [band_centres', 
PlanarRad_L_spp(spp_theta_row_num(3),:)'],... 
    'brf_spp_410nm', [theta_spp', PlanarRad_L_spp(:,spp_band_row_num(1))],... 
    'brf_spp_510nm', [theta_spp', PlanarRad_L_spp(:,spp_band_row_num(2))],... 
    'brf_spp_610nm', [theta_spp', PlanarRad_L_spp(:,spp_band_row_num(3))],... 
    'brf_spp_710nm', [theta_spp', PlanarRad_L_spp(:,spp_band_row_num(4))],... 
    'ANIX', [band_centres(1:17)', PlanarRad_ANIX(1:17)']); 
 
save(strcat('PlanarRad_plot_data_',filename), 'PlanarRad_plot_data')
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A4.1 Derivation of Eq. 4.23 
 
The radiometric flux onto the detector Φd  at the spheres exit port is given by 

 Φd =
ApΩdet−pΦi

πAs
× ρ
1− ρ(1− f ) ,

 Eq.A4.1 

where Ap  is the area of the exit port, Ωdet−p  is the solid angle subtended by the 

detector from the exit port,  is the input flux,  is the surface area of the 

integrating sphere,  is the reflectance of the PTFE sphere and  is the sphere 

port fraction. 

 

Given an equation of the form 

 y = Ax
1− Bx ,

 Eq.A4.2 

where y , x , A  and B  are terms in Eq. A4.1, as follows 

 y = Φd , 
Eq.A4.3 

 x = ρ , Eq.A4.4 

 A =
ApΩdet−pΦi

πAs ,
 Eq.A4.5 

 B = 1− f( ) . 
Eq.A4.6 

Differentiation of y  with respect to x  in Eq.A4.2 requires the quotient rule 

 f (x) = g(x)
h(x) ,

 Eq.A4.7 

 
δ y
δ x

= ′f x( ) = ′g (x)h(x)− g(x) ′h (x)
(h(x))2 ,

 Eq.A4.8 

where 

 g(x) = Ax , 
Eq.A4.9 

Φ i As

ρ f
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 h(x) = 1− Bx . 
Eq.A4.10 

Differentiation of Eq.A4.9 and Eq.A4.10 yields 

 ′g (x) = A , 
Eq.A4.11 

 ′h (x) = −B . 
Eq.A4.12 

Substitution of Eq.A4.9, Eq.A4.10, Eq.A4.11 and Eq.A4.12 into Eq.A4.8 gives 

 

                 
δ y
δ x

= A(1− Bx)+ ABx
(1− Bx)2 ,

 

                       =
A(1− Bx + Bx)
(1− Bx)2 ,

 

                       =
A

(1− Bx)2 .
 

Eq.A4.13 

Substituting in the terms from Eq.A4.3, Eq.A4.4, Eq.A4.5, and Eq.A4.6 for y , x , 

A  and B  into Eq.A4.13 gives 

 
                δΦd

δρ
=

ApΩdet−pΦi

πAs
(1− ρ(1− f ))2 ,

 

                        =
ApΩdet−pΦi

πAs
× 1
(1− ρ(1− f ))2 .

 

Eq.A4.14 

Dividing Eq.A4.14 by Eq.A4.1 gives 

 

1
Φd

× δΦd

δρ
=
ApΩdet−pΦi

πAs
× 1
(1− ρ(1− f ))2

… 

× πAs
ApΩdet−pΦi

× 1− ρ(1− f )
ρ ,

 

                    =
1− ρ(1− f )
(1− ρ(1− f ))2

= 1
1− ρ(1− f ) .

 

Eq.A4.15 

Multiplying Eq.A4.15 by δρ  gives 

 
δΦd

Φd

= δρ
ρ(1− ρ(1− f )) , 

Eq.A4.16 
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= δρ

ρ
× 1
1− ρ(1− f ) ,

 

which is the relative change in flux owing to the change in reflectivity of the 

sphere. Rearranging Eq.A4.16 to find the change in reflectivity of the sphere 

gives 

 

δρ
ρ

=

δΦd

Φd
1

1− ρ(1− f )  

                            

= δΦd (1− ρ(1− f ))
Φd .

 

Eq.A4.17 

 


