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Abstract

In 1993 Estes and Guralnick conjectured that any totally real separable monic
polynomial with rational integer coefficients will occur as the minimal poly-
nomial of some symmetric matrix with rational integer entries. They proved
this to be true for all such polynomials that have degree at most 4.

In this paper, we show that for every d ≥ 6 there is a polynomial of
degree d that is a counterexample to this conjecture. The only case still in
doubt is degree 5.

One of the ingredients in the proof is to show that there are Salem num-
bers of degree 2d and trace −2 for every d ≥ 12.
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1. Introduction

1.1. Salem numbers of trace −2

A Salem number is a real algebraic integer τ > 1, conjugate to its re-
ciprocal 1/τ , of degree at least 4, and with all conjugates other than τ and
1/τ lying on the unit circle in the complex plane. See [20] for a recent sur-
vey. Smyth [19] considered the problem of finding Salem numbers of negative
trace, and found examples that had trace −1 of every (even) degree greater
than or equal to 8. He asked how small the trace could be. McMullen [18]
raised the question of whether or not there are any Salem numbers of trace
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less than −1, still none being known at that time. The first examples having
trace −2 were found by McKee and Smyth [12], and indeed they showed that
there are Salem numbers of every trace [13].

In this paper we shall show that there are Salem numbers of trace −2
for every (even) degree greater than or equal to 24: Proposition 1 below.
The key new idea is to use an interlacing construction from [12] to produce a
finite number of infinite families of Salem numbers that between them cover
all sufficiently large degrees.

1.2. A conjecture of Estes and Guralnick

Let A be an integer symmetric matrix, and let mA(x) be its minimal
polynomial. Then certainly mA(x) is a monic integer polynomial with all
roots real. Moreover it is separable, since A is diagonalisable over Q. In
[7, page 84] Estes and Guralnick make the conjecture ‘that any totally real
separable monic integral polynomial can occur as the minimal polynomial of
a symmetric integral matrix’. In support of this conjecture, they prove it to
be true if the polynomial in question has degree at most 4.

Dobrowolski [4] showed that there are infinitely many counterexamples
to the conjecture, by obtaining a lower bound on the discriminant of any
polynomial that appears as the minimal polynomial of an integer symmetric
matrix and noting that infinitely many totally real separable monic integral
polynomials have a discriminant that is lower than his bound. The smallest
known degree for any of his counterexamples is 2880.

McKee [10] found counterexamples that had much lower degrees, includ-
ing three of degree 6. This was based on a classification of all integer sym-
metric matrices such that the difference between the largest and smallest
eigenvalues is less than 4. Recently [17] we found a sharp lower bound for
the trace of the minimal polynomial of an integer symmetric matrix, and
used this to provide some further counterexamples to the Estes-Guralnick
conjecture.

The current paper finds counterexamples for every degree greater than or
equal to 6. All sufficiently large degrees are covered by minimal polynomials
of numbers of the form τ + 1/τ + 2, where τ is a Salem number of trace −2.
Smaller degrees are dealt with by ad hoc arguments. It is still not known
whether the conjecture is true or false for degree-5 polynomials.
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1.3. Statement of results

We now list the main results of the paper, and deduce some immediate
corollaries, leaving the proofs of the main results until later. We start with
an existence theorem for Salem numbers of trace −2 for all large enough
degrees.

Proposition 1. For all d ≥ 12 there is a Salem number of degree 2d and
trace −2.

The proof will be in Section 2. There are also three Salem numbers of
degree 2d and trace −2 for d = 10 [12]. It is known that there are none for
d < 10 [19], and none for d = 11 [8] .

If τ is a Salem number of degree 2d and trace t, then τ + 1/τ + 2 is a
totally positive algebraic integer of degree d and trace 2d+t. As an immediate
corollary to Proposition 1 we have:

Corollary 2. For all d ≥ 12 there is a totally positive algebraic integer of
degree d and trace 2d− 2.

In [17] we showed that the minimal polynomial of any totally positive
algebraic integer of degree d and trace < 2d − 1 cannot be the minimal
polynomial of integer symmetric matrix. Hence we have:

Corollary 3. There are counterexamples to the conjecture of Estes and Gu-
ralnick for all degrees d ≥ 12.

