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Abstract 

The conditions which lead to caldera collapse are still poorly constrained. As there 

have only been four, possibly five, well-documented caldera forming events in the 

past century, the geodetic signals produced during chamber roof subsidence, or 

chamber volume reduction (shrinkage) in general, are not well documented or 

understood. In particular, when two or more geodetic sources are operating and 

providing signals at the same time, it is important to be able to estimate the likely 

contribution of each. Simultaneous activities of different geodetic sources are 

common and include pressure changes in magma chambers/reservoirs occurring at 

the same time as dyke emplacement. Here we present results from numerical models 

designed to simulate the subsidence of a magma-chamber roof, either directly 

(chamber shrinkage) or through ring-fault displacement, and the induced surface 

deformation and crustal stresses. We consider chamber depths at 3 km, 5 km, and 7 

km below the crustal surface, using both non-layered (isotropic) and layered 

(anisotropic) crustal models. We also model the effects of a caldera lake and of a 

thick ice cover (ice sheet) on top of the caldera. The results suggest that magma-

chamber roof subsidences between 20 m and 100 m generate large (tens of 

centimetres) vertical and, in particular, horizontal displacements at the surfaces of 

the ice and the crust out to distances of up to tens of kilometres from the 

caldera/chamber centre. Crustal layering tends to reduce, but increasing chamber 
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depth to enlarge, the horizontal and vertical surface displacements. Applying the 

results to the ice subsidence in the Bardarbunga Caldera during the 2014-2015 

Bardarbunga-Holuhraun volcanotectonic episode indicates that the modelled ice 

displacements are less than those geodetically measured. Also, the geodetically 

measured crustal displacements are less than expected for a 60 m chamber-roof 

subsidence. The modelling results thus suggest that only part of the ice subsidence is 

due to chamber-roof subsidence, the other part being related to flow in the ice. We 

show that such a flow is likely within the caldera as a result of the stress induced by 

the 45-km-long regional dyke emplaced (primarily in vertical magma flow) during 

the episode. This conclusion is further supported by the model results suggesting that 

the ring-fault (piston-like) displacements must have been much less than the total 60 

m ice subsidence, or else faults with tens-of-metres displacements would have cut 

through the ice (these are not observed). We suggest that the ring-fault subsidence 

was triggered by small doming of the volcanic field and system hosting the 

Bardarbunga Caldera and that this doming occurred as a result of magma inflow and 

pressure increase in a deep-seated reservoir. The doming is confirmed by GPS 

measurements and supported by the seismicity results. The magmatic pressure 

increase in the reservoir was, in terms of the present model, responsible for the 

regional dyke emplacement, the Holuhraun eruption, and part of the stress 

concentration around, and displacement of, the Bardarbunga Caldera.  

Keywords: surface deformation, surface stresses, magma chambers, caldera collapse, 

Bardarbunga-Holuhraun  

1. Introduction 

Caldera collapses are a common occurrence in the evolution of major volcanic 

systems (Fig. 1). Whilst many of these events are catastrophic and associated with 

the expulsion of large volumes of magma and ignimbrite formation (Druitt and 

Sparks, 1984), perhaps the more prevalent situation involves relatively small or no 

magma expulsion (MacDonald, 1965). Well-documented caldera collapses occurred 

in 2000 and 2007 at the summits of Miyakejima (Geshi et al., 2002) and Piton de la 

Fournaise (Peltier et al., 2008). These events have been referred to as periodic (Geshi 

et al., 2002; Michon et al., 2011) or slow collapses. These terms relate to the total 

caldera growth occurring over periods of perhaps as much as one month (Geshi et 
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al., 2002). Much of the longer-period caldera growth was due to mass wasting, a 

process which likely also shaped lake Öskjuvatn (Iceland) following the 1875 

caldera forming eruption (Hartley and Thordarsson, 2012). A mechanism of ‘slow 

caldera collapse’ has also been suggested as an explanation for the measured ice 

subsidence during the 2014-2015 Bardarbunga episode (Riel et al., 2015; 

Sigmundsson et al., 2015).    

 

Fig. 1 Simplified geological map of Iceland, showing the main active and inactive 

volcanoes that contain collapse calderas. Many of these calderas are fully or in part 

sub-glacial, that is located underneath a body of ice. Glacier outlines are highlighted 

in this map as white areas.    

 

The timescale of deformation at calderas ranges from events of hours to days (Stix 

and Kobayashi, 2008) to longer events taking months or years (Hartley and 

Thordarsson, 2012) as well as cyclic inflation and deflation over tens, hundreds and 

probably thousands of years (Phillipson et al., 2013). Collapse may occur along pre-

existing structures, such as regional faults or earlier-formed ring-faults (Fig. 2), but 

the shape and size of collapse is significantly influenced by the depth, size, and 

shape of an underlying magma chamber (Acocella, 2007; Cole et al., 2005).  
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The movement of large crustal segments, as occurs during the formation or 

reactivation of collapse calderas, must produce significant crustal deformation. 

However, the magnitude and type of the deformation is poorly constrained. This is 

partly due to the lack of geophysical measurements syn-collapse, the exceptions 

being Piton de la Fournaise (Peltier et al., 2008) and Miyakejima (Geshi et al., 2002), 

although measurements at these locations were predominantly limited to the central 

edifice and vent area. Therefore, understanding the far-field effects of crustal 

subsidence due to caldera formation or chamber shrinkage are useful for constraining 

geophysical observations at volcanoes where the summit region cannot be observed, 

either due to cloud cover, inaccessibility, or ice cover. The last point is salient 

because many, if not most, of the central volcanoes in Iceland are ice covered (Figs. 

1 and 3). In addition, understanding the timing and development of collapse is 

important for hazard and risk estimation, partly because many calderas are associated 

with the formation of ring-dikes (Fig. 2) (Browning and Gudmundsson, 2015) and 

give rise to large eruptions (Gudmundsson, 2015).  

 

When magma leaves or flows out of a chamber/reservoir during an eruption and/or 

dyke injection, the volume of the chamber/reservoir decreases. The same may 

happen during caldera collapse (Gudmundsson, 2014, 2015). The volume decrease 

or shrinkage affects the crustal segment hosting the chamber, primarily through 

changes in stress and associated displacement and strain. The effects of chamber 

shrinkage are most easily detected through surface deformation. The aim of this 

work is to understand better a) how the surface deformation associated with chamber 

shrinkage, in particular during roof subsidence, is reflected in horizontal and vertical 

displacements (and stresses) at the surface of the hosting crustal segment (as well as 

at the surface of the ice cover), b) how the surface deformation changes with 

distance from the chamber, and c) how much surface deformation can feasibly be 

accommodated in an elastic crust before ring-faults will form or reactivate, resulting 

in a normal caldera collapse. The results, while completely general, are here applied 

to the 2014-15 Bardarbunga-Holuhraun volcano-tectonic episode.   
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Fig. 2 Exposed sections of extinct central volcanoes in the Tertiary volcanic regions 

of East (A, B) and West (C) Iceland.  An extinct - and now well exposed - 

granophyre magma chamber at Slaufrudalur in East Iceland. The exposure shows the 

contact (inset) between the granophyre plutonic rocks at the base of the picture and 

the basaltic lava pile at the top of the picture, into which the chamber was originally 

emplaced. Shallow chambers such as this one commonly gives rise to a vertical 

collapse, culminating in the formation of a surface caldera. Although no evidence 

exists for a collapse at Slaufrudalur, many eroded central volcanoes in Iceland show 

clear ring-faults, perhaps the best example being Hafnarfjall in West Iceland (C).  
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2. Stress fields controlling caldera formation  

Many analogue models of caldera collapse indicate initial ground surface slumping 

(Lavallée et al., 2004) followed by the formation of peripheral faults that ultimately 

control the majority of vertical subsidence (Acocella et al., 2000; Acocella, 2007; 

Geyer et al., 2006; Holohan et al., 2005; Kennedy et al., 2004). As many of these 

models use dry sand or other similar granular materials to simulate the crust, it is 

often impossible to determine surface displacements far from the deformation centre. 

This follows partly because a dry sand pack lacks cohesion (which corresponds to 

rock tensile strength) and normally does not transmit tensile stresses as solid linear 

elastic material. By contrast, the crust behaves approximately as linear elastic solid 

material with a non-zero tensile strength. More specifically, the range of in-situ 

tensile strength of solid rocks is 0.5-9 MPa, the most common values being 2-4 MPa 

(Gudmundsson, 2011). Numerical models which simulate an elastic crustal segment 

hosting a magma chamber therefore provide a reasonable approximation of surface 

ground deformation (De Natale and Pingue, 1993; Hickey and Gottsmann, 2014).  

In order for a caldera to form, or for slip to occur on a pre-existing ring-fault, there 

must be suitable state of stress within the crust. The initiation of sub-vertical, normal 

ring-faults depends on three stress field conditions which must be satisfied 

simultaneously (Gudmundsson, 1998; Folch and Marti, 2004).  