Using small-span arguments, we find counterexamples for all degrees be-
tween 6 and 11 inclusive (Section 3), establishing our main result:

Theorem 4. For all d ≥ 6, there exists a totally real separable monic integer
polynomial of degree d that is not the minimal polynomial of any integer
symmetric matrix.

Thus the conjecture of Estes and Guralnick has counterexamples for all
degrees greater than or equal to 6. There remains the question of whether or
not there exists a totally real separable monic integer polynomial of degree
5 that is not the minimal polynomial of any integer symmetric matrix.
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2. Proof of Proposition 1

Following [13], we say that a pair of relatively prime polynomials p and
q satisfy the circular interlacing condition if they both have real coefficients
and positive leading terms, and all their zeros interlace on the unit circle
(progressing round the unit circle, zeros of p and q are encountered alter-
nately). If m and n are coprime integers, then q = (zm+n − 1)/(z − 1) and
p = (zm − 1)(zn − 1)/(z − 1) satisfy the circular interlacing condition (see
the first entry in [1, Table 8.3], or family 1 in [16, Table 1], or the interlacing
quotient of An(a, b) in [14, Table 7]). For n ≥ 1, let Φn(z) be the minimal
polynomial of the primitive nth root of unity e2πi/n. It will prove convenient
to use the terminology cyclotomic polynomial to mean any monic polynomial
with integer coefficients that has all its roots on the unit circle. After Kro-
necker [9], a cyclotomic polynomial is a product of one or more of the Φn. A
Pisot number is a real algebraic integer τ > 1 such that all conjugates of τ
(other than τ itself) have modulus strictly less than 1.

Applying Propositions 3.3 and 3.2(a) of [13] gives the following lemma.

Lemma 5. Let p1, p2, p3, p4, p5 and n be pairwise coprime integers, all at
least 2. Put

q(z)

p(z)
=

zp1+p2 − 1

(zp1 − 1)(zp2 − 1)
+

zp3+p4 − 1

(zp3 − 1)(zp4 − 1)
+

zp5+n − 1

(zp5 − 1)(zn − 1)
, (1)

where p and q are relatively prime. Then (z2 − 1)p(z) − zq(z) = f(z)g(z),
where f(z) is the minimal polynomial of a Salem number (or possibly a
quadratic Pisot number), and g(z) is either a cyclotomic polynomial or is
equal to 1.

The distinction of the naming of n will become apparent in the next
Lemma. We note that a difficulty with applying Lemma 5 to construct Salem
numbers of specified trace is the possibility of cyclotomic factors appearing
in (z2 − 1)p(z) − zq(z). We apply a method that was used in [12, Section
2.3] to find infinite families where the irreducibility of (z2− 1)p(z)− zq(z) is
guaranteed (in the notation of Lemma 5, g(z) = 1).

Lemma 6. Let (p1, p2, p3, p4, p5) be one of the following 5-tuples:

(2, 3, 5, 7, 11), (2, 3, 5, 7, 13), (2, 3, 5, 11, 13),
(2, 3, 5, 11, 19), (2, 3, 5, 13, 17), (2, 3, 5, 13, 19),
(2, 3, 5, 17, 19), (2, 3, 7, 11, 13), (2, 3, 7, 11, 17),
(2, 3, 7, 11, 19), (2, 3, 7, 13, 17), (2, 3, 7, 13, 19),
(2, 3, 11, 13, 19), (2, 3, 11, 17, 19), (2, 3, 13, 17, 19).
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Then for every n ≥ 5 such that gcd(n, p1p2p3p4p5) = 1, and with p(z) and
q(z) defined by Lemma 5, the polynomial (z2 − 1)p(z)− q(z) is the minimal
polynomial of a Salem number of trace −2 and degree n+ p1 + p2 + p3 + p4 +
p5 − 3.