1. The minimum value of σ3, the maximum tensile (minimum compressive) 

principal stress, must be at the surface. 

2. The maximum value of (σ1-σ3)/2, the shear stress, must occur above the outer 

margins or lateral edges of the magma chamber, that is, in a zone extending 

from the lateral edge of the chamber to the surface and within which the ring-

fault forms (or slips). 

3. The maximum tensile stress at the surface must peak at a radial distance 

approximately equal to the lateral dimension, the diameter, of the magma 

chamber.    

These stress conditions are most likely to be induced by a double magma chamber, 

where the shallow chamber is sill-like and (a) the crustal segment hosting the double 

chamber is subject to horizontal extension, or (b) the deeper chamber, a large 
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reservoir, is subject to slight increase in magma pressure so as to dome the crustal 

segment hosting the shallower chamber (Gudmundsson, 1998, 2007) (Fig.3). Other 

predominant collapse trigger mechanisms (Marti et al., 2009) include (i) internal 

magma chamber overpressures initiating roof and surface fractures (e.g., 

Gudmundsson, 1998; Gray and Monaghan, 2004; Gudmundsson, 2007; Gregg et al., 

2012) and (ii) internal magma chamber underpressure following chamber rupture 

(e.g., Roche et al., 2000; Folch and Marti, 2004; Geyer et al., 2006; Kusumoto and 

Gudmundsson, 2009; Hologhan et al., 2011). Here we consider in detail a situation 

more compatible with the second of these two mechanisms, namely an inferred 

underpressure in the shallow chamber, particularly in view of the suggestions that 

the ice subsidence during the Bardarbunga-Holuhraun episode being related to 

pressure decrease in the chamber (e.g.,  Riel et al., 2015; Sigmundsson et al., 2015).  

 

Fig. 3 Sub-glacial caldera occupied by a caldera lake. Here the ring-fault is a normal 

fault, as is inferred for nearly all collapse calderas in Iceland (Bjarnason, 2014), 

including the Bardarbunga Caldera (Riel et al., 2015).  The shallow chamber is fed 

by a much larger deep-seated reservoir that undergoes periods of doming and 

inflation when receiving new input of melt or magma. In this example the area of 

doming is much larger than the caldera. Modified after Gudmundsson (2007).  
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As indicated above, shallow chambers within crustal segments undergoing slight 

doming, regional extension, or both are the ones most likely to generate stress 

concentrations favourable for ring-fault formation (Gudmundsson, 2007). Prime 

examples of this type of regional settings are the volcanoes of the Eastern Volcanic 

Zone (EVZ) in Iceland (Gudmundsson, 2007), the Kenyan Rift valley (Acocella, 

2007) and the Taupo Volcanic Zone (TVZ) in New Zealand (Cole, 1990). Figure 4 

shows the stresses around a sill-like magma chamber with negative internal pressure, 

an underpressure, of 5 MPa (e.g., Folch and Marti, 2004), located at 5 km depth in a 

40-km wide and 20-km thick crustal segment but simultaneously subject to excess 

(doming) pressure of 10 MPa from a deep-seated reservoir. In this example, the 

doming pressure largely controls the stress/displacement fields and the maximum 

tensile stress concentrates at the free surface in a zone above the lateral margins or 

edge of the shallow sill-like chamber. In addition, the maximum shear stress 

concentrates at the lateral margins of the magma chamber at depth. These conditions 

are ideal for the formation of, initially, tension fractures at the surface that propagate 

down towards the chamber and change at a critical depth - normally less than 0.5 km 

(Gudmundsson (2011) - to normal faults (Gudmundsson 1998; Gray and Monoghan, 

2004). If the tensile stresses are higher at the magma chamber margin than at the free 

surface above the margin, then a ring-dyke would be more likely to form 

(Gudmundsson, 2007).  

When a caldera forms, it is common for the depression to be filled with water, 

generating in a caldera lake. Well-known examples include Crater Lake, USA 

(Williams, 1941) and Askja, Iceland (Hartley and Thordarson, 2012) amongst many 

others (Fig. 3). The occurrence of sub-glacial lakes within calderas has also been 

noted, such as in the Grimsvötn volcanic system in Iceland (Gudmundsson et al., 

1997). A caldera lake is important because the solid contact with water gives rise to a 

free surface, that is, a surface of zero shear stress. Therefore, a caldera lake will 

reduce the mechanical coupling between bedrock and glacier which in-turn will 

influence stresses and displacements within the ice.    
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Fig. 4 Stress fields favouring the formation of caldera ring-faults. The stresses shown 

are generated around a sill-like magma chamber, 8 km wide and 2 km thick, located 

at 5 km depth in a 20-km-thick and 40-km-wide crustal segment subject to horizontal 

tensile stress of 5 MPa and doming stress (pressure) from a deep-seated reservoir (at 

the base of the model) of 10 MPa. Chamber excess pressure is negative 

(underpressure) 5 MPa and it is hosted within a homogeneous, isotropic crustal 

segment of stiffness (Young’s modulus) 40 GPa and Poisson’s ratio of 0.25 (see 

Table 1). A, model configuration; B, magnitudes of the maximum principal tensile 

stress σ3; C, magnitudes of the von Mises shear stress τ; D, maximum principal 

tensile stress σ3, and von Mises shear τ stress at Earth’s free surface; E,  maximum 

principal tensile stress σ3, and von Mises shear τ stress around the magma-chamber 

boundary. Figure C shows clearly that the shear stress concentrates in subvertical 

zones above the lateral ends of the chamber, thereby encouraging the formation of a 

subvertical ring-fault.  

3. Model set-up 

The finite element program Comsol was used to investigate the crustal and ice-sheet 

response to the vertical displacement of the magma-chamber roof 

(www.comsol.com; cf. Zienkiewicz, 1979; Deb, 2006). In these models the magma 

chamber is modelled as a cavity (Gudmundsson, 2011; Grosfils et al., 2013). In the 

first model the chamber is residing within a homogeneous, isotropic elastic half-

space with a Young’s modulus (E) of 40 GPa and Poisson’s ratio (ν) of 0.25 (Fig. 4). 

http://www.comsol.com/
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In this model, the focus is on the typical conditions for ring-fault formation or 

reactivation in rift-zone environment. Thus, the loading condition is a combination 

of doming excess pressure of 10 MPa in the deep-seated reservoir and a horizontal 

tension of 5 MPa. The results are in agreement with earlier results suggesting that 

doming, horizontal tension, or both are loading conditions that favour the 

concentration of shear stress in a zone above the lateral ends or edges of the shallow 

chamber (Fig. 4B). Furthermore, the induced tensile stress peaks where these zones 

meet the free surface (Fig. 4A). The zones of high shear stress are thus likely to 

develop ring-faults, for the given loading conditions.  

Horizontal tension, however, will not be much discussed here. In the later part of the 

paper, we discuss the effects of doming by the deep-seated reservoir. The main focus 

here is on the effects of shallow-chamber roof subsidence on the associated surface 

deformation and stresses. The roof (upper boundary) of the chamber is supposed to 

subside, so that, the loading is prescribed negative vertical (z-axis) displacement. 

The vertical roof displacements tested in the models range from 20 m to 100 m. To 

make the models realistic, the crustal segment hosting the chamber is also modelled 

as anisotropic, that is, layered (Fig. 5). In the anisotropic models, directly above the 

chamber there are six layers, each with thickness t and of varying stiffness (Young’s 

modulus, E) but constant density (ρ = 2500 kg/m
3
) and constant Poisson’s ratio (ν = 

0.25), simulating an anisotropic crust. The number of layers used in the models is 

arbitrary as most volcanic systems are presumably made of hundreds of layers, while 

many of these may group into larger units of internally similar mechanical 

properties. Here we choose to include six layers or units simply to investigate the 

effects of crustal anisotropy on the local stresses and displacements. The uppermost 

layer of thickness (2t) represents an elastic body of ice; namely a glacier, with a 

Young’s modulus of 4 GPa. We use ice as the top-most layer primarily because 

many volcanoes are located beneath ice sheets, particularly in Iceland, including 

recently erupting volcanoes in Iceland such as Bardarbunga (Gudmundsson et al., 

2014; Riel et al., 2015; Sigmundsson et al., 2015), Grimsvotn (Gudmundsson et al., 

1997), and Eyjafjallajökull (Gudmundsson et al., 2012). 
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Fig. 5 Sketch of the model setup showing the geometric relationship between a 

shallow magma chamber within a crustal segment composed of five layers. In some 

subsequent models (referred to as layered models), the 5 layers have different 

stiffnesses (Young’s moduli), whereas in other models (referred to as non-layered 

models) all the 5 layers have the same Young’s modulus and thus function as a 

single, thick layer. At the surface of the crust, there is a caldera lake, providing a free 

surface (surface free of shear stress). In addition, a glacier is on top of the lake and 

the surrounding crust, the top of the glacial layer is another free surface. All models 

shown are symmetric with rotation around the z-axis (axi-symmetric), the base and 

vertical margins are fixed (i.e experience zero displacement). The magma chamber 

roof is subject to a prescribed vertical displacement between 20 and 100 m. In 

addition to the shallow magma chamber, several models include a deep-seated 

reservoir. (Modified after Folch and Marti, 2004, and Kinvig et al., 2009)  

 

For the purpose of this study we model the ice as a brittle layer which behaves 

elastically through its entire thickness (Geyer and Bindeman, 2011). Other studies 

assume that only certain parts of an ice layer behave elastically, with the remaining 

parts behaving as ductile - using, for example Glen’s flow law (e.g. Paterson, 1994; 

Gudmundsson et al., 2004; Schulson and Duval, 2009). Ice behaves elastically for 

high strain rates and comparatively low stresses or pressures (Schulson and Duval, 

2009). The brittle deformation of ice is exemplified in the formation or fractures, 

crevasses, as are common during subsidence associated with volcanism 

(Gudmundsson et al., 1997, 2004). The assumption of linear elastic behaviour of the 

ice is thus reasonable and does not significantly affect the calculated displacements 

and stresses in the crust (the surface rock) itself outside the ice sheet. The crustal 

layering or anisotropy is of much greater significance than the assumed elastic 

behaviour of the ice as regards surface deformation (e.g Manconi et al., 2007; Geyer 

and Gottsmann, 2010). The mechanical properties of ice are variable (Schulson and 
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Duval, 2009). For example, typical laboratory values of stiffness or Young’s 

modulus (E) can range from as high as 15 GPa (Gammon et al., 1983; Schulson and 

Duval, 2009) to more commonly 8-9 GPa, depending on temperature, and grain size 

and and orientation (Parameswaran, 1987). The stiffness values are only moderately 

anisotropic (Schulson and Duval, 2009). These are dynamic values, however. Static 

values are more difficult to measure because of time-dependent deformation in ice. 

Estimated typical static or field values for Young’s modulus of ice are around 1 GPa 

(Schulson and Duval, 2009). Poisson’s ratios for ice are commonly between 0.2 and 

0.4 (Schulson and Duval, 2009). In the modelling we use a Young’s modulus 

somewhere between typical field and (dynamic) laboratory values, or 4 GPa. Also, 

we use a Poisson’s ratio of 0.3 and a density of 920 kg m
-3

. The general crustal and 

ice parameters used in the numerical models are given in Table 1.  

 

In all models we assume a strong coupling between glacier and bedrock or crustal 

surface (except at the location of the caldera lake) using the same assumptions as 

Geyer and Bindeman (2011). More specifically, if the coupling between the ice and 

the bedrock is of sufficient strength, stresses within the crust are transmitted to the 

ice. Then the ice can be considered to act mechanically as part of the layered crust. 

The other mechanical situation is where the ice and crust are weakly bonded, in 

which case slip may occur along the weak boundary and stresses would not be 

transferred from the bedrock surface to the ice. We consider one such scenario where 

the ice and crust are not directly coupled, designed to represent a caldera lake. The 

lake depth is 0.5t (half the thickness of a typical crustal layer) and its width is a (the 

radius of the magma chamber/caldera). The lake is modelled as a free surface at all 

edges. This follows because the contact between water and the bedrock below as 

well as the contact with the ice above are surfaces of zero shear stress. As previously 
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stated, many if not most calderas develop a caldera lake at some point, particularly 

those calderas formed under ice (Fritz et al., 1990).  

If the stresses within a volcano are suitable for the formation of a caldera then 

displacement would be likely to occur along a bounding ring-fault (circumferential 

fault). In order to incorporate the mechanical response to ring-faulting we include in 

one of the models a soft (low-Young’s modulus) vertical zone directly above the 

magma-chamber edge. This zone is supposed to represent a typical caldera fault, a 

ring-fault (without a ring-dyke) consisting of a highly fractured and mechanically 

soft damage zone with respect to the host rock (Browning and Gudmundsson, 2015).  

The magnitudes of the vertical and horizontal displacements depend on the magma 

chamber size - in this case the chamber radius a is 4 km (its horizontal diameter thus 

8 km). All models assume uniform vertical displacement of the roof, that is, a piston-

like subsidence irrespective of the absence (as in most models) or the presence (as in 

one model) of the ring-fault itself.           

4. Comparison of numerical and analytical solutions  

Periods of unrest are often characterised by surface inflation or deflation of the 

volcano. This deformation signal is commonly explained in terms of a magmatic 

excess pressure change (pe) in the associated magma chamber of radius a and depth 

d below the surface, modelled as a nucleus of strain. In volcanology, such a nucleus 

is normally referred to as the “Mogi model” (Mogi, 1958; Fig.6), although the 

nucleus-of-strain solution with application to volcanoes was initially derived by 

Anderson (1936). Mogi’s analytical solution can be replicated using the finite 

element method (e.g., Masterlark, 2007; Hickey and Gottsman, 2014). If a Poisson’s 

ratio of 0.25 is assumed for the elastic half-space – generally a reasonable 

assumption – then the basic equations of the Mogi (1958) can be presented as 

follows: 
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where uz and ur are the vertical and horizontal (radial) displacements at the surface 

above the magma chamber, respectively. Also,  pe is the magmatic excess pressure in 

the chamber, a  is the radius of the chamber, μ is shear modulus, d is the depth to the 

centre of the chamber below the surface of the earth (Fig. 6), and r is the radial 

coordinate at the surface. At the point right about the centre of the magma chamber, 

we have r =0, and the maximum vertical displacement uz becomes (Fig. 6): 
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Magmatic underpressure, that is, pressure less than lithostatic, is often regarded as 

the condition for ring-fault and ring-dyke formation. In fact, an underpressure or 

contracting nucleus-of-strain was Anderson’s (1936) original model for the 

formation of ring-dykes and the connection with the Mogi model is straightforward 

(cf. Kusumoto and Gudmundsson, 2009).  

 

Fig. 6 Point-pressure source, a nucleus of strain, referred to as the Mogi model in 

volcanology. Such a model is commonly used for explaining surface deformation 

above an assumed spherical magma chamber. The solid curve gives the vertical 

surface displacement, which is maximum above the chamber centre. The dashed 

curve gives the horizontal surface displacements. The magma chamber, with radius 
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(a) is subject to negative excess pressure, that is, underpressure (-pe) and located at a 

depth (d) below the surface. (cf. Eqs. 1-3).  

 

In Fig. 7 we show the numerical results of a two-dimensional (circular) chamber 

subject to an underpressure of 10 MPa, a common underpressure value when 

considering ring-fault formation (Geyer et al., 2006; Gudmundsson, 2007; Kusumoto 

and Gudmundsson, 2009). We model the horizontal and vertical displacement at the 

surface of the ice and at the surface of the bedrock (the crust under and outside the 

ice sheet) for two magma-chamber depths: 3 km and 5 km. The modelled chamber 

radius is 1 km and is thus small in relation to the chamber depth below the surface, 

as it should be for a “Mogi model”. There are two basic model configurations. The 

first one (Fig. 7A) has no caldera lake, but the second one (Fig. 7B) has a caldera 

lake between the bottom of the ice and the bedrock surface. The lake is included in 

several of the models in this paper because, as indicated above, such lakes are 

common in the many calderas located beneath ice in Iceland (Gudmundsson et al., 

1997, 2004, 2012).  

The surface displacements, vertical and horizontal, are very small (less than 3 cm) 

for this type of loading (Fig. 7), suggesting that a ‘Mogi model’ is, as a rule, not very 

suitable for generating large (tens-of-metre scale) subsidences. The geometries of the 

displacement curves (Fig. 7), however, are in excellent agreement with those 

obtained from the Mogi model (Fig. 6). The displacement results (Fig. 7) are shown 

both for the surface of the rock (the crust under and outside the ice) as solid lines as 

well as for the surface of the ice itself, as broken lines. As is also seen in subsequent 

models, the caldera lake has great effects on the displacement curves for the surface 

of the ice. The other main results as regards the surface-displacement curves will be 

discussed in context of the later and more realistic models, to which we turn now.    
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Fig. 7 Crustal surface and ice-surface displacements resulting from negative excess 

pressure, or depressurisation, of -10 MPa in a circular chamber with a roof at 3 km 

and 5 km depth below the crustal surface. The upper model (a) shows a 

homogeneous isotropic crust with an upper ice layer. The lower model (b) also 

shows a homogeneous isotropic crust but this time incorporates a rectangular free 

surface, designed to replicate a caldera lake. Total displacement contours are given 

on the right in metres. The magnitude of displacements in the two models are 

generally similar, but the displacement patterns differ somewhat, especially in the ice 

layer.   