Before embarking on the proof, we make a few remarks.
The coprimeness condition ensures that in each of the three fractions on

the right of (1), the only common factor in the numerator and denominator
is z− 1. Hence the degree of p (and q) is n+

∑
(pi− 1) = n− 5 +

∑
pi. The

leading coefficient of q is 3, and p(z) = zd+5zd−1+· · ·, where d = n−5+
∑
pi.

Put f(z) = (z2− 1)p(z)− zq(z). If f(z) is irreducible, then any root of f(z)
has degree n − 3 +

∑
pi, and trace −5 + 3 = −2. After Lemma 5, we

would have that f(z) is the minimal polynomial of a Salem number. All that
remains to be proved, therefore, is that f(z) is irreducible for all the claimed
values of n and (p1, . . . , p5).

The restriction on n implies that it is odd, and with p1 = 2 and the
other pi odd, we see that the stated degree is even. The proof technique will
not work (and the result is not always true) for all 5-tuples, which explains
some of the gaps in the list of 15 given. The proof does work for the 5-tuples
(2, 3, 5, 7, 17) and (2, 3, 7, 17, 19), but neither of these is needed for the sequel.

Proof. After our previous remarks, all that remains to be shown is that
f(z) = (z2 − 1)p(z) − zq(z) is irreducible for all the advertised values of
(p1, . . . , p5) and with n ≥ 5 coprime to their product. After Lemma 5, we
need merely exclude cyclotomic factors. To this end we use a trick from [2]:
if ζ is a root of unity, then one of −ζ, ζ2, or −ζ2 is a Galois conjugate of ζ.
Hence if ζ is a root of unity that is a zero of a certain integer polynomial,
then at least one of −ζ, ζ2, or −ζ2 is a zero of the same polynomial.

Put

Q(y, z)

P (y, z)
=

zp1+p2 − 1

(zp1 − 1)(zp2 − 1)
+

zp3+p4 − 1

(zp3 − 1)(zp4 − 1)
+

yzp5 − 1

(zp5 − 1)(y − 1)
,

in lowest terms. Note that Q(zn,z)
P (zn,z)

= q(z)
p(z)

, but that the left hand side here will
not be in lowest terms: both numerator and denominator will be divisible by
z − 1.

We look for cyclotomic points on the curve C : (z2−1)P (y, z)−zQ(y, z) =
0 (that is, points where both y and z are roots of unity), and, if convenient,
we use that y = zn. In particular, if z is replaced by −z (respectively z2 or
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−z2), then y is replaced by −y (respectively y2 or −y2), since n must be odd
(gcd(n, p1) = 1). This implies that if (y, z) is a cyclotomic point on C with
y = zn, then one of (−y,−z), (y2, z2), (−y2,−z2) is a cyclotomic point on C.
Hence (y, z) lies on both C and one of C1 : (z2−1)P (−y,−z)+zQ(−y,−z) =
0, C2 : (z4 − 1)P (y2, z2) − z2Q(y2, z2) = 0, or C3 : (z2 − 1)P (−y2,−z2) +
z2Q(−y2,−z2) = 0.

For each of the fifteen 5-tuples (p1, p2, p3, p4, p5), and each of the three
pairs (C,C1), (C,C2), (C,C3) we eliminate y to get a single-variable polyno-
mial in z which restricts z to a finite set. Similarly one can eliminate z to
limit y to a finite set.

For example, with (p1, p2, p3, p4, p5) = (2, 3, 13, 17, 19) one finds immedi-
ately that there are no cyclotomic points on the intersection of C and C1, or
of C and C3, as the single-variable polynomial in z obtained by eliminating y
has no cyclotomic roots. But eliminating y between C and C2 gives a polyno-
mial with cyclotomic factors Φ2(z), Φ3(z), Φ13(z), Φ17(z) and Φ19(z). These
cyclotomic polynomials, however, are all factors of p but not q, so cannot
divide f(z). Thus there are no cyclotomic points on C that correspond to
solutions to (z2 − 1)p(z)− zq(z) = 0, for this choice of (p1, p2, p3, p4, p5).