5. Roof subsidence of a sill-like magma chamber  

Here we present the results of the stresses and surface displacement induced by a 

given subsidence of the roof of a sill-like magma chamber. The chamber, modelled 

as a cavity within a crustal segment, is given a zero excess pressure condition at its 

lower boundary and prescribed a vertical displacement at the upper boundary in all 

models apart from those simulating slip on the ring-fault. Thus, in the models the 

chamber is in lithostatic equilibrium with its surroundings prior to the prescribed 

vertical displacement, that is, the roof subsidence. While these models are partly 

“inspired” by the events in Bardarbunga 2014-15, they are completely general and 

apply to all central volcanoes – collapse calderas in particular – under ice. We 

explore two main types of models, namely where the magma chamber is located (1) 
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in a homogeneous, isotropic crustal segment, and (2) in a layered, anisotropic, crustal 

segment. Based on information from Bardarbunga, where the maximum subsidence 

of the ice surface is estimated at around 60 m (Hensch et al., 2015), we explore 

vertical roof displacements or subsidences from 20 m to 100 m. To cover the likely 

shallow chamber depths, we consider chambers with roofs at depths of 3 km, 5 km, 

and 7 km below the crustal or rock surface.  

5.1 Homogeneous crustal segment 

These models are somewhat similar in set-up as the elastic half-space or the Mogi 

model (Mogi, 1958; Kusumoto and Gudmundsson, 2009; Fig. 7). There are, 

however, three main differences between the present models (Fig. 8) and the 

numerical models in Fig. 7. First, the shallow magma chamber (cavity) has here (Fig. 

8) a sill- like geometry in contrast to the spherical or point-like Mogi source (circular 

in Fig. 7). Also, here the radius of the chamber a is 4 km (Fig. 8), and thus 4-times 

the radius of the previous circular chamber (Fig. 7), and with a maximum thickness 

2b of 2 km. Second, the displacements at the surface of the bedrock (the crust) and 

the ice result here from prescribed chamber-roof vertical displacement or subsidence 

rather than the underpressure in the models in Fig. 7. Third, the subsequent sill-like 

chamber models analyse chambers in a layered (anisotropic) crustal segment rather 

than in an elastic half-space as is done in the Mogi model (Fig. 7), and some of the 

sill-like models also include a lake beneath the ice, thereby forming a free surface.  
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Fig. 8 Vertical and horizontal ground-surface (solid curves) and ice-surface (dashed 

curves) displacements in metres resulting from a maximum prescribed chamber-roof 

displacement of 100 m. Here the crust is non-layered. In all model runs the 

maximum vertical surface displacements of the ice and the crust occur over the 

chamber centre (in the caldera centre) whereas the maximum horizontal 

displacements of ice and crust occur around 5 km away from the caldera centre. 

Vertical crustal surface displacements are larger than the ice displacements, but the 

opposite is true for the horizontal displacements. Insets display the distances from 

the chamber where <1 m of vertical and horizontal displacements would be 

observed. Note that significant (10-20 cm) vertical displacement occurs out to 15 to 

16 km from the caldera centre. Similarly, horizontal displacements of 10-20 cm 

occur out to 30 to 45 km (depending on chamber depth) from the caldera centre. 

Chamber radius (a) is 4 km and half-thickness (b) is 1 km, depth (d) varies between 

each model run, as indicated by the separate line colours.      

 

Figure 8 shows the vertical (uz) and horizontal or radial (ur) surface displacements of 

the ice and the bedrock (or crust) resulting from a vertical chamber-roof 

displacement or subsidence of 100 m. Here there is no ring-fault. The chamber roof 

is prior to the displacement at different depths below the bedrock or crustal surface 

d, namely at depths of 3, 5 and 7 km. Salient model results are shown in Table 2, but 

here we summarise some of the basic results (Fig. 8) as follows: 

  The maximum vertical displacement (shown as negative displacement or 

surface subsidence), both of the ice and the crust, is above the centre of the 
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magma chamber. The subsidence reaches about 97 m in the bedrock/crust 

and about 78 m in the ice (Table 2).  The subsidence changes to uplift or 

doming at distances of 15-18 km (depending on the chamber depth) from the 

surface point right above the chamber or caldera centre (Fig. 8). Unless 

otherwise stated, chamber/caldera centre in the discussion that follows refers 

to this surface point. 

 The maximum horizontal displacement towards the centre (above the centre 

of the chamber), shown as negative, reaches its maximum at 4-5 km from 

chamber/caldera centre. The horizontal displacement reaches a maximum of 

about 25 m in the crust and about 32 m in the ice (Table 2). For the chamber 

at 3 km depth, however, the horizontal displacement becomes positive 

(movement away from the centre) at about 25 km distance from the centre.  

 The vertical surface displacement, both in the ice and in the bedrock/crust, is 

less than that of the chamber roof. There is thus not a one-to-one 

correspondence between the displacement at the surface either of the ice or 

the crust and the chamber roof subsidence.  

 The vertical and horizontal displacements extend to distances far from the 

chamber/caldera centre. Thus, in both the bedrock/crust and the ice the 

vertical displacement is in excess of 0.5 m out to distances of about 14 km, 

whereas the horizontal displacements are in excess of 0.5 m out to distances 

of about 19 km (Table 2).  

 

Generally, significant surface displacements associated with the chamber-roof 

subsidence of 100 m occur at lateral distances of up to 40-50 km (in the ice as well 

as in the bedrock/crust) from the chamber/caldera centre. For example, a chamber 

located at 3 km depth produces horizontal surface displacements of 20 cm at 

approximately 21 km from the chamber/caldera centre, whilst a chamber at 7 km 
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depth produces the same displacement at approximately 33 km from the centre. 

Thus, for the imposed vertical displacement of the chamber roof, large horizontal 

displacements are expected out to tens of kilometres from the chamber, and these 

should be easily detected in the ice or at the bedrock/crustal surface by geodetic 

measurements. 

In the second set of homogeneous crustal models, we consider the effects of a 

pressurised deep-seated reservoir, such as are common as magma sources for 

shallow chambers in Iceland (Gudmundsson, 2012) (Fig, 9). Doming is modelled as 

being the effect of 10 MPa excess magmatic pressure acting on the roof (a boundary 

load) of the reservoir. The general effect of doming is to reduce the magnitude of 

vertical and horizontal surface displacements but increase the surface area where 

those displacements are significant. In other words, the subsidence becomes much 

less concentrated at the surface immediately above the shallow chamber.       

 

Fig. 9 Vertical and horizontal ground-surface and ice-surface displacements in 

metres resulting from a maximum prescribed chamber-roof displacement of 100 m, 

and either a) doming overpressure of 10 MPa in a deep-seated reservoir (blue lines) 

or b) fixed lower boundary (red lines). Here the crust is non-layered. Doming has the 

general effect of reducing the maximum horizontal displacement but increasing the 

radial distance or area over which significant horizontal displacement occurs. 

Magnitudes of vertical displacement are not greatly affected by doming, but the area 

of vertical subsidence increases in the absence of a fixed boundary. Shallow chamber 
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radius (a) is 4 km and half-thickness (b) is 1 km, depth (d) is 3 km. Deep reservoir 

radius is 16 km with a half-thickness of 2 km at a depth of 10 km.        

 

In the third set of homogeneous crustal models, we added vertical faults (Fig. 10). 

These are supposed to represent a two-dimensional version of a caldera ring-fault. 

The fault is modelled as a soft elastic inclusion, that is, as a zone with a low Young’s 

modulus. This is because active or recently active faults have generally lower 

Young’s moduli than most of the host rock because the fault is composed of a 

fractured damage zone and breccia fault core (Gudmundsson, 2011; Browning and 

Gudmundsson, 2015). The precise relationship between damage and Young’s 

modulus evolution in caldera settings is, as yet, poorly constrained. The results (Fig. 

10) are similar to those of the previous models without a fault (Fig. 8) but differ in 

that surface subsidence is concentrated within a narrower region around the chamber 

margin. In addition the crust experiences significant (~30 cm) positive (doming) 

displacement, measured as an inflation signal between approximately 15 km and 20 

km from the centre. 

  

Fig. 10 Resultant displacements from a model which includes a soft (Young’s 

modulus 1 GPa) fault zone, representing a ring-fault. In this model the crust is 

homogeneous and isotropic, i.e, not layered. Results are similar to those in models 
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without the weak fault zone, but differ in that surface subsidence is concentrated 

within a narrower region. Additionally, the crustal segment experiences a positive 

vertical displacement (~30 cm), inflation between around 15 and 20 km from the 

chamber centre. Chamber radius (a) is 4 km and half-thickness (b) is 1 km, depth 

below the surface (d) is 5 km.  

 

5.2 Layered (anisotropic) crustal segment 

Two layered crustal-segment models were run (Fig. 11). One model (A) has two soft 

layers in-between stiffer crustal units, while the other model (B) has three soft layers, 

including the top layer. All the soft layers have a stiffness of 1 GPa, which 

corresponds to the stiffnesses of soft hyalaoclastites (basaltic breccias) and of glacial 

sediments, such as are common in most active volcanoes in Iceland. The layers are 

modelled as soft to explore the maximum effects that sediments and soft breccias 

could have on the displacement fields. Introducing mechanical heterogeneities and 

anisotropies through soft layers with low Young’s moduli into the model setup has 

the following effects:  

 There is a general reduction in magnitudes of the far-field displacements. 

That is, the horizontal and vertical displacements far from the 

chamber/caldera centre are smaller in the layered models than in the non-

layered models (Table 2). 

 The maximum vertical displacements are also smaller in the layered models 

than in the non-layered models. More specifically, the maximum surface 

vertical displacements in the bedrock/crust are 79-84 m in the layered 

models but 97-98 m in the non-layered models (Table 2).  Similarly, the 

maximum surface displacement in the ice in the layered models is 64-65 m, 

but 70-72 m in the non-layered models.  

 The maximum horizontal surface displacements are much smaller in the 

layered models than in the non-layered models. In the layered models the 

maximum surface horizontal displacement is 2-6 m but 23-25 m in the non-

layered models.   

 

The general effect of layering is to reduce the displacements measured at the surface 

of the bedrock/crust and the ice. The reasons for the reductions are partly that the 
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stresses become “dissipated” at the contacts with the soft layers. Similar results have 

been obtained in general studies of surface deformation associated with various 

pressure sources, such as dykes (Gudmundsson, 2003). Crustal segments with 

alternating stiff and very soft layers generally transport less stress and deformation to 

the surface than non-layered segments, or segments where all the layers have similar 

mechanical properties. Well-known examples of the reducing effects of 

mechanically contrasting layers on surface stresses and deformation/displacement 

relate to emplacement of dykes and other vertically fluid-driven fractures 

(Gudmundsson, 2003; Philipp et al., 2013).  

 

 

Fig. 11 Displacements generated through chamber-roof subsidence of 100 m in a 

layered crustal model. In the upper model (A), the layering is configured so that two 

soft layers (Young’s modulus E = 1 GPa) lie in-between stiffer units which have the 

same Young’s modulus as the crust. In the lower model (B) we add three soft layers 

in between crustal units, where the uppermost is in contact with the glacier. Coloured 

layers indicate soft hyaloclastite as material inputs shown in the model setups on the 

left. Graphs on the right indicate the vertical and horizontal displacements in the 

crustal (solid) and ice (dashed) surface for each layer configuration. Generally, there 

is a reduction in far-field displacements and the magnitude of local displacements is 

less in both model set-ups, compared to the previous homogeneous setups.  Chamber 

radius (a) is 4 km and half-thickness (b) is 1 km, depth (d) is 5 km.  
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6. Ring-fault subsidence 

We also modelled the effects of a piston-like subsidence along a ring-fault on the 

surface displacement fields. In view of the results from Bardarbunga, where inferred 

vertical maximum displacement in the ice inside the collapse caldera is about 60 m 

(Hench et al, 2015), we impose 50 m vertical displacement on the ring-fault (Fig. 

12). The ring-fault, the fault zone, is modelled as a soft inclusion, with a Young’s 

modulus of 0.1 GPa. We tried other stiffnesses for the fault, such as 0.01 GPa, but 

the overall results remained similar. The crust itself is non-layered in this model with 

the properties used in the earlier non-layered models (Table 1).  

The results (Fig. 12) show that the displacement, both the vertical and the horizontal, 

becomes more concentrated at and within the caldera (the ring-fault) than in the 

previous roof-subsidence models without ring-fault. The maximum subsidence of the 

bedrock/crust is the same as that of the fault, namely 50 m, but the ice subsidence is 

greater, or 60 m. This is because the ice can bend or subside somewhat into the 

caldera lake at the contact between the ice and the crust, whereas the crust clearly 

cannot do so. For the same reason, the horizontal displacement (towards the centre) 

at the surface of the ice also exceeds that of the crust. Both reach a maximum at the 

location of the ring-fault, the vertical displacement of the ice (the fault throw) being 

up to about 17 m and that of the bedrock/crust up to 10 m.  

These results illustrate various aspects of the effect of ring-fault subsidence in a 

caldera located beneath ice, including the following: 

 The crustal displacements, the horizontal and, in particular, the vertical, 

reflect strongly the ring-fault geometry. This means that both displacements 

are maximum at the caldera fault. In fact, the vertical displacement reaches 

its maximum of 50 m at the fault and stays the same throughout the roof of 

the chamber. 

 The caldera lake magnifies the surface displacement of the ice. The 

horizontal displacement in the ice is considerably larger than that in the crust. 

And, most importantly, the total vertical displacements in the ice exceed that 

imposed on the ring-fault by about 10 m. This is because of the caldera lake 

beneath the ice into which the ice can subside. 
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 Displacement of 50 m is so large that it would certainly cut through the ice as 

a fault. The inferred vertical displacement at the location of the ring-fault are 

about 17 m. No tensile or shear strength is given to ice in the model, so it 

does not fracture. But 50 m vertical displacement in an ice sheet of thickness, 

say, 800-1000 m would become very clearly through-faulted.  

 

Fig. 12 Piston like vertical subsidence of 50 m along the inner edge (z-axis) of a 

ring-fault, a soft elastic zone which extends from the crustal surface to 3 km depth. 

The soft fault zone has a Young’s modulus of 0.1 GPa and the crustal segment is 

homogeneous and isotropic. Displacements are highly focussed within the caldera 

region, with maximum vertical and horizontal displacement greatest in the ice 

surface. The caldera lake acts to magnify displacements within the ice, presumably 

because the ice is able to subside into the lake surface.  Chamber radius (a) is 4 km 

and half-thickness (b) is 1 km, depth below the surface (d) is 5 km. 
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7. Discussion: Implications for the 2014-15 Bardarbunga-Holuhraun 

episode 

The underpressure or withdrawal-of-magmatic-support model is often favoured 

when explaining the formation of calderas, both in analogue-model setups (Holohan 

et al., 2011; Acocella et al., 2000) and for explaining geophysical observations 

(Peltier et al., 2008; Kusumoto and Gudmundsson, 2009). Most recently this model 

has been invoked to explain ice surface subsidence above the Bardarbunga Caldera 

(Sigmundsson et al., 2015). The assumption is then that a volume of magma was 

removed from a chamber by lateral magma propagation, eventually forcing an 

eruption some 45 kilometres from the central volcano. Similar ideas have been 

offered to explain the occurrence of lavas outside the main central volcanoes and 

within the active rift zone of Iceland (Sigurdsson and Sparks, 1978), although more 

recent studies have shown that alternative explanations with predominating vertical 

magma propagation are equally plausible (Hartley and Thordarsson, 2012). The 

competing hypothesis is that the Holuhraun lavas, and many other large and rather 

primitive basaltic fissure eruptions in Iceland, are fed by regional dykes which are 

injected from magma reservoirs at a much greater depths (15-25 km) than the 

shallow chambers (Gudmundsson et al., 2014).   

The models presented in this paper have certain implications for volcano-tectonic 

processes in central volcanoes in general. Further implications apply primarily to 

calderas located in ice sheets such as many calderas in Iceland - to Bardarbunga in 

particular. We consider first the implication for the magnitude of the surface 

displacements and the size of the area affected (the surface area showing significant 

displacement). Both aspects of the deformation are very important, particularly when 

trying to separate the deformation associated with a caldera and/or a shallow magma 

chamber from that associated with simultaneous dyke emplacement.  

7.1 Surface displacements 

Vertical surface displacements of 10-20 cm extend out to distances of 15-16 km 

from the centre of the caldera, and horizontal displacements of similar magnitude to 

20-30 km (Fig. 8). For the horizontal displacement, 10 cm displacements occur out 

to 40-50 km from the centre, depending on the depth of the chamber. These refer to 

the non-layered models and the exact distances for the displacement mentioned 
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depend on the depth of the chamber: the surface displacements induced by the 

deepest chamber, at 7 km, extend for the greatest distances from the centre. If the 

surface displacement would relate partly to a deep-seated reservoir, as we propose 

here, say a reservoir at the depth of 15-20 km, then significant surface displacements 

would extend still further from the centre. Using the same model configuration and 

properties but roof-subsidence varying from 20 m to 100 m, the results are similar – 

significant displacements extend to 15-20 km from the centre (Fig. 13 A) and are 

only slightly less when a vertical ring-fault is introduced (Fig. 13 B).  

The layered models produce less displacements, both in magnitude and lateral 

extension from the centre (Fig. 11). However, these models are with somewhat 

extreme layering since the soft layers have stiffness or Young’s modulus of only 1 

GPa, which is low for hyaloclastites and sedimentary rocks. Nevertheless, there are 

still large surface displacements of 50 cm at distances of about 12 km (for the 

vertical displacement) and 12-17 km (for the horizontal displacement) in the 

bedrock/crust, and somewhat larger distances in the ice (Table 2). Larger 

displacements are obtained from the 50-m-fault displacement model (Fig. 12).  

Overall the displacement results indicate that, for the models considered, large 

displacements, of the order of tens of centimetres or hundreds of millimetres, should 

be detected out to distances of 10-20 km, for the vertical displacement, and 20-30 km 

or more for the horizontal displacements. Even for a small roof-subsidence of 20 m, 

the horizontal displacement at 10-12 km distance from the centre is still of the order 

of tens of centimetres (Fig. 13). Results of this kind show clearly the effect of nearby 

subsidence of a magma-chamber roof, or a collapse caldera displacement, and should 

make it possible to distinguish between displacements induced by such a subsidence 

and those induced by a dyke formed in the same volcano-tectonic episode. 