A more complicated example arises with (p1, p2, p3, p4, p5) = (2, 3, 11, 17, 19),
and four other cases. Here eliminating y between C and C1 gives a polyno-
mial with cyclotomic factor Φ12(z), which cannot be excluded as trivially as
in the previous example. In this case we resort to eliminating z between C
and C1, and find that there is a cyclotomic factor Φ4(y) = y2 + 1. Since
y = zn and the only awkward cases are where z is a primitive 12-th root of
unity, we must have n divisible by 3, contradicting coprimeness to p2 = 3.

Similar calculations were performed for each of the advertised 5-tuples,
and in all cases it was established that (z2−1)p(z)−zq(z) has no cyclotomic
roots, for any value of n coprime to p1p2p3p4p5. As remarked before the
proof, there are 5-tuples, such as (2, 3, 5, 7, 19), for which this process fails.
For example, when (p1, . . . , p5) = (2, 3, 5, 7, 19) and n = 43, the polynomial
f(z) is not irreducible.

Now as n varies over positive integers prime to p1, . . . , p5, where (p1, . . . , p5)
is one of the 5-tuples in the above Lemma, one finds Salem numbers of degree
n+p1 +p2 +p3 +p4 +p5−3 and trace −2. This gives infinitely many degrees
for Salem numbers of trace −2, lying in residue classes that repeat modulo
p1p2p3p4p5, and in particular they repeat modulo 2× 3× 5× 7× 11× 13×
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17× 19 = 9699690.

Lemma 7. There are Salem numbers of trace −2 and degree 2d for all d ≥
21.

Proof. Each of the fifteen infinite families of Salem numbers of trace −2
provided by the previous Lemma gives examples of degrees that lie in certain
residue classes modulo 9699690, with degrees at least p1+p2+p3+p4+p5+2
(we need n ≥ 5 since 2 and 3 are among our pi in all cases). A computation
shows that all even residue classes modulo 9699690 are covered, and that all
even degrees greater than or equal to 42 are covered.

For example, suppose we wish to find a Salem number of degree 1000
and trace −2 (or indeed degree 1000 + 9699690t for any t). We cannot use
(2, 3, 5, 7, 11), as we would need n = 1000 − 2 − 3 − 5 − 7 − 11 + 3 = 975,
which is not prime to all of 2, 3, 5, 7, 11. But we can use (2, 3, 7, 11, 13), as
then n = 1000− 2− 3− 7− 11− 13 + 3 = 967 is prime to all of 2, 3, 7, 11,
13. We produce the polynomial z1000 + 2z999 − 2z998 − 19z997 + · · ·+ 2z + 1.

The given fifteen infinite families form a minimal covering set in the sense
that each of the families contributes to at least one residue class modulo
9699690 that is not covered by any of the others. No covering set exists
using only the primes 2, 3, 5, 7, 11, 13, 17: we are forced to use primes up
to 19.

To finish the proof of Proposition 1, we need to find Salem numbers of
degree 2d and trace −2 for 12 ≤ d ≤ 20. For d = 19 we can use the family
corresponding to (2, 3, 5, 7, 11), with n = 13. For d ∈ {13, 14, 16, 20} we
appeal to another interlacing argument.

Write

q(z)

p(z)
=

(z − 1)(z8 + z7 − z5 − z4 − z3 + z + 1)

(z + 1)(z3 − 1)(z5 − 1)
+

(zp1+p2 − 1)

(zp1 − 1)(zp2 − 1)

where the fraction on the left is in lowest terms, and p1, p2 are distinct primes
greater than 5. Then p and q satisfy the circular interlacing condition (see
[15, §9.2]). If it is irreducible, the polynomial (z2 − 1)p(z) − zq(z) is the
minimal polynomial of a Salem number of trace −2 and degree p1 + p2 + 8.
Taking (p1, p2) ∈ {(7, 11), (7, 13), (11, 13), (13, 19)} give us examples of Salem
numbers of trace −2 and degrees 26, 28, 32, 40. (Sadly for (7, 19) and (11, 17)
the polynomial (z2 − 1)p(z)− zq(z) is not irreducible.)
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The smallest degree of a Salem number of trace −2 is degree 20 [12]:
there are exactly three such Salem numbers. It is known that there are none
of degree 22 [8]. In [11], a method was given for computing totally positive
algebraic integers of small trace. In particular, some 209 examples of degree
12 and trace 22 were computed. Many of these correspond to Salem numbers
of degree 24 and trace −2, for example the larger real root of the palindromic
polynomial

z24 + 2z23 − 4z22 − 28z21 − 72z20 − 116z19 − 116z18 − 27z17 + 166z16

+431z15 + 701z14 + 900z13 + 973z12 + 900z11 + 701z10 + · · ·+ 1 .