The displacement field associated with the subsidence of the ice in the Bardarbunga 

episode in 2014-15 is educational in this respect. For the period up to 6 September 

2014 the GPS-estimated maximum displacement or subsidence in the ice in the 

Bardarbunga Caldera was about 16 m (Sigmundsson et al., 2015), and the entire 

cumulative displacement during the episode 2014-15 is estimated at over 60 m 

(Hensch et al., 2015). Dyke emplacement was essentially completed by 31 August 

when the main eruption began (Gudmundsson et al., 2014; Sigmundsson et al., 
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2015), and no significant horizontal dyke-induced displacements were detected after 

4 September 2014 (Ofeigsson et al., 2015). The horizontal displacements induced by 

the dyke can thus largely be separated from those induced by the subsidence 

measured in the Bardarbunga Caldera. 

 

Fig. 13 Total vertical (A and C) and horizontal (B and D) displacements in crustal-

surface (solid lines) and ice-surface (dashed lines) resulting from vertical chamber 

roof subsidence of between 20 and 100 m. Upper displacement curves (A and B) are 

from a homogeneous crustal model, whereas the lower curves (C and D) are from 

models which include a soft vertical zone, a ring-fault (C and D). The results are 

similar for both types of models, with slight variations in subsidence around the fault 

area. All models indicate significant far-field surface displacements, irrespective of 

the amount of roof subsidence. However, roof subsidence has a major control on the 
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local surface displacements directly above the magma chamber. In all model runs 

shown here chamber radius (a) is 4 km and half-thickness (b) is 1 km, with a 

chamber depth of 3 km.  

 

Our model results suggest that vertical displacement of about 16-20 m, 

corresponding to period up to about 6 September, should generate horizontal 

displacements of the order of tens of centimetres towards the Bardarbunga Caldera 

within 10-12 km from the centre of the caldera. Similarly, horizontal displacements 

of many tens of centimetres are expected out to distances of up to tens of kilometres, 

depending on the model used – in particular, the assumed depth of the shallow 

chamber and mechanical properties of the host rock and the ring-fault. The measured 

displacements at the GPS stations in the crust outside the ice, some of which are at 

13-17 km from the centre of the caldera, are significantly less than expected from the 

models (Sigmundsson et al., 2015; Ofeigsson et al., 2015). The difference may be 

partly related to the modelling procedure but most likely indicates that only part of 

the subsidence in the ice within the Bardarbunga Caldera is actually directly related 

the magma-chamber roof subsidence, or ring-fault displacement. 

The last point is also of importance when interpreting the subsidence measured in the 

ice within the caldera. There are several remarkable features of the ice subsidence, as 

shown in maps by Sigmundsson et al. (2015), including the following:  

 The maximum subsidence is about 3 km from the northern caldera rim and 

about 5 km from the southern and south-eastern rims.  

 The subsidence at the rims, at the ring fault itself, is much smaller than the 

maximum subsidence – in fact about zero in the early stage of the subsidence.  

 Fracture development at the surface of the ice is comparatively small, with no 

major caldera-related fault cutting through the ice. 

These observations and measurements, when compared with the ring-fault 

subsidence model (Fig. 13), suggest the following interpretations. First, the 

displacement along the ring-fault is small in comparison with the overall subsidence 

in the ice. In particular, displacements of the order of 20-60 m along the ring fault 

would without doubt have propagated faults through the ice (say, vertical 

displacements of 10-20 m; Figs. 11 and 12) – and these faults are not observed. From 
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standard fracture mechanics (Gudmundsson, 2011) and the mechanical properties of 

a typical ice (Schulson and Duval, 2009; Table 2), a close-to vertical normal fault 

(Hensch et al., 2015) with displacement of up to tens of metres in ice of thickness of 

several hundred metres – in fact, the ice thickness is only 200-300 m above part of 

the caldera rims - would become a through crack, that is, reach the bottom and 

surface of the ice sheet. This conclusion is the same even if there is a caldera lake 

beneath the ice (Fig. 13). Since normal faults with these throws are not observed, the 

cumulative vertical ring-fault displacements cannot be of the of the order of tens of 

metres, and is most likely of the order of metres or less. 

Second, for a porous-media chamber, as most chambers presumably are 

(Gudmundsson, 2012), the maximum subsidence, if caused by magma flow out of an 

underlying magma chamber, would normally be, initially at least, close to the 

‘outlet’, that is, the intersection of the dyke or sheet transporting the magma with the 

boundary of the chamber. Sigmundsson et al. (2015) propose that the subsidence of 

the ice is directly related to chamber roof-subsidence associated with magma flowing 

laterally along a dyke that dissects a chamber along its southeast margin. It is not 

clear from the subsidence data, however, why the maximum subsidence is then not at 

the outlet but rather close to the northern margin of the chamber/caldera.  

In fact, the inferred segmentation of the dyke, with distances between nearby tips of 

segments up to kilometres (Sigmundsson et al., 2015), is a strong argument against 

lateral flow of magma from a chamber beneath Bardarbunga and to the volcanic 

fissures in Holuhraun and an argument for vertical flow of magma from a deep-

seated reservoir (Gudmundsson et al., 2014). The arguments against the lateral flow 

between dyke segments are many, including the following. (1) There is no  

seismicity between the nearby ends of some of the 8 segments, particularly between 

segments 1 and 2 and 5 and 6 (Sigmundsson et al., 2015, Extended Data Figure 2), 

suggesting that no magma migrated laterally between them. The zones connecting 

many of the segments, being highly oblique to the overall strike of the dyke, are 

zones of high shear stress making it highly unlikely that a magma-driven fractures 

could propagate along the zones without triggering earthquakes. Earthquakes are, in 

fact, used as criteria for identifying magma paths. It follows that absence of 

earthquakes, that is, seismically quiet zones, would normally mean absence of 

magma paths. (2) In the unlikely event of aseismic magma-path formation at shallow 
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depths from segment 1 to 2, and from segment 5 to 6, then the same magma would 

have to flow from the shallow depths vertically down to at least 10 km depth in 

segments 2 and 6. Downward flow of magma on this scale is not supported by any 

observations and does not agree with well-established physical principles of fluid 

dynamics and dyke propagation (Gudmundsson, 2011). Thus, the segments of the 

regional Bardarbunga-Holuhraun dyke were presumably formed primarily through 

vertical flow of magma from the proposed deep-seated magma reservoir 

(Gudmundsson et al., 2014).  

7.2 Mechanisms for the ice and ring-fault subsidences  

If excess magma pressure decrease in a shallow chamber is not the main cause of the 

subsidence in the ice in Bardarbunga, what alternative mechanisms exist?  One 

obvious mechanism, well known from caldera studies, is slight doming or inflation 

of the volcanic field hosting a shallow magma chamber. Doming was in fact detected 

at GPS stations in a large area surrounding the Bardarbunga Caldera a few months 

before the unrest (Ofeigsson et al., 2015). Such a doming, as small as of the order of 

centimetres, is known to be one of the principal mechanisms for generating caldera 

collapses (Gudmundsson, 2007), particularly along normal ring-faults 

(Gudmundsson, 1998). Focal mechanisms suggest that the slip on the ring-fault of 

Bardarbunga in the 2014-15 episode was primarily through normal faulting 

(Bjarnason, 2014; Hensch et al., 2015; Riel et al., 2015). Most of the ring-fault 

seismicity occurred at shallow depths (<3 km) (Hjorleifsdottir et al., 2015), in 

agreement with the ring-fault seismicity being related to stress concentration above 

the margins of a proposed shallow magma chamber, as is the model suggested here 

(cf. Gudmundsson, 2007).  

The doming or inflation of the volcanic field or system containing the Bardarbunga 

Caldera is most likely related to the associated deep-seated reservoir receiving new 

input of melt or magma. As doming begins, stress concentration at the ring-fault of 

the Bardarbunga Caldera results in subsidence – by how much we do not really 

know. The subsidence and associated faulting and possible ring-dyke formation 

(Gudmundsson et al., 2014) reduces the effective thickness of the crustal segment or 

plate above the shallow magma chamber (Figs. 5 and 9). The reduction in the 

effective plate thickness de encourages further doming of the volcanic field hosting 
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the Bardarbunga caldera even if the magmatic excess pressure at the deep-seated 

reservoir remains constant or decreases slightly for a while (Gudmundsson, 1998). 

7.3 Relation between dyke emplacement and subsidence in the caldera 

This last point brings us to the 45-km-long regional dyke and associated eruption, 

and how they relate to the subsidence in the Bardarbunga Caldera. The first thing to 

notice is that the strike of the dyke close to the caldera/chamber is in perfect 

agreement with the local trajectories of the maximum horizontal principal stress 

around a circular or slightly elliptical cavity under tension (Savin, 1961; 

Gudmundsson, 2011). Further from the chamber/caldera the regional stress field took 

over, and the dyke followed the field that has existed in this part of Iceland for at 

least 8-10 Ma (Gudmundsson et al., 2014). The main dyke was injected when the 

excess pressure in the deep-seated reservoir reached the conditions (Gudmundsson, 

2011): 

                                                                                               (4) 

where  is the lithostatic stress or overburden pressure at the reservoir rupture site 

(in the reservoir roof), lte ppp   is the difference between the total fluid pressure 

tp  in the reservoir and the lithostatic stress at the time of reservoir rupture,  is the 

minimum compressive or maximum tensile principal stress, and  the local in situ 

tensile strength at the rupture site. When the dyke became injected into the roof of 

the reservoir and began to propagate up into the crustal layers above, its overpressure 

po changes as: 

dmre ghpp   )(0         
                                  

      `                              (5)                     

                                    

where pe is the magmatic excess pressure in the reservoir at the time of rupture (and 

equal to the in-situ tensile strength of the roof at the rupture site, ), r  is the host-

rock density, m  is the magma density, g is acceleration due to gravity, h is the dip 

dimension or height of  the dyke above the rupture site, and d  is the differential 

stress at a particular depth in the crust (the depth of interest). At the magma-chamber 

rupture site itself, the stress difference is included in the excess pressure term, so that 
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there d = 0. Also, at the rupture site, before the dyke has propagated and reached 

any significant height, we have h = 0, so that the third term in Eq. (5), the buoyancy 

term, becomes zero. It follows that the only pressure available to rupture the 

reservoir roof and drive the magma out at and close to the roof contact with the 

magma is the excess magmatic pressure pe. We also know that pe =  , that is, the 

excess pressure at the time of roof rupture is equal to the in-situ tensile strength, with 

in-situ (field) values ranging from 0.5 to 9 MPa (Amadei and Stephansson, 1997), 

the most common values being 2-4 MPa (Gudmundsson, 2011).  

It follows that during the rupture and initial propagation of the resulting dyke, the 

only driving pressure is pe, of the order of several mega-pascal. As the dip dimension 

(height) of the dyke increases, however, positive buoyancy adds to the driving 

pressure, so long as the average magma density is less than the average density of the 

rock layers through which the dyke propagates. The magma is olivine tholeiite  

(Haddadi et al., 2015) so that its density may be taken as about 2700 kg m
-3

 (Murase 

and McBirney, 1973). The erupted magma originated at depths somewhere between 

10 and 20 km (Bali et al., 2014; Haddadi et al., 2015), that is, from a deep-seated 

magma reservoir as have been proposed under most volcanic systems in Iceland, and 

the Bardarbunga System in particular (Gudmundsson et al., 2014). Given the crustal 

density in Iceland, then from Eq. (5) the magmatic overpressure p0 or driving 

pressure of the dyke, at different crustal depths (and thus with different d values) 

could easily have reached 10-15 MPa (cf. Becerril et al., 2013; Gudmundsson et al., 

2014). 

 In the model presented here, the injection of the main dyke from the deep-seated 

reservoir, as well as the subsidence in the Bardarbunga Caldera, were both the 

consequence of the same process: namely inflow of magma into the deep-seated 

reservoir. This inflow may have started many years before the 2014 episode, 

particularly from 2006 and onwards as indicated by seismcity (Vogfjörd et al., 

2015), and was certainly noticeable as widespread doming or uplift on GPS 

instruments for months before the regional dyke injection began in August 2014 

(Ofeigsson et al., 2015). There may have been magma flow into the shallow chamber 

associated with the caldera, and several smaller dykes may have been emplaced 

during the early stages of the episode – some from the deep-seated reservoirs, others 
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(small radial dykes) from the shallow chamber. The only dyke to develop into a 

major dyke, however, was the 45-km-long regional dyke emplaced over a period of 2 

weeks in August 2014 (Gudmundsson et al., 2014; Sigmundsson et al., 2015).  

The regional dyke presumably came from depths of at least 15-20 km, perhaps 

deeper. This is suggested partly by the chemistry of the erupted lavas (Bali et al., 

2014; Haddadi et al., 2015), partly by the widespread doming detected in the months 

before the episode, discussed above, and partly by the earthquake distribution in the 

area. From 2012 there were many earthquakes north and northeast of the 

Bardarbunga Caldera (Vogfjörd et al., 2015), where one of the earthquake swarms 

(and possible dyke injection) occurred during the first days of the August 2014 

episode. Even more importantly, deep earthquakes occurred in a vertical zone 

southeast of the Bardarbunga Caldera from about this time and extended until 

August 2014 (Vogfjörd et al., 2015) at roughly the location of the first segment of 

the regional dyke, as formed in the first days of the August 2014 episode.   

The regional dyke had enormous stress effects on the Bardarbunga Caldera and, by 

implication, the associated shallow magma chamber (Gudmundsson et al., 2014). 

The stress field induced by the dyke around the caldera contributed to three 

important aspects of the 2014 episode; (1) normal faulting along the caldera ring-

fault, (2) elongation of the caldera in a northeast-southwest direction, and (3) ductile 

deformation and flow of the ice, primarily inside the caldera.  

Normal faulting is the dominating mechanism on the Bardarbunga ring-fault during 

the present episode (Bjarnason, 2014; Hensch et al., 2015; Riel et al., 2015). This is 

in agreement with the two main mechanisms of caldera slip proposed here, namely: 

(1) a combination of stresses concentrating at the ring-fault as a consequence of 

slight doming due to excess pressure increase in the deep-seated reservoir 

(Gudmundsson, 2007) and (2) dyke-induced stress concentration, particularly at the 

northern and southern sectors of the ring-fault (Gudmundsson et al., 2014). Both 

encourage normal faulting on the ring-fault itself, while the dyke-induced stresses 

also encourage strike-slip and reverse-faulting on differently oriented faults away 

from the ring-fault (Gudmundsson et al., 2014).  

The elongation of the ring-fault in the northeast-southwest direction is due to the 

compressive and shear stresses that concentrate in the “breakout areas” around the 
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caldera (Gudmundsson et al., 2014). Elongation of collapse calderas due to 

“breakouts” is well known from other areas (Bosworth et al., 2003). The elongation 

would encourage flow of magma to the ring-fault in these sectors, possible ring-dyke 

formation – which may partly explain the common non-double couple earthquakes 

(Riel et al., 2015) - and contribute to the subsidence of the caldera roof. The main 

reason why the earthquake activity along the Bardarbunga Caldera has been so 

concentrated in the north and south parts of the caldera is presumably related to the 

dyke-induced stresses in these sectors (Gudmundsson et al., 2014).  

While no attempts were made to measure or monitor ice flow in the ice-sheet cover 

of the Bardarbunga Caldera and its vicinity during the 2014-15 episode, such flow is 

likely to have occurred. During the emplacement of the regional dyke east and 

northeast of the caldera, the magmatic overpressure in the dyke (Eq. 5) may easily 

have reached 10-15 MPa. The dyke induced major displacements and thus stresses, 

within the caldera, and the high mountains of the caldera rim must have transmitted 

those compressive stresses (σH) from the dyke into the ice (Fig. 14). Depending 

somewhat on the strain rate, ice flows at pressures or stresses of less than 1 MPa, so 

that stresses of up to 10 MPa – somewhat diminishing with distance from the dyke - 

would certainly have caused flow in the ice within the caldera. The main flow would 

have been within the caldera because that is where the mountains are high – the 

caldera rim – and can thus most easily transmit the dyke-induced stresses to shallow 

levels in the ice sheet (Fig. 14). Since ice flows from higher to lower pressure, the 

dyke-induced stresses would have encouraged ice flow out of the caldera.  

How much the ice flow may have contributed to the measured 60 m subsidence in 

the ice is unknown. The comparatively minor fracturing at the surface of the ice 

during its subsidence would suggest that the ice was flowing right up to the surface. 

Flow in the ice may have contributed significantly to the measured subsidence. In 

this model, the flow or creep or strain rate was highest just after the emplacement of 

the regional dyke, and then became gradually lower, as is typical for a creeping 

response to sudden load or displacement (here the dyke emplacement).  

As the excess pressure pe in the deep-seated reservoir declined, the doming-related 

ring-fault displacement also gradually decreased and, as pe approached zero, the 

subsidence stopped altogether. It is clear that long before the eruption came to an end 
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on 27 February 2015 the earthquake activity associated with the Bardarbunga 

Caldera had greatly diminished. Also, the subsidence measured in the Bardarbunga 

Caldera ceased several weeks before the end of the eruption. These and other 

observations suggest that the pressure decrease in the deep-seated reservoir was 

partly responsible for the ring-fault slips and associated earthquakes.  

 

Fig. 14 A simplified E-W profile of the sub-glacial caldera at Bardarbunga volcanic 

system.  Overpressure (po) from a regional dyke emplaced to the east of the caldera 

rim imposes large horizontal compressive stresses (σH) on the high caldera walls. 