In [5], 321 totally positive monic integer polynomials of degree 15 and
trace 28 were found. Of these, 6 correspond to Salem numbers of trace −2
and degree 30.

To complete the proof of Propostion 1, we need to find examples for
d = 17 and d = 18. Applying the technique of [11], we found examples for
d = 17 and d = 18:

z34 + 2z33 + z32 − 3z31 − 8z30 − 12z29 − 14z28 − 15z27 − 15z26 − 14z25

−13z24 − 13z23 − 13z22 − 12z21 − 9z20 − 4z19 + z18 + 3z17 + z16

−4z15 − 9z14 + · · · − 3z3 + z2 + 2z + 1 ,

and

z36 + 2z35 + z34 − 3z33 − 8z32 − 12z31 − 13z30 − 11z29 − 8z28 − 7z27 − 9z26

−13z25 − 17z24 − 20z23 − 21z22 − 19z21 − 15z20 − 12z19 − 11z18 − 12z17

−15z16 + · · · − 3z3 + z2 + 2z + 1 .

The methods of [5] and [6] would presumably also be effective in searching
for such examples.

This completes the proof of Proposition 1.
Whenever there is a Salem number of trace −2 and degree 2d, there is a

totally positive algebraic integer of degree d and trace 2d−2 (this is the case
t = −2 of the remark before Corollary 2). By [17] these give counterexamples
to the conjecture of Estes and Guralnick. We therefore have counterexamples
for degree 10, and for all degrees ≥ 12. Moreover these examples can be
explicitly constructed: given any particular degree there is a finite process
to produce a counterexample. In the next section we fill in most of the gaps
for other degrees: the only outstanding case being degree 5.
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3. Smaller degrees

The span of a totally real algebraic integer is the difference between the
largest and smallest conjugates. If a polynomial has all its roots real, then
its span is defined to be the difference between the largest and smallest
roots. Thus the span of a totally real algebraic integer equals the span
of its minimal polynomial. The span of an integer symmetric matrix is
defined to be the difference between the largest and smallest eigenvalues,
i.e., the span of its characteristic polynomial. Any of these three things
is said to have small span if its span is strictly less than 4. For small-
span algebraic integers/polynomials/matrices one can assume that all conju-
gates/roots/eigenvalues lie in the interval [−2, 2.5) (for algebraic integers θ,
replace θ by ±θ+c for some c ∈ Z; for polynomials apply the transformation
x 7→ ±x+ c; for matrices apply the transformation A 7→ ±A+ cI).

In [10], a complete description was given of all small-span integer sym-
metric matrices. As a consequence, two arguments were given [10, §5] for
potentially determining if a small-span polynomial is the minimal polyno-
mial of an integer symmetric matrix. If all the roots lie in the interval [−2, 2],
then a ‘growing’ procedure allows one to bound the size of the matrix, and
hence bound the search: it was in this way that three degree-6 counterex-
amples to the Estes-Guralnick conjecture were found. A simpler argument
applies if not all the roots are in the interval [−2, 2] (but with all the roots in
the interval [−2, 2.5)). Then one needs only to check matrices up to 12× 12
(Theorem 3 of [10]). From the table at the end of §3 of [10], we see that there
are counterexamples of degrees 7, 8, 9, 10, 11, 12, 13. These are already more
than enough to complete the proof of Theorem 4, although we remark that
Capparelli et al. [3] give small-span examples of degrees 14, 15 and 16 that
do not correspond to Salem numbers but give further counterexamples to the
Estes-Guralnick conjecture.
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