The compression acts to squeeze ice within the caldera, making the ice behave as 

ductile up to the surface, and leading to increased ice flow out of the caldera. The 

resulting ice flow is likely to have contributed largely, perhaps dominantly, to the 

measured ice subsidence at Bardarbunga. The regional dyke is not to scale in this 

diagram and the sub-glacial caldera topography is a representation of the likely 

topographic setting of Bardarbunga, modified from Bjornsson, 1988.    

 

8. Conclusions 

We present general numerical models on the effects of “shallow” magma chamber 

contraction at various depths, namely the result of chamber roof subsidence at depths 

of 3 km, 5 km, and 7 km. In all the models, the magma chambers are associated with 

a collapse caldera which is located beneath a thick glacier or ice sheet. The models 

are general, and apply to many volcanoes in Iceland and elsewhere, but the results 

are here applied to the 2014-15 volcano-tectonic episode in Bardarbunga-Holuhraun 

in Iceland. 

Several models were tested for the shrinkage of the magma chamber through vertical 

downward displacement of its roof. Some of the models use a simple elastic crust 
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(elastic half space) hosting the chamber, with an ice sheet on the top. Others use 

layered (anisotropic) crust above the shallow magma chamber, that is, layers with 

different stiffnesses (Young’s moduli). And still other models have a caldera lake 

between the ice sheet and the rock or crustal surface. The simplest loading used is 

100 m vertical downward displacement of the chamber roof. Other models include 

different vertical displacement of the roof (in steps from 20 m to 100 m), as well as 

displacement of 50 m along a vertical caldera fault (the ring-fault). Some of the main 

results are as follows: 

 For chamber-roof displacements in the range of 20-100 m, the models 

suggest large vertical and particularly horizontal displacements in the ice and 

in the bedrock/crust surface under the ice out to distances of 10-40 km from 

the caldera centre, depending on the depth of the chamber and the exact type 

of modelling used. The vertical displacements in all models reach maximum 

at the surface of the bedrock/crust and the surface of the ice right above the 

centre of the subsiding magma-chamber roof. The horizontal displacements 

at the surface, however, reach their maximum values (maximum 

displacement towards the chamber or caldera centre) at a distance of 4-5 km 

from the centre.  

 For a non-layered (isotropic) crustal model with a 100 m roof subsidence, the 

vertical displacement exceeds 50 cm to a distance of 14 km from the centre 

and the horizontal displacement exceeds 50 cm to a distance of 19 km from 

the centre. A chamber located at 3 km depth produces horizontal 

displacement of 20 cm to a distance of 21 km from the centre, and for a 

chamber at 7 km depth horizontal displacement of 20 cm is produced to a 

distance of 33 km from the centre. Similar results are obtained if a vertical 

non-slipping ring-fault is added to the model, but the displacements show an 

abrupt change (a break) at the location of the fault. 

 The general effect of crustal layering (using mechanically layered or 

anisotropic models) is to reduce the displacements measured at the surface in 

comparison with those generated in the non-layered (isotropic) models. The 

reasons are partly that the stresses become ‘dissipated’ at contacts between 

still and soft layers.  
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In a model where the subsidence is related to vertical downward piston-like 

displacement by 50 m of the ring-fault, the results show that the vertical 

displacement in the crust/chamber roof exactly reflects that of the ring-fault and 

reaches a maximum of 50 m. By contrast, the vertical displacement in the ice follows 

a curve that reaches its maximum of 60 m in the centre of the caldera. This ‘extra’ 

vertical displacement in the ice is partly because it can bend or subside somewhat 

into the caldera lake below. Displacement of 50 m along the ring-fault is so large that 

the fault would most definitely cut through the ice, forming a through fault with 

displacements of up to tens of meters (which is not observed in Bardarbunga, 

however). 

The modelling results have several implications for the interpretation of the 2014-15 

Bardarbunga-Holuhraun episode.  

 First, the measured horizontal displacements in the surface rocks outside the 

ice appear to be significantly less than expected from modelling 60 m vertical 

displacement. At stations west of the Bardarbunga Caldera, horizontal 

displacements towards the caldera of the order of tens of centimetres would 

be expected but are not observed. This indicates that the vertical 

displacement in the bedtrock/crust, and thus the chamber roof-subsidence, is 

significantly less than than the maximum of about 60 m measured in the ice. 

 Second, a 50 or 60 m piston-like displacement along the ring-fault is ruled 

out. The ring-fault would, for such a large displacement, definitely cut 

through the ice to form a large and easily visible fault, but this has not 

happened. By contrast, there has been comparatively little fracturing in the 

ice within the Bardarbunga Caldera during the subsidence, which suggests 

that the ice behaved as ductile, was flowing, right up to its surface. The 

results seem to limit the actual ring-fault (piston-like) subsidence to, at most, 

a few metres. 

 Which brings us to the third implication, namely that the 45-km-long 

regional dyke generated compressive stresses in the ice within the caldera 

which resulted in ice flow out of the caldera, thereby contributing to the 

measured subsidence in the ice. How large factor the ice flow may have been 

is unknown since no measurements of the ice flow were made. What is 
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known, however, is that ice flows easily at low pressures, of the order of 1 

MPa, and our calculations suggest magmatic overpressure in the regional 

dyke of the order of 10-15 MPa. 

We interpret the geochemical, seismic, and geodetic data so that the regional dyke 

was injected from a large reservoir at 15-20 km depth, perhaps deeper. Earthquake 

data suggest that the reservoir received new magma over many years before the 

beginning (in August 2014) of the Bardarbunga-Holuhraun episode, particularly 

from the year 2006 and onwards. The magma injection resulted in widespread 

doming (uplift), as detected by GPS instruments in the months prior to August 2014 

when the dyke emplacement began (Ofeigsson et al., 2015). 

In our interpretation, the August 2014 reservoir rupture and regional dyke injection 

as well as the ring-fault displacement (caldera subsidence) are both the consequence 

of the associated reservoir magmatic pressure increase and doming. The conditions 

for reservoir rupture, dyke injection, as well as the overpressure change with vertical 

propagation of the dyke, are presented in Eqs. (4) and (5). The effects of ring-fault 

formation or reactivation as a result of reservoir-pressure increase, slight doming, 

and stress concentration around the chamber/caldera are discussed in the paper with 

reference to earlier numerical models (Gudmundsson, 1998, 2007), all of which 

suggest doming as a main mechanism of ring-fault displacement. This mechanism is 

also in agreement with the dominating normal-fault focal mechanisms of the ring-

fault earthquakes (Bjarnason, 2014; Hensch et al., 2015; Riel et al., 2015). 

We interpret the seismic and geodetic data so that, in addition to the 45-km-long 

regional dyke, there may have been several other dyke injections, including a 

northwest-striking dyke emplaced some 15 km north of the caldera and several 

smaller radial dykes/inclined sheets injected from the shallow chamber beneath the 

caldera. The shallow chamber may have received magma from the reservoir during 

the episode before the radial dyke injection; alternatively, stress concentration 

around the shallow chamber, through the external loading (doming), can have 

triggered the radial dyke injection (Gudmundsson et al., 2014).  

The regional dyke induced stress concentration at the caldera/shallow chamber, in 

addition to that generated by the doming. The dyke-induced stress concentration 

contributed to three processes during the 2014-15 episode. First, normal-fault slip 
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along the ring-fault. Focal mechanisms indicate dominating normal-fault slip along 

the ring-fault (Bjarnason, 2014; Hensch et al., 2015; Riel et al., 2015). Much of the 

faulting occurred at the northern and southern sectors of the ring-fault, exactly in the 

areas where numerical and analytical models suggest that dyke-induced stress 

encourages normal faulting (Gudmundsson et al., 2014). Second, caldera elongation 

and “breakout” mechanisms at the northern and southern sectors of the 

caldera/chamber were induced by the dyke. These may have encouraged ring-dyke 

emplacement. Third, ductile deformation and flow in the ice inside the caldera. The 

caldera rim is composed of tall mountains that transmitted the compressive stress 

induced by the dyke to the ice, resulting in ice flow out of the caldera. The rate of 

flow of ice was greatest immediately following the dyke emplacement, and then 

gradually declined, as is typical of creeping material response to a sudden load (here 

the dyke emplacement). How much the ice flow contributed to the measured 60-m-

subsidence in the ice is as yet unknown. 

As the excess pressure in the reservoir pe decreased below a certain level, the stress 

concentration around the ring-fault became too small for further significant to large 

slips and associated earthquakes to occur. This follows because the main slips were 

through normal faulting, so that the slips were controlled by the available driving 

stress at any time. Thus both the ice flow and the ring-fault subsidence gradually 

decreased with time. Significant subsidence in the caldera had apparently stopped in 

early February, several weeks before the eruption in Holuhraun came to an end on 27 

February 2015. That the eruption continued for several more weeks indicates that it 

ceased only when the excess pressure in the deep-seated reservoir had vanished 

completely, that is, its excess pressure pe had become zero. 
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